JPH1047972A - マイクロメカニカル回転速度センサ - Google Patents

マイクロメカニカル回転速度センサ

Info

Publication number
JPH1047972A
JPH1047972A JP9113266A JP11326697A JPH1047972A JP H1047972 A JPH1047972 A JP H1047972A JP 9113266 A JP9113266 A JP 9113266A JP 11326697 A JP11326697 A JP 11326697A JP H1047972 A JPH1047972 A JP H1047972A
Authority
JP
Japan
Prior art keywords
ring
speed sensor
substrate
rotational speed
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9113266A
Other languages
English (en)
Inventor
Markus Dipl Ing Lutz
ルッツ マルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH1047972A publication Critical patent/JPH1047972A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

(57)【要約】 【課題】 振動の節に検出エレメント20が配設されて
おり、これによって、回転によって惹き起こされた、振
動の節のずれが検出可能である、励振手段10によって
振動の腹および振動の節を有する振動に励振可能である
リング3を備えたマイクロメカニカル回転速度センサを
低価格で製造することができるように改良する。 【解決手段】 リング、励振手段、検出エレメントが表
面マイクロメカニカル素子としてサブストレート上に実
現されている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、請求項1の上位概
念に記載のマイクロメカニカル回転速度センサから出発
している。
【0002】
【従来の技術】ヨーロッパ特許第461761号明細書
から既に、振動するように励振することができるリング
構造を有するマイクロメカニカル回転速度センサが公知
である。リングをその中心軸線を中心に回転することに
よって、振動の節がずらされる。振動の節には検出素子
が配設されており、この検出素子がこのずれを検出す
る。リング構造はプレート状のエレメントから構造化さ
れており、その際振動性の部分はばねエレメントを介し
てプレート構造の残りの部分に連結されている。その場
合プレート構造は、励振手段または振動の節のずれの検
出手段を実現するために、別のプレート間に配設するこ
とができる。
【0003】
【発明が解決すべき課題】本発明の課題は、冒頭に述べ
た形式のマイクロメカニカル回転速度センサを、簡単
で、それ故に低価格で製造することができるように構成
することである。
【0004】
【課題を解決するための手段】この課題は請求項1の特
徴部分に記載の構成を有するマイクロメカニカル回転速
度センサによって解決される。
【0005】本発明のマイクロメカニカル回転速度セン
サは、リング、励振手段および検出素子が一緒に1つの
製造工程において製造することができるという利点を有
する。この同時の製造によって製造コストが低減され
る。更に、個々のエレメント間の相対的な寸法は同一の
製造過程によって決定されるので、比較的正確な公差が
個々に実現される。更に、本発明のセンサは大量の個数
で並列な製造工程において製作される。
【0006】
【発明の実施の形態】その他の請求項に記載の構成によ
って、請求項1に記載のマイクロメカニカル回転速度セ
ンサの有利な実施例御よび改良例が可能である。励振な
いし振動の節のずれは有利には、容量エレメントによっ
て行われる。このためにリングには可動の電極が設けら
れておりかつサブストレートに定置の電極が設けられ
る。定置の電極はそれぞれ支持ブロックによってサブス
トレートに連結される。絶縁層によって支持ブロックは
サブストレートに対して完全に誘電的に絶縁することが
できる。更に、このように使用される絶縁層は、リング
構造、振動ばねおよび可動の電極に対する支持層として
も使用することができる。単結晶のシリコン材料によっ
て、機械的な老化プロセスに曝されない回転速度センサ
が製造される。多結晶エレメントは特別簡単に製造され
る。
【0007】
【実施例】次に本発明を図示の実施例につき図面を用い
て詳細に説明する。
【0008】図1には、第1の振動モードにおいて振動
する振動性のリングが図示されている。その際最初は円
形のリングは、2つの相対向する辺が離れる方向で変形
しかつ第1の辺に対して90°ずれて配置されている相
対向する辺が互いに近付くように変形される。振動の第
2の半波相の変形は第1の半波相に相応するが、90°
だけ回転された変形が生じる。図1には、2つの半波相
の最大の変形状態が図示されている。図から分かるよう
に、リング構造は4つの振動の腹1および4つの振動の
節2を有している。振動の腹においてそれぞれリング構
造の最大の振れが生じ、一方振動の節においてリング構
造は僅かしか振れない。この形式の振動するリング構造
が中心軸線を中心に回転されるとき、これにより惹起さ
れるコリオリの加速に基づいて付加的な力が生じ、この
力が振動の節の位置をずらす。それ故に、これらの個所
においても振れが生じ、この振れが回転に対する尺度で
ある。この効果が本発明の回転速度センサによって利用
される。
【0009】図2には、センサの実施例の平面図が示さ
れている。サブストレート4に、自由に移動するリング
3が実現されている。このリングは、振動ばね5によっ
て中央の支持ブロック6に懸架されている。中央の支持
ブロック6はサブストレート4に定置に固定されてお
り、これに対して振動ばね5およびリング3はサブスト
レート4に対して間隔を有しておりかつ自由に移動す
る。
【0010】リングの周りに、それぞれ90°づつずら
されて、4つの駆動部10が配設されている。更に、4
つの検出エレメント20が設けられている。これら検出
エレメントはそれぞれ、リング3の中心点から見て、相
互に90°の角度を有している。中心点から出発して、
駆動部10は検出エレメント20に対してそれぞれ45
°づつずらされて配設されている。図2にまた、2つの
直角な座標系XYおよびABが示されている。これら座
標系はそれぞれ、駆動部10および検出エレメント20
に対応付けることができる。リング3の中心点から見
て、駆動部は正および負のXおよびY方向に存在しかつ
検出エレメントは正および負のAおよびB方向に存在し
ている。それぞれの駆動部10は定置の電極11および
可動の電極12を有している。定置の電極11は支持ブ
ロック13によってサブストレート4に固定されてい
る。可動の電極12はリング3に固定されている。それ
ぞれの検出エレメント20は定置の電極21および可動
の電極22を有している。定置の電極21は支持ブロッ
ク23においてサブストレート4に連結されている。可
動の電極22はリング3に連結されている。駆動部10
および検出エレメント20の可動の電極21,22はそ
れぞれリング3と一緒に移動することができる。定置の
電極11,21は支持ブロック13,23によってそれ
ぞれ、サブストレートに定置に連結されており、従って
不動である。
【0011】図2の装置は、駆動部10に電圧を印加す
ることによって振動される。このために常時、互いに相
対向している駆動部10に交番的に電圧が印加される。
この電圧によって、可動の電極12は定置の電極11の
中に入り込む。その際常時、相対向する駆動部10が同
時に制御される。即ち、例えばまず駆動部は正および負
のY方向に制御されかつ次の半波において駆動部は正お
よび負のX方向に制御される。この励振が第1図におい
て説明した第1の基本振動に対するリング3の固有振動
において行われるとき、リング3の第1の固有振動が励
振される。この振動では、検出エレメント20の可動の
電極22がそれぞれ振動の節においてリング3と連結さ
れているので、検出エレメント20の可動の電極22の
顕著な振れは生じない。しかしサブストレート4に対し
て垂直である軸線を中心としたセンサの回転が行われる
とき、リング3の振動の節はずらされかつ検出エレメン
ト20の可動の電極22は定置の電極21に対して相対
的にずらされる。このずれは、可動の電極22と定置の
電極21との間の容量測定によって検出することができ
かつサブストレート4の回転に対する尺度である。
【0012】勿論、駆動部10および検出エレメント2
0の任意の別の配設も考えられる。図3には、検出エレ
メント20の別の実施例が示されている。ここでは定置
の電極21、可動の電極22および支持ブロック23は
リング3の内側に配設されている。この配設によって、
センサに対する所要スペースを低減することができる。
駆動エレメント10も同様にリング3の内側に配設する
ことができるかまたは振動条片5を例えばリング3の外
側に配設することができる。
【0013】図4,図5および図6において、センサに
対する第1の製造方法について説明する。この方法は所
謂SOI構造(Silicon on Insulator)から出発してい
る。この構造では、シリコンサブストレート31に絶縁
層32およびその上にシリコン層33が被着されてい
る。シリコンサブストレート31は通例、数百マイクロ
メータの厚さを有しており、絶縁層は数マイクロメータ
の厚さを有しておりかつシリコン層33は数マイクロメ
ータないし数十マイクロメータの厚さを有している。典
型的な寸法はシリコンサブストレートに対して500μ
mであり、絶縁層に対しては2μmでありかつシリコン
層33に対しては15μmである。この形式の構造は、
種々の方法で製造することができる。間に存在している
絶縁層を用いて2つのシリコンウエファを結合しかつシ
リコンウエファの一方を薄くすることによって、図4に
示されているような構造が実現される。この場合シリコ
ン層33は単結晶のシリコンから成っている。この材料
は、曲げに基づいて負荷される機械的な構造の製造に特
別適している。というのは、単結晶の材料では曲げによ
って惹き起こされる、材料の老化過程は生じないからで
ある。図4の構造を製造する別の可能性は、シリコンウ
エファにまず絶縁層を析出しかつそれから絶縁層に多結
晶層を析出することである。その際多結晶層が通例はエ
ピタキシャル層に対して使用される装置において使用さ
れるとき、数十マイクロメータのオーダにある大きな層
厚も実現される。絶縁層32は有利には、酸化シリコン
(SiO)、窒化シリコン(Si)または2つ
の材料の化合物から成っている。絶縁層32をシリコン
サブストレート31の表面全体ではなくて、所定の領
域、殊に支持ブロック13,23,6をサブストレート
に連結すべきである領域においてサブストレート31の
表面を絶縁層によって被覆しないようにすることも可能
である。しかしこの場合、サブストレート31およびシ
リコン層33の絶縁は例えば、異なった種類のドーピン
グ材によって保証されるべきである。
【0014】それから次のステップにおいて、金属化部
34が被着されかつ構造化される。このことはとりわけ
重要である。というのは、そこでは、後でボンディング
ワイヤを接触接続すべきである支持ブロックが設けられ
るからである。その後、例えばホトラッカから形成する
ことができるエッチングマスク35が被着される。この
エッチングマスク35は、図2にて平面図で示されてい
るように、センサに対する構造部を含んでいる。
【0015】それからエッチングによって、エッチング
マスク35の構造が上側のシリコン層33内にて腐食形
成される。その際このエッチングは、絶縁層32が露出
するまでの間、実施される。それから後続するエッチン
グステップにおいて絶縁層32がエッチングされる。こ
の状態は図6に示されている。図6において、リング
3、中央の支持ブロック6,定置の電極21、可動の電
極22および支持ブロック23の横断面が例示されてい
る。しかし個々のエレメント間の間隔は簡単に図示する
理由から歪曲されて図示されている。図6の横断面から
分かるように、支持ブロック6および支持ブロック23
は絶縁層32を介してシリコンサブストレート31に固
定連結されており、これに対してリング3および電極2
1,22の下方にはもはや絶縁層32は配設されていな
い。このことは、リング3および電極21,22の幾何
学的寸法が支持ブロック6,23に比して比較的僅かで
あることによって実現される。絶縁層32の等方性エッ
チングプロセスは所定の時間後中断され、その結果リン
グ3および電極21,22のような僅かなラテラル方向
の拡がりを有する構造部は完全にアンダエッチングされ
るが、一方大きなラテラル方向の拡がりを有する支持領
域6,23はほんの僅かしかアンダエッチングされな
い。このようにして、加えてほんの僅かマスク面しか要
求しない簡単な製造プロセスによって、回転速度全体を
製造することができる。その際、センサのすべてのエレ
メントの相対間隔が唯一のマスキングステップによって
規定されることは特別有利である。このようにして特別
申し分なく再現可能な間隔を実現することができる。
【0016】図7に基づいて、第2の製造方法を説明す
る。この方法は絶縁性のサブストレート101から出発
する。絶縁層の上には金属層102が被着される。その
後金属層102に構造化可能な層103が被着されかつ
構造化される。層103に被着される構造は図2に示さ
れているようなセンサの構造に相応している。センサエ
レメントが存在しているところではどこでも、構造化可
能な層は除去される。その際層103の構造化は、その
下に位置する金属層102が露出するまで行われる。そ
れから金属層102においてスタートする電気メッキ析
出プロセスによって、構造化可能な層103において形
成された中空空間に金属、例えばニッケルが充填され
る。この析出は、構造化可能な層103を越えて金属化
が成長する前に停止される。従ってこのようにして形成
された金属構造104は図2に図示のセンサのすべての
エレメントを形成するが、この工程においてなお構造化
可能な層103内に埋め込まれている。製造方法の中間
ステップを表すこの状態は図7に示されている。それか
ら第2のステップにおいて、構造化可能な層103が完
全に除去される。それから金属構造104を攻撃しない
が、その下に存在する金属層102を腐食するエッチン
グプロセスによって、図5および図6において説明した
のと同じ方法で、個々の金属構造104のアンダエッチ
ングを行うことができる。その際異なった大きさのラテ
ラル方向の寸法およびエッチングの適時の停止によっ
て、この場合も可動に実現されるべきセンサ構造しかア
ンダエッチングされないことが実現される。絶縁性のサ
ブストレート101に対して、セラミック材料の他に、
表面に絶縁層を有するシリコウエファを使用することも
できる。金属層102は、それは金属構造104の材料
に対して選択的にエッチング可能であるように選択され
るべきである。金属構造104に対してニッケルを使用
する場合、金属層102は例えば、銅から形成すること
ができる。択一的に、金属層102に代わって、薄い表
面の金属化部を有する合成樹脂層を使用することも可能
である。構造化可能な層103に対して例えば、ホトラ
ッカ、X線構造化可能なラッカまたはプラズマエッチン
グプロセスによって構造化することができる別の層を使
用することができる。
【図面の簡単な説明】
【図1】振動するリング構造の概略図である。
【図2】回転速度センサに対する第1の実施例の平面略
図である。
【図3】別の実施例の詳細を示す概略図である。
【図4】第1の製造方法を示す断面図である。
【図5】第1の製造方法を示す断面図である。
【図6】第1の製造方法を示す断面図である。
【図7】センサに対する第2の製造方法を示す断面図で
ある。
【符号の説明】
1 振動の腹、 2 振動の節、 3 リング、 4
サブストレート、 5振動ばね、 6,13,23 支
持ブロック、 10 駆動手段、 11,21 定置の
電極、 21,22 可動の電極、 20 検出エレメ
ント、 31,33 シリコン層、 32 絶縁層、
101 絶縁性サブストレート、 102,104 金
属層、 103 構造化可能な層

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 励振手段(10)によって振動の腹およ
    び振動の節を有する振動に励振可能であるリング(3)
    を備えたマイクロメカニカル回転速度センサであって、
    振動の節に検出エレメント(20)が配設されており、
    該検出エレメントによって、回転によって惹き起こされ
    た、振動の節のずれが検出可能である形式のものにおい
    て、前記リング(3)、前記励振手段(10)および前
    記検出エレメント(20)が表面マイクロメカニカル素
    子としてサブストレート上に実現されていることを特徴
    とするマイクロメカニカル回転速度センサ。
  2. 【請求項2】 前記励振手段(10)に対して、互いに
    相対向して配設されている可動の電極(12)および定
    置の電極(11)が設けられており、かつ前記可動の電
    極(12)は前記リング(3)に固定されておりかつ前
    記定置の電極(11)は前記サブストレート(4,3
    1)に固定されており、かつ前記可動の電極(12)お
    よび定置の電極(11)の間に、振動性の電圧が印加可
    能である請求項1記載のマイクロメカニカル回転速度セ
    ンサ。
  3. 【請求項3】 前記検出エレメント(20)は、互いに
    相対向して配設されている可動の電極(22)および定
    置の電極(21)を有し、かつ前記可動の電極(22)
    は前記リング(3)に固定されておりかつ前記定置の電
    極(21)は前記サブストレート(4,31)に固定さ
    れており、かつ前記定置の電極(21)および可動の電
    極(22)の間で、容量性の信号が測定可能である請求
    項1または2記載のマイクロメカニカル回転速度セン
    サ。
  4. 【請求項4】 前記定置の電極(11,21)は支持ブ
    ロック(13,23)を介して前記サブストレート
    (4,31)に連結されている請求項1から3までのい
    ずれか1項記載のマイクロメカニカル回転速度センサ。
  5. 【請求項5】 前記リング(3)は振動ばね(5)によ
    って前記サブストレート(4,31)に固定されている
    支持ブロック(6)に懸架されている請求項1から4ま
    でのいずれか1項記載のマイクロメカニカル回転速度セ
    ンサ。
  6. 【請求項6】 前記サブストレート(4,31)はシリ
    コンから成っており、かつ前記支持ブロック(6,1
    3,23)は絶縁層(32)によって前記サブストレー
    ト(4,31)に連結されている請求項4または5記載
    のマイクロメカニカル回転速度センサ。
  7. 【請求項7】 前記リング(3),前記励振手段(1
    0)および前記検出素子(20)は単結晶のシリコンか
    ら実現されている請求項1から6までのいずれか1項記
    載のマイクロメカニカル回転速度センサ。
  8. 【請求項8】 前記リング(3),前記励振手段(1
    0)および前記検出素子(20)は多結晶のシリコンか
    ら実現されている請求項1から7までのいずれか1項記
    載のマイクロメカニカル回転速度センサ。
  9. 【請求項9】 前記サブストレート(101)は絶縁材
    料から形成されており、かつ前記支持ブロック(6,1
    3,23)は前記サブストレート(101)に連結され
    ており、かつ前記リング(3),前記励振手段(10)
    および前記検出素子(20)は金属から実現されている
    請求項1から8までのいずれか1項記載のマイクロメカ
    ニカル回転速度センサ。
JP9113266A 1996-05-03 1997-05-01 マイクロメカニカル回転速度センサ Pending JPH1047972A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19617666.2 1996-05-03
DE19617666A DE19617666B4 (de) 1996-05-03 1996-05-03 Mikromechanischer Drehratensensor

Publications (1)

Publication Number Publication Date
JPH1047972A true JPH1047972A (ja) 1998-02-20

Family

ID=7793152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9113266A Pending JPH1047972A (ja) 1996-05-03 1997-05-01 マイクロメカニカル回転速度センサ

Country Status (3)

Country Link
US (1) US5889207A (ja)
JP (1) JPH1047972A (ja)
DE (1) DE19617666B4 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009474A (ja) * 1998-06-24 2000-01-14 Aisin Seiki Co Ltd 角速度センサ
JP2001099855A (ja) * 1999-08-12 2001-04-13 Robert Bosch Gmbh マイクロマシニング型の回転角加速度センサ
JP2001133477A (ja) * 1999-09-10 2001-05-18 Stmicroelectronics Srl マイクロアクチュエータを有する半導体一体型慣性センサ
JP2001147236A (ja) * 1999-09-10 2001-05-29 Stmicroelectronics Srl 機械的応力に対して不感受性であるマイクロ電気機械構造体
JP2001304867A (ja) * 2000-04-19 2001-10-31 Denso Corp 角速度センサ
JP2002533703A (ja) * 1998-12-24 2002-10-08 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動構造ジャイロスコープの製造方法
JP2005535889A (ja) * 2002-08-12 2005-11-24 ザ・ボーイング・カンパニー 内部径方向検知およびアクチュエーションを備える分離型平面ジャイロスコープ
JP2009198206A (ja) * 2008-02-19 2009-09-03 Canon Inc 角速度センサ
JP2012088119A (ja) * 2010-10-18 2012-05-10 Seiko Epson Corp 物理量センサーおよび電子機器
JP2015511023A (ja) * 2012-03-22 2015-04-13 アトランティック イナーシャル システムズ リミテッドAtlantic Inertial Systems Limited 振動リング構造体
JP2017506739A (ja) * 2014-01-28 2017-03-09 株式会社村田製作所 改良されたジャイロスコープ構造およびジャイロスコープ

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523895A1 (de) * 1995-06-30 1997-01-02 Bosch Gmbh Robert Beschleunigungssensor
JPH112526A (ja) * 1997-06-13 1999-01-06 Mitsubishi Electric Corp 振動型角速度センサ
JP3999377B2 (ja) 1997-11-04 2007-10-31 日本碍子株式会社 振動子、振動型ジャイロスコープ、直線加速度計および回転角速度の測定方法
DE19850066B4 (de) * 1998-10-30 2008-05-21 Robert Bosch Gmbh Mikromechanischer Neigungssensor
US6198387B1 (en) 1998-11-09 2001-03-06 Delphi Technologies, Inc. Restraint deployment control with central and frontal crash sensing
JP3796991B2 (ja) * 1998-12-10 2006-07-12 株式会社デンソー 角速度センサ
US6128954A (en) * 1998-12-18 2000-10-10 Delco Electronics Corporation Spring for a resonance ring of an angular rate sensor
JP2000199714A (ja) * 1999-01-06 2000-07-18 Murata Mfg Co Ltd 角速度センサ
US6481285B1 (en) * 1999-04-21 2002-11-19 Andrei M. Shkel Micro-machined angle-measuring gyroscope
US6189381B1 (en) * 1999-04-26 2001-02-20 Sitek, Inc. Angular rate sensor made from a structural wafer of single crystal silicon
US6305222B1 (en) * 1999-05-27 2001-10-23 Delphi Technologies, Inc. Road vibration compensated angular rate sensor
US7514283B2 (en) * 2003-03-20 2009-04-07 Robert Bosch Gmbh Method of fabricating electromechanical device having a controlled atmosphere
US8912174B2 (en) * 2003-04-16 2014-12-16 Mylan Pharmaceuticals Inc. Formulations and methods for treating rhinosinusitis
US7075160B2 (en) 2003-06-04 2006-07-11 Robert Bosch Gmbh Microelectromechanical systems and devices having thin film encapsulated mechanical structures
US6936491B2 (en) 2003-06-04 2005-08-30 Robert Bosch Gmbh Method of fabricating microelectromechanical systems and devices having trench isolated contacts
US6952041B2 (en) * 2003-07-25 2005-10-04 Robert Bosch Gmbh Anchors for microelectromechanical systems having an SOI substrate, and method of fabricating same
US20050062362A1 (en) * 2003-08-28 2005-03-24 Hongyuan Yang Oscillatory gyroscope
US7036372B2 (en) * 2003-09-25 2006-05-02 Kionix, Inc. Z-axis angular rate sensor
US20050066728A1 (en) * 2003-09-25 2005-03-31 Kionix, Inc. Z-axis angular rate micro electro-mechanical systems (MEMS) sensor
US7068125B2 (en) 2004-03-04 2006-06-27 Robert Bosch Gmbh Temperature controlled MEMS resonator and method for controlling resonator frequency
US7102467B2 (en) * 2004-04-28 2006-09-05 Robert Bosch Gmbh Method for adjusting the frequency of a MEMS resonator
TWI245902B (en) * 2004-05-14 2005-12-21 Chung Shan Inst Of Science Microstructure angular velocity sensor device
US7100446B1 (en) * 2004-07-20 2006-09-05 The Regents Of The University Of California Distributed-mass micromachined gyroscopes operated with drive-mode bandwidth enhancement
US7406867B2 (en) * 2005-06-27 2008-08-05 Milli Sensor Systems + Actuators G2-Gyroscope: MEMS gyroscope with output oscillation about the normal to the plane
US8079259B2 (en) * 2005-06-27 2011-12-20 Milli Sensor Systems & Actuators MEMS gyroscope with output oscillation about the normal to the plane
US7426860B2 (en) 2005-08-08 2008-09-23 Litton Systems Inc. Ring resonator gyro with folded cylinder suspension
US20070170528A1 (en) * 2006-01-20 2007-07-26 Aaron Partridge Wafer encapsulated microelectromechanical structure and method of manufacturing same
CN101360968B (zh) * 2006-01-24 2013-06-05 松下电器产业株式会社 惯性力传感器
EP1832841B1 (en) * 2006-03-10 2015-12-30 STMicroelectronics Srl Microelectromechanical integrated sensor structure with rotary driving motion
US8042396B2 (en) 2007-09-11 2011-10-25 Stmicroelectronics S.R.L. Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes
DE102007051591B4 (de) 2007-10-12 2019-04-25 Robert Bosch Gmbh Mikromechanische Vorrichtung mit Antriebsrahmen
US20110088469A1 (en) * 2007-11-08 2011-04-21 Reinhard Neul Rotation-rate sensor having two sensitive axes
US7908922B2 (en) * 2008-01-24 2011-03-22 Delphi Technologies, Inc. Silicon integrated angular rate sensor
DE102008041757B4 (de) * 2008-09-02 2019-01-03 Robert Bosch Gmbh Herstellungsverfahren für eine Rotationssensorvorrichtung und Rotationssensorvorrichtung
DE102009027897B4 (de) * 2009-07-21 2023-07-20 Robert Bosch Gmbh Mikromechanischer Drehratensensor
EP2544370B1 (en) * 2011-07-06 2020-01-01 Nxp B.V. MEMS resonator
GB201514114D0 (en) 2015-08-11 2015-09-23 Atlantic Inertial Systems Ltd Angular velocity sensors
US10192850B1 (en) 2016-09-19 2019-01-29 Sitime Corporation Bonding process with inhibited oxide formation
JP2023074208A (ja) * 2021-11-17 2023-05-29 株式会社東芝 センサ及び電子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461761A1 (en) * 1990-05-18 1991-12-18 British Aerospace Public Limited Company Inertial sensors
JPH06112548A (ja) * 1992-09-24 1994-04-22 Canon Inc プローブユニットの製造方法
JPH06241810A (ja) * 1993-02-01 1994-09-02 General Motors Corp <Gm> 振動式ジャイロスコープの制御回路
EP0623807A1 (en) * 1993-05-04 1994-11-09 General Motors Corporation Microstructure for vibratory gyroscope
JPH0791958A (ja) * 1993-09-27 1995-04-07 Canon Inc 角速度センサ
JPH07218268A (ja) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The 慣性レートセンサー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616864A (en) * 1995-02-22 1997-04-01 Delco Electronics Corp. Method and apparatus for compensation of micromachined sensors
US5635640A (en) * 1995-06-06 1997-06-03 Analog Devices, Inc. Micromachined device with rotationally vibrated masses

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461761A1 (en) * 1990-05-18 1991-12-18 British Aerospace Public Limited Company Inertial sensors
US5226321A (en) * 1990-05-18 1993-07-13 British Aerospace Public Limited Company Vibrating planar gyro
JPH0642971A (ja) * 1990-05-18 1994-02-18 British Aerospace Plc <Baf> センサー
JPH06112548A (ja) * 1992-09-24 1994-04-22 Canon Inc プローブユニットの製造方法
JPH06241810A (ja) * 1993-02-01 1994-09-02 General Motors Corp <Gm> 振動式ジャイロスコープの制御回路
EP0623807A1 (en) * 1993-05-04 1994-11-09 General Motors Corporation Microstructure for vibratory gyroscope
JPH0712575A (ja) * 1993-05-04 1995-01-17 General Motors Corp <Gm> 振動ジャイロスコープのためのミクロ構造体
US5450751A (en) * 1993-05-04 1995-09-19 General Motors Corporation Microstructure for vibratory gyroscope
JPH0791958A (ja) * 1993-09-27 1995-04-07 Canon Inc 角速度センサ
JPH07218268A (ja) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The 慣性レートセンサー

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009474A (ja) * 1998-06-24 2000-01-14 Aisin Seiki Co Ltd 角速度センサ
JP2002533703A (ja) * 1998-12-24 2002-10-08 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動構造ジャイロスコープの製造方法
JP2001099855A (ja) * 1999-08-12 2001-04-13 Robert Bosch Gmbh マイクロマシニング型の回転角加速度センサ
JP2001133477A (ja) * 1999-09-10 2001-05-18 Stmicroelectronics Srl マイクロアクチュエータを有する半導体一体型慣性センサ
JP2001147236A (ja) * 1999-09-10 2001-05-29 Stmicroelectronics Srl 機械的応力に対して不感受性であるマイクロ電気機械構造体
JP2001304867A (ja) * 2000-04-19 2001-10-31 Denso Corp 角速度センサ
JP2005535889A (ja) * 2002-08-12 2005-11-24 ザ・ボーイング・カンパニー 内部径方向検知およびアクチュエーションを備える分離型平面ジャイロスコープ
JP4698221B2 (ja) * 2002-08-12 2011-06-08 ザ・ボーイング・カンパニー 内部径方向検知およびアクチュエーションを備える分離型平面ジャイロスコープ
JP2009198206A (ja) * 2008-02-19 2009-09-03 Canon Inc 角速度センサ
JP2012088119A (ja) * 2010-10-18 2012-05-10 Seiko Epson Corp 物理量センサーおよび電子機器
JP2015511023A (ja) * 2012-03-22 2015-04-13 アトランティック イナーシャル システムズ リミテッドAtlantic Inertial Systems Limited 振動リング構造体
US9671422B2 (en) 2012-03-22 2017-06-06 Atlantic Inertial Systems Limited Vibratory ring structure
JP2017506739A (ja) * 2014-01-28 2017-03-09 株式会社村田製作所 改良されたジャイロスコープ構造およびジャイロスコープ

Also Published As

Publication number Publication date
DE19617666A1 (de) 1997-11-06
US5889207A (en) 1999-03-30
DE19617666B4 (de) 2006-04-20

Similar Documents

Publication Publication Date Title
JPH1047972A (ja) マイクロメカニカル回転速度センサ
KR100492105B1 (ko) 수평 가진 수직형 mems 자이로스코프 및 그 제작 방법
US6277666B1 (en) Precisely defined microelectromechanical structures and associated fabrication methods
KR0171009B1 (ko) 원판 진동형 마이크로 자이로스코프 및 그의 제조방법
US5721377A (en) Angular velocity sensor with built-in limit stops
JP4607153B2 (ja) 微小電気機械システム素子の製造方法
US5555765A (en) Gimballed vibrating wheel gyroscope
JPH0832090A (ja) 慣性力センサおよびその製造方法
JPH08248058A (ja) 加速センサ及び加速センサの製造方法
US6242276B1 (en) Method for fabricating micro inertia sensor
JP4362877B2 (ja) 角速度センサ
JPH06123632A (ja) 力学量センサ
JPH10270714A (ja) 半導体慣性センサの製造方法
JP2001133479A (ja) 慣性力センサおよびその製造方法
JPH10163505A (ja) 半導体慣性センサ及びその製造方法
JP2010145315A (ja) 振動ジャイロスコープ
JPH10270719A (ja) 半導体慣性センサ及びその製造方法
JP2004004119A (ja) 半導体力学量センサ
KR100416763B1 (ko) 수직변위 측정 및 구동 구조체와 그 제조방법
JPH1038578A (ja) 角速度センサ
CN218841706U (zh) 自对准多晶硅单晶硅混合mems垂直梳齿电极
JPH10178181A (ja) 半導体慣性センサの製造方法
JPH09325032A (ja) 角速度センサ
KR100506071B1 (ko) 수직 가진형 2축 마이크로자이로스코프 및 그 제조방법
JPH10267659A (ja) 角速度センサ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070326

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091218