JPS6151036B2 - - Google Patents

Info

Publication number
JPS6151036B2
JPS6151036B2 JP54072874A JP7287479A JPS6151036B2 JP S6151036 B2 JPS6151036 B2 JP S6151036B2 JP 54072874 A JP54072874 A JP 54072874A JP 7287479 A JP7287479 A JP 7287479A JP S6151036 B2 JPS6151036 B2 JP S6151036B2
Authority
JP
Japan
Prior art keywords
gas
etching
silicon oxide
plasma etching
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54072874A
Other languages
Japanese (ja)
Other versions
JPS55164077A (en
Inventor
Hiroyasu Toyoda
Hiroyoshi Komya
Hideaki Itakura
Mineto Tobinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP7287479A priority Critical patent/JPS55164077A/en
Publication of JPS55164077A publication Critical patent/JPS55164077A/en
Publication of JPS6151036B2 publication Critical patent/JPS6151036B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は、シリコン基板上の酸化シリコン被膜
を食刻する食刻法に関し、さらに詳しくは含水素
フツ素化合物またはフツ素化合物と水素の混合ガ
スを用いたガスプラズマ食刻法に関する。
Detailed Description of the Invention The present invention relates to an etching method for etching a silicon oxide film on a silicon substrate, and more specifically to a gas plasma etching method using a hydrogen-containing fluorine compound or a mixed gas of a fluorine compound and hydrogen. Regarding engraving.

従来、IC,LSI製造工程において、シリコン基
板上の酸化シリコン被膜を選択的に食刻するには
40%フツ化アンモニウム液:49%フツ酸=6:1
の混合液などの化学薬品による湿式法が用いられ
てきたが、微細加工に対しては食刻マスクと被食
刻層間への食刻液の浸み込み等に起因する食刻精
度の低下などがあつて不利である。また、廃液処
理法などに起因する薬品公害の問題も大きな障害
となつている。
Conventionally, in the IC and LSI manufacturing process, there is no way to selectively etch the silicon oxide film on the silicon substrate.
40% ammonium fluoride solution: 49% fluoric acid = 6:1
A wet method using chemicals such as a mixed solution of This is disadvantageous. In addition, the problem of chemical pollution caused by waste liquid treatment methods is also a major obstacle.

一方、近年になつてフツ素化合物例えば四フツ
化炭素(CF4)ガスを用いた乾式のプラズマ食刻
法が上記加工精度の点で湿式法よりも有利である
ことが判り、かつ、公害の心配もほとんどないこ
となどから広くIC,LSI製造工程に採用され始
め、実用化されてきた。しかし、CF4ガス等を用
いたガスプラズマ食刻法は、一般にシリコン基板
の方が酸化シリコン被膜よりも食刻速度が速く、
IC,LSI素子作製上問題があつた。
On the other hand, in recent years, it has been found that a dry plasma etching method using fluorine compounds such as carbon tetrafluoride (CF 4 ) gas is more advantageous than the wet method in terms of processing accuracy, and also reduces pollution. Since there are almost no concerns, it has begun to be widely adopted in IC and LSI manufacturing processes and has been put into practical use. However, in gas plasma etching using CF 4 gas etc., silicon substrates are generally etched faster than silicon oxide films;
There were problems in manufacturing IC and LSI devices.

文献(Solid State Electronics,Vol.18,
pp1146〜1147,1975)等から推察すれば、フツ
素化合物のガスのプラズマ状態においてフツ素ラ
ジカル(F〓)や三フツ化炭素ラジカル
(CF3〓)、三フツ化炭素イオン(CF3 +)等が解離
されるが、該F〓はシリコンとの反応性が大き
く、該CF3〓やCF3 +は酸化シリコンとの反応性
が大きい。従つてF〓を何らかの方法で減少させ
ればシリコンの食刻速度を低下させることが可能
となり、酸化シリコン被膜の選択食刻が可能とな
る。
Literature (Solid State Electronics, Vol.18,
pp1146-1147, 1975), etc., in the plasma state of fluorine compound gas, fluorine radicals (F〓), carbon trifluoride radicals (CF 3 〓), carbon trifluoride ions (CF 3 + ) etc. are dissociated, but the F〓 has a high reactivity with silicon, and the CF 3 〓 and CF 3 + have a high reactivity with silicon oxide. Therefore, if F〓 is reduced by some method, the etching rate of silicon can be lowered, and the silicon oxide film can be selectively etched.

このような考察のもとに種々の方法が提案され
ているが、含水素フツ素化合物であるCHF3ガス
やフツ素化合物と水素の混合ガスであるCF4/H2
混合ガスのガスプラズマを用いる方法もその1つ
である。これらの食刻ガスを用いてシリコン基板
上の酸化シリコン被膜をプラズマ食刻した場合、
確かにシリコンの食刻速度E(Si)はおさえら
れ、酸化シリコンの食刻速度E(SiO2)はあまり
低下しないため、シリコンに対する酸化シリコン
の食刻速度比R(SiO2/Si)は大きな値が得られ
る。しかし、食刻マスク例えばフオトレジストマ
スクが変質・変形しないようなプラズマ発生条件
で食刻した場合、E(SiO2)は十分なほど大きな
値は得られず、酸化シリコン被膜を完全に除去す
るには時間がかかる傾向にあつた。また、これら
の食刻ガス系には水素原子または水素分子が含ま
れているためプラズマ発生条件、特に動作ガス圧
が高くなるに従つて重合反応が起り易く、いつた
んプラズマ重合反応が開始し、被食刻試料表面に
反応生成物が堆積してポリマ被膜が形成される
と、シリコン基板および酸化シリコン被膜はもは
や食刻されなくなる。
Various methods have been proposed based on these considerations, including CHF 3 gas, which is a hydrogen-containing fluorine compound, and CF 4 /H 2 gas, which is a mixed gas of a fluorine compound and hydrogen.
One such method is to use gas plasma of a mixed gas. When a silicon oxide film on a silicon substrate is plasma etched using these etching gases,
It is true that the etching rate E (Si) of silicon is suppressed, and the etching rate E (SiO 2 ) of silicon oxide does not decrease much, so the etching rate ratio R (SiO 2 /Si) of silicon oxide to silicon is large. value is obtained. However, when etching is performed under plasma generation conditions that do not alter or deform an etching mask, such as a photoresist mask, a sufficiently large value of E(SiO 2 ) cannot be obtained, and it is difficult to completely remove the silicon oxide film. tended to take a long time. In addition, since these etching gas systems contain hydrogen atoms or hydrogen molecules, polymerization reactions are more likely to occur as the plasma generation conditions, especially the operating gas pressure, become higher, and the plasma polymerization reaction starts immediately. Once the reaction products are deposited on the surface of the sample to be etched to form a polymer film, the silicon substrate and silicon oxide film are no longer etched.

本発明は、これら食刻ガス系において、シリコ
ンに対する酸化シリコンの食刻速度比R
(SiO2/Si)を十分に保ちながら、酸化シリコン
の食刻速度E(SiO2)を実用的に十分満足のいく
程度まであげるとともにプラズマ重合を防止する
食刻方法を提供するものである。具体的には、こ
れら食刻ガス系に酸化性ガスを混入させ、プラズ
マ状態において発生した該酸化性ガスのラジカル
例えば酸素ラジカルを利用して配化シリコンの食
刻速度E(SiO2)をあげるとともに、重合反応に
寄与するラジカルと酸素ラジカルとを反応させて
重合化を防止することにある。
In the present invention, in these etching gas systems, the etching rate ratio R of silicon oxide to silicon is
The present invention provides an etching method that increases the etching rate E (SiO 2 ) of silicon oxide to a practically satisfactory level while maintaining a sufficient ratio (SiO 2 /Si) and prevents plasma polymerization. Specifically, an oxidizing gas is mixed into these etching gas systems, and the etching rate E (SiO 2 ) of the arranged silicon is increased using radicals of the oxidizing gas, such as oxygen radicals, generated in a plasma state. In addition, the purpose is to prevent polymerization by causing radicals that contribute to the polymerization reaction to react with oxygen radicals.

以下、実施例によつて詳細に説明するが、本発
明はその要旨を越えない限り、以下の実施例に限
定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 第1図にその一例を示した平板状の高周波電極
1,2を有するガスプラズマエツチング装置の反
応槽3内に被食刻試料4、例えば表面に選択的に
酸化シリコン被膜が形成されたシリコン基板にフ
オトレジストで画像を形成した試料を配置し、真
空ポンプ5で該反応槽3内を排気してガス圧を
0.1mTorr以下にした後、ガス導入管6を通して
CHF3(トリフロロメタン)ガス24cc/分に対し
て酸素ガスをそれぞれ0,1,1.5,2,3.1,
4,6,8cc/分の割合で混合したガスを導入し
て5.0mTorrに調整する。次いで、電極1,2間
に高周波電源7を用い、周波数400KHzで
1.7mA/cm2の高周波電流を印加して、該混合ガス
をプラズマ化して食刻処理を施す。
Example 1 A silicon oxide film is selectively formed on the surface of a sample 4 to be etched, for example, in a reaction tank 3 of a gas plasma etching apparatus having flat high-frequency electrodes 1 and 2, an example of which is shown in FIG. A sample with an image formed with photoresist is placed on a silicon substrate, and the inside of the reaction tank 3 is evacuated using a vacuum pump 5 to increase the gas pressure.
After reducing the temperature to 0.1mTorr or less, pass through the gas introduction pipe 6.
CHF 3 (trifluoromethane) gas at 24 cc/min and oxygen gas at 0, 1, 1.5, 2, 3.1,
A mixed gas was introduced at a rate of 4, 6, and 8 cc/min to adjust the pressure to 5.0 mTorr. Next, using a high frequency power source 7 between electrodes 1 and 2, a frequency of 400KHz is applied.
A high frequency current of 1.7 mA/cm 2 is applied to turn the mixed gas into plasma and perform etching.

その結果、被食刻試料4において、表出してい
るシリコン基板部分および該シリコン基板上の酸
化シリコン被膜部分およびフオトレジスト被膜は
それぞれ、第2図に示すようなシリコンの食刻速
度曲線8、酸化シリコンの食刻速度曲線9および
フオトレジストの食刻速度曲線10をもつて食刻
された。すなわち、三者ともCHF3ガス中の酸素
ガス含有量が多くなるに従いその食刻速度は大き
くなる。しかし、酸化シリコン膜の食刻速度は酸
素ガス含有量が6%を越えると徐々に減少し、25
%の含有量でほとんど増速効果はなくなる。ま
た、酸素含有量が18%になるとフオトレジスト被
膜の食刻速度が酸化シリコン膜のそれより大きく
なる。
As a result, in the sample 4 to be etched, the exposed silicon substrate portion, the silicon oxide film portion and the photoresist film on the silicon substrate have a silicon etching rate curve 8 as shown in FIG. It was etched with an etch rate curve 9 for silicon and an etch rate curve 10 for photoresist. That is, for all three, the etching rate increases as the oxygen gas content in the CHF 3 gas increases. However, the etching rate of silicon oxide film gradually decreases when the oxygen gas content exceeds 6%.
%, there is almost no speed-increasing effect. Furthermore, when the oxygen content reaches 18%, the etching rate of the photoresist film becomes greater than that of the silicon oxide film.

実施例 2 実施例1と同じ平行平板形ガスプラズマ食刻装
置を用い、同様な構造を有する被食刻試料4を配
置し、真空ポンプ5で該反応槽3内を排気してガ
ス圧を0.1mTorr以下にした後ガス導入管6を通
してCHF3ガス24c.c./分に対して酸素ガスをそれ
ぞれ0,0.5,1,2,3,4,6,8c.c./分の
割合で混合したガスを導入して80mTorrに調整す
る。次いで、実施例1と同じ要領で1.5mA/cm2
高周波電流を印加し、該混合ガスをプラズマ化し
て食刻処理を行つた。
Example 2 Using the same parallel plate type gas plasma etching apparatus as in Example 1, a specimen 4 to be etched having a similar structure was placed, and the inside of the reaction tank 3 was evacuated using a vacuum pump 5 to reduce the gas pressure to 0.1. After reducing the temperature to below mTorr, oxygen gas is mixed with CHF 3 gas at 24 c.c./min through the gas introduction pipe 6 at a rate of 0, 0.5, 1, 2, 3, 4, 6, and 8 c.c./min, respectively. Introduce the same gas and adjust to 80mTorr. Next, in the same manner as in Example 1, a high frequency current of 1.5 mA/cm 2 was applied to convert the mixed gas into plasma and perform etching.

その結果、被食刻試料4において、表出してい
るシリコン基板部分および該シリコン基板上の酸
化シリコン被膜部分およびフオトレジスト被膜は
それぞれ、第3図に示すようなシリコン食刻速度
曲線11、酸化シリコン膜の食刻速度曲線12お
よびフオトレジスト被膜の食刻速度曲線13をも
つて食刻される。すなわち、該シリコン基板およ
び酸化シリコン膜の食刻はCHF3ガス中の酸素ガ
ス含有量がゼロの場合、ほとんどゼロであつたの
が酸素ガス含有量の増大とともに大きくなる。し
かし、酸化シリコン膜の食刻速度は酸素ガス含有
量が10%を越えると、それ以上の増速効果はあま
り見られない。一方、フオトレジスト被膜の食刻
速度も酸素ガス含有量の増大とともに大きくなる
が、酸素ガス含有量が17%になると酸化シリコン
膜のそれよりも大きくなり好ましくない。また、
酸素ガス含有量が0.5%以下では酸化シリコン膜
の食刻速度が低下し好ましくない。第2図、第3
図から酸素ガス含有量が2〜8%の範囲にあれば
シリコンに対する酸化シリコンの食刻速度比R
(SiO2/Si)を略一定に保持し得ることがわか
る。
As a result, in the sample 4 to be etched, the exposed silicon substrate portion, the silicon oxide film portion on the silicon substrate, and the photoresist film have a silicon etching rate curve 11 as shown in FIG. It is etched with an etch rate curve 12 for the film and an etch rate curve 13 for the photoresist coating. That is, the etching of the silicon substrate and the silicon oxide film was almost zero when the oxygen gas content in the CHF 3 gas was zero, but becomes larger as the oxygen gas content increases. However, when the oxygen gas content exceeds 10%, the etching speed of the silicon oxide film is not significantly increased. On the other hand, the etching rate of the photoresist film increases as the oxygen gas content increases, but when the oxygen gas content reaches 17%, it becomes higher than that of the silicon oxide film, which is not preferable. Also,
If the oxygen gas content is less than 0.5%, the etching rate of the silicon oxide film decreases, which is not preferable. Figures 2 and 3
From the figure, if the oxygen gas content is in the range of 2 to 8%, the etching rate ratio R of silicon oxide to silicon
It can be seen that (SiO 2 /Si) can be kept approximately constant.

その他、食刻ガスとして、CF4/H2混合ガスを
用いた時の酸素ガス添加効果を実施例1および2
と同様な方法で食刻・検討してみたが、すべて実
施例1および2と類似の結果を得た。
In addition, Examples 1 and 2 show the effect of oxygen gas addition when using a CF 4 /H 2 mixed gas as the etching gas.
Etching and examination were carried out in the same manner as in Example 1 and 2, and results similar to those of Examples 1 and 2 were obtained.

以上詳述したように、本発明によればCHF3
スのような含水素フツ素化合物ガスまたはCF4
H2混合ガスのようなフツ素化合物と水素の混合
ガスに酸素ガスのような酸化性ガスを混合させる
ことにより、酸化シリコン被膜の食刻速度が大幅
に向上し、また、プラズマ重合を起し易いプラズ
マ発生条件においても、その重合を防止し、食刻
作用を行うことは明らかである。なお、実施例で
は酸化性ガスとして酸素ガスを用いたが、酸素ガ
ス以外でも空気、オゾンのほか酸素を放ち易い物
質やオキソ酸などのガスも適用できることは云う
までもない。
As detailed above, according to the present invention, hydrogen-containing fluorine compound gas such as CHF 3 gas or CF 4 /
By mixing an oxidizing gas such as oxygen gas with a mixed gas of a fluorine compound and hydrogen such as H2 mixed gas, the etching rate of the silicon oxide film can be greatly increased and plasma polymerization can be caused. It is clear that even under easy plasma generation conditions, the polymerization is prevented and the etching action is performed. Although oxygen gas was used as the oxidizing gas in the embodiment, it goes without saying that other gases such as air, ozone, substances that easily release oxygen, and gases such as oxoacids can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するために用
いた平行平板形ガスプラズマ食刻装置の概略図、
第2図および第3図はCHF3ガスに酸素ガスを
種々の割合で混合し、それぞれ、プラズマ発生条
件をかえてプラズマ食刻した時のシリコン、酸化
シリコン、およびフオトレジストの食刻速度曲線
を示す図である。 1,2……平板状高周波電極、3……反応槽、
4……被食刻試料、5……真空ポンプ、6……ガ
ス導入管、7……高周波電源、8,11……シリ
コンの食刻速度曲線、9,12……酸化シリコン
の食刻速度曲線、10,13……フオトレジスト
被膜の食刻速度曲線。
FIG. 1 is a schematic diagram of a parallel plate type gas plasma etching apparatus used to explain an embodiment of the present invention;
Figures 2 and 3 show the etching rate curves of silicon, silicon oxide, and photoresist when plasma etching was performed by mixing CHF 3 gas and oxygen gas in various proportions and changing the plasma generation conditions, respectively. FIG. 1, 2... Flat high frequency electrode, 3... Reaction tank,
4... Sample to be etched, 5... Vacuum pump, 6... Gas introduction tube, 7... High frequency power supply, 8, 11... Etching speed curve of silicon, 9, 12... Etching speed of silicon oxide Curves 10, 13...Etching rate curve of photoresist film.

Claims (1)

【特許請求の範囲】 1 ガスプラズマ食刻装置によりシリコン基板上
の酸化シリコン被膜をガスプラズマ食刻するもの
において、食刻用ガスとして含水素フツ素化合物
ガスと酸化性ガスとからなる混合ガスもしくは、
フツ素化合物ガスと水素ガスと酸化性ガスとから
なる混合ガスを用いることを特徴とするガスプラ
ズマ食刻法。 2 ガスプラズマ食刻装置が平板状高周波電極を
有することを特徴とする特許請求の範囲第1項記
載のガスプラズマ食刻法。 3 混合ガスとしてトリフロロメタン(CHF3
ガスと酸素ガスとの混合ガスを用いることを特徴
とする特許請求の範囲第1項または第2項記載の
ガスプラズマ食刻法。 4 混合ガスとして四フツ化炭素(CF4)ガスと
水素(H2)ガスと酸素ガスとの混合ガスを用いる
ことを特徴とする特許請求の範囲第1項または第
2項記載のガスプラズマ食刻法。 5 酸素ガスの添加量が0.5〜17%好ましくは2
〜8%の範囲にあることを特徴とする特許請求の
範囲第3項または第4項記載のガスプラズマ食刻
法。
[Claims] 1. In a gas plasma etching device for gas plasma etching a silicon oxide film on a silicon substrate, the etching gas may be a mixed gas consisting of a hydrogen-containing fluorine compound gas and an oxidizing gas, or ,
A gas plasma etching method characterized by using a mixed gas consisting of fluorine compound gas, hydrogen gas, and oxidizing gas. 2. The gas plasma etching method according to claim 1, wherein the gas plasma etching apparatus has a flat high-frequency electrode. 3 Trifluoromethane (CHF 3 ) as a mixed gas
A gas plasma etching method according to claim 1 or 2, characterized in that a mixed gas of gas and oxygen gas is used. 4. The gas plasma eclipse according to claim 1 or 2, characterized in that a mixed gas of carbon tetrafluoride (CF 4 ) gas, hydrogen (H 2 ) gas, and oxygen gas is used as the mixed gas. Engraving method. 5 The amount of oxygen gas added is preferably 0.5 to 17%, preferably 2
5. A gas plasma etching method according to claim 3 or 4, characterized in that the etching rate is in the range of .about.8%.
JP7287479A 1979-06-08 1979-06-08 Method for etching by gas plasma Granted JPS55164077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7287479A JPS55164077A (en) 1979-06-08 1979-06-08 Method for etching by gas plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7287479A JPS55164077A (en) 1979-06-08 1979-06-08 Method for etching by gas plasma

Publications (2)

Publication Number Publication Date
JPS55164077A JPS55164077A (en) 1980-12-20
JPS6151036B2 true JPS6151036B2 (en) 1986-11-07

Family

ID=13501906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7287479A Granted JPS55164077A (en) 1979-06-08 1979-06-08 Method for etching by gas plasma

Country Status (1)

Country Link
JP (1) JPS55164077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129037U (en) * 1989-04-01 1990-10-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190320A (en) * 1981-05-20 1982-11-22 Toshiba Corp Dry etching method
JP2001196594A (en) * 1999-08-31 2001-07-19 Fujitsu Ltd Thin-film transistor, liquid-crystal display substrate, and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.VAC.SCI.TECHNOL.=1979 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129037U (en) * 1989-04-01 1990-10-24

Also Published As

Publication number Publication date
JPS55164077A (en) 1980-12-20

Similar Documents

Publication Publication Date Title
JP2896268B2 (en) Semiconductor substrate surface treatment apparatus and control method thereof
KR940001646B1 (en) Removing method of organic material
JP5933694B2 (en) Method for dry stripping boron carbon films
KR930002679B1 (en) Ashing method of semiconductor device manufacturing process
US4904338A (en) Carbon enhanced vapor etching
JPH0950040A (en) Plasma etching method and production of liquid crystal display device panel
JPH05247673A (en) Method for etching body to be treated incorporating oxide part and nitride part
JPS5813625B2 (en) gas plasma etching
JPH0527245B2 (en)
JPH0160938B2 (en)
US4162185A (en) Utilizing saturated and unsaturated halocarbon gases in plasma etching to increase etch of SiO2 relative to Si
Kuo Reactive ion etching of PECVD amorphous silicon and silicon nitride thin films with fluorocarbon gases
US6605230B1 (en) Solutions and processes for removal of sidewall residue after dry etching
JP2700316B2 (en) Organic material surface modification method
WO2020195559A1 (en) Dry etching method and method for producing semiconductor device
JPH0936089A (en) Ashing method and device
JPS6211493B2 (en)
JPS6151036B2 (en)
JP3358808B2 (en) How to insulate organic substances from substrates
JPH01200628A (en) Dry etching
JPS61240635A (en) Dry etching method
KR100528266B1 (en) Solution for removing residual wall residue after dry etching
JPS5887276A (en) Treatment after dry etching
JPS6262048B2 (en)
JPH04114428A (en) Cleaning process