JPS60246636A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60246636A
JPS60246636A JP10174484A JP10174484A JPS60246636A JP S60246636 A JPS60246636 A JP S60246636A JP 10174484 A JP10174484 A JP 10174484A JP 10174484 A JP10174484 A JP 10174484A JP S60246636 A JPS60246636 A JP S60246636A
Authority
JP
Japan
Prior art keywords
etching
silicon
silicon nitride
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10174484A
Other languages
Japanese (ja)
Inventor
Fumio Fukino
吹野 史雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10174484A priority Critical patent/JPS60246636A/en
Publication of JPS60246636A publication Critical patent/JPS60246636A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enhance the etching rate of silicon nitride by a method wherein a process is provided whereby silicon nitride is subjected to reactive ion etching in an atmosphere containing nitrogen. CONSTITUTION:As a reactive gas to participate in a reactive ion etching (RIE) process, a mixture of CHF3 and O2 is used. Evacuation is accomplished of a reaction chamber by means of such a vacuum pump as a rotary pump, which is followed by the introduction into the chamber of the mixture and nitrogen. The quantity of exhaust is adjusted and then a high frequency current is applied across parallelly arranged planar electrodes. The quantity of nitrogen added to the mixture is optimally determined in view of what is the object of etching, silicon nitride, silicon dioxide, polycrystalline silicon, or photosensitive resin, and then an increase is observed in the etching rate of silicon nitride. As for selectivity of object in this method, silicon dioxide, polycrystalline silicon and photosensitive film are in sight for example. The similar effect is observed when a mixture of NF3 and SF6 is employed as a reactive gas for RIE.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置の製造方法に係わり、特に窒化シ
リコンを反k[l、性イオンエツチングする方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of etching silicon nitride with anti-k[l, ions.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来エツチングは弗酸等の化学薬品を用いたケミカルエ
ツチングが一般的であった。しかしながら、このような
ケミカルエツチングでは、マスク材料の下がエツチング
されるという、いわゆるサイドエツチングが現象が発生
する。このようなケミカルエッチングにおけるサイドエ
ッチ量は、ジャストエツチングでエツチング膜厚とほぼ
等しくなる。例えば、半導体装置の製造プロセスで用い
られる一般的なエツチング膜厚である0、5〜1.0〔
師〕をエツチングした場合、サイドエツチング量も0.
5〜1.0(μm〕となり、サイドエツチング量の2倍
であるパターン変換差は10〜20〔μm〕となる。
Conventionally, chemical etching using chemicals such as hydrofluoric acid has been common. However, in such chemical etching, a so-called side etching phenomenon occurs in which the bottom of the mask material is etched. The amount of side etching in such chemical etching becomes approximately equal to the etching film thickness in just etching. For example, the typical etching film thickness used in the manufacturing process of semiconductor devices is 0.5 to 1.0 [
When the side etching is performed, the amount of side etching is also 0.
5 to 1.0 (μm), and the pattern conversion difference, which is twice the side etching amount, is 10 to 20 [μm].

一方、半導体装置の高集積化に伴い、ノ<ターン寸法が
2〔μm)、1.5Cμm〕と小さくなってきており、
このケミカルエツチングによるサイドエツチングは、半
導体装置の製造プロセス上、大きな問題となってきてい
る。
On the other hand, with the increasing integration of semiconductor devices, the turn dimensions have become smaller to 2 [μm] and 1.5Cμm.
Side etching caused by chemical etching has become a major problem in the manufacturing process of semiconductor devices.

このような問題から、サイドエツチングのほとんどない
エツチング方法として反応性イオンエツチング(Rea
ctive Ion Etching 1以下RIEと
略す)法が開発され、実用化されつつある。
Due to these problems, reactive ion etching (Reactive ion etching) is an etching method with almost no side etching.
A method of active ion etching (hereinafter abbreviated as RIE) has been developed and is being put into practical use.

このRIE法を、半導体基板上に堆積した窒化シリコン
のエツチング除去に適用する場合、一般に次のように行
なわれている。
When this RIE method is applied to etching and removing silicon nitride deposited on a semiconductor substrate, it is generally performed as follows.

+1+先ず、反応室内に設けられた平行平板形電極の陰
極に、半導体基板を、半導体基板上に堆積した窒化シリ
コンが陽極に対向するよつに載置する。
+1+ First, a semiconductor substrate is placed on the cathode of a parallel plate electrode provided in a reaction chamber so that the silicon nitride deposited on the semiconductor substrate faces the anode.

(2)反応室内をロータリーポンプ等の真空ポンプで排
気した後、反応室内に反応ガスを10〜10 ’ (T
orr)になるまで導入する。反応ガスとしてはC1(
F′3と02の混合ガス、又はNF3とSF6の混合ガ
ス等が現在使われている。
(2) After evacuating the reaction chamber with a vacuum pump such as a rotary pump, the reaction gas is pumped into the reaction chamber for 10 to 10' (T
orr). As a reaction gas, C1 (
A mixed gas of F'3 and 02 or a mixed gas of NF3 and SF6 is currently used.

(3)平行平板電極間に高周波(13,56(MHz)
 ’)電圧を印加する。
(3) High frequency (13,56 (MHz)) between parallel plate electrodes
') Apply voltage.

以上の工程により、半導体基板上の窒化シリコン近辺で
プラズマが発生し、このプラズマ中で反応ガスと窒化シ
リコンが反応し、♀化/リコンがエツチングされていた
Through the above steps, plasma is generated in the vicinity of silicon nitride on the semiconductor substrate, and the reactive gas and silicon nitride react in this plasma, thereby etching the fertilized/reconned silicon.

しかしながら、上述したようなRIE法では、パターン
変換差が無視できるほど小ざいというメリットがあるも
のの、9化シリコンのエツチングレートが小さいという
欠点があった。
However, although the above-mentioned RIE method has the advantage that the difference in pattern conversion is negligibly small, it has the disadvantage that the etching rate of silicon 9ide is low.

また、このエツチングレートが小さいがゆえに、窒化シ
リコンの下に、半導体基板や、二酸化シリコン、多結晶
シリコン等の下地膜が有る場合、又は窒化シリコンが部
分的に二酸化シリコン、多結晶シリコン、感光性樹脂等
のマスク材料で神われている場合には、前述したような
半導体基板、下地膜、マスク材料と窒化シリコンとの間
のエツチング選択比が少さいという欠点もあった。
Also, because this etching rate is low, if there is a semiconductor substrate, silicon dioxide, polycrystalline silicon, etc. under the silicon nitride, or if the silicon nitride is partially exposed to silicon dioxide, polycrystalline silicon, photosensitive material, etc. When a mask material such as resin is used, there is also the drawback that the etching selectivity between the semiconductor substrate, base film, mask material and silicon nitride is low as described above.

〔弁明の″目的〕[“Purpose of explanation”]

この発明の目的は、 RIE法を利用し、且つ窒化シリ
コンのエツチングレートを増すよう改善された半導体装
置の11′!竜方法を提供することにある。
An object of the present invention is to provide a semiconductor device 11' that utilizes the RIE method and is improved to increase the etching rate of silicon nitride. Our goal is to provide the best way.

〔発明の概要〕[Summary of the invention]

この発明は、窒素の添加された雰囲気中において、窒化
シリコンを反応性イオンエツチングする工程を具備した
半導体装置の製造方法であって。
The present invention is a method of manufacturing a semiconductor device, which includes a step of reactive ion etching of silicon nitride in an atmosphere added with nitrogen.

これにより窒化シリコンのエラチングレートラ増すよう
にしたものである。
This increases the erating rate of silicon nitride.

〔発明の実施例〕[Embodiments of the invention]

本発明者は、 RIE法において、反応ガス中VC窒素
を添加したとき、望化/リコンのエツチングレートが気
化することを見出し、実験的にも確認した。この発明は
1本発明者自身による、このような実験結果にもとずく
ものである。
The inventors of the present invention have found that the etching rate of recon/recon is vaporized when VC nitrogen is added to the reaction gas in the RIE method, and this has also been confirmed experimentally. This invention is based on the results of such experiments conducted by the inventor himself.

以下、本発明を実施例により図面を用いながら説明する
Hereinafter, the present invention will be explained using examples and drawings.

先ずRIEの反応ガスとして、 CI(F3と02の混
合ガスを用いた場合を例にとって説明する。
First, an example will be explained in which a mixed gas of CI (F3 and 02) is used as the RIE reaction gas.

(1)先ず、RIE装置の反応室(容1L80リットル
)内に設けられた平行平板形電極の陰極に、エツチング
される物か堆積している半導体基板を載置する。
(1) First, a semiconductor substrate on which the material to be etched has been deposited is placed on the cathode of a parallel plate electrode provided in a reaction chamber (volume: 80 liters) of an RIE apparatus.

(2)反応室内を、ロータリーポンプ等の真空ポンプで
約10−5(Torr)になるまで排気する。続いて。
(2) The inside of the reaction chamber is evacuated to about 10-5 (Torr) using a vacuum pump such as a rotary pump. continue.

CHF 3と02の混合ガス(混合比10:I)を毎分
80 (cc /min )% ’J素を0〜100 
(cc/min )導入し、排気量を調整することによ
り、反応室内を50〔mTorr)にする。
Mixed gas of CHF 3 and 02 (mixing ratio 10:I) at 80 (cc/min)% 'J element 0 to 100 per minute
(cc/min) and adjust the exhaust volume to bring the inside of the reaction chamber to 50 mTorr.

(3)平行平板電極間に1200Wの畠周波(13,5
6(ME(z))を印加する。
(3) 1200W Hatake frequency (13,5
6 (ME(z)) is applied.

以上の工程によりエツチングしだ場合について、エツチ
ングされる物が、9化シリコン、二酸化シリコン、多結
晶シリコン(単結晶シリコンでも結果は同じ)、感光性
樹脂のそれぞれの場合について、窒素ガスの添加量とエ
ツチングレートの関係を第1図に示す。
When the etching process starts using the above process, the amount of nitrogen gas added is determined for each case where the material to be etched is silicon 9ide, silicon dioxide, polycrystalline silicon (the result is the same even with single crystal silicon), or photosensitive resin. The relationship between etching rate and etching rate is shown in Figure 1.

第1図から明らかなように、窒素を添加しなかっrt 
+M合、窒化シリコンのエツチングレートケ、毎分40
0〔χ〕で、選択比は、対二酸化シリコンが1、対多結
晶シリコンが4、対感光性樹脂が3であったのに対し、
反応室内に窒素を適当量、例えば20 (cc /mi
n )添加することにより、窒化シリコンのエツチング
レートが、毎分700(X)に増え。
As is clear from Fig. 1, rt without adding nitrogen
+M combination, silicon nitride etching rate, 40 per minute
At 0 [χ], the selectivity ratio was 1 for silicon dioxide, 4 for polycrystalline silicon, and 3 for photosensitive resin.
A suitable amount of nitrogen is added into the reaction chamber, for example 20 (cc/mi
By adding n), the etching rate of silicon nitride increases to 700 (X) per minute.

選択比もこれによって、対二酸化シリコンが1.8、対
多結晶シリコンが7、対感光性樹脂膜が5と、それぞれ
増す口した。
As a result, the selectivity increased to 1.8 for silicon dioxide, 7 for polycrystalline silicon, and 5 for photosensitive resin film.

ところで、 RIEの反応ガスとして、NF3とSF6
の混合ガスを用いたjj4合についても、以下に示すよ
うに同種の効果がみられた。
By the way, NF3 and SF6 are used as reactive gases in RIE.
The same type of effect was observed in the jj4 case using a mixed gas as shown below.

+1+先ず、 RIE装置の反応室(容量801Jツト
ル)内に設けられた平行平板形′4.極の陰極に、エツ
チングされる物が堆積している半導体基板を載置する、 (2)反応室内を、ロータリーポンプ等の真空ポンプ等
の真空ポンプで約10− ’ (Torr) Kなる寸
で排気する。続いて、 NF:3とSF6の混合ガス(
混合比1:1)を毎分40 (cc/min 〕、屋素
をO〜100(cc/min )導入し、排気量を調整
することによζ反応室内を50(mTorr)にする。
+1+ First, a parallel plate type '4. Place the semiconductor substrate on which the material to be etched has been deposited on the cathode. (2) Heat the inside of the reaction chamber to approximately 10-' (Torr) K using a vacuum pump such as a rotary pump. Exhaust. Next, a mixed gas of NF:3 and SF6 (
A mixing ratio of 1:1) was introduced at a rate of 40 (cc/min) per minute, and oxygen was introduced at a rate of 0 to 100 (cc/min), and the inside of the ζ reaction chamber was adjusted to 50 (mTorr) by adjusting the exhaust volume.

(3)平行平板1ど、極間に1.200Wの高周波(1
3,56(MHz))を印加する。
(3) Parallel plate 1, 1.200W high frequency (1
3,56 (MHz)) is applied.

以上の工程によりエツチングした場合について、エツチ
ングされる物が、窒化シリコン、二酸化シリコン、多結
晶シリコン(単結晶シリコンでも結果は同じ)、感光性
樹脂のそれぞれの場合について、窒素ガスの添加量とエ
ツチングレートの関係を第2図に示す。
When etching is performed using the above process, the amount of nitrogen gas added and etching are determined depending on whether the material to be etched is silicon nitride, silicon dioxide, polycrystalline silicon (single crystal silicon results in the same result), or photosensitive resin. The rate relationship is shown in Figure 2.

第2図から明らかなように、窒素を添加しなかった場合
、窒化シリコンのエツチングレートは、毎分200 (
X)で、選択比は、対二酸化シリコンが2.3、対多結
晶シリコンが1.3、対感光性樹脂が1.5であったの
に対し、反応室内に窒素を適当量、例えば20 (cc
 /min )添加することにより、窒化シリコンのエ
ツチングレートが、毎分450 (A)に増え、選択比
もこれによって、対二酸化シリコンが6、対多結晶シリ
コンが3、対感光性樹脂膜が4と、それぞれ増加した。
As is clear from Figure 2, when no nitrogen is added, the etching rate of silicon nitride is 200 m/min (
X), the selectivity ratio was 2.3 for silicon dioxide, 1.3 for polycrystalline silicon, and 1.5 for photosensitive resin. (cc
/min), the etching rate of silicon nitride increases to 450 (A) per minute, and the selectivity increases to 6 for silicon dioxide, 3 for polycrystalline silicon, and 4 for photosensitive resin film. and each increased.

本発明は#41図及び第2図に示したこの新たな現象を
半導体装置の製造に適用したものである。
The present invention applies this new phenomenon shown in FIG. 41 and FIG. 2 to the manufacture of semiconductor devices.

本発明は窒化シリコンをエツチング除去する工程を有す
る半導体装置の製造方法であれば、どのようなものに対
しても適用でき、窒化シリコンのエツチングレートが増
し、これにより、エツチング時間を短縮することができ
るという効果が得られる。
The present invention can be applied to any semiconductor device manufacturing method that includes a step of etching away silicon nitride, increasing the etching rate of silicon nitride, thereby shortening the etching time. You can get the effect that you can.

オた、特にエツチング除去する窒化シリコンが、7リコ
ン、ガリウム砒素等の半導体基板上に設けられている場
合、二酸化シリコン上に設けられている場合、多結晶シ
リコン上に設けられている場合等、エツチング除去する
窒化シリコンの下に半導体基板や下地膜となるものがあ
る場合は、窒化シリコンをオーバエツチングした場合で
も、半導体基板や下地膜の膜減りを小袋<シ、これによ
り、本発明による半導体装置の製造方法により得られた
半導体装置の緒特性を向上きせることかできるというさ
らに顕著な効果が得られる。これは、本発明が窒化シリ
コンのエツチングレートだけを増し、半導体基板や下地
膜のエツチングレートは変化しないか、逆に減少すると
いう第1図及び第2図に示した特性をもった工程を有す
るところからくるものである。
In addition, especially when the silicon nitride to be removed by etching is provided on a semiconductor substrate such as 7 silicon or gallium arsenide, when it is provided on silicon dioxide, when it is provided on polycrystalline silicon, etc. If there is a semiconductor substrate or underlying film under the silicon nitride to be removed by etching, even if the silicon nitride is over-etched, the film loss of the semiconductor substrate or underlying film can be reduced by using a sachet. A further remarkable effect is obtained in that the mechanical characteristics of the semiconductor device obtained by the device manufacturing method can be improved. This process has the characteristics shown in FIGS. 1 and 2, in which the present invention increases only the etching rate of silicon nitride, while the etching rate of the semiconductor substrate and underlying film remains unchanged or decreases. It comes from somewhere.

さらに、本発明は、エツチング除去する窒化シリコンが
部分的に二酸化シリコン、多結晶シリコン、感光性樹脂
等のマスク材料で覆われている場合にも、マスク材料の
膜減りが少ないというざらに顕著な効果が同じ理由から
得られる。近年、半ア このセル7ノラインによるエンチングの際、マスク材料
の膜減りが少ないということは、これによって得られた
半導体装置の諸特性向上に大きく貢献することができる
Furthermore, even when the silicon nitride to be removed by etching is partially covered with a mask material such as silicon dioxide, polycrystalline silicon, or photosensitive resin, the present invention has a remarkable effect that the film loss of the mask material is small. The effect is obtained for the same reason. In recent years, the fact that the film of the mask material is less reduced during etching using the half-A cell line can greatly contribute to improving various characteristics of the semiconductor device obtained.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、 RIE法を利用し、且つ窒化シリ
コンのエツチングレートを増し、これによりエツチング
時間を短縮′することができる半導体装置の製造方法を
提供できる。
According to the present invention, it is possible to provide a method for manufacturing a semiconductor device that utilizes the RIE method and increases the etching rate of silicon nitride, thereby shortening the etching time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応ガスとして、 CHF3と02の混合ガス
を用いた場合の、窒素添加量とエツチングレートの関係
を、エツチングされるものが窒化シリコン、二酸比シリ
コン、多結晶シリコン、感光性樹脂の各場合について示
すグラフ、第2図は同じく反応ガスとして、 NF’3
とSF6の混合ガスを用いた場合のグラフである。
Figure 1 shows the relationship between the amount of nitrogen added and the etching rate when a mixed gas of CHF3 and 02 is used as the reaction gas. The graphs shown in Fig. 2 for each case are similar to that of NF'3 as the reactant gas.
It is a graph when a mixed gas of and SF6 is used.

Claims (5)

【特許請求の範囲】[Claims] (1)窒化/リコンを、璧素の添加された雰囲気中にお
いて、反応性イオンエツチングする工程を具備した半導
体装置の製造方法。
(1) A method for manufacturing a semiconductor device comprising a step of reactive ion etching of nitride/recon in an atmosphere added with elemental elements.
(2)前記9化シリコンが半導体基板上に設けられてい
ることを特徴とする特許請求の範囲第1項記載の#畳体
装置にの製造方法。
(2) The method for manufacturing a #tatami body device according to claim 1, wherein the silicon 9ide is provided on a semiconductor substrate.
(3)前記9化シリコンが二酸化シリコン上に設けられ
ていることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the silicon 9ide is provided on silicon dioxide.
(4)前記窒化シリコンが多結晶シリコン上に設けられ
ていることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the silicon nitride is provided on polycrystalline silicon.
(5)前記窒化シリコンが部分的にマスク材料で覆われ
ていることを特徴とする特許請求の範囲第1項、第2項
または第;う項記載の半導体装置の製が方法。 16)前記マスク材料が二酸化/リコンであることを特
徴とする特許請求の範、囲域5項記載の半導体装置の製
造方法。 (力前記マスク材料が多結晶/リコンであることを特徴
とする特許請求の範囲第5項記載の半導体装置の製造方
法。 18)前記マスク材料が感光性樹、田であることを特徴
とする特許請求の範囲第5項記載の半導体装的の製造方
法。
(5) A method for manufacturing a semiconductor device according to claim 1, 2 or 3, wherein the silicon nitride is partially covered with a mask material. 16) The method for manufacturing a semiconductor device according to claim 5, wherein the mask material is carbon dioxide/licon. (The method for manufacturing a semiconductor device according to claim 5, characterized in that the mask material is polycrystalline/licon. 18) The method for manufacturing a semiconductor device, characterized in that the mask material is a photosensitive resin. A method for manufacturing a semiconductor device according to claim 5.
JP10174484A 1984-05-22 1984-05-22 Manufacture of semiconductor device Pending JPS60246636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10174484A JPS60246636A (en) 1984-05-22 1984-05-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10174484A JPS60246636A (en) 1984-05-22 1984-05-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60246636A true JPS60246636A (en) 1985-12-06

Family

ID=14308752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174484A Pending JPS60246636A (en) 1984-05-22 1984-05-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60246636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342769A (en) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd Etching method and device
JPH06342770A (en) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd Etching method and device
US5387312A (en) * 1993-07-09 1995-02-07 Micron Semiconductor, Inc. High selective nitride etch
US5756216A (en) * 1993-07-09 1998-05-26 Micron Technology, Inc. Highly selective nitride spacer etch
DE10027932A1 (en) * 2000-05-31 2001-12-13 Infineon Technologies Ag Etching insulating layer of component involves using catalyst before and/or during etching; catalyst is applied to at least one inner surface of structure to be etched

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342769A (en) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd Etching method and device
JPH06342770A (en) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd Etching method and device
US5387312A (en) * 1993-07-09 1995-02-07 Micron Semiconductor, Inc. High selective nitride etch
US5756216A (en) * 1993-07-09 1998-05-26 Micron Technology, Inc. Highly selective nitride spacer etch
DE10027932A1 (en) * 2000-05-31 2001-12-13 Infineon Technologies Ag Etching insulating layer of component involves using catalyst before and/or during etching; catalyst is applied to at least one inner surface of structure to be etched
DE10027932C2 (en) * 2000-05-31 2003-10-02 Infineon Technologies Ag Method for forming a contact hole in an insulating layer of an electronic or microelectronic component

Similar Documents

Publication Publication Date Title
US5015331A (en) Method of plasma etching with parallel plate reactor having a grid
KR100465947B1 (en) Plasma processing of tungsten using a gas mixture comprising a fluorinated gas and oxygen
US5286344A (en) Process for selectively etching a layer of silicon dioxide on an underlying stop layer of silicon nitride
US5310454A (en) Dry etching method
US4174251A (en) Method of selective gas etching on a silicon nitride layer
EP0122776A2 (en) Dry etching aluminum or aluminum alloy layer
US6855643B2 (en) Method for fabricating a gate structure
JP2913936B2 (en) Method for manufacturing semiconductor device
JPS60117631A (en) Dry etching method of compound semiconductor
JPH01220448A (en) Method of selective etching of nitride layer
JPH11243084A (en) Oxide-film etching method
JPS60246636A (en) Manufacture of semiconductor device
JPH11186229A (en) Dry etching and manufacture of semiconductor device
US5180466A (en) Process for dry etching a silicon nitride layer
JPH0485928A (en) Dry etching method
JPH04298035A (en) Plasma etching method
JP2603989B2 (en) Method for manufacturing semiconductor device
JPS61240635A (en) Dry etching method
JPH1050660A (en) Etching silicon nitride film
JPH1050680A (en) Dry etching platinum thin film
JPH0661190A (en) Dry etching method
JPH05217965A (en) Manufacture of semiconductor device
EP0187601A2 (en) Process for dry etching a silicon nitride layer
JPS5887276A (en) Treatment after dry etching
JP2989671B2 (en) Semiconductor device manufacturing equipment