WO2023032958A1 - 樹脂層と金属層との積層体及びその製造方法 - Google Patents

樹脂層と金属層との積層体及びその製造方法 Download PDF

Info

Publication number
WO2023032958A1
WO2023032958A1 PCT/JP2022/032538 JP2022032538W WO2023032958A1 WO 2023032958 A1 WO2023032958 A1 WO 2023032958A1 JP 2022032538 W JP2022032538 W JP 2022032538W WO 2023032958 A1 WO2023032958 A1 WO 2023032958A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
metal layer
resin
layer
laminate
Prior art date
Application number
PCT/JP2022/032538
Other languages
English (en)
French (fr)
Inventor
雄司 大久保
和也 山村
実沙 西野
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to KR1020247007386A priority Critical patent/KR20240051952A/ko
Priority to JP2023545590A priority patent/JPWO2023032958A1/ja
Publication of WO2023032958A1 publication Critical patent/WO2023032958A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • B32B38/004Heat treatment by physically contacting the layers, e.g. by the use of heated platens or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a laminate of a resin layer and a metal layer and a manufacturing method thereof.
  • a fluororesin with a low dielectric constant and a low dielectric loss tangent is used.
  • laminates comprising a resin layer containing a fluororesin and a metal layer as a conductor are used in various applications using high frequency bands.
  • Patent Document 1 the surface of the fluororesin layer is subjected to flame treatment or metal sodium treatment, and a laminate is produced by bonding a metal layer or the like to the surface of the fluororesin layer subjected to the above treatment using an adhesive.
  • Patent Literature 2 describes a method for producing a laminate, in which a bonding surface of a metal foil is surface-treated to form a roughened surface, and then a film substrate and a metal foil are laminated.
  • Patent Document 3 describes that a resin on the surface of a resin substrate and a monomer such as an acrylic monomer are graft-polymerized to form a graft-polymerized layer, and then a metal film is laminated on the graft-polymerized layer. .
  • Patent Documents 1 to 3 the surface of the resin layer or metal layer is subjected to roughening treatment, or an adhesive or graft polymerization layer serving as an intermediate layer is provided between the metal layer and the resin layer containing the fluororesin. ing.
  • Patent Documents 1 to 3 although the adhesive strength between the resin layer and the metal layer is increased, the surfaces of the resin layer and the metal layer are roughened, and an intermediate layer is provided between the resin layer and the metal layer. As a result, transmission loss has increased.
  • An object of the present invention is to provide a laminate having high adhesion between a resin layer and a metal layer without roughening the surfaces of the resin layer or the metal layer or providing an intermediate layer between the resin layer and the metal layer. to provide.
  • FIG. 1(a) is a cross-sectional view of the laminate before plasma treatment
  • FIG. 1(a) is a cross-sectional view of the laminate before plasma treatment
  • reference numeral 1(b) is a cross-sectional view of the laminate when the resin layer is expanded in the width direction and the length direction by heat compression after the plasma treatment. ing.
  • reference numeral 1 indicates a resin layer
  • reference numeral 2 indicates a metal layer
  • reference numeral 3 indicates a portion of the resin layer surface that has undergone plasma treatment
  • reference numeral 4 indicates that the resin layer surface has not been subjected to plasma treatment. shows the location.
  • the resin that has not been subjected to the plasma treatment comes out from the inside of the resin layer to the surface of the resin layer, and the resin that has not been subjected to the plasma treatment such as reference numeral 4 It is believed that the surface of the layer is formed.
  • the places where the plasma treatment is not performed (especially the plasma treatment from the inside of the resin layer). Starting from the place where a large amount of resin has not been applied, the resin layer and the metal layer tend to separate, and the adhesive strength between the resin layer and the metal layer becomes insufficient.
  • the inventors of the present invention perform a predetermined plasma treatment and control the resin layer so that it does not expand in the width direction or the length direction during heat compression, so that it is in contact with the metal layer even at the end of heat compression. Since the entire surface of the resin layer can be maintained plasma-treated, the inventors have found that the bonding strength between the resin layer and the metal layer is increased, and have completed the present invention.
  • the present invention consists of the following configurations.
  • [1] A laminate of a resin layer and a metal layer, wherein the metal layer is directly laminated on the surface of the resin layer containing a fluororesin, and the adhesion strength between the resin layer and the metal layer is 0. .7 N/mm or more, and the surface roughness Sq of the metal layer is 0.2 ⁇ m or less.
  • [2] The laminate according to [1], wherein the resin layer has a dielectric constant of 2.3 or less at a frequency of 10 kHz and a dielectric loss tangent of 0.0006 or less at a frequency of 10 kHz.
  • the resin layer is subjected to a predetermined plasma treatment and the resin layer and the metal layer are heat-compressed to produce a laminate, the resin layer is controlled so as not to expand in the width direction and the length direction due to the heat-compression. As a result, even if the metal layer is directly laminated on the resin layer containing the fluororesin, a high adhesive strength can be obtained.
  • the surface of the resin layer containing the fluororesin or the surface of the metal layer is roughened, the layer other than the resin layer containing the fluororesin is provided, or the fluororesin is used without using an adhesive. Since the metal layer can be directly adhered to the surface of the resin layer included, the manufacturing cost can be reduced.
  • (a) is a cross-sectional view of the laminate before plasma treatment
  • (b) is a cross-sectional view of the laminate when the resin layer is expanded in the width direction and the length direction by heat compression after the plasma treatment.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram of an atmospheric pressure plasma processing apparatus, (a) is a whole side view, (b) is a top view which shows the relationship between a rod-shaped electrode and a board
  • the laminate of the present invention is a laminate of a resin layer and a metal layer, in which a metal layer is directly laminated on the surface of a resin layer containing a fluororesin (hereinafter simply referred to as "resin layer").
  • resin layer a resin layer containing a fluororesin
  • the fluorine-based resin refers to a resin containing a fluorine atom in its molecule.
  • the dielectric constant of the resin layer at a frequency of 10 kHz is preferably 2.3 or less, more preferably 2.2 or less, and even more preferably 2.1 or less.
  • the dielectric loss tangent of the resin layer at a frequency of 10 kHz is preferably 0.0006 or less, more preferably 0.0004 or less, further preferably 0.0003 or less, and 0.0002 or less. is particularly preferred.
  • fluorine-based resins examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the resin other than PTFE, PFA, and FEP is preferably 30 parts by mass or less, and 20 parts by mass or less, out of 100 parts by mass of all the resins in the resin layer. is more preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less, and most preferably 1 part by mass or less.
  • 1 type may be sufficient as a fluorine resin and it may contain 2 or more types.
  • the resin layer is a copolymer of at least one of hexafluoropropylene units, perfluoroalkyl vinyl ether units, methylene units, ethylene units and perfluorodioxole units and difluoromethylene units, or polytetrafluoroethylene.
  • the fluororesin preferably contains hexafluoropropylene units, perfluoroalkyl vinyl ether units, copolymers of ethylene units or perfluorodioxole units and tetrafluoroethylene units, or polytetrafluoroethylene.
  • the resin layer preferably contains at least one selected from the group consisting of tetrafluoroethylene units, hexafluoropropylene units, and perfluoroalkyl vinyl ether units. It is more preferable to include units.
  • the total of tetrafluoroethylene units, hexafluoropropylene units, and perfluoroalkylvinyl ether units is preferably 50 mol% or more, and the total is 70 mol% or more, based on 100 mol% of the total resin in the resin layer. is more preferable, and the above total is more preferably 90 mol % or more.
  • the tetrafluoroethylene unit is more preferably 30 mol % or more, and the tetrafluoroethylene unit is more preferably 50 mol % or more. It is particularly preferably 70 mol % or more, and particularly preferably 90 mol % or more of tetrafluoroethylene units.
  • the tetrafluoroethylene unit is a structural unit derived from tetrafluoroethylene, and the same applies to other monomer units.
  • the resin layer may contain a resin other than the fluorine-based resin described above.
  • resins other than fluorine-based resins include olefin-based resins such as polyethylene resin, polypropylene resin, and cycloolefin resin; polyester-based resins such as polyethylene terephthalate resin; polyimide-based resins; styrene-based resins such as styrene resin and syndiotactic polystyrene resin.
  • the resin other than the fluorine-based resin is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, out of 100 parts by mass of all the resins in the resin layer. , more preferably 5 parts by mass or less, particularly preferably 1 part by mass or less, and most preferably 0 parts by mass (the resin layer does not contain a resin other than a fluororesin).
  • resin is softer than metal at the time of heating and compression, and the resin layer is laminated along the unevenness of the surface of the metal layer. It has the same value as the roughness Sq.
  • the resin layer contains a large amount of inorganic fibers such as glass fibers and carbon fibers, the fluidity of the resin during heat compression is reduced, and the surface roughness Sq of the resin layer is the same as the surface roughness Sq of the metal layer.
  • the adhesion strength is 0.7 N/mm or more, the metal layer and the resin layer are not completely adhered.
  • the surface roughness Sq of the resin layer is not required to be as small as the surface roughness Sq of the metal layer, which will be described later. For example, 20 ⁇ m or less is sufficient.
  • the thickness of the resin layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more from the viewpoint of insulation and transmission loss reduction.
  • the upper limit of the thickness of the resin layer is not particularly limited, when it is used as a flexible printed wiring board, it is preferable that the resin layer is thin, for example, 5 mm or less.
  • the shape of the resin layer that can be used in the present invention is not particularly limited as long as it is a shape that enables plasma irradiation, which will be described later, and can be applied to those having various shapes and structures. Examples thereof include, but are not limited to, rectangular, spherical, and thin film shapes having surface shapes such as plane, curved, and curved surfaces.
  • the resin layer may be molded by various molding methods such as injection molding, melt extrusion molding, paste extrusion molding, compression molding, cutting molding, cast molding, and impregnation molding, depending on the properties of the fluororesin.
  • the resin layer may have a continuous structure in which the resin is dense, such as an ordinary injection-molded body, may have a porous structure, may be in the form of a non-woven fabric, or may have other structures.
  • the surface roughness Sq of the resin layer after lamination does not become too large.
  • the surface on which the metal layer is laminated is plasma-treated, and the metal layer is directly laminated on the surface of the plasma-treated resin layer.
  • the plasma treatment it is possible to obtain a laminate having excellent adhesive strength without roughening the surfaces of the resin layer or the metal layer or modifying the surfaces other than the plasma treatment.
  • roughening the surface of the resin layer or metal layer, providing a layer different from the resin layer or metal layer, or using an adhesive will increase the transmission loss. Since the layer can be laminated directly on the surface of the plasma-treated resin layer, transmission loss can be reduced. Details of the plasma processing will be described later.
  • the metal used for the metal layer is not particularly limited, and may be appropriately selected according to the application of the laminate.
  • the material of the metal layer preferably contains at least one selected from the group consisting of copper, aluminum, iron, silver, and stainless steel, and may contain copper. more preferred.
  • a metal foil may be used as the metal layer, and a metal film may be provided on the surface of the resin layer by vapor deposition or sputtering. more preferred.
  • copper foils such as rolled copper foils and electrolytic copper foils are often used as the metal layers.
  • the laminate it is preferable to produce the laminate, and it is more preferable to produce the laminate using a copper foil. It should be noted that whether a metal foil or a metal film is used in the production of the laminate can be determined by the difference in fracture behavior when a shear test is performed. When metal foil is used, slip bands occur around cracks, but when metal films are used, no slip bands occur around cracks.
  • the surface roughness Sq of the metal layer can be obtained by measuring according to JIS B 0601, and a specific measuring method will be described later.
  • the thickness of the metal layer is preferably 50 nm or more, more preferably 100 nm or more, and even more preferably 300 nm or more, from the viewpoints of mechanical strength and maximum current value.
  • the upper limit of the thickness of the metal layer is not particularly limited, it is, for example, 1 mm or less.
  • the adhesive strength between the resin layer and the metal layer (hereinafter simply referred to as "adhesive strength") is 0.7 N/mm or more.
  • the adhesive strength is preferably 0.8 N/mm or more, more preferably 0.9 N/mm or more. Since a higher adhesive strength is preferable, the upper limit is not particularly limited, but is, for example, 10.0 N/mm or less. A method for measuring the adhesive strength will be described later.
  • a method for producing a laminate includes a step of plasma-treating the surface of a resin layer containing a fluorine-based resin at a surface temperature of (the melting point of the fluorine-based resin-150)° C. or higher, and forming a metal layer on the surface of the resin layer. It includes a step of directly laminating and a step of heat-compressing the resin layer and the metal layer. Further, the increase in the surface area of the resin layer due to the heat compression is 10% or less.
  • Step of plasma-treating the surface of the resin layer The surface temperature of the resin layer is set to (the melting point of the fluorine-based resin - 150) ° C. or higher, and the surface of the resin layer is plasma-treated.
  • the surface modification of the resin layer is performed at a temperature of (the melting point of the fluororesin - 150)°C or higher.
  • the surface temperature of the resin layer is preferably 180° C. or higher, more preferably 200° C. or higher.
  • the upper limit of the surface temperature of the resin layer is not particularly limited.
  • the surface of the resin layer can be modified by subjecting the surface of the resin layer to plasma treatment in a state where oxygen is minimized in the vicinity of the surface of the resin layer to sufficiently form peroxide radicals on the surface of the resin layer.
  • the plasma treatment for example, surface modification of the resin layer may be performed by performing treatment with atmospheric pressure plasma while the surface temperature of the resin layer is raised. By performing the atmospheric pressure plasma treatment, radicals, electrons, ions, etc.
  • the plasma induces the formation of dangling bonds due to defluoridation of the surface of the resin layer. After that, by exposing it to the atmosphere for several minutes to 10 minutes, it reacts with the water component in the atmosphere, and hydrophilic functional groups such as peroxide radicals, hydroxyl groups, and carbonyl groups are spontaneously formed on the dangling bonds. be.
  • the surface temperature of the resin layer is set to a predetermined temperature range that can increase the mobility of the fluororesin polymer on the surface of the resin layer, and the treatment is performed using atmospheric pressure plasma.
  • the surface temperature is raised only by the heating effect of the plasma treatment, it is preferable to perform the atmospheric pressure plasma treatment under the conditions where the heating effect can be obtained.
  • a high-frequency power source with an applied voltage frequency of 50 Hz to 2.45 GHz may be used.
  • the output power density (output power per unit area) may be 15 W / cm 2 or more, and the upper limit is not particularly limited. For example, it may be 40 W/cm 2 or less.
  • a pulse modulation frequency of 1 to 50 kHz (preferably 5 to 30 kHz) and a pulse duty of 5 to 99% preferably 15 to 80%, more preferably 25 to 70% are used. good.
  • a cylindrical or plate-shaped metal having at least one side covered with a dielectric can be used for the counter electrode.
  • the distance between the opposing electrodes is preferably 5 mm or less, more preferably 3 mm or less, still more preferably 2 mm or less, and particularly preferably 1 mm or less from the viewpoint of plasma generation and heating. be.
  • the lower limit of the distance between the opposing electrodes is not particularly limited, it is, for example, 0.5 mm or more.
  • a gas used for generating plasma for example, a rare gas such as helium, argon, or neon, or a reactive gas such as oxygen, nitrogen, or hydrogen can be used. That is, it is preferable to use only non-polymerizable gas as the gas used in the present invention.
  • these gases only one or two or more rare gases may be used, or a mixed gas of one or two or more rare gases and an appropriate amount of one or two or more reactive gases may be used. may be used.
  • Plasma may be generated using a chamber under conditions in which the gas atmosphere is controlled as described above, or may be performed under conditions completely open to the atmosphere in which, for example, a noble gas is allowed to flow to the electrode portion.
  • the surface of the resin layer opposite to the plasma-irradiated surface is hardly affected by the plasma treatment (the effect of improving hardness is smaller than that of the plasma-irradiated surface).
  • Various inherent properties for example, chemical resistance, weather resistance, heat resistance, electrical insulation, etc. are fully exhibited without being impaired.
  • FIG. 2 shows a conceptual diagram of a capacitively coupled atmospheric pressure plasma processing apparatus, which is an example of an atmospheric pressure plasma processing apparatus that can be used in the present invention.
  • Atmospheric pressure plasma processing apparatus A shown in FIG. It is composed of a rotating stage 16 and a rotating stage controller (not shown).
  • the rotating stage 16 is arranged so as to face the electrode 14 .
  • the cylindrical rotary stage and the sample holder 16 for example, those made of an aluminum alloy can be used.
  • the electrode 14 has a rod-like shape, and has a structure in which the surface of an inner tube 18 made of, for example, copper is covered with an outer tube 19 made of, for example, aluminum oxide (Al 2 O 3 ). You can use what you have.
  • the method for modifying the surface of the resin layer using the atmospheric pressure plasma treatment apparatus A shown in FIG. 2 is as follows. First, after washing the resin layer with an organic solvent such as acetone or water such as ultrapure water, as shown in FIG. After disposing the resin layer 20 containing a resin, the air in the chamber 12 is sucked from the evacuation system 13 by a suction device (not shown) to reduce the pressure, and a plasma-generating gas is supplied into the chamber 12 (FIG. 2). (a) see the arrow), the pressure inside the chamber 12 is made atmospheric.
  • the sample 20 is not shown in FIG. 2(a), but is shown only in FIG. 2(b), which will be described later.
  • the atmospheric pressure does not have to be strictly 1013 hPa, and may be in the range of 700 to 1300 hPa.
  • the plasma treatment can be performed with the oxygen concentration in the vicinity of the surface of the resin layer (plasma irradiation area) set to less than 0.5% by volume.
  • the height of the electrode elevating mechanism 15 (vertical direction in FIG. 2A) is adjusted to move the electrode 14 to a desired position.
  • the distance between the electrode 14 and the surface (upper surface) of the sample 20 can be adjusted.
  • the distance between the electrode 14 and the surface of the sample 20 is preferably 5 mm or less, more preferably 2 mm or less.
  • the distance is particularly preferably 1.0 mm or less. Since the sample 20 is moved by rotating the rotating stage 16, the electrode 14 and the sample 20 must of course not come into contact with each other.
  • the rotational speed of the rotary stage 16 is preferably 1 to 3 mm/sec, but the present invention is not limited to such an example.
  • the plasma irradiation time to the sample 20 can be adjusted, for example, by varying the rotational speed of the rotary stage 16 or by repeatedly rotating the rotary stage 16 a desired number of times.
  • the high-frequency power source 10 By moving the sample 20 by moving the rotating stage 16, the high-frequency power source 10 is operated to generate plasma between the electrode 14 and the rotating stage 16, and the plasma is generated in a desired range on the surface of the sample 20. Irradiate.
  • the high-frequency power source 10 for example, by using the frequency of the applied voltage and the output power density as described above, for example, by using an alumina-coated copper electrode and an aluminum alloy sample holder, under the dielectric barrier discharge condition, Glow discharge can be realized. Therefore, peroxide radicals can be stably generated on the surface of the resin layer.
  • the introduction of peroxide radicals induces the formation of dangling bonds due to defluoridation of the PTFE sheet surface due to radicals, electrons, ions, etc. contained in the plasma. It is carried out by reacting with water components in the air by exposing it to strong air. Dangling bonds can spontaneously form hydrophilic functional groups such as hydroxyl groups and carbonyl groups in addition to peroxide radicals
  • the intensity of plasma applied to the surface of the resin layer can be appropriately adjusted by various parameters of the high-frequency power source, the distance between the electrode 14 and the surface of the resin layer, and the like.
  • the preferred conditions for generating atmospheric plasma are particularly effective when the resin layer is in the form of a PTFE sheet. Further, by adjusting the cumulative irradiation time for the resin layer surface according to the output power density, it is possible to bring the resin layer surface to a specific temperature range.
  • the cumulative irradiation of the resin layer surface The time is preferably 50 seconds to 3300 seconds, more preferably 250 seconds to 3300 seconds, and particularly preferably 550 seconds to 2400 seconds.
  • the plasma irradiation time means the cumulative time during which the resin layer surface is irradiated with plasma, and it is sufficient that the resin layer surface temperature is (melting point - 150) ° C. or higher for at least part of the plasma irradiation time.
  • the surface temperature of the resin layer should be (melting point -150)° C. or higher for 1/2 or more (preferably 2/3 or more) of the plasma irradiation time.
  • the surface temperature of the resin layer within the above range, the mobility of the PTFE molecules on the surface of the resin layer is improved, and the carbon atoms of the carbon-fluorine bonds of the PTFE molecules cut by plasma are , the probability of forming carbon-carbon bonds by bonding with carbon atoms of other PTFE molecules produced in the same manner is remarkably improved, and the surface hardness can be improved.
  • a heating means for heating the sample 20 can be provided separately.
  • a heat ray irradiation device such as a halogen heater 17 may be arranged in the vicinity of the electrode 14 in order to directly heat the surface of the resin layer (sample 20).
  • a heating device for heating the gas in the chamber 12 and a circulating device equipped with a stirring blade or the like for circulating the heated gas in the chamber 12 may be arranged in the chamber 12.
  • heating means may be arranged on the rotating stage 16 to heat the sample 20 from the lower surface side, or these may be combined.
  • the heating temperature of the heating means may be appropriately set and controlled in consideration of the properties of the fluororesin forming the resin layer, the shape of the molded body, the heating effect of the plasma treatment, and the like. Moreover, it is preferable to preheat the molded body before operating the high-frequency power source 10 so that the molded body reaches a desired temperature during plasma irradiation.
  • the surface temperature of the molded body during plasma treatment can be measured by using a radiation thermometer 21 as shown in FIG. 2(b) or by using a temperature measuring seal.
  • a step of laminating a metal layer on a resin layer and a step of heating and compressing the resin layer and the metal layer After the above-described step of subjecting the surface of the resin layer to plasma treatment, a step of directly laminating a metal layer on the surface of the resin layer; and the step of heating and compressing the metal layer, a laminate can be obtained.
  • the metal layer and the surface-modified resin layer are put into a mold, and the surface of the metal layer and the modified surface of the surface-modified resin layer are brought into contact with each other and then thermocompression bonded. By (heating and pressing), the two can be directly bonded to obtain a bonded body (laminate) of the resin layer and the metal layer.
  • Thermocompression may be carried out using a hot press machine or the like at a heating temperature of, for example, 200 to 400° C. and a pressure of, for example, 0.1 to 20 MPa for about 5 to 40 minutes.
  • a hot press machine or the like at a heating temperature of, for example, 200 to 400° C. and a pressure of, for example, 0.1 to 20 MPa for about 5 to 40 minutes.
  • both are sheet-like shapes, they may be laminated and compression-molded.
  • the mechanism by which the resin layer and the metal layer are bonded (adhered) to each other by plasma treatment at high power to achieve good adhesive strength is considered as follows, but the mechanism is not limited to the following.
  • C—OH groups and COOH groups are caused by peroxide radicals introduced to the surface of the resin layer and plasma treatment is performed at low power. will be formed more often than As a result, it is believed that not only the surface of the resin layer can be modified, but also the surface of the resin layer can be cured, and the adhesive strength between the resin layer and the metal layer can be increased.
  • FIG. 1(a) is a cross-sectional view of the laminate before plasma treatment
  • FIG. 1(b) is a cross-sectional view of the laminate after plasma treatment. The reason why the adhesive strength between the resin layer and the metal layer is lowered when the resin layer and the metal layer are expanded is described above. As described above, in the present invention, the above 1.
  • the entire surface of the resin layer in contact with the metal layer even at the end of heating and compression is plasma. Since the treated state can be maintained, the adhesive strength between the resin layer and the metal layer can be increased.
  • the method for suppressing the expansion of the resin layer in the width direction and the length direction is not particularly limited.
  • heat compression may be performed.
  • the material of the frame is not particularly limited as long as it does not expand or hardly expands under the conditions of the heat compression. Examples thereof include metals such as copper and stainless steel, and resins including glass fiber.
  • the thickness of the frame mold may be approximately the same thickness as the resin layer, or may be thicker than the resin layer. In the case of a frame that is thicker than the resin layer, in order to smoothen the surface of the resin layer on the side where the metal layer is not laminated, for example, a material that does not expand at all or hardly expands under the above-mentioned heat compression conditions is formed inside the frame.
  • a plate (hereinafter simply referred to as "plate") is placed on the resin layer.
  • the plate may be further placed on the frame mold to heat and compress. Even in the case of using the plate, heat compression is performed in a state where the unmodified surface of the resin layer is in contact with the surface of the plate. Thus, the surface of the unmodified resin layer hardly adheres to the plate, and does not affect the production of the laminate of the resin layer and the metal layer.
  • the laminate is produced while the resin layer is hardly expanded in the width direction and the length direction by heat compression, that is, the increase in the surface area of the resin layer due to heat compression is suppressed to 10% or less.
  • the metal layer is directly laminated on the resin layer, high adhesiveness can be exhibited. Also in the examples described later, the resin layer hardly expands in the width direction or the length direction due to heat compression, and the increase in the surface area of the resin layer due to heat compression is much less than 10%.
  • AFM-IR which combines the surface morphology observation function of an atomic force microscope (AFM) and the functional group identification function of infrared spectroscopy (IR), has a very high spatial resolution of about 10 nm and can collect information on the surface morphology. It is also possible to clarify the distribution of functional groups present on the surface. If the cross-section of the laminate of the present invention (for example, a laminate of a PTFE sheet and a copper foil described in the examples below) is analyzed using AFM-IR, the material constituting the laminate can be specified, of course, by plasma Reverse engineering is possible because the surface modification depth and interface roughness due to treatment can be specified. Therefore, by using the above apparatus, it can be determined that no surface modification other than plasma treatment is performed on the surface of the resin layer on which the metal layer is laminated.
  • AFM-IR atomic force microscope
  • IR infrared spectroscopy
  • ⁇ Adhesion strength> Using a combination of a digital force gauge (ZP-200N, manufactured by Imada Seisakusho Co., Ltd.) and an electric stand (MX-500N, manufactured by Imada Seisakusho Co., Ltd.), the copper foil is fixed with two stainless steel rods, and then the PTFE is gripped. is sandwiched between the upper chuck, the PTFE sheet is pulled up perpendicularly to the copper foil, and a 90 degree peeling test is performed. The adhesive strength was calculated by dividing the measured value (unit: N) by the sample width (unit: mm).
  • Example 1 A laminate in which a copper foil was directly laminated on the surface of a PTFE sheet was produced in the following manner.
  • a PTFE sheet (Nitoflon No. 900UL) cut to a thickness of 0.2 mm by Nitto Denko Co., Ltd. was cut into pieces of a certain size (width: 4.5 cm x length: 7 cm). bottom.
  • This resin layer was ultrasonically cleaned in acetone for 1 minute and then ultrasonically cleaned in pure water for 1 minute. Thereafter, the pure water adhering to the PTFE sheet was removed by blowing nitrogen gas (purity: 99% or more) with an air gun.
  • the dielectric constant and dielectric loss tangent of the PTFE sheet were measured under conditions of a temperature of 23° C., a humidity of 50% and a frequency of 10 kHz, the dielectric constant was smaller than 2.1 and the dielectric loss tangent was 0.0002. rice field.
  • Plasma treatment The surface of the PTFE sheet washed in (1) above was modified by plasma using a plasma generator (manufactured by Meisho Kiko Co., Ltd., product name K2X02L023) having the configuration shown in FIG.
  • a plasma generator manufactured by Meisho Kiko Co., Ltd., product name K2X02L023
  • the electrode used had a structure in which a copper tube having an inner diameter of 1.8 mm, an outer diameter of 3 mm and a length of 165 mm was covered with an alumina tube having an outer diameter of 5 mm, a thickness of 1 mm and a length of 145 mm.
  • sample holder a cylindrical one made of aluminum alloy and having a diameter of 50 mm and a width of 3.4 cm was used.
  • a PTFE sheet was placed on the upper surface of the sample holder, and the distance between the resin layer surface and the electrode was set to 1.0 mm.
  • the chamber was sealed and the pressure was reduced to 10 Pa by a rotary pump, helium gas was introduced to the atmospheric pressure (1013 hPa).
  • the high-frequency power source was set so that the output power density was 19.1 W/cm 2 , and the scanning stage was moved at a moving speed of 2 mm/sec so that the electrode passed 30 mm in the length direction of the resin layer. set to move in minutes.
  • the high-frequency power source was operated, the scanning stage was moved, and plasma irradiation was performed for 600 seconds within a range of width: 1.0 cm x length: 3.4 cm.
  • the plasma irradiation time was adjusted by the number of reciprocating movements of the scanning stage by 30 mm in the longitudinal direction.
  • the oxygen concentration in the vicinity of the PTFE sheet surface was measured using a zirconia oxygen concentration meter LC-300 manufactured by Toray Engineering Co., Ltd., it was 25.7 ppm, which was significantly below 0.5% by volume. rice field.
  • FT-H40K and FT-50A manufactured by Keyence Corporation
  • the GC-PTFE frame was provided with a 1 cm wide, 4 cm long hole to accommodate a 1 cm wide, 4 cm long, 0.2 mm thick cut PTFE sheet subjected to the plasma treatment described above.
  • a PTFE sheet was fitted into this hole.
  • the PTFE sheet and the copper foil are in contact with each other. This is for suppressing expansion.
  • a SUS foil (A) having a width of 1 cm, a length of 4 cm, and a thickness of 0.05 mm was placed on the PTFE sheet.
  • a SUS foil (B) having a width of 5 cm, a length of 6 cm, and a thickness of 0.05 mm was placed on the SUS foil (A) so as to cover the entire SUS foil (A).
  • a mold (B) having the same size as the mold (A) was placed on the SUS foil (B) to prepare a mold sandwiched with a PTFE sheet or the like.
  • a mold sandwiched with a PTFE sheet or the like is set between the upper and lower plates of a hot press machine (manufactured by AS ONE Corporation, high temperature heat press machine H400-15) heated to 320 ° C, and the distance between the upper and lower plates is set.
  • the mold (A) and the mold (B) were allowed to reach 320°C. After reaching 320° C., the pressure was adjusted to 6.5 MPa and left for 10 minutes. After that, the mold was taken out from the hot press machine and allowed to stand until it reached room temperature to obtain a laminate in which the copper foil was directly laminated on the surface of the PTFE sheet.
  • the adhesive strength between the PTFE sheet and copper foil was 0.94 N/mm.
  • Example 1 A laminate was produced in the same manner as in Example 1, except that in the plasma treatment (2) above, the high-frequency power source was set so that the output power density was 7.4 W/cm 2 .
  • the surface temperature of the resin layer during the plasma treatment was measured with a radiation thermometer (FT-H40K and FT-50A, manufactured by Keyence Corporation) and found to be 95 ° C., which is the same as in (2) above in Example 1. Compared with the plasma processing, the plasma processing was performed at a low temperature.
  • the adhesive strength between the PTFE sheet and copper foil was 0.22 N/mm.
  • Example 2 A laminate was produced in the same manner as in Example 1, except that the plasma treatment in (2) above was not performed.
  • the adhesive strength between the PTFE sheet and copper foil was 0.05 N/mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)

Abstract

樹脂層や金属層の表面を粗化したり、樹脂層と金属層との間に中間層を設けたりすることなく、樹脂層と金属層との接着性が高い積層体を提供する。樹脂層と金属層との積層体であって、フッ素系樹脂を含む前記樹脂層の表面に前記金属層が直接積層されており、前記樹脂層と前記金属層との接着強度が0.7N/mm以上であり、前記金属層の表面粗さSqが0.2μm以下であることを特徴とする積層体。

Description

樹脂層と金属層との積層体及びその製造方法
 本発明は、樹脂層と金属層との積層体及びその製造方法に関する。
 近年、各種電子機器においてより大容量のデータを高速で送受信することが求められているため、高周波帯域を使用して伝送情報容量を多くすることが注目されており、特にミリ波と呼ばれる30GHz以上の高周波の使用に注目が集まっている。しかし、高周波帯域を使用する場合、伝送情報容量が非常に多い反面、伝送経路における伝送損失が大きくなりやすい。伝送損失が大きくなると、電気信号のロスや信号の遅延時間が長くなるなどの不都合が生じてしまう。
 伝送損失を低減させるために、比誘電率が低い上に誘電正接も低いフッ素系樹脂が用いられている。具体的には、フッ素系樹脂を含む樹脂層と、導体としての金属層とを備えた積層体が、高周波帯域を使用する種々の用途で使用されている。
 このような積層体では、誘電体である樹脂層と導体である金属層との界面を電気信号が通過するため、界面が平滑であるほど伝送損失は小さくなる。しかし、フッ素系樹脂を含む樹脂層と金属層との接着性が低いため、様々な処理を行ってフッ素系樹脂を含む樹脂層と金属層との接着性を向上させている。
 特許文献1では、フッ素系樹脂層の表面に火炎処理または金属ナトリウム処理を施しており、上記処理が施されたフッ素系樹脂層の表面に接着剤を用いて金属層などと接着した積層体が記載されている。特許文献2には、金属箔の接合面に表面処理を施して粗化処理面とした後にフィルム基材と金属箔とを積層する積層体の製造方法が記載されている。特許文献3には、樹脂基材の表面の樹脂とアクリル系モノマー等のモノマーとをグラフト重合させてグラフト重合層を形成した後にグラフト重合層の上に金属膜を積層することが記載されている。
特開昭60-199032号公報 特開2019-018403号公報 特開2009-167323号公報
 特許文献1~3では、樹脂層や金属層の表面に粗化処理を施したり、金属層とフッ素系樹脂を含む樹脂層との間に中間層となる接着剤やグラフト重合層を設けたりしている。特許文献1~3では、樹脂層と金属層との接着強度は高まっているが、樹脂層や金属層の表面を粗化したり、樹脂層と金属層との間に中間層が設けられていることにより、伝送損失が増加してしまっている。
 一方、フッ素系樹脂を含む樹脂層の表面に金属層を直接積層するために、樹脂層に対してプラズマ処理を行い、樹脂層に金属層を積層し、樹脂層及び金属層を加熱圧縮すると、伝送損失は低減できるものの樹脂層と金属層との接着強度が不十分となる。
 本発明の目的は、樹脂層や金属層の表面を粗化したり、樹脂層と金属層との間に中間層を設けたりすることなく、樹脂層と金属層との接着性が高い積層体を提供することにある。
 上記課題に鑑みて、本発明の発明者らは鋭意検討を行った。その結果、樹脂層の表面にプラズマ処理を行った後に、樹脂層と金属層とを積層して、樹脂層及び金属層を加熱圧縮しただけでは、加熱圧縮により、樹脂層が厚み方向の垂直方向である幅方向や長さ方向に膨張してしまい、金属層と接している樹脂層の表面が各所で裂けてしまうため、樹脂層の表面にプラズマ処理されていない部分が生じることがわかった。以下、図1を用いて具体的に説明する。
 図1の(a)はプラズマ処理前の積層体の断面図であり、(b)はプラズマ処理後に加熱圧縮により樹脂層が幅方向や長さ方向に膨張したときの積層体の断面図を示している。図1において、符号1は樹脂層を示し、符号2は金属層を示し、符号3は樹脂層表面においてプラズマ処理を行った箇所を示し、符号4は樹脂層表面においてプラズマ処理が行われていない箇所を示している。樹脂層及び金属層を加熱圧縮すると、樹脂層が厚み方向の垂直方向である幅方向や長さ方向に膨張してしまい、金属層と接している樹脂層の表面が各所で裂けてしまう。そして、樹脂層表面で裂けてしまったことにより、樹脂層の内部からプラズマ処理が行われていない樹脂が樹脂層の表面に出てきてしまい、符号4のようなプラズマ処理が行われていない樹脂層の表面が形成されると考えられる。樹脂層の表面において、プラズマ処理が行われていない箇所では樹脂層と金属層とがほとんど接着していない状態となるため、プラズマ処理が行われていない箇所(特に樹脂層の内部からプラズマ処理が行われていない樹脂が多く出てきてしまった箇所)を起点として、樹脂層と金属層とが剥離しやすい状況となってしまい、樹脂層と金属層との接着強度が不十分となってしまうと考えられる。
 本発明の発明者らは、所定のプラズマ処理を行い、かつ、加熱圧縮時に樹脂層が幅方向や長さ方向に膨張しないように制御することによって、加熱圧縮終了時点でも金属層と接している樹脂層の表面全体がプラズマ処理されている状態を維持することができるため、樹脂層と金属層との接着強度が高くなることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の構成からなる。
[1]樹脂層と金属層との積層体であって、フッ素系樹脂を含む前記樹脂層の表面に前記金属層が直接積層されており、前記樹脂層と前記金属層との接着強度が0.7N/mm以上であり、前記金属層の表面粗さSqが0.2μm以下であることを特徴とする積層体。
[2]前記樹脂層は周波数10kHzにおける比誘電率が2.3以下であり、周波数10kHzにおける誘電正接が0.0006以下である前記[1]に記載の積層体。
[3]前記樹脂層はテトラフルオロエチレン由来の構成単位を含む前記[1]または[2]に記載の積層体。
[4]前記金属層は銅、アルミニウム、鉄、銀、及びステンレス鋼からなる群より選択される少なくとも1種を含む前記[1]~[3]のいずれかに記載の積層体。
[5]前記金属層の厚さは50nm以上である前記[1]~[4]のいずれかに記載の積層体。
[6]樹脂層と金属層との積層体の製造方法であって、フッ素系樹脂を含む前記樹脂層の表面温度を(前記フッ素系樹脂の融点-150)℃以上として、前記樹脂層の表面にプラズマ処理する工程と、前記樹脂層の表面に前記金属層を直接積層する工程と、前記樹脂層及び前記金属層を加熱圧縮する工程とを含み、前記加熱圧縮による前記樹脂層の表面積の増加は10%以下である積層体の製造方法。
 樹脂層に対して所定のプラズマ処理を行い、かつ、樹脂層及び金属層を加熱圧縮して積層体を作製するときに加熱圧縮により樹脂層が幅方向や長さ方向に膨張しないように制御することにより、フッ素系樹脂を含む樹脂層に金属層を直接積層しても高い接着強度とすることができる。
 また、フッ素系樹脂を含む樹脂層の表面や金属層の表面を粗化処理したり、フッ素系樹脂を含む樹脂層とは別の層を設けたり、接着剤を用いることなく、フッ素系樹脂を含む樹脂層の表面に金属層を直接接着させることができるため、製造コストを低減することができる。
(a)はプラズマ処理前の積層体の断面図であり、(b)はプラズマ処理後に加熱圧縮により樹脂層が幅方向や長さ方向に膨張したときの積層体の断面図である。 大気圧プラズマ処理装置の概念図であり、(a)は全体側面図、(b)は棒状電極と基板との関係を示す平面図である。
 本発明の積層体は、樹脂層と金属層との積層体であり、フッ素系樹脂を含む樹脂層(以下、単に「樹脂層」という)の表面に金属層が直接積層されたものである。なお、本明細書では、フッ素系樹脂とは、分子中にフッ素原子を含む樹脂のことを指す。
<樹脂層>
 伝送損失を低減させる観点から、樹脂層の比誘電率を低くすることが好ましい。具体的には、樹脂層は周波数10kHzにおける比誘電率が2.3以下であることが好ましく、2.2以下であることがより好ましく、2.1以下であることがさらに好ましい。また、伝送損失を低減させる観点から、樹脂層の誘電正接を低くすることが好ましい。具体的には、樹脂層は周波数10kHzにおける誘電正接が0.0006以下であることが好ましく、0.0004以下であることがより好ましく、0.0003以下であることがさらに好ましく、0.0002以下であることが特に好ましい。
 フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)などが挙げられる。比誘電率や誘電正接を低くする観点から、PTFE、PFA、FEPの少なくとも1種を含むことが好ましく、PTFEを含むことがより好ましい。比誘電率や誘電正接を低くする観点から、樹脂層中の全樹脂100質量部中、PTFE、PFA、及びFEP以外の樹脂は30質量部以下であることが好ましく、20質量部以下であることがより好ましく、10質量部以下であることがさらに好ましく、5質量部以下であることが特に好ましく、1質量部以下であることが最も好ましい。フッ素系樹脂は、1種でもよいし、2種以上含んでいてもよい。
 樹脂層は、ヘキサフルオロプロピレン単位、パーフルオロアルキルビニルエーテル単位、メチレン単位、エチレン単位及びパーフルオロジオキソール単位の少なくとも1種とジフルオロメチレン単位との共重合体、又はポリテトラフルオロエチレンである。フッ素系樹脂は、ヘキサフルオロプロピレン単位、パーフルオロアルキルビニルエーテル単位、エチレン単位又はパーフルオロジオキソール単位とテトラフルオロエチレン単位との共重合体、又はポリテトラフルオロエチレンを含むことが好ましい。比誘電率や誘電正接を低くする観点から、樹脂層はテトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及びパーフルオロアルキルビニルエーテル単位からなる群より選択される少なくとも1種を含むことが好ましく、テトラフルオロエチレン単位を含むことがより好ましい。樹脂層中の全樹脂100モル%中、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及びパーフルオロアルキルビニルエーテル単位の合計は50モル%以上であることが好ましく、上記合計は70モル%以上であることがより好ましく、上記合計は90モル%以上であることがさらに好ましい。また、樹脂層中の全樹脂100モル%中、テトラフルオロエチレン単位は30モル%以上であることがより好ましく、テトラフルオロエチレン単位は50モル%以上であることがさらに好ましく、テトラフルオロエチレン単位は70モル%以上であることが特に好ましく、テトラフルオロエチレン単位は90モル%以上であることが特に好ましい。なお、テトラフルオロエチレン単位とはテトラフルオロエチレン由来の構成単位のことであり、他のモノマー単位も同様である。
 樹脂層には、上述のフッ素系樹脂以外の樹脂が含まれていてもよい。フッ素系樹脂以外の樹脂として、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、シクロオレフィン樹脂等のオレフィン系樹脂;ポリエチレンテレフタレート樹脂等のポリエステル系樹脂;ポリイミド系樹脂;スチレン樹脂、シンジオタクチックポリスチレン樹脂等のスチレン系樹脂;ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルエーテルケトンケトン樹脂、ポリフェニレンエーテル樹脂等の芳香族ポリエーテルケトン系樹脂;ポリアセタール系樹脂;ポリフェニレンサルファイド系樹脂;ビスマレイミドトリアジン系樹脂;などが挙げられる。比誘電率や誘電正接を低くする観点から、樹脂層中の全樹脂100質量部中、フッ素系樹脂以外の樹脂は20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、1質量部以下であることが特に好ましく、0質量部である(樹脂層はフッ素系樹脂以外の樹脂を含まない)ことが最も好ましい。
 一般的に加熱圧縮時において、金属より樹脂の方が柔らかく、金属層の表面の凹凸に沿って樹脂層は積層されるので、後述の実施例でも樹脂層の表面粗さSqは金属層の表面粗さSqと同じ値となる。ただし、樹脂層にガラス繊維や炭素繊維のような無機繊維を多く含む場合、加熱圧縮時の樹脂の流動性が低下してしまい、樹脂層の表面粗さSqが金属層の表面粗さSqと異なる場合があるが、高周波における電流は金属層の表面の凹凸に沿って流れるため、接着強度が0.7N/mm以上となるのであれば、金属層が樹脂層と完全に接着していなくてもよく、樹脂層と金属層との界面の一部に空隙があってもよい。樹脂層の表面粗さSqは、後述する金属層の表面粗さSqほど小さくすることは求められておらず、例えば、20μm以下であれば十分である。
 樹脂層の厚さは、1μm以上であることが好ましく、絶縁性や伝送損失低下の観点からは、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。樹脂層の厚さの上限は特に限定されないが、フレキシブルプリント配線板として利用する場合、樹脂層は薄い方が好ましく、例えば5mm以下である。
 本発明で用いることができる樹脂層の形態は、後述するプラズマ照射が可能な形状であれば、特に限定はなく、各種の形状、構造を有するものに適用できる。例えば、平面、曲面、屈曲面等の表面形状を有する、方形状、球形状、薄膜形状等が挙げられるが、これらに限定されない。また、樹脂層は、フッ素系樹脂の特性に応じて、射出成型、溶融押出成型、ペースト押出成型、圧縮成型、切削成型、キャスト成型、含浸成型等各種の成型方法により成型されたものでよい。また、樹脂層は、例えば通常の射出成型体のような樹脂が緻密な連続構造を有してもよいし、多孔質構造を有してもよいし、不織布状でもよいし、その他の構造でもよく、積層後における樹脂層の表面粗さSqが大きくなりすぎない限りは特に限定されない。
 樹脂層において、金属層が積層される側の面がプラズマ処理されており、金属層はプラズマ処理された樹脂層の表面に直接積層される。プラズマ処理を行うことにより、樹脂層や金属層の表面を粗化処理したり、プラズマ処理以外の表面を改質したりすることなく、接着強度に優れた積層体を得ることができる。また、樹脂層や金属層の表面を粗化処理したり、樹脂層や金属層とは異なる層を設けたり、接着剤を用いたりすると伝送損失を増加させることとなるが、本発明では、金属層をプラズマ処理された樹脂層の表面に直接積層することができるため、伝送損失を低減することができる。プラズマ処理の詳細については後述する。
<金属層>
 金属層として用いられる金属は、特に限定されず、積層体の用途に応じて適宜選択すればよい。例えば、電子機器に積層体を用いる場合、金属層の材質としては、銅、アルミニウム、鉄、銀、及びステンレス鋼からなる群より選択される少なくとも1種を含むことが好ましく、銅を含むことがより好ましい。また、金属層としては金属箔を用いてもよく、蒸着やスパッタリングにより樹脂層の表面に金属膜を設けてもよく、すなわち、金属箔又は金属膜を用いることが好ましく、金属箔を用いることがより好ましい。特に、電子機器、電気機器に用いられる一般的な積層体では、金属層として圧延銅箔、電解銅箔等の銅箔が用いられることが多いため、本発明でも金属箔を用いて積層体を作製するのが好ましく、銅箔を用いて積層体を作製するのがより好ましい。なお、積層体の作製において、金属箔を用いているのか金属膜を用いているのかについてはせん断試験を行った際の破壊挙動の違いによって判別することができる。金属箔を用いた場合は亀裂周辺ですべり帯が発生するが、金属膜を用いた場合には亀裂周辺ですべり帯が発生しない。
 金属層の表面をサンドペーパー等で粗面化する必要はなく、表面が平滑であるほど伝送損失は小さくなることから、金属層の表面粗さSqは0.3μm以下であることが好ましく、0.2μm以下であることがより好ましく、0.1μm以下であることがさらに好ましい。金属層の表面粗さSqは、JIS B 0601に準拠して測定することによって求めることができ、具体的な測定方法は後述する。
 金属層の厚さは、機械的強度の観点と電流の最大値の観点から、50nm以上であることが好ましく、100nm以上であることがより好ましく、300nm以上であることがさらに好ましい。金属層の厚さの上限は特に限定されないが、例えば1mm以下である。フレキシブルプリント配線板等のプリント基板に信号を伝送する際、信号を効率良く伝送することが最も重要であり、使用する周波数帯と金属配線の幅と樹脂層の厚さ、および特性インピーダンスに応じて金属層の厚さは決定される。
<接着強度>
 本発明の積層体において、樹脂層と金属層との接着強度(以下、単に「接着強度」という)は0.7N/mm以上である。接着強度は0.8N/mm以上であることが好ましく、0.9N/mm以上であることがより好ましい。接着強度は高い方が好ましいので上限は特に限定されないが、例えば10.0N/mm以下である。接着強度の測定方法については後述する。
<積層体の製造方法>
 以下、樹脂層と金属層との積層体の製造方法を説明する。
 積層体の製造方法は、フッ素系樹脂を含む樹脂層の表面温度を(フッ素系樹脂の融点-150)℃以上として、樹脂層の表面にプラズマ処理する工程と、樹脂層の表面に金属層を直接積層する工程と、樹脂層及び金属層を加熱圧縮する工程とを含む。また、前記加熱圧縮による樹脂層の表面積の増加は10%以下である。
 1.樹脂層の表面にプラズマ処理する工程
 樹脂層の表面温度を(フッ素系樹脂の融点-150)℃以上として、樹脂層の表面にプラズマ処理しており、すなわち、樹脂層の表面に対して、表面温度が(フッ素系樹脂の融点-150)℃以上の温度で樹脂層の表面改質を行っている。このような表面温度にすることで、プラズマ照射の対象となる樹脂層表面の高分子化合物の高分子の運動性が高まることになる。そして、このような運動性の高い状態の高分子化合物にプラズマを照射すると、高分子化合物の炭素原子と炭素原子やそれ以外の原子との間の結合が切断された時に、各高分子内の結合が切断された炭素原子同士が架橋反応し、樹脂層表面に過酸化物ラジカルを十分に形成させることができる。特に樹脂層を構成するフッ素系樹脂がPTFEであるときには、樹脂層の表面温度が180℃以上であることが好ましく、200℃以上であることがより好ましい。樹脂層の表面温度の上限は特に限定されないが、例えば(融点+20)℃以下とすればよい。
 樹脂層の表面近傍に極力酸素が存在しない状態で、樹脂層の表面にプラズマ処理を行い、樹脂層表面に過酸化物ラジカルを十分に形成させることにより、樹脂層の表面改質を行うことが好ましい。具体的には、樹脂層の表面近傍(プラズマ照射領域)の酸素濃度を0.5体積%未満として、樹脂層の表面にプラズマ処理を行い、表面改質された樹脂層を製造することが好ましい。プラズマ処理については、例えば、樹脂層の表面温度を高めた状態で大気圧プラズマによる処理を行うことで、樹脂層の表面改質を行ってもよい。大気圧プラズマ処理を行うことで、プラズマ中に含まれるラジカル、電子、イオン等により、樹脂層表面の脱フッ素によるダングリングボンドの形成を誘起する。その後、大気に数分から10分程度曝すことによって、大気中の水成分と反応して、ダングリングボンドに過酸化物ラジカルをはじめ、水酸基、カルボニル基などの親水性官能基が自発的に形成される。
 本発明では、大気圧プラズマにより、樹脂層の表面を改質することが好ましい。この大気圧プラズマによる処理の条件は、樹脂層の表面温度を上記所定の範囲内とし、出力電力密度を後述の所定の範囲内とすることが好ましい。プラズマによる樹脂層の表面改質を行う技術分野において採用される、大気圧プラズマを発生させることが可能な条件を適宜採用することができる。
 もっとも、本発明では、樹脂層の表面温度を、樹脂層表面におけるフッ素系樹脂の高分子の運動性を高めることが可能な所定の温度範囲にしつつ、大気圧プラズマによる処理を行うため、大気圧プラズマ処理による加熱効果のみにより表面温度を上昇させる場合は、加熱効果が得られる条件で、大気圧プラズマ処理を行うのが好ましい。
 大気圧プラズマの発生には、例えば、印加電圧の周波数が50Hz~2.45GHzの高周波電源を用いるとよい。プラズマ発生装置や樹脂層の構成材料等によるため一概にはいえないが、例えば、出力電力密度(単位面積当たりの出力電力)を15W/cm2以上とすればよく、上限は特に限定されないが、例えば40W/cm2以下であってもよい。
 また、パルス出力を使用する場合は、1~50kHzのパルス変調周波数(好ましくは5~30kHz)、5~99%のパルスデューティ(好ましくは15~80%、より好ましくは25~70%)とするとよい。対向電極には、少なくとも片側が誘電体で被覆された円筒状又は平板状の金属を用いることができる。対向させた電極間の距離は、他の条件にもよるが、プラズマの発生と加熱の観点からは、5mm以下が好ましく、より好ましくは3mm以下、さらに好ましくは2mm以下、特に好ましくは1mm以下である。対向させた電極間の距離の下限は特に限定されないが、例えば0.5mm以上である。
 プラズマを発生させるために用いるガスとしては、例えば、ヘリウム、アルゴン、ネオンなどの希ガス、酸素、窒素、水素などの反応性ガスを用いることができる。即ち、本発明で用いるガスとしては、非重合性ガスのみを用いるのが好ましい。
 また、これらのガスは、1種又は2種以上の希ガスのみを用いてもよいし、1種又は2種以上の希ガスと適量の1種又は2種以上の反応性ガスの混合ガスを用いてもよい。
 プラズマの発生は、チャンバーを用いて上述のガス雰囲気を制御した条件で行ってもよいし、例えば希ガスを電極部にフローさせる形態をとる完全大気開放条件で行ってもよい。
 なお、本発明では、樹脂層の、プラズマ照射面と反対側の面には、プラズマ処理の影響はほとんどない(プラズマ照射面よりも硬さ向上等の影響が小さい)ため、フッ素系樹脂が元来有する諸特性(例えば、耐薬品性、耐候性、耐熱性、電気絶縁性など)は損なわれることなく、十分に発揮される。
 以下では、本発明で用いられる樹脂層の製造方法に適用可能な大気圧プラズマ処理の実施形態の一例を、主に、樹脂層がPTFE製のシート形状(厚さ:0.2mm)である場合を例にして、図2を参照しつつ説明するが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の形態で実施し得ることは勿論である。
 図2は、本発明において使用可能な大気圧プラズマ処理装置の一例である容量結合型大気圧プラズマ処理装置の概念図を示したものである。図2(a)に示す大気圧プラズマ処理装置Aは、高周波電源10、マッチングユニット11、チャンバー12、真空排気系13、電極14、電極昇降機構15、接地された円柱型回転ステージおよび試料ホルダー(以下、回転ステージという)16、回転ステージ制御部(図示せず)から構成されている。回転ステージ16は、電極14と対向するように配置されている。円柱型回転ステージおよび試料ホルダー16としては、例えばアルミ合金製のものを用いることができる。電極14としては、図2(b)に示すように、棒状の形状を有し、例えば銅製の内管18の表面を、例えば酸化アルミニウム(Al23)の外管19で被覆した構造を有するものを用いることができる。
 図2に示す大気圧プラズマ処理装置Aを用いた樹脂層の表面改質方法は以下のとおりである。先ず、樹脂層を必要に応じてアセトン等の有機溶媒や超純水等の水で洗浄した後、図2(a)に示すように、チャンバー12内の試料ホルダー16にシート形状の試料(フッ素樹脂を含む樹脂層)20を配置した後、図示しない吸引装置により、真空排気系13からチャンバー12内の空気を吸引して減圧し、プラズマを発生させるガスをチャンバー12内に供給し(図2(a)矢印参照)、チャンバー12内を大気圧にする。なお、試料20は、図2(a)では図示しておらず、後述する図2(b)のみに図示している。また、大気圧とは、厳密に1013hPaである必要はなく、700~1300hPaの範囲であればよい。
 図2(a)のような装置であれば、樹脂層の表面近傍(プラズマ照射領域)の酸素濃度を0.5体積%未満として、プラズマ処理を行うことができる。
 次に、電極昇降機構15の高さ(図2(a)の上下方向)を調整し、電極14を所望の位置に移動させる。電極昇降機構15の高さを調整することで、電極14と試料20の表面(上面)との距離を調整することができる。電極14と試料20の表面間の距離は、5mm以下が好ましく、2mm以下がより好ましい。特に、プラズマ処理による自然昇温により、樹脂層表面温度を特定の範囲にする場合は、その距離は1.0mm以下であるのが特に好ましい。尚、試料20を回転ステージ16の回転により移動させるため、電極14と試料20を接触させてはならないのは勿論のことである。
 また、回転ステージ16を回転させることで、樹脂層表面の所望の部分にプラズマを照射することができる。例えば、回転ステージ16の回転速度は、1~3mm/秒が好ましいが、本発明はこうした例に何ら限定されるものではない。尚、試料20へのプラズマ照射時間は、例えば、回転ステージ16の回転速度を可変させることや回転ステージ16を所望回数反復回転させることで調整することができる。
 回転ステージ16を移動させることで試料20を移動させつつ、高周波電源10を作動させることで、電極14と回転ステージ16との間にプラズマを発生させ、試料20の表面の所望の範囲にプラズマを照射する。この時、高周波電源10として、例えば上述のような印加電圧の周波数や出力電力密度のものを用い、例えばアルミナ被覆銅製電極とアルミ合金製試料ホルダーを用いることで、誘電体バリア放電条件下でのグロー放電を実現することができる。そのため、樹脂層表面に安定して過酸化物ラジカルを生成させることができる。過酸化物ラジカルの導入は、プラズマ中に含まれるラジカル、電子、イオン等により、PTFEシート表面の脱フッ素によるダングリングボンドの形成が誘起され、チャンバー内に残存していた空気あるいはプラズマ処理後に清浄な空気にさらすことで空気中の水成分等と反応することで行われる。また、ダングリングボンドには、過酸化物ラジカルの他、水酸基、カルボニル基などの親水性官能基が自発的に形成され得る。
 樹脂層表面に照射するプラズマの強度は、上述の高周波電源の各種パラメータ、電極14と樹脂層表面間の距離等により、適宜調整することができる。なお、上記した大気プラズマ発生の好ましい条件(印加電圧の周波数、出力電力密度、パルス変調周波数、パルスデューティ等)は、特に樹脂層がPTFE製のシート形状である場合について有効である。また、出力電力密度に応じて、樹脂層表面に対する積算の照射時間を調整することで、樹脂層表面を特定の温度範囲にすることも可能である。例えば、印加電圧の周波数が5~30MHz、電極14と樹脂層表面間の距離が0.5~2.0mm、出力電力密度が15~30W/cm2である場合、樹脂層表面に対する積算の照射時間を50秒~3300秒とするのが好ましく、250秒~3300秒とするのがより好ましく、550秒~2400秒とするのが特に好ましい。特にPTFE製のシート形状の樹脂層の表面温度を210~327℃とし、照射時間を600~1200秒とすることが好ましい。照射時間が長すぎる場合は、加熱による影響が表れる傾向にある。なお、プラズマ照射時間とは、樹脂層表面にプラズマが照射されている積算時間を意味し、プラズマ照射時間の少なくとも一部で樹脂層表面温度が(融点-150)℃以上となっていればよく、例えばプラズマ照射時間のうちの1/2以上(好ましくは2/3以上)で樹脂層表面温度が(融点-150)℃以上となっていればよい。いずれの態様においても、樹脂層の表面温度を上記範囲とすることで、樹脂層表面のPTFE分子の運動性を向上させ、プラズマにより切断されたPTFE分子の炭素-フッ素結合のうちの炭素原子が、同様にして生じた他のPTFE分子の炭素原子と結合して炭素-炭素結合が生じる確率が格段に向上し、表面硬さを向上させることができる。
 また、試料20を加熱するための加熱手段を別途設けることができる。図2(b)に示すように樹脂層(試料20)の表面を直接加熱するためにハロゲンヒーター17などの熱線照射装置を電極14の近傍部に配置してもよいし、チャンバー12内の環境温度を昇温するために、チャンバー12内の上述のガスを加熱する加熱装置と、加熱されたガスをチャンバー12内に循環させる撹拌翼等を備えた循環装置をチャンバー12内に配置してもよいし、試料20を下面側から加熱するために、回転ステージ16に加熱手段を配置してもよいし、これらを組み合わせてもよい。加熱手段による加熱温度は、樹脂層を構成するフッ素系樹脂の特性、成型体の形状、プラズマ処理による加熱効果等を考慮して、適宜設定、制御するとよい。また、プラズマ照射時に所望の温度になるように、高周波電源10を作動させる前に、成型体を予備加熱しておくのが好ましい。
 また、プラズマ処理時の成型体の表面温度は、図2(b)に示すように放射温度計21を用いたり、温度測定シールを用いたりすることによって測定することができる。
 2.樹脂層に金属層を積層する工程並びに樹脂層及び金属層を加熱圧縮する工程
 上述した樹脂層の表面にプラズマ処理する工程の後に、樹脂層の表面に金属層を直接積層する工程と、樹脂層及び金属層を加熱圧縮する工程とを行うことにより、積層体を得ることができる。具体的には、金属層と表面改質された樹脂層とを金型に入れて、金属層の表面と表面改質された樹脂層の改質された表面とを接触させた状態で熱圧着(加熱及び加圧)すると、両者を直接接合でき、樹脂層と金属層との接合体(積層体)が得られる。熱圧着は、ホットプレス機等を用いて、加熱温度を例えば200~400℃、圧力を例えば0.1~20MPaとして、5~40分間程度加熱及び加圧処理すればよい。なお、両者がシート状の形状である場合は、積層して圧縮成型すればよい。
 高電力でプラズマ処理を行うことにより、樹脂層と金属層とが接合(接着)し、良好な接着強度が実現できるメカニズムは以下のように考えられるが、下記メカニズムに限定されない。
 樹脂層の表面に高電力でプラズマ処理を行うことにより、樹脂層表面に導入された過酸化物ラジカルに起因してC-OH基やCOOH基(カルボキシル基)が低電力でプラズマ処理を行う場合と比べて多く形成されることとなる。その結果、樹脂層の表面を改質するのみならず、樹脂層の表面を硬化させることもでき、樹脂層と金属層との接着強度を強めることができると考えられている。
 しかし、上記1.に記載のプラズマ処理を行ったとしても、樹脂層と金属層とを積層して、樹脂層及び金属層を加熱圧縮するだけでは樹脂層と金属層との間で良好な接着強度を発現することはできない。
 図1の(a)はプラズマ処理前の積層体の断面図であり、図1の(b)はプラズマ処理後の積層体の断面図であり、加熱圧縮時に樹脂層が幅方向や長さ方向に膨張した場合に樹脂層と金属層との接着強度が低下する理由については上述している。上述のとおり、本発明では、上記1.に記載のプラズマ処理を行い、かつ、加熱圧縮時に樹脂層が幅方向や長さ方向に膨張するのを抑制することによって、加熱圧縮終了時点でも金属層と接している樹脂層の表面全体がプラズマ処理されている状態を維持することができるため、樹脂層と金属層との接着強度を高くすることができる。
 樹脂層が幅方向や長さ方向に膨張するのを抑制する方法は、特に限定されないが、例えば、幅方向及び長さ方向が樹脂層と略同じサイズの枠型を金属層の上に載せて、枠型内に樹脂層を置いた後に、加熱圧縮を行えばよい。枠型の材料は、上記加熱圧縮の条件では全くあるいはほとんど膨張しない材料であれば特に限定されず、例えば、銅、ステンレス鋼などの金属やガラス繊維を含めた樹脂などが挙げられる。枠型の厚さは、樹脂層と同程度の厚さでもよく、樹脂層より厚くてもよい。樹脂層より厚い枠型の場合には、金属層を積層しない側の樹脂層の表面を平滑にするために、例えば、枠型内に上記加熱圧縮の条件では全くあるいはほとんど膨張しない材料から形成された板(以下、単に「板」という)を樹脂層の上に載せる等の方法が挙げられる。また、枠型の上にさらに上記板を載せて加熱圧縮を行ってもよい。なお、上記板を用いた場合であっても、樹脂層の改質されていない表面と上記板の表面とが接した状態で加熱圧縮が行われることになるので、後述の比較例2でも示すように、改質されていない樹脂層の表面は上記板とほとんど接着せず、樹脂層と金属層との積層体の作製には影響を及ぼさない。
 上記の作製方法により、加熱圧縮によって樹脂層を幅方向や長さ方向にほとんど膨張させることなく、すなわち、加熱圧縮による樹脂層の表面積の増加を10%以下に抑制して、積層体を作製することができ、樹脂層に金属層を直接積層しても、高い接着性を発現することができる。なお、後述の実施例においても、加熱圧縮により樹脂層が幅方向や長さ方向にほとんど膨張しておらず、加熱圧縮による樹脂層の表面積の増加は10%を大きく下回る。
 原子間力顕微鏡(AFM)の表面形態観察機能と赤外分光法(IR)の官能基特定機能を組み合わせたAFM-IRという装置は、10nm程度の非常に高い空間分解能を持ち、表面形態に関する情報だけでなく、表面に存在する官能基の分布も明らかにすることが可能である。本発明の積層体(例えば、後述の実施例に記載のPTFEシートと銅箔との積層体など)の断面をAFM-IRを用いて分析すれば、積層体を構成する材料の特定はもちろんプラズマ処理による表面改質深さや界面粗さを特定できるため、リバースエンジニアリングが可能である。そのため、上記装置を用いることによって、樹脂層において、金属層が積層される側の面ではプラズマ処理以外の表面改質が行われていないことを特定することができる。
 本願は、2021年8月30日に出願された日本国特許出願第2021-140261号に基づく優先権の利益を主張するものである。2021年8月30日に出願された日本国特許出願第2021-140261号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
<接着強度>
 デジタルフォースゲージ(ZP-200N,株式会社イマダ製作所製)と電動スタンド(MX-500N,株式会社イマダ製作所製)を組み合わせて用い、銅箔を2本のステンレス棒で固定した後に、PTFEの掴みしろを上チャックにはさみ、PTFEシートを銅箔に対して垂直方向に引っ張り上げて90度剥離試験を行い、ロードセルは1kN、引張速度は60mm/minとしてPTFEシートと銅箔との間に働く力を測定し、測定値(単位:N)を試料幅(単位:mm)で除算することで接着強度を算出した。
<表面粗さSq>
 共焦点レーザー顕微鏡(オリンパス株式会社製、OLS4500)を使用し、銅箔の約640μm四方の範囲において表面粗さ(二乗平均平方根粗さ)Sqを測定した。
(実施例1)
 以下のようにして、PTFEシートの表面に銅箔が直接積層された積層体を作成した。
(1)洗浄
 日東電工株式会社にて厚さ0.2mmに切削されたPTFEシート(ニトフロンNo.900UL)を一定の大きさ(幅:4.5cm×長さ:7cm)に切り分けたものを準備した。この樹脂層をアセトン中で1分間超音波洗浄した後、純水中で1分間超音波洗浄した。その後、PTFEシートに付着した純水は、エアガンにより窒素ガス(純度:99%以上)を吹付け除去した。なお、温度23℃、湿度50%、周波数10kHzの条件下で上記PTFEシートの比誘電率及び誘電正接を測定したところ、比誘電率は2.1よりも小さく、誘電正接は0.0002であった。
(2)プラズマ処理
 図2に示す構成を有するプラズマ発生装置(明昌機工株式会社製、製品名K2X02L023)を用いて、上記(1)の洗浄を行ったPTFEシートの表面をプラズマにより改質した。
 プラズマ発生装置の高周波電源として、印加電圧の周波数が13.56MHzのものを用いた。電極としては、内径1.8mm、外径3mm、長さ165mmの銅管を外径5mm、厚さ1mm、長さ145mmのアルミナ管で被覆した構造のものを用いた。試料ホルダーとしては、アルミ合金製で直径:50mm、幅:3.4cmの円柱状のものを用いた。試料ホルダーの上面に、PTFEシートを載せ、樹脂層表面と電極との距離が1.0mmになるように設定した。
 チャンバーを密閉し、ロータリーポンプにより10Paになるまで減圧した後、大気圧(1013hPa)になるまでヘリウムガスを導入した。その後、出力電力密度が19.1W/cm2になるように高周波電源を設定するとともに、走査ステージを、移動速度が2mm/秒で、電極が通過する長さが樹脂層の長さ方向に30mm分移動するように設定した。その後、高周波電源を作動させ、走査ステージを移動させ、幅:1.0cm×長さ:3.4cmの範囲内で600秒間プラズマ照射を行った。プラズマの照射時間は、走査ステージの長さ方向への30mmの移動を往復させる回数で調整した。また、PTFEシート表面近傍(プラズマ照射領域)における酸素濃度を東レエンジニアリング株式会社製ジルコニア式酸素濃度計LC-300を用いて測定したところ、25.7ppmであり、0.5体積%を大きく下回っていた。そして、プラズマ処理時の樹脂層の表面温度を、放射温度計(FT-H40KおよびFT-50A、株式会社キーエンス製)により測定したところ、203℃であった。
(3)PTFEシートと銅箔との接触及び接着工程
 幅が10cm、長さが10cm、厚さが10mmである金型(A)の表面に幅が5cm、長さが6cm、厚さが0.5mm、表面粗さSqが0.1μmである室温の銅箔を置き、その上に厚さが0.23mmであるガラスクロス入りのPTFEの枠(以下、GC-PTFE枠という)を置いた。GC-PTFE枠には上述のプラズマ処理を行った幅が1cm、長さが4cm、厚さが0.2mmに切断されたPTFEシートを設けられるように幅が1cm、長さが4cmの穴があいており、この穴にPTFEシートを嵌めた。なお、PTFEシートを上記穴に嵌めるとPTFEシートと銅箔とが接するようになっており、GC-PTFE枠に設けられた穴にPTFEシートを嵌めるのはPTFEシートが幅方向や長さ方向に膨張するのを抑制するためである。次に、PTFEシートの上に幅が1cm、長さが4cm、厚さが0.05mmであるSUS箔(A)を載せた。続いて、SUS箔(A)の上に、SUS箔(A)全体を覆うように幅が5cm、長さが6cm、厚さが0.05mmであるSUS箔(B)を載せた。最後に金型(A)と同じサイズの金型(B)をSUS箔(B)の上に載せ、PTFEシートなどがサンドイッチされた金型を準備した。
 320℃に加熱されたホットプレス機(アズワン株式会社製、高温熱プレス機H400-15)の上下のプレートの間にPTFEシートなどがサンドイッチされた金型をセットし、上下のプレートの距離を金型(A)及び金型(B)がプレートに触れる程度の高さに調整した後、金型(A)及び金型(B)が320℃になるまで待った。320℃になった後、圧力を6.5MPaに調整し、10分間放置した。その後、金型をホットプレス機から取り出し、室温になるまで放置して、PTFEシートの表面に銅箔が直接積層された積層体を得た。PTFEシートと銅箔との接着強度は0.94N/mmであった。
(比較例1)
 上記(2)のプラズマ処理において、出力電力密度が7.4W/cm2になるように高周波電源を設定した以外は、実施例1と同様の方法で積層体を作製した。なお、プラズマ処理時の樹脂層の表面温度を、放射温度計(FT-H40KおよびFT-50A、株式会社キーエンス製)により測定したところ、95℃であり、実施例1での上記(2)のプラズマ処理と比べると低温でのプラズマ処理となった。PTFEシートと銅箔との接着強度は0.22N/mmであった。
(比較例2)
 上記(2)のプラズマ処理を行わなかった以外は、実施例1と同様の方法で積層体を作製した。PTFEシートと銅箔との接着強度は0.05N/mmであった。
(比較例3)
 上記(3)においてGC-PTFEの枠及びSUS箔(A)・(B)を用いずにPTFEシートと銅箔とを接触させた状態でホットプレス機の上下のプレートの間にPTFEシートと銅箔との積層体のみをセット以外は、実施例1と同様の方法で積層体を作製した。PTFEシートと銅箔との接着強度は0.10N/mmであった。
 1 樹脂層
 2 金属層
 3 プラズマ処理を行った箇所
 4 プラズマ処理が行われていない箇所
10 高周波電源
11 マッチングユニット
12 チャンバー
13 真空排気系
14 電極
15 電極昇降機構
16 円柱型回転ステージおよび試料ホルダー
17 ハロゲンヒーター
18 内管
19 外管
20 試料(フッ素樹脂を含む樹脂層)
21 放射温度計

Claims (6)

  1.  樹脂層と金属層との積層体であって、
     フッ素系樹脂を含む前記樹脂層の表面に前記金属層が直接積層されており、
     前記樹脂層と前記金属層との接着強度が0.7N/mm以上であり、
     前記金属層の表面粗さSqが0.2μm以下である
     ことを特徴とする積層体。
  2.  前記樹脂層は周波数10kHzにおける比誘電率が2.3以下であり、周波数10kHzにおける誘電正接が0.0006以下である請求項1に記載の積層体。
  3.  前記樹脂層はテトラフルオロエチレン由来の構成単位を含む請求項1又は2に記載の積層体。
  4.  前記金属層は銅、アルミニウム、鉄、銀、及びステンレス鋼からなる群より選択される少なくとも1種を含む請求項1又は2に記載の積層体。
  5.  前記金属層の厚さは50nm以上である請求項1又は2に記載の積層体。
  6.  樹脂層と金属層との積層体の製造方法であって、
     フッ素系樹脂を含む前記樹脂層の表面温度を(前記フッ素系樹脂の融点-150)℃以上として、前記樹脂層の表面にプラズマ処理する工程と、
     前記樹脂層の表面に前記金属層を直接積層する工程と、
     前記樹脂層及び前記金属層を加熱圧縮する工程とを含み、
     前記加熱圧縮による前記樹脂層の表面積の増加は10%以下である積層体の製造方法。
PCT/JP2022/032538 2021-08-30 2022-08-30 樹脂層と金属層との積層体及びその製造方法 WO2023032958A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247007386A KR20240051952A (ko) 2021-08-30 2022-08-30 수지층과 금속층의 적층체 및 그 제조 방법
JP2023545590A JPWO2023032958A1 (ja) 2021-08-30 2022-08-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021140261 2021-08-30
JP2021-140261 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032958A1 true WO2023032958A1 (ja) 2023-03-09

Family

ID=85411228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032538 WO2023032958A1 (ja) 2021-08-30 2022-08-30 樹脂層と金属層との積層体及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2023032958A1 (ja)
KR (1) KR20240051952A (ja)
WO (1) WO2023032958A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465547A (en) * 1983-09-29 1984-08-14 General Electric Company Method of bonding a poly (vinylidene fluoride) solid to a solid substrate
JPH11229146A (ja) * 1997-08-21 1999-08-24 Gfe Metalle & Materialien Gmbh 複合材料
WO2002076727A2 (de) * 2001-03-24 2002-10-03 Thyssenkrupp Stahl Ag Korrosionsstabiles laminat, verfahren zu seiner herstellung und seine verwendung
WO2007040061A1 (ja) * 2005-09-30 2007-04-12 Nippon Pillar Packing Co., Ltd. 銅張積層板、プリント配線板及び多層プリント配線板並びにこれらの製造方法
CN102774079A (zh) * 2012-08-09 2012-11-14 广东生益科技股份有限公司 挠性覆铜板及其制作方法
JP2013222899A (ja) * 2012-04-18 2013-10-28 Sumitomo Electric Fine Polymer Inc フッ素樹脂基板およびその製造方法
JP2015194249A (ja) * 2014-03-24 2015-11-05 Ntn株式会社 転がり軸受用保持器および転がり軸受
WO2016021666A1 (ja) * 2014-08-07 2016-02-11 日本化薬株式会社 高周波回路用に適した両面回路用基板
JP2018172790A (ja) * 2017-03-31 2018-11-08 Jx金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
WO2019008876A1 (ja) * 2017-07-07 2019-01-10 Agc株式会社 積層体の製造方法、積層体及びフレキシブルプリント基板の製造方法
WO2020145133A1 (ja) * 2019-01-11 2020-07-16 ダイキン工業株式会社 フッ素樹脂組成物、フッ素樹脂シート、積層体及び回路用基板
JP2022112028A (ja) * 2021-01-20 2022-08-01 ダイキン工業株式会社 フッ素樹脂フィルム、銅張積層体及び回路用基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199032A (ja) 1984-03-23 1985-10-08 Asahi Organic Chem Ind Co Ltd フツ素樹脂接着体
JP5429511B2 (ja) 2008-01-17 2014-02-26 公立大学法人大阪府立大学 表面被覆樹脂基体、その製造方法及びその製造装置
JP6423494B1 (ja) 2017-07-13 2018-11-14 Apc株式会社 積層体の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465547A (en) * 1983-09-29 1984-08-14 General Electric Company Method of bonding a poly (vinylidene fluoride) solid to a solid substrate
JPH11229146A (ja) * 1997-08-21 1999-08-24 Gfe Metalle & Materialien Gmbh 複合材料
WO2002076727A2 (de) * 2001-03-24 2002-10-03 Thyssenkrupp Stahl Ag Korrosionsstabiles laminat, verfahren zu seiner herstellung und seine verwendung
WO2007040061A1 (ja) * 2005-09-30 2007-04-12 Nippon Pillar Packing Co., Ltd. 銅張積層板、プリント配線板及び多層プリント配線板並びにこれらの製造方法
JP2013222899A (ja) * 2012-04-18 2013-10-28 Sumitomo Electric Fine Polymer Inc フッ素樹脂基板およびその製造方法
CN102774079A (zh) * 2012-08-09 2012-11-14 广东生益科技股份有限公司 挠性覆铜板及其制作方法
JP2015194249A (ja) * 2014-03-24 2015-11-05 Ntn株式会社 転がり軸受用保持器および転がり軸受
WO2016021666A1 (ja) * 2014-08-07 2016-02-11 日本化薬株式会社 高周波回路用に適した両面回路用基板
JP2018172790A (ja) * 2017-03-31 2018-11-08 Jx金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
WO2019008876A1 (ja) * 2017-07-07 2019-01-10 Agc株式会社 積層体の製造方法、積層体及びフレキシブルプリント基板の製造方法
WO2020145133A1 (ja) * 2019-01-11 2020-07-16 ダイキン工業株式会社 フッ素樹脂組成物、フッ素樹脂シート、積層体及び回路用基板
JP2022112028A (ja) * 2021-01-20 2022-08-01 ダイキン工業株式会社 フッ素樹脂フィルム、銅張積層体及び回路用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "General characteristics of fluororesin", PACKING LAND, 21 February 2002 (2002-02-21), XP093043187, Retrieved from the Internet <URL:http://www.packing.co.jp/PTFE/ptfe_ippantokusei1.htm> [retrieved on 20230501] *

Also Published As

Publication number Publication date
JPWO2023032958A1 (ja) 2023-03-09
KR20240051952A (ko) 2024-04-22

Similar Documents

Publication Publication Date Title
CN105683266B (zh) 热塑性液晶聚合物薄膜的制造方法、以及电路基板及其制造方法
CN110869207B (zh) 层叠体的制造方法、层叠体及柔性印刷基板的制造方法
JP5649772B2 (ja) フッ素樹脂系成形物の表面改質方法
US11856695B2 (en) Method for forming through-hole, and substrate for flexible printed wiring board
JP7349301B2 (ja) フレキシブルプリント配線板用基板の製造方法、およびフレキシブルプリント配線板用基板
WO2023032958A1 (ja) 樹脂層と金属層との積層体及びその製造方法
JP2015032605A (ja) 樹脂フィルムの熱処理方法、及びそれを用いためっき積層体の製造方法
CN113841217A (zh) 一种树脂表面亲水化方法、等离子体处理装置、叠层体、及叠层体的制备方法
US11795317B2 (en) Laminated body including resin body and gel body and method for producing same
JP7060276B2 (ja) 接合体及びその製造方法
CN110691698A (zh) 层叠体及其制备方法
JP7349302B2 (ja) フッ素含有コア基材の製造方法およびフレキシブルプリント配線板用基板の製造方法
JPH1129852A (ja) ポリイミドフィルム−金属薄膜の複合フィルムの製造方法
JP2631441B2 (ja) ポリイミドフィルム・金属箔複合フィルムの製造方法
WO2021251265A1 (ja) 熱可塑性液晶ポリマー成形体
JP2013089812A (ja) 導電性複合体の製造方法およびプリント配線板
JPS6033860B2 (ja) 接着剤付き弗素樹脂製フイルム
JP7298786B2 (ja) プリント配線基板用積層体および多層プリント配線基板用接合体
KR102689662B1 (ko) 연성 금속 적층판의 제조방법
WO2022038875A1 (ja) 高分子フィルム積層体の製造方法、高分子フィルム積層体および高分子フィルム積層体を備えるデバイス
WO2022038876A1 (ja) 高分子フィルムと銅箔の接合方法、高分子フィルム積層体および高分子フィルム積層体を備えるデバイス
JP2002217537A (ja) 多層配線板の製造方法
TW202144601A (zh) 層壓體的製造方法
WO2021251264A1 (ja) 熱可塑性液晶ポリマー成形体
WO2021251263A1 (ja) 熱可塑性液晶ポリマー成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545590

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247007386

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864540

Country of ref document: EP

Kind code of ref document: A1