JPH11229146A - 複合材料 - Google Patents

複合材料

Info

Publication number
JPH11229146A
JPH11229146A JP10251949A JP25194998A JPH11229146A JP H11229146 A JPH11229146 A JP H11229146A JP 10251949 A JP10251949 A JP 10251949A JP 25194998 A JP25194998 A JP 25194998A JP H11229146 A JPH11229146 A JP H11229146A
Authority
JP
Japan
Prior art keywords
metal
containing layer
plastic substrate
composite material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10251949A
Other languages
English (en)
Other versions
JP4420482B2 (ja
Inventor
Frank Breme
ブレメ フランク
Volker Guether
グエーテル フォルケル
Osten Karl-Uwe Van
ファン オステン カール‐ウヴェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GfE Metalle und Materialien GmbH
Original Assignee
GfE Metalle und Materialien GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GfE Metalle und Materialien GmbH filed Critical GfE Metalle und Materialien GmbH
Publication of JPH11229146A publication Critical patent/JPH11229146A/ja
Application granted granted Critical
Publication of JP4420482B2 publication Critical patent/JP4420482B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31765Inorganic-containing or next to inorganic-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】 【課題】 Ti、Ta、Nb、ZrおよびHfを基本と
する強固に固着した連続した金属含有薄層とプラスチッ
ク基板とからなる複合材料を提供する。 【解決手段】 上記の課題は、プラスチック基板と連続
した薄い金属含有層とから成る複合材料であって、前記
金属含有層は、延性であり、プラスチック基板に強固に
固着しており、2μm未満の厚さを有しており、一般式
a b x yz (ここで、MはTi、Ta、N
b、ZrおよびHfからなる群から選択された一種以上
の金属であり、a=0.025〜0.9、b=0.02
5〜0.7、x=0.2〜0.9、y=0〜0.7、z
=0〜0.7およびa+b+x+y+z=1である)で
あって、aの値は基板の表面から層の表面にかけてゼロ
に近似した値から増加している化合物から構成され、し
かも、層の底面部分の炭素原子の少なくとも50%がC
‐C結合によって他の炭素原子と結合している複合材料
によって解決される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、プラスチック基板
および強固に固着した薄い金属含有層からなる複合材料
に関する。この金属含有層は、Ti、Ta、Nb、Zr
およびHfからなる群から選択される少なくとも一種類
の金属と、少なくとも一定比率のC、B、NおよびOと
から構成される。また、本発明は上記の複合材料の製造
方法に関する。本発明の複合材料は、特に医療エンジニ
アリングにおいて使用できる。
【0002】
【従来の技術】医療エンジニアリングにおいてはプラス
チックはその不十分な表面特性のためにしばしば使用が
制限される。これは特に、管プロステーゼ(Gefaessprot
hesen)、カテーテルまたはセンサーなどの生体適合性お
よび血液適合性(blutvertraeglichkeit)に関連する。今
日までの多大な努力にもかかわらず、プラスチックから
なる6mmの直径を越える管プロステーゼが存在するに
もかかわらず、血栓症の危険性から一定の規準でのみし
か使用されず、通常は6mm未満の直径を有する管プロ
ステーゼしか使用されない。6mmに満たない直径のも
のは人工心臓の管(Herzkranzgefaessen)という非常に大
きな適用領域がある(参照、R. Zdrahala、「Small Cal
iber Vascular Grafts ( 小径管の移植) 」、J. of Bio
materialsAppl., Vol.10, no.4, 1996.4, p.309-329
)。
【0003】カテーテルが使用される場合、通常、身体
と簡単に接触させているが、身体とプラスチックとの親
和性の欠如に起因して複雑な問題が発生し、これは患者
に対するリスクとなり得る(参照、R. Dujardin 、「Po
lymerstruktur und Thrombogenitaet, in Symposium Ma
terialforschung - Neue Werkstoffe (ポリマー構造と
トロンボゲン形成、材料研究シンポジウムにおいて─新
材料」、p.724-749, PLR Juelich 1994 )。しかしなが
ら、プラスチックはその優れた機械的特性の観点から医
療エンジニアリングにおける使用は避けられない。
【0004】チタン、ニオブ、タンタル、ジルコニウム
またはハフニウムを基本とする材料は生体適合性を有す
ることが知られている(参照、Clarke E.G. およびHick
manJ.、「An investigation into the correlation bet
ween the electrical potential of metals and their
behaviour in biological fluids (生体流体における
金属の電気的ポテンシャルとその挙動の相関関係の研
究」、J. Bone Joint Surg., Vol.35B (1953) 467 )。
更に、硝酸チタンが優れた血液適合性を有することが示
されている(参照、Y. Mitamura 、「Development of a
ceramic heart value」J. of Biomaterals Applicatio
n, vol.4 1989.7, p.33-55) 。しかしながら、プラスチ
ックの優れた機械的特性とTi、Ta、Nb、Zrおよ
びHfを基本とする化合物の顕著な親和性の両者を併せ
持つ材料は存在しなかった。
【0005】化学蒸着(CVD)によると、医療エンジ
ニアリングにおいて使用されるような複雑な幾何学形状
の基板をコーティングできることが知られている。しか
しながら、コーティングのために従来より広く使用され
ている無機の出発物質の場合、考慮される材料を600
℃を越える反応温度に置く必要がある(参照、S. Siver
am、「Chemical Vapor Deposition(化学蒸着) 」、Van
Nostrand Reinhold, New York 1995)。さらに、有機金
属または金属有機の出発物質を使用する場合には、コー
ティング温度を約300℃にすることが知られている
(参照、Sugiyama、「Low Temperature Deposition of
Metal Nitrides By Thermal Decomposition of Organom
etallic Compounds (有機金属化合物の熱分解による金
属硝酸化物の低温度析出)」、J. Electrochem. Soc.,
1975.9, p. 1545-1549)。さらに、このコーティング温
度はレーザーを使用することによって、または低圧プラ
ズマをカップリングすることによって顕著に減少できる
ことが報告されている。問題となる材料の公知の最も低
いコーティング温度は、プラズマ活性されたCVD(P
ACVD)によるTi〔N(CH3 2 4 およびZr
〔N(CH3 2 4からTi(C,N)およびZr
(C,N)を析出させる場合の150℃である。ここ
で、直流の励起のパルス源はプラズマを作るために使用
される(参照、K.-T. Rie 等、「Studies on the synth
esis of hard coatings by plasma-assistedCVD using
metallo-organic compounds( 金属有機化合物を使用し
たプラズマを使用したCVDによるハードコーティング
の合成に関する研究) 」、Surface and Coating Techno
logy 74-75 (1995), p.362-368)。このコーティングは
金属基板上の摩損を避けるためのものであり、十分な固
着が容易に達成できる
【0006】基板および金属含有層から構成される人間
の身体用の体内埋め込み器具は、DE−A−19506
188号から公知である。基板としてプラスチックが言
及されているが、実施例では金属が基板として使用され
ている。このコーティングはCVDおよびPVD(物理
的蒸着)の両方によって適用され得る。
【0007】CVDプロセスでは基板を著しく加熱する
必要があるということがDE−A−19506188号
の序言部分に指摘されているため、PVDプロセスが好
ましい。DE−A−19506188号の示唆の部分で
は、CVDプロセスは言及された高温度ではプラスチッ
クが損傷を受けるため、プラスチックをコーティングす
るためには考慮されていない。DE−A−195061
88号に記載のPVDコーティングは実質的に次の欠点
がある。すなわち、 ─ 例えばテキスタイルの体内埋込器(管プロステー
ゼ、鼠蹊ヘルニアなどを処置するためのプラスチックネ
ットなど)のような複雑な幾何学形状のものをPVDに
よってコーティングするのは非常に困難であり、(可能
であったとしても)高コストである。専門家は、この現
象を「シャドーイング効果(Abschattungs-effekt) 」と
呼ぶ。 ─ 十分な固着のためには、通常、粗さおよび/または
中間層が必要とされる(参照、例えば、DE−A−19
506188号の請求項12〜14)。 ─ その層は多少多孔性であり、これが耐腐食性に対し
て不利となる。さらに、例えば血液成分の望ましくない
吸着がその孔から容易に発生し得る。
【0008】種々の基板上に遷移金属の硝酸塩を化学蒸
着するための方法は、WO91/08322号より公知
である。好適な基板温度は200〜250℃である。そ
の実施例6においては、150℃に維持して硝酸チタン
でコーティングしたポリエステルシートが基板として使
用されている。この方法では、アンモニアを反応ガスと
して使用しなければならない。しかしながら、過剰な反
応性のアンモニアの付加により望ましくないガス反応が
必ず発生する(参照、S. Intemann 、「Eigenschaften
von CVD-Titanverbindungsschichten aus metallorgani
schen Verbindungen fuer die Mehrlagenmetallisierun
g hoechst integrierter Bauelemente(高積層化合物の
多層金属化のための金属有機化合物のCVDチタン化合
物層の特性)」、ミュンヘン工業大学論文 1994 )とと
もに、非平滑的な層が形成され、非常に顕著なシャドー
イング効果を誘導するため、PVDプロセスの利点を越
えるCVDプロセスの利点は無くなってしまう。
【0009】プラスチック上へのCVDによる金属含有
層の満足な方法でのコーティング方法は知られていな
い。公知の方法は、コーティングに必要な基板温度が高
すぎてプラスチック基板の劣化を生じるか、満足なコー
ティングが形成できないかのいずれかである。専門家の
間で支配的な意見は、柔らかい基板と固いコーティング
材料からは複合材料を作製できないというものである。
【0010】A. Bolz の論文「Physikalische Mechanis
men der Festkoerper-Protein-Wechselwirkung an der
Phasengrenze a-Sic-H-Fibrinogen (a‐SiC‐Hフ
ェブリノーゲンの界面での固体プロテイン相互作用の物
理的機構)」(エルランゲン─ヌレンベルク大学、199
1)において記載されているように、プラスチックのよ
うな柔らかい基板をSiCのような固いコーティング材
料でコーティングすることは、「羽毛ベット効果」が発
生するために不可能である。
【0011】
【発明が解決しようとする課題】本発明の課題は、T
i、Ta、Nb、ZrおよびHfを基本とする強固に固
着した連続した金属含有薄層とプラスチック基板とから
なる複合材料を提供することであり、更には、このよう
な複合材料の製造方法を提供することである。次の要求
を満たすコーティング方法の開発が求められている。す
なわち、 ─ コーティングプロセス、特に過剰な熱ストレスによ
ってプラスチック基板に損傷を与えないこと、 ─ 熱膨張や弾性などの層と基板との極端な特性の相違
にもかかわらず、層を十分に固着すること、 ─ 体液の吸着などの相互作用を最小化するために層表
面を平滑化すること。
【0012】製造される複合材料は柔らかい組織、骨、
血液などに対して生体適合性を有していなければなら
ず、十分に耐腐食性でなければならず、さらに一般的に
はアンチトロンボゲン特性(抗血栓性)を有していなけ
ればならない。
【0013】
【課題を解決するための手段】上記の課題は、プラスチ
ック基板と連続した薄い金属含有層とから成る複合材料
であって、前記金属含有層は、延性であり、プラスチッ
ク基板に強固に固着しており、2μm未満の厚さを有し
ており、一般式Ma b x y z (ここで、MはT
i、Ta、Nb、ZrおよびHfからなる群から選択さ
れた一種以上の金属であり、a=0.025〜0.9、
b=0.025〜0.7、x=0.2〜0.9、y=0
〜0.7、z=0〜0.7およびa+b+x+y+z=
1である)であって、aの値は基板の表面から層の表面
にかけてゼロに近似した値から増加している化合物から
構成され、しかも、層の底面部分の炭素原子の少なくと
も50%がC‐C結合によって他の炭素原子と結合して
いる複合材料によって解決される。層表面に向かって炭
素原子と金属原子とのM−C結合による結合は増加して
もよい。またC‐C結合が存在していてもよい。
【0014】このような複合材料は、 a)プラスチック基板を洗浄し、 b)好適な金属有機または有機金属の出発化合物を選択
し、 c)この金属有機または有機金属の出発化合物が気体で
ない場合には、これを気体に変換し、 d)気体状のこの金属有機または有機金属の出発化合物
をキャリアガスを使用して、プラスチック基板が存在す
る反応器に輸送し、 e)100℃を越えないようにして、加熱、プラズマカ
ップリングまたはレーザー照射などによって基板にエネ
ルギーを供給し、 f)反応容器内の圧力を0.1〜1030mbar(プ
ラズマが使用される場合は、50mbar未満である)
に維持することによって製造できる。
【0015】本発明によると、プラスチック基板および
金属含有層の特性の極端な相違にもかかわらず、層を良
好に固着でき、その結果、得られたプラスチックはコー
ティングされていないプラスチックと比較して表面特性
が実質的に改善されており、血管(Blutgefaesse、血液
容器)などの医療エンジニアリングにおいて使用でき
る。
【0016】固着における大きな問題は、コーティング
に好適な材料の特性がプラスチックの特性と実質的に異
なる点にある。このような特性の相違としては、例え
ば、約100ファクターだけ大きいプラスチックの熱膨
張係数と、熱成形性が挙げられる。特に、異なる膨張性
のため、層の境界部分において実質的なストレスが発生
して、形成された層は最終的に破損する。このような層
の境界部分の応力は、組成の流れるような移行によって
最少化され得る。これは本発明によって開発されたコー
ティング方法によって達成される。
【0017】PVDによって形成された層、即ち上記の
DE−A−19506188号との関連で詳細に説明さ
れた層と比較して、CVDによって析出させた層を有す
る本発明の複合材料は、次の重要な利点を有する。すな
わち、 ─ 金属含有層は、層の底面部分でのC‐C結合によっ
て、しかも傾斜的に(グラジエントに)形成されたコー
ティングによって固着されており、その結果、プラスチ
ック基板からセラミック層への「なめらかな」移行が達
成される。底面部分でのC‐C結合の存在および層の表
面でのM‐C結合の存在は、XPS分析(XPS=X線
光電子分光学(Roentgenstrahlelektronenspektroskopi
e) )によって分析できる。 ─ このような層の形成によって、固着改善のために基
板を粗す必要はない。 ─ 層は極めて平滑であり(Ra =0.001μm)、
連続的である。その結果、代わりに得られた表面は、粗
く多孔性の層よりも小さい。これによって、粗く多孔性
の層を形成する場合よりも、耐腐食性、生体適合性およ
び血液適合性に優れる。
【0018】
【発明の実施の形態】本発明の複合材料の好適なプラス
チック基板としては、特に管プロテーゼの製造に従来よ
り使用されていたポリエチレンテレフタレート(PE
T)、ポリウレタン(PUR)、ポリテトラフルオロエ
チレン(PTFE)、ポリアミド(PA)およびポリプ
ロピレン(PP)が挙げられる。(参照、R. Zdrahala
、「Small Caliber Vascular Grafts Part1:State of
the art(小径管の移植 第1部:従来技術)」、Journ
al of Biomaterials Application, Vol. 10, 1996.4,
p.309-329 )。
【0019】この目的のために好適な他のプラスチック
としては、例えばポリエーテルエーテルケトン(PEE
K)、ポリスルホン(PSU)、ポリブチレンテレフタ
レート(PBT)、ポリエーテルスルホン(PES)、
ポリイミド(PI)、ポリカーボネート(PC)、ポリ
エーテルイミド(PEI)、ポリアミドイミド(PA
I)およびシリコンが挙げられる。これらのすべてのプ
ラスチックは、金属含有層によるコーティングが施され
る約100℃で安定である。
【0020】2μm未満の厚さを有する薄い金属含有層
がプラスチッく基板上に設けられる。好ましくは、層の
厚さは5〜700nm、特に5〜500nmの範囲であ
る。
【0021】金属含有層は、一般式 Ma b x y z を有する金属化合物から構成されている。上記の一般式
において、MはTi、Ta、Nb、ZrおよびHfから
なる群から選択された一種以上の金属であり、a=0.
025〜0.9、b=0.025〜0.7、x=0.2
〜0.90、y=0〜0.7、z=0〜0.7およびa
+b+x+y+z=1である。
【0022】使用されるキャリアガスに依存して、一定
比率の水素が層に存在していてもよい。
【0023】さらに、aの値は基板の表面から層の表面
にかけて0に近似した値から増加している。これは基板
表面と金属含有層との良好な固着にとって重要である。
炭素含有量は、金属含有層の底面部分、すなわち基板表
面近傍において特に高く、通常xは約0.9になってい
る。層の厚さが増加するにつれて、金属含有層の組成は
顕著に変わる。炭素の比率が減少し、金属、並びに必要
に応じて窒素、ホウ素および炭素の比率が増加する。層
の厚さとともに変わる組成は、一実施例としてのチタン
含有層に対する図1より明らかである。以下に、この層
の製造方法を詳細に説明する。
【0024】a、b、x、yおよびzの値は、好ましく
は次の値をとりうる。、 (i) 金属含有層の底面部分においては、a=0.025
〜0.1、b=0.025〜0.2、x=0.8〜0.
9、y=0〜0.1およびz=0〜0.1である。 (ii)金属含有層の厚さが増加するにつれてaの値は増加
する。 (iii) 金属含有層の表面付近では、a=0.2〜0.
9、b=0.025〜0.7、x=0〜0.7、y=0
〜0.7およびz=0〜0.5である。
【0025】空気中に放置すると、金属含有層の組成は
その最上領域において変わる。炭素および酸素が増加
し、金属および窒素の比率が徐々に減少する。この変化
は一実施例としてのチタン含有層に対する図2に表され
ている。
【0026】図1および図2の層組成は、XPS(X線
光電子分光学)によって測定された。深さプロフィール
はAr+ をスパッタリングすることによって記録され
た。
【0027】平滑な表面とともに、良好な血液適合性の
ための従来から知られている規準としては、最小導電率
LがL>10-4(Ohm.cm)-1である(参照、A. B
olz、「Physikalische Mechanismen der Festkoerper-P
rotein-Wechselwirkung ander Phasengrenze a-Si-C-fi
brinogen(a‐SiC‐Hフェブリノーゲン界面での固
体プロテイン相互作用の物理的機構)」、論文、エルラ
ンゲン−ヌレンベルグ大学、1991)。本発明によると、
製造直後に測定された金属含有層の導電率はL=2.1
(Ohm.cm)-1であった。空気中に3日間放置する
と、L=0.18(Ohm.cm)-1になった。
【0028】層の表面での粗さの測定によると極めて平
滑であることが分かった。本発明の層表面の場合、粗さ
の値はRa =0.001μmであった。一方、血液適合
性を増加することを目的とした文献に記載のCVD層単
独の層の粗さの値は、ずっと高く、Ra =0.43μm
およびRt =2.1μmである(参照、I. Dion 、「Ti
N coating: Surface Characterization and Haemocompa
tibility(TiN コーティング:表面特性および血液
適合性)」、Bio-materials, Vol.14, no.3, 1993, pag
es 169-176)。
【0029】本発明の層はプラスチック基板に極めて強
固に固着する。6N/mm2 を越える応力の結合強度が
測定された(引き剥がしテストにおける固着を受け付け
ない(即ち、引き剥がしテストを行ったが、金属含有層
はプラスチック基板に固着したままであった。))。
【0030】金属含有コーティングとプラスチック基板
との間の良好な固着を達成するために、コーティング前
にプラスチック基板から不純物(例えば、製造プロセス
における機械油や充填材料からの不純物など)を取り除
く必要がある。これは例えば、液体の洗浄剤を使用して
実施してもよいが、好ましくは、洗浄は低圧プラズマ(l
ow-pressure plasma) を使用して実施される(参照、例
えば、A. Mann 、「Plasmamodifikation von Kunststof
foberflaechen zur Haftfestigssteigerung von Metall
schichten (金属層の固着を増加するためのプラスチッ
ク表面のプラズマ改質)」、論文、シュトゥットガルト
大学、1993)。低圧プラズマでは、気体が励起(イオン
化、ラジカル形成)されて、高レベルの速度論的エネル
ギーで基板または不純物と会合する。その結果、不純物
は除去または分解されて、気相を通って運び出される。
さらに、この処理プロセスの結果、基板表面は活性化さ
れて、固着性を増加する。
【0031】金属含有層を形成するための好適な出発材
料としては、多数の金属有機化合物および有機金属化合
物がある。チタン、ジルコニウムおよびハフニウム金属
の場合、例えば、次の化合物類が挙げられる。 アミド化合物:例えば、M〔N〔CH3 24 、M
〔N〔C2 5 2 4およびM〔N(CH2 )(C
〔CH3 2 4 、 イミド化合物:例えば、((Nt Bu)M〔N(C
3 2 2 2 および((Nt Bu)M〔N(C2
5 2 2 2 、 M‐C結合を有する化合物:例えば、M(CH2 t
u)4 および(C5 52 MCl2 ここで、M=Ti、ZrまたはHfである。
【0032】次の化合物類はタンタル金属およびニオブ
金属に好適である。 アミド化合物:例えば、M〔N〔CH3 25 および
M〔N〔C2 5 25 、 イミド化合物:例えば、〔N〔C2 5 2 3 M=N
t Bu ここで、M=TaまたはNbである。
【0033】出発物質が気体状態でない場合、それらを
気体に変換しなければならない。キャリアガスは出発物
質を反応チャンバーに輸送するために使用される。好適
なキャリアガスは、例えば窒素、水素、および全ての希
ガスである。キャリアガスは窒素などの反応ガスでもよ
い。
【0034】反応器内は約0.1〜1030mbarの
圧力に維持される。プラズマが使用される場合には、プ
ラズマによる過剰に高い温度になるのを避けるため、圧
力は50mbarより低くされるべきである。
【0035】反応器に置かれたコーティングされるべき
プラスチック基板は、通常直接加熱される。温度は10
0℃以下でなければならず、さもなければ、プラスチッ
ク基板が損傷を受ける。さらなるエネルギーは、例えば
プラズマをカップリングすることによって、またはレー
ザーを使用することによって供給される。ガスチャンバ
ーに配置された出発物質は基板表面に達し、ここで、出
発物質は分解反応によって析出する。この工程の概念図
は、図3によって表すことができる。まず、出発物質は
キャリアガスによって内側(1)に輸送される。分散お
よび吸着(2)によって出発物質は基板表面に達し、こ
こで、出発物質の反応(3)が起こる。分裂した揮発性
ラジカルが再び気相に拡散(4)して、外側(5)に輸
送される。一方、金属を含有する反応生成物は基板の表
面に析出する。
【0036】最初、カップリングされたプラズマの影響
は小さく、基板表面に最初に析出した物質は実質的に大
量の炭素を含んでいる。これら化合物はプラスチック基
板の表面との親和性が大きく、この部分に拡散して、そ
の結果、顕著な固着が生じる。基板のコーティングが厚
くなるにつれてプラズマの影響は増加して、より多くの
エネルギーが利用でき、出発物質の変換反応はさらに完
全に起こる。これによって、層に組み込まれる炭素は徐
々に減少し、層に組み込まれる金属は増加する。
【0037】高含有量の炭素を含む層が最初に析出して
いるため、プラスチック基板表面と金属含有層との間の
結合は、非常に強固になる。
【0038】金属含有層の最終組成物の層の厚さは約2
0nmに達する。層の厚さが増加するにつれて、組成は
もはや変わらない。コーティングプロセスを中断した後
は、図1および図2に示すように、金属含有層の外表面
部分における組成が徐々に変化する。
【0039】下記の式は、一実施例としての出発化合物
Ti〔N(CH3 2 4 を使用した場合における反応
のための適用エネルギーを徐々に増加させた場合の段階
的な反応を示している。
【0040】
【化1】
【0041】図1に表されるように、金属含有層の約2
nmの深さの部分では、コーティング反応を中断した時
点では、約40原子%のTi、約35原子%のC、約1
5原子%のNおよび約10原子%のOから構成される。
このような組成は血液適合性に極めて好ましく、このよ
うにしてコーティングされたプラスチック基板は人工体
内埋め込み用管に極めて好適である。
【0042】本発明の方法によると、コーティング温度
を約100℃に減少させてこの温度を持続できるため、
プラスチック基板は損傷を受けない。特に、水素がキャ
リアガスとして使用される場合、極めて低いコーティン
グ温度が可能である。
【0043】図2に示すように、金属含有層の表面は終
始酸素を吸着する。これを避けるためには、窒素プラズ
マ中での後処理が好適である。これによって金属含有層
の表面の窒素含有量が著しく増加し、結果として、その
後の酸素吸着は顕著に減少する。
【0044】本発明の方法によると、出発物質は反応前
にコーティングされるべき基板と不規則に接触するた
め、複雑な幾何学形状のプラスチック基板のコーティン
グも可能である。反応チャンバー内における出発化合物
の濃度は、層をできるだけ急速に成長させて、しかも層
の厚さをできるだけ薄くするために、比較的低くなって
いる。これによって層はきわめて平滑な表面になり、そ
の結果、血液などの体液に対する顕著な適合性が見込ま
れる。
【0045】本発明によると、非常に良好な電気導電性
を有する生体適合性を備えた表面が、非導電性プラスチ
ック上に作製され、その結果、医療エンジニアリングに
おける多数の新しい用途が開かれる。
【0046】実施例 まず、コーティングされるべきプラスチック基板の表面
を、低圧プラズマ中で洗浄した。そして、窒素を約5 l
/h n.t.p, の速度で反応器に誘導した。この時、反応器
内の圧力は真空ポンプを使用して約1mbarに維持さ
れた。外部銅リングを使用して、50Wで13.56M
Hzの周波数の誘導プラズマをカップリングした。処理
時間は約3分間であった(可能であれば、減らしてもよ
い)。
【0047】使用した液体有機金属出発化合物はTi
〔N(CH3 2 4 であった。出発化合物を5℃で純
粋な水素とともに流した。反応チャンバー内の出発物質
が過剰に高い濃度になって非平滑的な層が形成されるの
を避けるために、コンデンサーを使用して冷却した。
【0048】出発物質を運ぶ水素は、低圧プラズマ中で
前処理して約100℃に加熱されたプラスチック基板
(PET)が配置された反応器内に流れ込む。出発化合
物の反応はエネルギーの更なる供給によって、すなわ
ち、低圧プラズマのカップリングによって開始する。プ
ラズマは、約1mbarの反応チャンバー内の圧力にお
いて外部銅リングを使用することによって13.56M
Hzの周波数で誘導的にカップリングされる。その結
果、基板近傍の気体は部分的にイオン化、またはラジカ
ル化する。ここで、ガスチャンバー内の圧力を減少する
ことによる気体温度の増加はわずかであるが、極めて豊
富なエネルギーの粒子がガス中に含まれるため、反応を
顕著に低い温度で開始させることができる。
【0049】まず、出発物質の部分的な反応のみが生じ
る。初期の層構造は、炭素比率が非常に高く、金属や窒
素などの他の成分の比率が低い金属含有化合物から構成
される。さらに、初期に析出した粒子がプラスチック中
に拡散することによって、プラスチック基板との固着は
特に優れる。
【0050】上記の金属含有層の初期形成の結果、基板
表面の特性は変わり、カップリングされているプラズマ
の効果は、すでに部分的にコーティングされた基板上に
おいて増加する。増加する好適なエネルギー条件によっ
て、出発化合物の更なる反応が起こる。そして析出した
層の組成は時間とともに変化して、炭素含有量が徐々に
減少し、窒素および金属の含有量が増加する。
【0051】このコーティングプロセスは層の厚さが約
10nmになったところで中断した。図1に示すよう
に、層の深さが約2nmの部分における組成は、約40
原子%のTi、約35原子%のC、約15原子%のNお
よび約10原子%のOから構成される。この層の組成は
コーティングプロセスの中断に時間的に対応する。さら
に、反応が終わっても図1に示すように組成は徐々に変
化する。
【0052】得られた複合材料について、その層の組成
をXPS(X線光電子分光学)によって測定した。深さ
プロフィールはAr+ のレーザーをスパッタリングする
ことによって記録された。結果を図1に示す。
【0053】この複合材料を空気中に2週間放置した後
の層の組成の試験結果を図2に示す。炭素含有量および
酸素含有量は酸素吸着および表面不純物のため増加し
た。
【0054】コーティング直後の層の導電率を測定する
と、L=2.1(Ohm.cm)-1であり、空気中に3
日間放置すると、L=0.18(Ohm.cm)-1であ
った。
【0055】プラスチック基板に対する金属含有層の引
張り接着性(Zughaftfestigkeit) を測定したところ、6
N/mm2 を越える値であった。即ち、引き剥がしテス
トを行ったが、金属含有層はプラスチック基板に固着し
たままであった。
【0056】金属含有層の粗さ測定をDion等の上記
文献に記載の方法に従って実施した。Ra =0.001
μmの値が得られた。
【図面の簡単な説明】
【図1】コーティング直後の層の深さに対するコーティ
ングのXPS分析の結果を表す図である。
【図2】コーティングを施した基板を空気中に2週間放
置した後のXPS分析の結果を表す図である。
【図3】本発明のコーティング方法の概念図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 フォルケル グエーテル ドイツ連邦共和国、デー‐90559 ブルク トハーン、ザールエンデル シュトラーセ 3 (72)発明者 カール‐ウヴェ ファン オステン ドイツ連邦共和国、デー‐90584 アルレ ルスベルク、リングシュトラーセ 22

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 プラスチック基板と、連続した薄い金属
    含有層からなる複合材料であって、前記金属含有層は延
    性があり、前記プラスチック基板に強固に固着してお
    り、2μm未満の厚さを有し、一般式がMa b x
    y z (ここで、MはTi、Ta、Nb、ZrおよびH
    fからなる群から選択された一種以上の金属であり、a
    =0.025〜0.9、b=0.025〜0.7、x=
    0.2〜0.9、y=0〜0.7、z=0〜0.7およ
    びa+b+x+y+z=1である)であって前記一般式
    中のaの値が前記プラスチック基板の表面から前記金属
    含有層の表面にかけてゼロに近似した値から増加してい
    る化合物から構成され、しかも前記金属含有層の底面部
    分の炭素原子の少なくとも50%はC‐C結合によって
    他の炭素原子と結合していることを特徴とする複合材
    料。
  2. 【請求項2】 前記プラスチック基板はポリエチレンテ
    レフタレート、ポリウレタン、ポリテトラフルオロエチ
    レン、ポリアミドまたはポリプロピレンから構成される
    ことを特徴とする請求項1に記載の複合材料。
  3. 【請求項3】 M=Tiであることを特徴とする請求項
    1または2に記載の複合材料。
  4. 【請求項4】 a、b、x、yおよびzの値は、 (i) 前記金属含有層の前記底面部分においては、a=
    0.025〜0.1、b=0.025〜0.2、x=
    0.8〜0.9、y=0〜0.1およびz=0〜0.1
    であり、 (ii)前記金属含有層の厚さが増加するにつれてaの値は
    増加し、 (iii) 前記金属含有層の表面付近では、a=0.2〜
    0.9、b=0.025〜0.7、x=0〜0.7、y
    =0〜0.7およびz=0〜0.5であることを特徴と
    する請求項1〜3のいずれか1項に記載の複合材料。
  5. 【請求項5】 前記金属含有層はさらに水素を含むこと
    を特徴とする請求項1〜4のいずれか1項に記載の複合
    材料。
  6. 【請求項6】 請求項1〜5のいずれか1項に記載の複
    合材料を製造する方法であって、 a)前記プラスチック基板を洗浄し、 b)好適な金属有機または有機金属の出発化合物を選択
    し、 c)前記金属有機または有機金属の出発化合物が気体で
    ない場合には、これを気体に変換し、 d)気体状の前記金属有機または有機金属の出発化合物
    をキャリアガスを使用して前記プラスチック基板が配置
    された反応器に輸送し、 e)100℃を越えないようにして、加熱、プラズマカ
    ップリングまたはレーザー照射などによって前記プラス
    チック基板にエネルギーを供給し、 f)前記反応容器内の圧力を0.1〜1030mbar
    (プラズマが使用される場合は、50mbar未満)に
    維持することを特徴とする複合材料の製造方法。
  7. 【請求項7】 使用される前記キャリアガスは水素であ
    ることを特徴とする請求項6に記載の方法。
  8. 【請求項8】 使用される前記金属有機または有機金属
    の出発化合物は、M〔N〔CH3 24 、M〔N〔C
    2 5 2 4 、M〔N(CH2 )(C〔CH3 2
    4 、((Nt Bu)M〔N(CH3 2 2 2
    ((Nt Bu)M〔N(C2 5 2 2 2 、M(C
    2 t Bu)4 および/または(C5 5 2 MCl2
    (ここで、M=Ti、ZrまたはHf)であることを特
    徴とする請求項6または7に記載の方法。
  9. 【請求項9】 使用される前記金属有機または有機金属
    の出発化合物は、Ti〔N(CH3 2 4 であること
    を特徴とする請求項8に記載の方法。
  10. 【請求項10】 使用される前記金属有機または有機金
    属の出発化合物は、M〔N〔CH3 2 5 、M〔N
    〔C2 5 2 5 、および/または〔N〔C25
    2 3 M=Nt Bu(ここで、M=TaまたはNb)で
    あることを特徴とする請求項6または7に記載の方法。
  11. 【請求項11】 プラズマが十分なエネルギーを供給す
    るためにカップリングされていることを特徴とする請求
    項6〜10のいずれか1項に記載の方法。
JP25194998A 1997-08-21 1998-08-20 複合材料 Expired - Fee Related JP4420482B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19736449A DE19736449A1 (de) 1997-08-21 1997-08-21 Verbundwerkstoff
DE19736449.7 1997-08-21

Publications (2)

Publication Number Publication Date
JPH11229146A true JPH11229146A (ja) 1999-08-24
JP4420482B2 JP4420482B2 (ja) 2010-02-24

Family

ID=7839760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25194998A Expired - Fee Related JP4420482B2 (ja) 1997-08-21 1998-08-20 複合材料

Country Status (5)

Country Link
US (1) US6057031A (ja)
EP (1) EP0897997B1 (ja)
JP (1) JP4420482B2 (ja)
AT (1) ATE233328T1 (ja)
DE (2) DE19736449A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504888A (ja) * 2000-07-28 2004-02-19 ブルー・メディカル・デバイシーズ・ベスローテン・フェンノートシャップ 拡張性皮膜を有する血管内ステント
JP2007021208A (ja) * 2005-07-13 2007-02-01 Gfe Medizintechnik Gmbh 体内に挿入するのに適した吸収可能な医療要素、特に吸収可能なインプラント
JP2010518925A (ja) * 2007-02-24 2010-06-03 ジーエフイー ナノメディカル インターナショナル アーゲー 豚、牛の心膜、又は人の屍体の心臓弁のような、動物又は人由来の生物組織の処理方法、及び、それによって処理された生物組織
JP2012142359A (ja) * 2010-12-28 2012-07-26 Ulvac Japan Ltd 絶縁膜形成方法、及び絶縁膜形成装置
JP5128289B2 (ja) * 2005-12-06 2013-01-23 株式会社トリケミカル研究所 ハフニウム系化合物、ハフニウム系薄膜形成材料、及びハフニウム系薄膜形成方法
WO2015107901A1 (en) * 2014-01-16 2015-07-23 Okinawa Institute Of Science And Technology School Corporation Design and assembly of graded-oxide tantalum porous films from size-selected nanoparticles and dental and biomedical implant application thereof
CN110904428A (zh) * 2019-12-25 2020-03-24 惠州市迪思特精细化工有限公司 工程塑料表面金属化电镀方法
WO2023032958A1 (ja) * 2021-08-30 2023-03-09 国立大学法人大阪大学 樹脂層と金属層との積層体及びその製造方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945299A1 (de) * 1999-09-22 2001-03-29 Gfe Met & Mat Gmbh Plasmabeschichtungsverfahren und dreidimensionales Kunststoffsubstrat mit einer metallhaltigen Beschichtung auf der Kunststoffoberfläche
EP1152066A1 (en) * 2000-05-05 2001-11-07 Ingersoll-Rand Company Coloured metal nitride films and process of manufacturing
DE10026540A1 (de) * 2000-05-27 2001-11-29 Gfe Met & Mat Gmbh Gegenstand, insbesondere Implantat
KR100815009B1 (ko) 2000-09-28 2008-03-18 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 산화물, 규산염 및 인산염의 증기를 이용한 석출
DE10053611A1 (de) * 2000-10-28 2002-05-02 Inst Textil & Faserforschung Bioresorbierbare Nervenleitschiene
CA2433550A1 (en) * 2001-01-02 2002-07-11 Advanced Ceramics Research, Inc. Compositions and methods for biomedical applications
US8470019B1 (en) * 2001-11-30 2013-06-25 Advanced Cardiovascular Systems, Inc. TiNxOy modified surface for an implantable device and a method of producing the same
SE0200269D0 (sv) * 2002-01-31 2002-01-31 Ellem Bioteknik Ab Material for implantation
DE10210970B9 (de) * 2002-03-13 2006-06-22 Aesculap Ag & Co. Kg Hüftgelenk-Endoprothese
EP1454999A1 (de) * 2002-12-03 2004-09-08 HARTEC GESELLSCHAFT FUR HARTSTOFFE UND DUNNSCHICHTTECHNIK MBH & CO. KG Werkstoff oder Bauteil mit einer Metallbeschichtung
US7723242B2 (en) * 2004-03-15 2010-05-25 Sharp Laboratories Of America, Inc. Enhanced thin-film oxidation process
DE10317793B4 (de) * 2003-04-16 2007-02-22 AHC-Oberflächentechnik GmbH & Co. OHG Verwendung eines Gegenstands als elektrisches oder elektronisches Bauteil
DE20306637U1 (de) * 2003-04-28 2003-06-26 GfE Medizintechnik GmbH, 90431 Nürnberg Weichteilimplantate wie Brustimplantat, Wadenmuskelprothese o.dgl.
DE20306635U1 (de) * 2003-04-28 2003-06-26 GfE Medizintechnik GmbH, 90431 Nürnberg Chirurgische Flächeneinlage
FR2883287A1 (fr) * 2005-03-16 2006-09-22 Air Liquide Precurseurs organo-metalliques et leur procede de fabrication
RU2281122C1 (ru) * 2005-06-30 2006-08-10 Евгений Александрович Левашов Биосовместимые многокомпонентные наноструктурные покрытия для медицины
US7610101B2 (en) 2006-11-30 2009-10-27 Cardiac Pacemakers, Inc. RF rejecting lead
EP2227289B1 (en) * 2007-12-06 2015-07-22 Cardiac Pacemakers, Inc. Implantable lead having a variable coil conductor pitch
EP2249920B1 (en) * 2008-02-06 2015-07-01 Cardiac Pacemakers, Inc. Lead with mri compatible design features
US8103360B2 (en) 2008-05-09 2012-01-24 Foster Arthur J Medical lead coil conductor with spacer element
JP2012509140A (ja) * 2008-11-20 2012-04-19 カーディアック ペースメイカーズ, インコーポレイテッド 構造化された表面を有する細胞反発性電極
US9084883B2 (en) * 2009-03-12 2015-07-21 Cardiac Pacemakers, Inc. Thin profile conductor assembly for medical device leads
JP5236819B2 (ja) * 2009-03-17 2013-07-17 カーディアック ペースメイカーズ, インコーポレイテッド 多孔性のファイバー電極コーティングおよび関連する方法
US20100262244A1 (en) * 2009-04-14 2010-10-14 Warsaw Orthopedic, Inc. Metal Coated Implant
WO2010151376A1 (en) * 2009-06-26 2010-12-29 Cardiac Pacemakers, Inc. Medical device lead including a unifilar coil with improved torque transmission capacity and reduced mri heating
DE102009037183B4 (de) 2009-08-12 2012-03-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Formteils, insbesondere eines Bedienteils für den Fahrgastraum eines Kraftfahrzeugs
US8335572B2 (en) 2009-10-08 2012-12-18 Cardiac Pacemakers, Inc. Medical device lead including a flared conductive coil
WO2011049684A1 (en) 2009-10-19 2011-04-28 Cardiac Pacemakers, Inc. Mri compatible tachycardia lead
JP5551794B2 (ja) 2009-12-30 2014-07-16 カーディアック ペースメイカーズ, インコーポレイテッド Mri条件下において安全な医療装置リード線
US8391994B2 (en) 2009-12-31 2013-03-05 Cardiac Pacemakers, Inc. MRI conditionally safe lead with low-profile multi-layer conductor for longitudinal expansion
EP2519305B1 (en) 2009-12-31 2017-07-05 Cardiac Pacemakers, Inc. Mri conditionally safe lead with multi-layer conductor
US8825181B2 (en) 2010-08-30 2014-09-02 Cardiac Pacemakers, Inc. Lead conductor with pitch and torque control for MRI conditionally safe use
US20120221099A1 (en) 2011-02-24 2012-08-30 Alexander Borck Coated biological material having improved properties
JP5844467B2 (ja) 2011-11-04 2016-01-20 カーディアック ペースメイカーズ, インコーポレイテッド ショック用コイルに対して逆巻の内側コイルを含む移植可能な医療機器リード線
JP5905611B2 (ja) 2012-04-20 2016-04-20 カーディアック ペースメイカーズ, インコーポレイテッド ユニファイラーコイル状ケーブルを備える埋込型医療装置リード
US8954168B2 (en) 2012-06-01 2015-02-10 Cardiac Pacemakers, Inc. Implantable device lead including a distal electrode assembly with a coiled component
EP3156100B1 (en) 2012-08-31 2019-05-01 Cardiac Pacemakers, Inc. Mri compatible lead coil
AU2013331142B2 (en) 2012-10-18 2016-07-28 Cardiac Pacemakers, Inc. Inductive element for providing MRI compatibility in an implantable medical device lead
JP6244469B2 (ja) 2014-02-26 2017-12-06 カーディアック ペースメイカーズ, インコーポレイテッド Mriに安全な頻脈用リード

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0174743A3 (en) * 1984-09-05 1988-06-08 Morton Thiokol, Inc. Process for transition metal nitrides thin film deposition
US4777090A (en) * 1986-11-03 1988-10-11 Ovonic Synthetic Materials Company Coated article and method of manufacturing the article
DE3905417C2 (de) * 1989-02-22 1997-07-10 Sueddeutsche Kalkstickstoff Verfahren zur Herstellung von dünnen Niob- und/oder Nioboxidfilmen
US5139825A (en) * 1989-11-30 1992-08-18 President And Fellows Of Harvard College Process for chemical vapor deposition of transition metal nitrides
EP0487661A4 (en) * 1990-04-20 1995-04-12 Commw Scient Ind Res Org Cell growth substrates
JP2764472B2 (ja) * 1991-03-25 1998-06-11 東京エレクトロン株式会社 半導体の成膜方法
JPH07109034B2 (ja) * 1991-04-08 1995-11-22 ワイケイケイ株式会社 硬質多層膜形成体およびその製造方法
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
WO1995020982A1 (en) * 1994-02-01 1995-08-10 Howmedica Inc. Coated femoral stem prosthesis
AU1542895A (en) * 1994-02-03 1995-08-21 Smith & Nephew Plc Surface treatment
DE19506188C2 (de) * 1995-02-22 2003-03-06 Miladin Lazarov Implantat und dessen Verwendung
TW479085B (en) * 2000-08-09 2002-03-11 Murata Machinery Ltd Three dimensional structure, and device and method for manufacturing a three dimensional structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504888A (ja) * 2000-07-28 2004-02-19 ブルー・メディカル・デバイシーズ・ベスローテン・フェンノートシャップ 拡張性皮膜を有する血管内ステント
JP2007021208A (ja) * 2005-07-13 2007-02-01 Gfe Medizintechnik Gmbh 体内に挿入するのに適した吸収可能な医療要素、特に吸収可能なインプラント
JP5128289B2 (ja) * 2005-12-06 2013-01-23 株式会社トリケミカル研究所 ハフニウム系化合物、ハフニウム系薄膜形成材料、及びハフニウム系薄膜形成方法
JP2013047391A (ja) * 2005-12-06 2013-03-07 Tri Chemical Laboratory Inc ハフニウム系薄膜形成方法およびハフニウム系薄膜形成材料
JP2010518925A (ja) * 2007-02-24 2010-06-03 ジーエフイー ナノメディカル インターナショナル アーゲー 豚、牛の心膜、又は人の屍体の心臓弁のような、動物又は人由来の生物組織の処理方法、及び、それによって処理された生物組織
JP2012142359A (ja) * 2010-12-28 2012-07-26 Ulvac Japan Ltd 絶縁膜形成方法、及び絶縁膜形成装置
WO2015107901A1 (en) * 2014-01-16 2015-07-23 Okinawa Institute Of Science And Technology School Corporation Design and assembly of graded-oxide tantalum porous films from size-selected nanoparticles and dental and biomedical implant application thereof
JP2017505726A (ja) * 2014-01-16 2017-02-23 学校法人沖縄科学技術大学院大学学園 多孔性膜、歯科用インプラント及び医用インプラント
CN110904428A (zh) * 2019-12-25 2020-03-24 惠州市迪思特精细化工有限公司 工程塑料表面金属化电镀方法
WO2023032958A1 (ja) * 2021-08-30 2023-03-09 国立大学法人大阪大学 樹脂層と金属層との積層体及びその製造方法

Also Published As

Publication number Publication date
DE19736449A1 (de) 1999-02-25
EP0897997B1 (de) 2003-02-26
JP4420482B2 (ja) 2010-02-24
DE59807288D1 (de) 2003-04-03
ATE233328T1 (de) 2003-03-15
US6057031A (en) 2000-05-02
EP0897997A1 (de) 1999-02-24

Similar Documents

Publication Publication Date Title
JP4420482B2 (ja) 複合材料
US6464889B1 (en) Surface modification of medical implants
US6110204A (en) Implant
KR101079196B1 (ko) Dlc막을 구비한 의료기구 및 그 제조방법
Narayan et al. Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts
US8187660B2 (en) Method for fabricating a medical implant component and such component
JPH04311569A (ja) 硬質多層膜形成体およびその製造方法
EP2444519A1 (en) Diamond-like carbon thin film containing silicon, preparation method thereof, and use thereof
JP4635177B2 (ja) 生体親和性インプラント材及びその製造方法
US20080257455A1 (en) Surface carburization technique of medical titanium alloy femoral head in hip arthroplasty
Harder et al. Coating of vascular stents with antithrombogenic amorphous silicon carbide
Osman et al. Influence of different pretreatments on the adhesion of nanodiamond composite films on Ti substrates via coaxial arc plasma deposition
JP5215653B2 (ja) 抗血栓性材料及びその製造方法
US20020022137A1 (en) Object, particularly implant
JP2007097844A (ja) 生体用高分子材料
Klages Modification and coating of biomaterial surfaces by glow‐discharge processes. A review
Lin et al. Characterizations of the TiO2− x films synthesized by e-beam evaporation for endovascular applications
Jasinski Investigation of bio-functional properties of titanium substrates after hybrid oxidation
US20200080196A1 (en) Processes for producing orthopedic implants having a subsurface level silicon nitride layer applied via bombardment
CN116507373A (zh) 医疗器械用金属材料、医疗器械用金属材料的制造方法以及医疗器械
Ali et al. Human microvascular endothelial cell seeding on Cr-DLC thin films for heart valve applications
Vasilets et al. Hot‐Wire Plasma Deposition of Doped DLC Films on Fluorocarbon Polymers for Biomedical Applications
KR101033166B1 (ko) 혈액 적합성이 향상된 실리콘 함유 다이아몬드상 카본 박막및 그 제조 방법과, 이를 이용한 의료용 재료
Breme et al. Improvement of Bio‐and Bloodcompatibility of Polymers by PACVD
Sevastianov Hot-wire Plasma Deposition of Doped DLC Films on Fluorocarbon Polymers for Biomedical Applications

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees