JPH10216521A - 炭化水素の水蒸気改質用触媒 - Google Patents

炭化水素の水蒸気改質用触媒

Info

Publication number
JPH10216521A
JPH10216521A JP9027452A JP2745297A JPH10216521A JP H10216521 A JPH10216521 A JP H10216521A JP 9027452 A JP9027452 A JP 9027452A JP 2745297 A JP2745297 A JP 2745297A JP H10216521 A JPH10216521 A JP H10216521A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
weight
carrier
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9027452A
Other languages
English (en)
Inventor
Satonobu Yasutake
聡信 安武
Iwao Tsukuda
岩夫 佃
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9027452A priority Critical patent/JPH10216521A/ja
Publication of JPH10216521A publication Critical patent/JPH10216521A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

(57)【要約】 【課題】 400℃〜600℃といった低い反応温度、
及びS/C比の低い条件下においても、原料炭化水素の
水蒸気改質の効果が高く、かつ、触媒表面上における炭
素析出の抑制効果に優れている炭化水素の水蒸気改質用
触媒を得る。 【解決手段】 ジルコニア及びアルミナを含有する耐熱
性酸化物を担体とし、触媒活性成分として酸化ニッケル
と、助触媒成分として酸化ランタン、酸化カリウムのう
ち少なくとも一種類以上の酸化物とを担持させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、炭化水素の水蒸気
改質用触媒の改良に関する。
【0002】
【従来の技術】炭化水素の水蒸気改質用触媒としては、
従来よりα−アルミナ等の耐熱性酸化物を担体として、
これに触媒活性成分として酸化ニッケルを担持したもの
が知られている。
【0003】
【発明が解決しようとする課題】通常の炭化水素の水蒸
気改質反応は、約700℃〜900℃の範囲で運転され
るが、高効率化のためには、より低い反応温度での運転
が望ましい。そこで、従来の水蒸気改質用触媒を用い
て、400〜600℃の範囲で反応を行った場合、触媒
表面上で炭素の析出が起こり反応が阻害されるといった
問題点がある。炭素の析出を防止するためには、水蒸気
と原料炭化水素との重量比(以下「S/C比」と略す)
を高くする必要があるが、その場合は、熱効率の低下な
どを生じ、経済的な損失が大きくなる。一方、S/C比
を低くすると原料炭化水素の水蒸気改質が十分に行われ
ず、炭素の析出も著しくなり、反応が阻害され、効率の
低下に至るという問題があった。
【0004】従って本発明は、400℃〜600℃とい
った低い反応温度、及びS/C比の低い条件下において
も、原料炭化水素の水蒸気改質の効果が高く、かつ触媒
表面上における炭素析出の抑制効果に優れている炭化水
素の水蒸気改質用触媒を提供することを目的とする。
【0005】
【課題を解決するための手段】反応温度及びS/C比を
低くすることによってひきおこされる炭素析出を抑制す
るためには、触媒表面上で水の活性化吸着を容易にする
こと、及び担体表面での炭化水素のみの分解反応を防止
することが必要である。
【0006】そこで、本発明者らは酸化ランタン及び酸
化カリウムが水の活性化吸着を容易にすること、またジ
ルコニアが担体の熱安定性の向上及び炭化水素の分解反
応を防止することに着目し、本発明を完成するに至っ
た。即ち、本発明とは、アルミナ及びジルコニアを含有
する耐熱性酸化物を担体とし、触媒活性成分として酸化
ニッケルを、さらに助触媒成分として酸化ランタン及び
酸化カリウムのうち少なくとも一種類以上を担持したも
のからなる触媒を提供するものである。
【0007】本発明の触媒は、酸化ニッケルの担持量が
触媒全重量に対し、5重量%以上20重量%以下である
のが好ましい。また、酸化ランタンと酸化カリウムの合
計の担持量が触媒全重量に対し、1重量%以上10重量
%以下であるのが好ましい。さらに本発明の触媒は、ジ
ルコニアの含有量が担体全重量に対し、1重量%以上1
0重量%以下であるのが好ましい。
【0008】なお、上記の触媒の他の態様として、アル
ミナにジルコニアを担持したもの、あるいはこれに酸化
ランタン、酸化セリウム、酸化ネオジムのうちの少なく
とも一種類以上を担持した担体からなる触媒を用いるこ
とができる。
【0009】
【発明の実施の形態】本発明の触媒の製造にあたって
は、触媒活性成分、助触媒成分、例えば、炭酸ニッケル
や硝酸ランタン或いは炭酸カリウムなどの金属塩を担体
に含浸し、乾燥、焼成させる方法や、これらの金属塩を
アルカリによって沈澱させ焼成する方法などによる。ま
た担体は、硝酸アルミニウム、硝酸ジルコニウムなどの
金属塩水溶液に水酸化ナトリウム、炭酸カリウムなどの
アルカリ水溶液を加えることにより、水酸化金属塩を合
成し、これを乾燥、焼成して得る方法、あるいはアルミ
ナ粉末をベースにし、これに酢酸ジルコニウム等のジル
コニウム塩を含浸し、乾燥、焼成する方法などによって
得られる。触媒活性成分、助触媒成分ならびに担体の製
造方法は、上記方法に限定するものではなく、その他の
担持方法を適用することができる。
【0010】本発明の炭化水素の水蒸気改質用触媒は、
酸化ニッケルの担持量が触媒全重量に対し、5重量%以
上20重量%以下が好ましい。より好ましくは、10重
量%以上15重量%以下である。酸化ニッケルの担持量
が5重量%未満であると、触媒活性が低くなり、反応効
率を上げるためには触媒量を多くすることが必要となり
不都合である。酸化ニッケルの担持量が20重量%を越
えると、酸化ニッケルが触媒表面を覆うことにより、助
触媒成分の作用が阻害され、炭素の析出が著しくなり不
都合である。
【0011】また、酸化ランタン、酸化カリウムの合計
の担持量が触媒全重量に対し、1重量%以上10重量%
以下が好ましい。より好ましくは、2重量%以上5重量
%以下である。酸化ランタン、酸化カリウムの合計の担
持量が1重量%未満であると水を活性化吸着するのに必
要な助触媒の量が不足し、10重量%を越えると担体の
主成分であるアルミナの量が相対的に少なくなり、担体
の表面積が減少するため不都合である。
【0012】本発明の水蒸気改質用触媒は、ジルコニア
の含有量が担体全重量に対し、1重量%以上10重量%
以下が好ましい。より好ましくは、5重量%以上10重
量%以下である。ジルコニアの含有量が1重量%未満で
あると熱により担体の表面積が減少し、10重量%と越
えると担体の主成分であるγ−アルミナの量が相対的に
少なくなり、担体の表面積が減少するため不都合であ
る。
【0013】
【実施例】以下に実施例を挙げて、本発明をさらに詳細
に説明するが、これらにより本発明を制限することを意
図するものではない。
【0014】〔実施例1〕99.0gのγ−アルミナ及
び2.17gのオキシ硝酸ジルコニウムを500gのイ
オン交換水に混合、溶解させた。この溶液に系内のpH
が8.0になるまで1Nのアンモニア水溶液を攪拌しな
がら滴下した。この操作により得られる沈澱物を蒸留水
により洗浄し、乾燥させた後、1000℃で24時間焼
成してジルコニアを1重量%とアルミナを含む担体1を
得た。次に、19.8gの担体1を50gのイオン交換
水に混合し、0.53gの硝酸ランタン・6水和物を加
えて溶解後、攪拌混練しながら加熱し、蒸発乾固させ
た。この固形分を再び1000℃で24時間焼成するこ
とにより得た助触媒を含む19gの担体1を50gのイ
オン交換水に混合し、12.26gの硝酸ニッケルを加
えて溶解後、攪拌混練しながら加熱し、蒸発乾固させ
た。この固形分を300℃で3時間焼成して触媒1を得
た。この触媒1は、触媒全重量に対し、活性触媒成分と
して5重量%の酸化ニッケルを、助触媒成分として1重
量%の酸化ランタンを含む。
【0015】19.6gの担体1を50gのイオン交換
水に混合し、0.43gの硝酸カリウムを加えて溶解
後、攪拌混練しながら加熱し、蒸発乾固させた。この固
形分を再び1000℃で24時間焼成することにより得
た助触媒を含む18gの担体を50gのイオン交換水に
混合し、7.79gの硝酸ニッケルを加えて溶解後、攪
拌混練しながら加熱し、蒸発乾固させた。この固形分を
300℃で3時間焼成して触媒2を得た。この触媒2
は、触媒全重量に対し、活性触媒成分として10重量%
の酸化ニッケルを、助触媒成分として2重量%の酸化カ
リウムを含む。
【0016】〔実施例2〕95gのγ−アルミナ及び1
3.1gのオキシ塩化ジルコニウムを1000gのイオ
ン交換水に混合、溶解させた。この溶液に系内のpHが
9.0になるまで1Nのアンモニア水溶液を攪拌しなが
ら滴下した。この操作により得られる沈澱物を蒸留水に
より洗浄し、乾燥させた後、1000℃で24時間焼成
してアルミナと5重量%のジルコニアを含む担体2を得
た。19gの担体2を50gのイオン交換水に混合し、
更に2.66gの硝酸ランタン・6水和物を加えて溶解
後、攪拌混練しながら加熱し、蒸発乾固させた。この固
形分を再び1000℃で24時間焼成することにより得
た助触媒を含む17gの担体を50gのイオン交換水に
混合し、11.7gの硝酸ニッケルを加えて溶解後、攪
拌混練しながら加熱し、蒸発乾固させた。この固形分を
300℃で3時間焼成して触媒3を得た。この触媒3
は、触媒全重量に対し、活性触媒成分として15重量%
の酸化ニッケルを、助触媒成分として5重量%の酸化ラ
ンタンを含む。
【0017】〔実施例3〕95gのγ−アルミナ及び
9.46gの塩化ジルコニムを150gのイオン交換水
に混合し、スラリー化した。このスラリーを加熱しなが
ら混練し、蒸発乾固させた。得られた固形分を1000
℃で24時間焼成することによりアルミナと5重量%の
ジルコニアを含む担体3を得た。18gの担体3を50
gのイオン交換水に混合し、2.15gの硝酸カリウム
を加えて溶解後、攪拌混練しながら水分を蒸発乾固させ
た。この固形分を再び1000℃で24時間焼成して得
た助触媒を含む16gの担体3の粉末を50gのイオン
交換水に混合し、15.6gの硝酸ニッケルを加え溶解
後、攪拌混練しながら加熱し、蒸発乾固させた。この固
形分を300℃で3時間焼成して触媒4を得た。この触
媒4は、触媒全重量に対し、活性触媒成分として20重
量%の酸化ニッケルを、助触媒成分として10重量%の
酸化カリウムを含む。
【0018】〔実施例4〕90gのγ−アルミナ及び2
6.2gオキシ塩化ジルコニウムを1000gのイオン
交換水に混合、溶解させた。この溶液に系内のpHが
9.0になるまで1Nのアンモニア水溶液を攪拌しなが
ら滴下した。この操作により得られる沈澱物を蒸留水に
より洗浄し、乾燥させた後、1000℃で24時間焼成
してアルミナと10重量%のジルコニアを含む担体4を
得た。18gの担体5を50gのイオン交換水に混合
し、1.07gの硝酸カリウム及び2.66gの硝酸ラ
ンタン・6水和物を加えて溶解後、攪拌混練しながら加
熱し、蒸発乾固させた。この固形分を1000℃で24
時間焼成して得た助触媒を含む16gの担体を50gの
イオン交換水に混合し、更に15.6gの硝酸ニッケル
を加え溶解後、攪拌混練しながら加熱し、蒸発乾固させ
た。この固形分を300℃で3時間焼成して触媒5を得
た。この触媒5は、触媒全重量に対し、活性触媒成分と
して20重量%の酸化ニッケルを、助触媒成分として5
重量%の酸化ランタンと5重量%の酸化カリウムを含
む。
【0019】〔実施例5〕90gのγ−アルミナ及び2
1.7gのオキシ硝酸ジルコニアを150gのイオン交
換水に混合し、スラリー化した。このスラリーを加熱し
ながら混練し、蒸発乾固させた。得られた固形分を10
00℃で24時間焼成することにより、アルミナと10
重量%のジルコニアを含む担体5を得た。19gの担体
5を50gのイオン交換水に混合し、1.07gの硝酸
カリウムを加えて溶解後、攪拌混練しながら加熱し蒸発
乾固させた。この固形分を1000℃で24時間焼成し
て得た助触媒を含む17.5gの粉末担体を50gのイ
オン交換水に混合し、更に9.73gの硝酸ニッケルを
加えて溶解後、攪拌混練しながら加熱して蒸発乾固させ
た。この固形分を300℃で3時間焼成して触媒6を得
た。この触媒6は、触媒全重量に対し、活性触媒として
12.5重量%の酸化ニッケルを、助触媒成分として5
重量%の酸化カリウムを含む。
【0020】〔比較例1〕85gのγ−アルミナ及び3
2.5gのオキシ硝酸ジルコニウムを1000gのイオ
ン交換水に混合、溶解させた。この溶液に系内のpHが
9.0になるまで1Nのアンモニア水溶液を攪拌しなが
ら滴下した。この操作により得られる沈澱物を蒸留水に
より洗浄し、乾燥させた後、1000℃で24時間焼成
して担体6を得た。16gの担体6を50gのイオン交
換水に混合し、15.6gの硝酸ニッケルを加えて溶解
後、攪拌混練しながら加熱し、蒸発乾固させた。この固
形分を300℃で3時間焼成して比較触媒1を得た。比
較触媒1は、触媒全重量に対し、活性触媒成分として2
0重量%の酸化ニッケルを含む。
【0021】〔比較例2〕γ−アルミナを1000℃で
24時間焼成して得た17.5gのアルミナ粉末を50
gのイオン交換水に混合し、9.73gの硝酸ニッケル
を加えて溶解後、攪拌混練しながら加熱し、蒸発乾固さ
せた。この固形分を300℃で3時間焼成して比較触媒
2を得た。比較触媒2は、触媒全重量に対し、活性触媒
成分として12.5重量%の酸化ニッケルを含む。な
お、触媒1〜6及び比較触媒1及び2の組成を表1に示
す。()内の数値は、触媒全重量に対する活性触媒成分
又は助触媒成分の重量%、及び担体全重量に対するジル
コニアの重量%を表す。
【0022】
【表1】
【0023】さらに表1に示す触媒を用いて炭化水素の
水蒸気改質反応を行った結果を表2に示す。反応は温度
550℃、圧力5kgf/cm2 G、S/C=2.0m
ol/mol、液空間速度(表中「LHSV」と略す)
1280h-1の条件で行った。 なお、原料炭化水素ガ
スの組成は、メタン90.0%、エタン6.0%、プロ
パン3.0%、ブタン1.0%である。ここで表2に示
す炭素転化率(%)及び炭素バランス(%)は、以下に
示す式で表され、それぞれ触媒の炭化水素転化活性及び
触媒に堆積する炭素量を相対的に示す指標である。
【0024】炭素転化率(%)={1−(改質ガス中の
残留原料ガス流量/原料ガス流量)}×100 炭素バランス(%)=(原料ガスの炭素換算流量/改質
ガスの炭素換算流量)×100 炭素析出量(%)=触媒1g中に含まれる炭素量×10
【0025】
【表2】
【0026】表2の結果より、比較触媒1、2は、特に
改質反応1000時間後の炭素転化率及び炭素バランス
が低下し、炭素析出量も著しく大きいが、触媒1〜6は
1000時間の反応後においても炭素転化率及び炭素バ
ランスの低下が少なく、炭素析出量も少ないことが示さ
れた。
【0027】
【発明の効果】本発明によれば、アルミナとジルコニア
を含有する酸化物を担体とし、触媒活性成分として酸化
ニッケルを、助触媒成分として酸化ランタン、酸化カリ
ウムの少なくとも1種以上の酸化物を担持させることに
より、長時間の炭化水素の水蒸気改質反応においても炭
素の析出が少なく、活性の低下も少ない触媒とすること
ができる。

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 ジルコニア及びアルミナを含有する耐熱
    性酸化物を担体とし、触媒活性成分として酸化ニッケル
    と、助触媒成分として酸化ランタン、酸化カリウムのう
    ち少なくとも一種類以上の酸化物とを担持してなる炭化
    水素の水蒸気改質用触媒。
  2. 【請求項2】 酸化ニッケルの担持量が、触媒全重量に
    対し、5重量%以上20重量%以下である請求項1記載
    の炭化水素の水蒸気改質用触媒。
  3. 【請求項3】 酸化ランタン、酸化カリウムの合計の担
    持量が触媒全重量に対し、1重量%以上10重量%以下
    である請求項1又は請求項2記載の炭化水素の水蒸気改
    質用触媒。
  4. 【請求項4】 ジルコニアの含有量が担体全重量に対
    し、1重量%以上10重量%以下である請求項1〜3の
    いずれか一に記載の炭化水素の水蒸気改質用触媒。
JP9027452A 1997-02-12 1997-02-12 炭化水素の水蒸気改質用触媒 Withdrawn JPH10216521A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9027452A JPH10216521A (ja) 1997-02-12 1997-02-12 炭化水素の水蒸気改質用触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9027452A JPH10216521A (ja) 1997-02-12 1997-02-12 炭化水素の水蒸気改質用触媒

Publications (1)

Publication Number Publication Date
JPH10216521A true JPH10216521A (ja) 1998-08-18

Family

ID=12221521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9027452A Withdrawn JPH10216521A (ja) 1997-02-12 1997-02-12 炭化水素の水蒸気改質用触媒

Country Status (1)

Country Link
JP (1) JPH10216521A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146663A (ja) * 2000-11-02 2002-05-22 Mitsui Chemicals Inc 柔軟性不織布
WO2003086627A1 (fr) * 2002-03-29 2003-10-23 Kyushu Electric Power Co., Inc. Composition de catalyseur de modification
KR100745627B1 (ko) 2005-09-13 2007-08-09 김후근 희토를 촉매로 한 폐기유기물 연유 전환방법
JP2007254306A (ja) * 2006-03-20 2007-10-04 Mitsubishi Heavy Ind Ltd メタノール合成装置及び方法
US7592290B2 (en) 2004-04-08 2009-09-22 Sulzer Metco(Canada) Inc. Supported catalyst for stream methane reforming and autothermal reforming reactions
JP2010155234A (ja) * 2008-12-30 2010-07-15 Samsung Electronics Co Ltd 炭化水素改質触媒、その製造方法及びそれを含む燃料電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146663A (ja) * 2000-11-02 2002-05-22 Mitsui Chemicals Inc 柔軟性不織布
JP4544725B2 (ja) * 2000-11-02 2010-09-15 三井化学株式会社 柔軟性不織布
WO2003086627A1 (fr) * 2002-03-29 2003-10-23 Kyushu Electric Power Co., Inc. Composition de catalyseur de modification
US7592290B2 (en) 2004-04-08 2009-09-22 Sulzer Metco(Canada) Inc. Supported catalyst for stream methane reforming and autothermal reforming reactions
KR100745627B1 (ko) 2005-09-13 2007-08-09 김후근 희토를 촉매로 한 폐기유기물 연유 전환방법
JP2007254306A (ja) * 2006-03-20 2007-10-04 Mitsubishi Heavy Ind Ltd メタノール合成装置及び方法
JP2010155234A (ja) * 2008-12-30 2010-07-15 Samsung Electronics Co Ltd 炭化水素改質触媒、その製造方法及びそれを含む燃料電池

Similar Documents

Publication Publication Date Title
US6693060B2 (en) Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
CN102105222B (zh) 用于从合成气合成甲醇的催化剂及其制备方法
JP5432434B2 (ja) 二酸化炭素を含んだ合成ガスからジメチルエーテル合成用触媒製造方法
JPS6313729B2 (ja)
JPH05261286A (ja) 炭化水素水蒸気改質用触媒及びその製造方法
JPH08196907A (ja) ルテニウム触媒の製造方法及び該触媒を用いた炭化水素の水蒸気改質方法
JP2002535119A (ja) ニッケル、ルテニウム及びランタンを担持する触媒担体
JPH10216521A (ja) 炭化水素の水蒸気改質用触媒
KR101445241B1 (ko) 아이소부틸렌의 제조 방법
JPS5929633B2 (ja) 炭化水素の低温水蒸気改質法
JPH09168740A (ja) 二酸化炭素改質化触媒及びこれを用いた改質化法
KR20230107751A (ko) 전환율 및 선택도가 향상된 올레핀 제조용 촉매의 제조방법
WO2011126545A1 (en) Catalyst compositions for producing mixed alcohols
JPH05168924A (ja) 水蒸気改質触媒
JP4015390B2 (ja) 炭化水素改質触媒及びその製造方法
JPS615036A (ja) アルコ−ルの製造法
JP3813646B2 (ja) 水蒸気改質触媒の製造方法および水素製造方法
RU2200143C1 (ru) Катализатор для дегидрирования углеводородов и способ его получения
JPH10192708A (ja) 二酸化炭素の改質用触媒及び改質方法
JPH06134305A (ja) 耐熱性触媒およびその使用方法
JP4938941B2 (ja) ジメチルエーテルの合成方法
JPH0144376B2 (ja)
JP3791884B2 (ja) 燃料改質触媒
JPS60220143A (ja) メタン含有ガス製造用触媒
JP2000000466A (ja) 合成ガス製造用触媒及び合成ガスの製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511