JPH10207117A - 静電荷像現像用トナー - Google Patents

静電荷像現像用トナー

Info

Publication number
JPH10207117A
JPH10207117A JP31823997A JP31823997A JPH10207117A JP H10207117 A JPH10207117 A JP H10207117A JP 31823997 A JP31823997 A JP 31823997A JP 31823997 A JP31823997 A JP 31823997A JP H10207117 A JPH10207117 A JP H10207117A
Authority
JP
Japan
Prior art keywords
toner
titanium oxide
particles
oxide fine
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31823997A
Other languages
English (en)
Other versions
JP3748486B2 (ja
Inventor
Hagumu Iida
育 飯田
Makoto Kanbayashi
誠 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31823997A priority Critical patent/JP3748486B2/ja
Publication of JPH10207117A publication Critical patent/JPH10207117A/ja
Application granted granted Critical
Publication of JP3748486B2 publication Critical patent/JP3748486B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

(57)【要約】 【課題】 本発明の目的はカブリのない鮮明な画像特性
を有し、画像濃度が高く、細線再現性、ハイライト部の
階調性に優れ、且つ耐久安定性に優れた静電荷像現像用
トナーを提供する。 【解決手段】 本発明は、X線回折において、2θ=2
0.0〜40.0degの範囲における最大強度Ia
最小強度Ib の強度比(Ia /Ib )が、5.0≦Ia
/Ib ≦12.0であり、BET比表面積が100〜3
50m2 /gであり、平均粒径が1〜100nmで、疎
水化度が40〜90%になるように疎水化処理された酸
化チタン微粒子、及びトナー粒子を有することを特徴と
する静電荷像現像用トナーに関する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電子写真、静電記
録、静電印刷の如き画像形成方法における静電荷像を現
像するための乾式のトナーに関する。
【0002】
【従来の技術】静電手段によって光導電材料の表面に像
を形成し、トナーにより現像することは従来周知であ
る。
【0003】米国特許第2,297,691号明細書、
特公昭42−23910号公報及び特公昭43−247
4748号公報等、多数の方法が知られている。一般に
は光導電性物質を利用し、種々の手段により感光体上に
静電荷像を形成し、次いで該静電荷像上にトナーを付着
させることによってトナー像を形成する。
【0004】次いで、必要に応じて紙の如き画像支持体
表面にトナー像を転写した後、加熱、加圧、加熱加圧或
いは溶剤蒸気により定着し複写物又はプリントを得るも
のである。また、トナー像を転写する工程を有する場合
には、通常感光体上の残余のトナーを除去するためのク
リーニング工程が設けられる。
【0005】静電荷像をトナーを用いて現像する方法
は、例えば、米国特許第2,221,776号明細書に
記載されている粉末雲法、同第2,618,552号明
細書に記載されているカスケード現像法、同第2,87
4,063号明細書に記載されている磁気ブラシ法、同
第3,909,258号明細書に記載されている導電性
磁性トナーを用いる方法などが知られている。
【0006】これらの現像法に適用されるトナーとして
は一般には熱可塑性樹脂と着色剤とを溶融混練後、混練
物を冷却し、冷却された混練物を微粉化した着色剤含有
樹脂粒子がトナー粒子用いられる。熱可塑性樹脂として
は、ポリスチレン系樹脂が最も一般的であるが、ポリエ
ステル系樹脂、エポキシ系樹脂、アクリル系樹脂も用い
られる。非磁性の着色剤としてはカーボンブラックが広
く使用され、また磁性トナーの場合は、酸化鉄系を主成
分とする黒色の磁性粉が用いられる。二成分系現像剤を
用いる方式の場合には、トナーは通常鉄粉、フェライト
粉の如きキャリア粒子又はそれらの樹脂コートキャリア
粒子と混合されて用いられる。
【0007】紙の如き最終画像形成部材上のトナー像
は、熱、圧力、熱圧等により支持体上に定着される。従
来より、この定着工程は加熱加圧手段によるものが多く
採用されている。
【0008】近年、複写機等においてモノカラー複写又
はモノカラープリントからフルカラー複写又はフルカラ
ープリントへの展開が急速に進みつつあり、2色カラー
複写機やフルカラー複写機の検討及び実用化も大きくな
されている。例えば「電子写真学会誌」Vo1.22,
No.1(1983)や「電子写真学会誌」Vo1.2
5,No.1,P52(1986)において色再現性及
び階調再現性について報告されている。
【0009】フルカラー電子写真法によるカラー画像形
成は一般に3原色であるイエロー、マゼンタ、シアンの
3色のカラートナー及び必要によりブラックトナーを用
いて全ての色の再現を行うものである。
【0010】フルカラー複写方法は、原稿からの光をト
ナーの色と補色の関係にある色分解光透過フィルターを
通して光導電層上に静電荷像を形成し、次いで現像、転
写工程を経てカラートナーを支持体に保持させる。この
工程を順次複数回行い、レジストレーションを合わせつ
つ、同一支持体上に各色カラートナーを重ね合わせた
後、一回の定着によって最終のフルカラー画像を得る。
【0011】一般に現像剤がトナーとキャリアとからな
る二成分系現像剤を使用する現像方式の場合、現像剤
は、キャリアとの摩擦によってトナーを所要の帯電量及
び帯電極性に帯電せしめ、静電引力を利用して静電荷像
を摩擦電荷を有するトナーで現像するものである。従っ
て良好な可視画像を得るためには、トナーの摩擦帯電性
が良好であることが必要である。
【0012】今日上記の様な問題に対してトナーに加え
る電荷制御剤、流動性付与剤の検討、更には母体となる
バインダーの改良などトナーを構成する材料において優
れた摩擦帯電性を達成すべく研究がなされている。
【0013】例えば帯電性微粒子の如き帯電補助剤をト
ナーに添加する技術として、特公昭52−32256号
公報、特開昭56−64352号公報には、トナーと逆
極性の樹脂微粉末を添加する技術が提案され、また特開
昭61−160760号公報にはフッ素含有化合物を現
像剤に添加し、安定した摩擦帯電性を得るという技術が
提案されている。
【0014】更に上記の如き帯電補助剤を添加する手法
としては、例えば攪拌機又は混合機を使用してトナー粒
子と帯電補助剤との静電力或いは、ファンデルワールス
力によりトナー粒子表面に付着せしめる手法が一般的で
ある。
【0015】しかしながら、該手法においては均一に帯
電補助剤をトナー粒子表面に均一に分散させることは容
易ではない。トナー粒子に未付着で帯電補助剤同士が凝
集物になり、トナー粒子から遊離状態となった凝集体の
量が多くなりやすい。この傾向は、帯電補助剤の比電気
抵抗が大きいほど、粒径が細かいほど顕著となってく
る。遊離している凝集体が多い場合、トナーの性能に影
響が出てくる。例えば、多数枚耐久時、トナーの摩擦帯
電量が不安定となり画像濃度が一定せず、またカブリの
多い画像が形成されやすくなる。
【0016】さらに、連続コピーを行うと帯電補助剤の
含有量が変化し、初期時の画像品質を保持することが困
難である。
【0017】トナーの製造時に結着樹脂や着色剤と共
に、あらかじめ荷電制御剤を添加する手法がある。しか
しながら、結着樹脂中への荷電制御剤の均一な分散が容
易でないこと、また実質的に帯電性に寄与するのは、ト
ナー粒子表面近傍のものであり、またトナー粒子内部に
存在する荷電制御剤は帯電性に寄与しないため、荷電制
御剤の添加量やトナー表面での存在量のコントロールが
容易ではない。
【0018】トナー粒子に酸化チタン微粒子を外添し
て、トナー流動性付与、帯電安定化することが提案され
ている。
【0019】特開昭60−112052号公報では、体
積固有抵抗の低いアナターゼ型酸化チタンを使用してい
るため、特に高湿環境下での摩擦帯電荷のリークが早
く、帯電の安定化の点で特に改良すべき点があった。さ
らに、アナターゼ型酸化チタンは、後述するX線回折に
おいて、2θ=20.0〜40.0degの範囲におけ
る最大強度Ia と最小強度Ib の強度比(Ia /Ib
は、12.0よりも大きいものである。
【0020】特開平5−72797号公報(対応EP−
A−523654)では、疎水性アモルファス酸化チタ
ンを含有するトナーに関して提案している。アモルファ
ス酸化チタンは、結晶性の酸化チタンと比較して研磨性
が低いため、感光体表面の研磨及び感光体表面の付着物
の除去に関して改良すべき点があった。また、アモルフ
ァス酸化チタンは、疎水化処理後もOH基を多数有して
いるため、特に高湿環境下における水分吸着による帯電
性低下に関して改良すべき点があった。アモルファス酸
化チタンは、強度比(Ia /Ib )が5.0よりも小さ
い。
【0021】さらに、特開平6−332232号公報で
は、針状の大長粒径酸化チタンをトナーに添加すること
が提案されているが、酸化チタンの針状形状及び大長粒
径が大きく影響し、トナーの流動性が低い。針状の酸化
チタンの強度比(Ia /Ib)は12.0を越えてい
る。
【0022】また、特開平6−332233号公報で
は、TiOxで(x=2未満)で表される酸化チタン粒
子を付着させたトナーに関して提案されているが、該酸
化チタン粒子は、黒色又は青色であり、イエロートナー
又はマゼンタトナーの如きカラートナーの外添剤として
は不適当であり、酸化チタンの粒径が比較的大きいた
め、トナーに対する流動性付与能が低く、さらに感光ド
ラム表面を傷つけ易い。xが2未満のTiOxは強度比
(Ia /Ib )が一般に12.0よりも大きい。
【0023】また、特開平5−188633号公報で
は、疎水化処理アナターゼ型酸化チタン微粉体を含有す
るトナーに関して提案している。完全なアナターゼ結晶
を有しているために一部酸化チタン粒子同士の凝集が起
こり、感光ドラム表面を傷つけたり、また、小粒径のト
ナー粒子に外添した場合には、トナーの流動性が低い。
アナターゼ型酸化チタンは、強度比(Ia /Ib )が1
2.0よりも大きい。
【0024】酸化チタンには、ルチル型結晶を有するも
のも知られているが、BET比表面積が小さく、針状或
いは柱状に結晶成長しているため、流動性、研磨性付与
レベルが低いため、好ましくない。
【0025】トナーに対して、十分な流動性、帯電性、
研磨性、環境安定性、耐久性をさらに向上している酸化
チタン微粒子が待望されている。
【0026】更に近年、複写機又はプリンタの高精細、
高画質化の要求が市場では高まっており、当該技術分野
では、トナーの粒径を細かくして高画質カラー化を達成
しようという試みがなされているが、トナー粒子の粒径
が細かくなると単位重量当りの表面積が増え、トナーの
帯電量が大きくなる傾向にあり、画像濃度薄や、トナー
の耐久劣化が発生しやすい。加えて、トナーの帯電量が
大きいために、トナー粒子同士の付着力が強く、流動性
が低下し、そのためトナーの補給の安定性や補給された
トナーへのトリボ付与に問題が生じやすい。
【0027】非磁性カラートナーの場合は、磁性体やカ
ーボンブラックの如き導電性物質を含まないので、摩擦
電荷をリークする部分がトナー粒子にはなく、一般にト
ナーの帯電量が大きくなる傾向にある。この傾向は、特
に帯電性能の高いポリエステル系バインダーを結着樹脂
として使用した時により発生しやすい。
【0028】カラートナーにおいては、下記に示すよう
な特性を満足することが要求されている。
【0029】(1)定着したトナーは、光に対して乱反
射して、色再現を防げることのないように、トナー粒子
の形が判別出来ないほどのほぼ完全溶融に近い状態とな
ることが好ましい。
【0030】(2)上記のトナー層と異なった色調の下
部のトナー層との減色混合を良好におこなうための透明
性を有するカラートナーでなければならない。
【0031】(3)各カラートナーはバランスのとれた
色相及び分光反射特性と十分な彩度を有しなければなら
ない。
【0032】このような観点からポリエステル系樹脂が
フルカラー画像形成用のカラートナーの結着樹脂として
多く用いられているが、結着樹脂としてポリエステル系
樹脂を有するトナーは一般に温度及び/又は湿度の影響
を受け易く、低湿下での帯電量過大、高湿下での帯電量
不足といった問題が生じやすく、広範な環境においても
より安定した帯電量を有するカラートナーが待望されて
いる。
【0033】
【発明が解決しようとする課題】本発明の目的は、上述
のような問題点を解決した乾式の静電荷像現像用トナー
を提供することにある。
【0034】本発明の目的は、カブリのない鮮明な画像
を形成し得、画像濃度が高く、細線再現性、ハイライト
部の階調性に優れ、且つ耐久安定性に優れた静電荷像現
像用トナーを提供することにある。
【0035】本発明の目的は、流動性に優れ、且つ解像
性と転写性に優れた静電荷像現像用トナーを提供するこ
とにある。
【0036】本発明の目的は、長期間の使用により発生
する感光体表面への付着物を研磨、除去又は該付着物の
発生を抑制し、画像欠陥のない安定した画像を長期にわ
たり得ることができる静電荷像現像用トナーを提供する
ことにある。
【0037】本発明の更なる目的は、温度及び/又は湿
度等の環境に左右されにくく、安定した摩擦帯電特性を
有する静電荷像現像用トナーを提供することにある。
【0038】本発明の目的は、定着性に優れ、OHP透
過性にも優れた静電荷像現像用トナーを提供することに
ある。
【0039】本発明の目的は、フルカラー画像又はマル
チカラー画像を形成するための好適な乾式の静電荷像現
像用カラートナーを提供することにある。
【0040】
【課題を解決するための手段】本発明は、トナー粒子及
び疎水性酸化チタン微粒子を少なくとも有する静電荷像
現像用トナーであり、該疎水性酸化チタン微粒子は、X
線回折において、2θ=20.0〜40.0degの範
囲における最大強度Ia と最小強度Ib の強度比(Ia
/Ib )が、5.0≦Ia /Ib ≦12.0であること
を特徴とする静電荷像現像用トナーに関する。
【0041】
【発明の実施の形態】疎水性酸化チタン微粒子のX線回
折における2θ=20.0〜40.0degの強度比
(Ia /Ib )は、酸化チタン微粒子の結晶形態、トナ
ーに対する流動性付与能、研磨性付与能に関係してい
る。
【0042】Ia /Ib が、5.0より小さい場合に
は、酸化チタン微粒子は、X線回折において結晶構造に
由来する明確なピークを持たず、非結晶であることを示
す。このような酸化チタン微粒子は、X線回折において
明確なピークを有する酸化チタンと比較して、トナーに
対する研磨性付与能が低い。このため、感光体表面の研
磨能力、感光体表面の付着物の除去能力が低い。
【0043】強度比(Ia /Ib )が5.0未満の酸化
チタン微粒子は、全く結晶成長していないために、粒子
としては柔らかいものとなり、個数平均粒径が1〜10
0nmの微粒子であっても、トナーに対する研磨性付与
能が低くなるものと考えられる。
【0044】強度比(Ia /Ib )が12.0より大き
い場合には、結晶化度を高める過程で該酸化チタン微粒
子に合一粒子が生じやすく、トナーに対する流動性付与
能が低く、感光体表面にフィルミングや感光体表面に損
傷が発生しやすい。また、疎水化処理をする際は、合一
粒子が疎水化剤との均一な反応を阻害する要因となるた
め、好ましくない。
【0045】好ましくは、疎水性酸化チタン微粒子のX
線回折における2θ=20.0〜40.0degの最大
強度Ia は2θ=24.0〜26.0degにあり、最
小強度Ib は2θ=28.0〜33.0degにあるこ
とが良い。
【0046】これは、酸化チタン微粒子がアモルファス
からアナターゼ型への結晶成長途上にあること、あるい
はアモルファス部分とアナターゼ型の結晶部分とが混在
していること示すものである。
【0047】酸化チタン微粒子の原材料及び製造方法は
特に制約されるものではないが、酸化チタン微粒子の流
動性付与、帯電特性、帯電安定性に関して鋭意検討した
結果、疎水化剤と反応点であるOH基を適正量含有して
いるアモルファスからアナターゼ型への結晶形態が移行
する途中段階の酸化チタン微粒子、又はアモルファス部
分及びアナターゼ型の結晶部分とが混在している酸化チ
タン微粒子を使用することが効果的であることを見い出
した。
【0048】本発明に使用する疎水化酸化チタンの製造
例を示す。
【0049】(a)イルメナイトを出発原料として、こ
れを硫酸で分解して得られた分数液を加水分解すること
によって、スラリー状のメタチタン酸を生成する。この
メタチタン酸のスラリーのpH調整をした後、スラリー
中でメタチタン酸粒子の合一が生じないように十分に水
素媒体中に分散させながら疎水化剤を滴下混合し反応さ
せる。これを、ろ過、乾燥、解砕処理を行なうことによ
って疎水化酸化チタン微粒子を生成する。
【0050】(b)原料にチタンテトライソプロポキシ
ドを使用し、ケミカルポンプで減量を極く少量ずつ、チ
ッ素ガスをキャリアガスとして使用して、200℃程度
に加熱したベーパライザーのグラスウールに送り込んで
蒸発させ、反応器内において300℃程度で瞬時に加熱
分解した後、急冷却を行ない、生成物を捕集する。これ
を300℃程度でさらに約2時間焼成して強度比(Ia
/Ib )を調整し、さらに疎水化処理することによって
疎水性酸化チタン微粒子を生成する。
【0051】さらに、疎水性酸化チタン微粒子のBET
比表面積は、100〜350m2 /gの範囲が好まし
い。
【0052】疎水性酸化チタン微粒子のBET比表面積
が100m2 /gより小さい場合には、疎水性酸化チタ
ン微粒子の粒径が大きく酸化チタンの凝集体或いは粗大
粒子が存在することを示し、トナーの流動性の低下や、
感光体表面を傷つけたり、クリーニングブレードの如き
クリーニング手段を変形又は損傷させるという問題が生
じやすい。また、疎水性酸化チタン微粒子の粒径が大き
いとトナー粒子から遊離し易く、遊離した疎水性酸化チ
タン微粒子が、多量に現像機内に残留したり、画像形成
装置本体内の各種装置に付着し、悪影響を及ぼすため、
好ましくない。
【0053】疎水性酸化チタン微粒子のBET比表面積
が350m2 /gより大きい場合には、疎水性酸化チタ
ン微粒子への水分吸着量が多くなり、トナーの帯電特性
へ悪影響を及ぼす場合がある。特に、高湿環境下でトナ
ーの摩擦帯電量が低下し、トナー飛散、カブリ、画質劣
化が発生しやすくなる。
【0054】疎水性酸化チタン微粒子の個数平均粒径
は、トナーへの流動性付与、研磨性の点から1〜100
nmであることが好ましい。疎水性酸化チタン微粒子の
個数平均粒径が1nmより小さい場合には、トナー粒子
表面に埋め込まれ易いためトナー劣化が早期に生じやす
く、耐久性が低下し、また疎水性酸化チタン微粒子の研
磨性が低い。
【0055】一方、疎水性酸化チタン微粒子の平均粒径
が100nmより大きい場合には、トナーの流動性が低
下するために帯電が不近一となりやすく、その結果とし
て画質の劣化、トナー飛散、カブリが生じやすい。ま
た、感光体表面に大きな傷を付けやすく、画像欠陥を生
じやすく、またクリーニングブレードの如きクリーニン
グ部材を変形、又は損傷するという問題が生じやすい。
【0056】感光体表面及びその付着物の研磨及び除去
に関して、トナーは、感光体表面からクリーニングされ
る際、感光体表面とクリーニングブレードの如きクリー
ニング部材の圧着部に一時滞留する。滞留しているトナ
ー粒子表面に存在する疎水性酸化チタン微粒子が感光体
表面及びその付着物を研磨、除去する機能を果たしてい
る。しかしながら、疎水性酸化チタン微粒子は、トナー
粒子表面に埋め込まれることなく、凝集体のない1次粒
径に近い状態でトナーに分散され、且つ均一にトナー粒
子表面に存在していることが好ましい。疎水性酸化チタ
ン微粒子が、好適な研磨性を有するためには、個数平均
粒径が1〜100nmであり、疎水性酸化チタン微粒子
のX線回折における最大強度と最小強度の強度比が特定
の値を示す酸化チタン微粒子が非常に有効である。
【0057】本発明において、疎水性酸化チタン微粒子
の疎水化度は、40〜90%の範囲であることが好まし
い。
【0058】疎水化度が40%より小さい場合には、ト
ナーの摩擦帯電量が低下しやすく、特に高湿環境下で帯
電量が低下して、トナー飛散、カブリ、画質劣化が生じ
やすい。また、疎水性酸化チタン微粒子の疎水化度が9
0%より大きい場合には、疎水性酸化チタン微粒子自身
の好適な帯電コントロールが困難となり、特に、低湿環
境下でトナーがチャージアップしやすい。
【0059】疎水化剤としては、シランカップリング
剤、チタネートカップリング剤、アルミニウムカップリ
ング剤、ジルコアルミネートカツプリング剤の如きカッ
プリング剤が挙げられる。
【0060】具体的に例えばシランカップリング剤とし
ては、一般式 Rm SiYn 〔式中、Rはアルコキシ基を示し、mは1〜3の整数を
示し、Yはアルキル基、ビニル基、フェニル基、メタア
クリル基、アミノ基、エポキシ基、メルカプト基又はこ
れらの誘導体を示し、nは1〜3の整数を示す〕で表さ
れるものが好ましい。例えばビニルトリメトキシシラ
ン、ビニルトリエトキシシラン、γ−メタクリルオキシ
プロピルトリメトキシシラン、メチルトリメトキシシラ
ン、メチルトリエトキシシラン、イソブチルトリメトキ
シシラン、ジメチルジメトキシシラン、ジメチルジエト
キシシラン、トリメチルメトキシシラン、ヒドロキシプ
ロピルトリメトキシシラン、フェニルトリメトキシシラ
ン、n−ヘキサデシルトリメトキシシラン、n−オクタ
デシルトリメトキシシラン等を挙げることができる。
【0061】その処理量は、酸化チタン微粒子100重
量部に対して、好ましくは1〜60重量部、より好まし
くは3〜50重量部である。
【0062】本発明において特に好適なのは、一般式
【0063】
【外2】 〔式中、nは4〜12の整数を示し、mは1〜3の整数
を示す〕で示されるアルキルアルコキシシランカップリ
ング剤である。該アルキルアルコキシシランカップリン
グ剤において、nが4より小さいと、処理は容易となる
が疎水化度が低く、好ましくない。nが12より大きい
と、疎水性が十分になるが、酸化チタン微粒子同士の合
一が多くなり、流動性付与能が低下しやすい。mは3よ
り大きいと、該アルキルアルコキシシランカップリング
剤の反応性が低下して疎水化を良好に行いにくくなる。
より好ましくはアルキルアルコキシシランカップリング
剤はnが4〜8であり、mが1〜2であるのが良い。
【0064】アルキルアルコキシシランカップリング剤
の処理量も、酸化チタン微粒子100重量部に対して、
好ましくは1〜60重量部、より好ましくは3〜50重
量部が良い。
【0065】疎水化処理は1種類の疎水化剤単独で行っ
ても良いし、2種類以上の疎水化剤を使用しても良い。
例えば1種類のカップリング剤単独で疎水化処理を行っ
ても良いし、2種類のカップリング剤で同時に、または
カップリング剤での疎水化処理を行った後、別のカップ
リング剤で更に疎水化処理を行っても良い。
【0066】本発明において、疎水化剤を用いて酸化チ
タン微粒子の疎水化処理を行うには以下のような方法が
あるが、本発明は特にこれらの方法に制約されるもので
はない。
【0067】(a)湿式法による疎水化処理としては、
所定量のメタチタン酸微粒子又は酸化チタン微粒子の分
散液中で十分に機械的に混合撹拌しながら、所定量の疎
水化剤またはその希釈液またはその混合液を添加し、粒
子が合一しないようさらに混合撹拌を行う。十分に混合
撹拌を行った後、乾燥、解砕する。
【0068】(b)乾式法による疎水化処理法例として
は、まず所定量の酸化チタン微粒子をブレンダーの如き
装置によって撹拌しながら、所定量の疎水化剤またはそ
の希釈液またはその混合液を滴下またはスプレーによっ
て加え十分に混合撹拌する。その後、さらに所定量の疎
水化剤または希釈液またはその混合液を加え、十分に混
合撹拌する。次に得られた混合物を加熱し乾燥させる。
その後、ブレンダーの如き装置によって撹拌して解砕す
る。
【0069】特に、メタチタン酸微粒子をスラリー状に
分散している水系媒体中にアルキルアルコキシシランカ
ップリング剤を添加してメタチタン酸微粒子を疎水化
し、その後加熱処理することにより強度比(Ia/I
b)が5.0乃至12.0の疎水性酸化チタン微粒子を
生成する方法が、一次粒子のレベルで疎水化が均一にお
こなわれ、疎水性酸化チタン微粒子の粗大な凝集物も生
成しにくいので好ましいものである。
【0070】本発明に使用する疎水性酸化チタン微粒子
は、体積固有抵抗地108 Ω・cm以上有することが好
ましい。
【0071】疎水性酸化チタン微粒子はトナー粒子10
0重量部に対して0.1〜5重量部が適当である。含有
量が0.1重量部よりも少ない場合には添加効果が少な
くトナーの流動性が低い。含有量が5重量%を超える場
合にはトナーの流動性が高過ぎるために逆に均一な帯電
が阻害される。
【0072】次にトナーの粒度分布について説明する。
【0073】画像濃度、ハイライト再現性(ハーフトー
ン再現性)、細線再現性について鋭意検討した結果、疎
水性酸化チタン微粒子が外添されているトナーは重量平
均粒径が3〜9μmであることが好ましい。さらに、4
μm以下のトナー粒子の量が特にハイライト再現性向上
に大きく寄与する。
【0074】トナーの重量平均粒径が9μmより大きい
時は基本的に高画質化に寄与し得るトナー粒子が少な
く、感光ドラムにおける微細な静電荷像上には忠実に付
着しづらく、ハイライト再現性に乏しく、さらに解像性
も低い。必要以上のトナーの静電荷像上の乗りすぎが起
こり、トナー消費量の増大を招きやすい傾向にある。
【0075】逆にトナーの重量平均粒径が3μmより小
さい場合にはトナーの単位重量あたりの帯電量が高くな
りやすく、濃度薄、特に低温低湿下での画像濃度薄が生
じやすい。特にグラフィック画像の如き画像面積比率の
高い画像を現像するには不向きである。
【0076】さらにトナーの重量平均粒径が3μmより
小さい場合には、キャリアとの接触帯電がスムーズに行
なわれず、充分に帯電し得ないトナーが増大し、非画像
部への飛び散り、カブリが目立つ様になる。これに対処
すべくキャリアの比表面積を稼ぐべくキャリアの小径化
が考えられるが、重量平均径が3μm未満のトナーで
は、トナーの自己凝集も起こり易く、キャリアとの均一
混合が短時間で達成されず、トナーの連続補給耐久にお
いては、カブリが生じてしまう傾向にある。
【0077】本発明のトナーは4μm以下の粒径のトナ
ー粒子を全粒子数の8〜70個数%、好ましくは10〜
60個数%を有していることが好ましい。4μm以下の
粒径のトナー粒子が8個数%未満であると、高画質のた
めに必要な微小のトナー粒子が少なく、特に、コピー又
はプリントアウトを続けることによってトナーが連続的
に消費されるに従い、現像装置内の有効なトナー粒子成
分が減少して、トナーの粒度分布のバランスが悪化し、
画質がしだいに低下しやすい。
【0078】4μm以下の粒径のトナー粒子が70個数
%を超えると、トナー粒子相互の凝集状態が生じ易く、
トナー塊としてふるまうことも多くなり、その結果、荒
れた画像となったり、解像性を低下させたり、又は静電
荷像のエッジ部と内部との濃度差が大きくなり、中抜け
気味の画像となり易く、好ましくない。
【0079】10.08μm以上のトナー粒子が2〜2
5体積%であることが良く、好ましくは3.0〜20.
0体積%が良い。25体積%より多いと画質が低下する
とともに、必要以上の現像(即ちトナーの乗り過ぎ)が
起こり、トナーの消費量の増大を招く。一方、2体積%
未満であると、トナーの流動性の低下により、画像性が
低下する恐れがある。
【0080】さらに本発明の効果をより一層向上させる
ために、トナーの帯電性、流動性を向上させる目的で、
5.04μm以下の粒子が10個数%乃至90個数%、
好ましくは、15個数%乃至80個数%が良い。
【0081】微粒トナー粒子を使いこなすためには、流
動性の向上と帯電の安定化が大きなポイントであり、そ
のどちらかが欠けていても良好な画像を形成することが
困難である。
【0082】それゆえ、上記の如き粒度分布を有するト
ナーのポテンシャルを最大限に引き出し、高解像度、高
階調を達成するためには、前述の如き流動性付与能、帯
電特性に優れる特定な疎水性酸化チタン微粒子を外添し
て用いることが好ましく、両者の組み合わせによってよ
り良好な画像が得られる。
【0083】一般に、トナーの微粒子化によって、トナ
ーは現像器から飛散し易くなる傾向を示すが、本発明で
使用する疎水性酸化チタン微粒子は帯電付与能も高く、
流動性向上と帯電安定化の両立が図られる。
【0084】さらに本発明においては、トナーの凝集度
が2〜25%(好ましくは2〜20%、より好ましくは
2〜15%)であることが良い。
【0085】凝集度が25%を超える場合は、トナーホ
ッパーから現像器へのトナーの搬送性の低下、トナーと
キャリアとの混合不良、さらにはトナーの帯電不良とい
う問題が発生し易い。従って、トナーを細かくし、トナ
ーの着色力を適正化しても、高品位な画質が得られにく
い。一方、トナーの凝集度が2%未満であると、現像器
からのトナー飛散が生じやすい。
【0086】トナー粒子に使用する結着樹脂としては、
従来電子写真用トナー結着樹脂として知られる各種の材
料樹脂が用いられる。
【0087】例えば、ポリスチレン、スチレン−ブタジ
エン共重合体、スチレン−アクリル共重合体の如きスチ
レン系共重合体;ポリエチレン、エチレン−酢酸ビニル
共重合体、エチレン−ビニルアルコール共重合体のよう
なエチレン系共重合体;フェノール系樹脂、エポキシ系
樹脂、アクリルフタレート樹脂、ポリアミド樹脂、ポリ
エステル樹脂、マレイン酸系樹脂等である。
【0088】これらの樹脂の中で、特に負帯電能の高い
ポリエステル系樹脂を用いた場合本発明の効果は大き
い。ポリエステル系樹脂は、定着性に優れ、カラートナ
ーに適している反面、負帯電能が強く帯電が過大になり
易いが、本発明で使用する疎水性酸化チタン微粒子を用
いると弊害は改善され、優れたトナーが得られる。
【0089】特に、次式
【0090】
【外3】 (式中Rはエチレン又はプロピレン基であり、x,yは
それぞれ1以上の整数であり、かつx+yの平均値は2
〜10である。)で代表されるビスフェノール誘導体も
しくは置換体をジオール成分とし、2価以上のカルボン
酸又はその酸無水物又はその低級アルキルエステルとか
らなるカルボン酸成分(例えばフマル酸、マレイン酸、
無水マレイン酸、フタル酸、テレフタル酸、トリメリッ
ト酸、ピロメリット酸など)とを共縮重合したポリエス
テル樹脂がシャープな溶融特性を有するのでより好まし
い。
【0091】着色剤としては、非磁性トナーの場合、公
知の染顔料が使用される。例えばフタロシアニンブル
ー、インダスレンブルー、ピーコックブルー、パーマネ
ントレッド、レーキレッド、ローダミンレーキ、ハンザ
イエロー、パーマネントイエロー、ベンジジンイエロー
等を使用することができる。その含有量としては、OH
P用フィルムの透過性に対し敏感に反映するために、結
着樹脂100重量部に対して12重量部以下であり、好
ましくは0.5〜9重量部である。
【0092】本発明のトナーは、負帯電性トナーをとす
る場合は、負荷電特性を安定化させる目的で負荷電性制
御剤をトナー粒子に添加することが好ましい。負荷電制
御剤としては例えばアルキル置換サリチル酸の金属化合
物(例えば、ジ−tert−ブチルサリチル酸のクロム
化合物又は亜鉛化合物又はアルミニウム化合物)の如き
有機金属化合物が挙げられる。
【0093】正帯電性のトナーをとする場合には、正帯
電性を示す荷電制御剤として、ニグロシンやトリフェニ
ルメタン系化合物、ローダミン系染料、ポリビニルピリ
ジンが挙げられる。
【0094】カラートナーをつくる場合においては、ト
ナーの色調に影響を与えない無色又は淡色の正荷電制御
剤を用いることが好ましい。
【0095】本発明のトナーには必要に応じてトナーの
特性を損ねない範囲で添加剤を混合しても良い。そのよ
うな添加剤としては、例えば有機樹脂粒子、金属酸化物
の如きの帯電助剤、或いはテフロン、ステアリン酸亜
鉛、ポリフッ化ビニリデンの如き滑剤、或いは定着助剤
(例えば低分子量ポリエチレン、低分子量ポリプロピレ
ンなど)が挙げられる。
【0096】トナー粒子の製造方法としては、熱ロー
ル、ニーダー、エクストルーダーの如き熱混練機によっ
て構成材料を良く混練した後、機械的に粉砕し、粉砕粉
を分級してトナー粒子を得る方法;結着樹脂溶液中に着
色剤の如き材料を分散した後、噴霧乾燥することにより
トナー粒子を得る方法;結着樹脂を構成すべき重合性単
量体に所定材料を混合して単量体組成物を得、この組成
物の乳化懸濁液を重合させることによりトナー粒子を得
る懸濁重合によるトナー製造法が適用できる。
【0097】本発明のトナーを二成分現像剤として用い
る場合、使用されるキャリアとしては、例えば表面酸化
または未酸化の鉄、ニッケル、銅、亜鉛、コバルト、マ
ンガン、クロム、希土類等の金属およびそれらの合金ま
たは酸化物及びフェライトが使用できる。
【0098】キャリア粒子の表面を樹脂で被覆する方法
としては、樹脂を溶剤中に溶解もしくは懸濁せしめて塗
布しキャリア粒子に付着せしめる方法、単に粉体で混合
する方法等、従来公知の方法が適用できる。
【0099】キャリア粒子表面への固着物質としてはト
ナーにより異なるが、例えばポリテトラフルオロエチレ
ン、モノクロロトリフルオロエチレン重合体、ポリフッ
化ビニリデン、シリコーン樹脂、ポリエステル樹脂、ス
チレン系樹脂、アクリル系樹脂、ポリアミド、ポリビニ
ルブチラール、アミノアクリレート樹脂などを単独或い
は複数で用いるのが適当である。
【0100】特に、シリコーン樹脂が好ましい。
【0101】被覆樹脂はキャリアに対し0.1〜30重
量%(好ましくは0.5〜20重量%)が好ましい。
【0102】キャリアの平均粒径は10〜100μm、
好ましくは20〜70μmを有することが好ましい。
【0103】本発明におけるトナーと混合して二成分系
現像剤を調製する場合、その混合比率は現像剤中のトナ
ー濃度として、2〜15重量%、好ましくは3〜13重
量%、より好ましくは4〜10重量%にすると通常良好
な結果が得られる。トナー濃度が2重量%未満では画像
濃度が低くなりやすい。15重量%を超える場合ではカ
ブリや機内飛散を増加せしめ、現像剤の耐用寿命が短く
なる傾向にある。
【0104】以下に各特性値の測定法について述べる。
【0105】疎水性酸化チタンの微粒子のIa 、Ib
測定方法 酸化チタン微粒子のIa 及びIb は、Cuの特性X線の
Ka線を線源として用いたX線回折スペクトルにより求
められ、2θ=2.0〜40.0degの範囲における
最大強度をIa (Kcps)、最小強度をIb (Kcp
s)とする。
【0106】測定機としては、例えば強力型全自動X線
回折装置MXP18(マックサイエンス社製)が利用で
きる。
【0107】疎水性酸化チタン微粒子の個数平均粒径測
定方法 一次粒子径は、疎水性酸化チタン微粒子を透過電子顕微
鏡で観察し、100個の粒子の長径を測定して個数平均
粒子径を求める。トナー粒子上の粒子径は走査電子顕微
鏡で観察し、100個の粒子の長径を測定して個数平均
粒子径を求める。
【0108】測定時の倍率は4万〜6万倍とし、0.5
nm以上の粒子を対象とする。
【0109】疎水性酸化チタン微粒子のBET比表面積
測定方法 酸化チタン微粒子のBET比表面積の測定は次のように
して行う。
【0110】BET比表面積は、例えば湯浅アイオニク
ス(株)製、全自動ガス吸着量測定装置(オートソープ
1)を使用し、吸着ガスに窒素を用い、BET多点法に
より求める。サンプルの前処理としては、50℃で10
時間の脱気を行う。
【0111】疎水化度の測定方法 メタノール滴定試験は、疎水化された表面を有する無機
微粉体の疎水化度を確認する実験的試験である。
【0112】疎水性酸化チタン微粒子の疎水化度を評価
するためのメタノールを用いた疎水化度測定は、次のよ
うに行う。供試酸化チタン微粒子0.2gを三角フラス
コの水50mlに添加する。メタノールをビュレットか
ら滴定する。この際、フラスコ内の溶液はマグネチック
スターラーで常時撹拌する。酸化チタン微粒子の沈降終
了は、全量が液体中に懸濁することによって確認され、
疎水化度は、沈降終了時点に達した際のメタノール及び
水の液状混合物中のメタノールの百分率として表され
る。
【0113】トナーの粒度分布の測定 測定装置としては、コールターカウンターTA−II或
いはコールターマルチサイザーII(コールター社製)
を用いる。電解液は、1級塩化ナトリウムを用いて、約
1%NaCl水溶液を調製する。例えば、ISOTON
−II(コールターサイエンティフィックジャパン社
製)が使用できる。測定法法としては、前記電解水溶液
100〜150ml中に分散剤として、界面活性剤(好
ましくはアルキルベンゼンスルホン酸塩)を、0.1〜
5ml加え、さらに測定試料を2〜20mg加える。試
料を懸濁した電解液は、超音波分散器で約1〜3分間分
散処理を行ない、前記測定装置により、アパーチャーと
して100μmアパーチャーを用いて、トナー粒子の体
積及び個数を各チャンネルごとに測定して、トナーの体
積分布と個数分布とを算出する。それから、トナー粒子
の体積分布から求めた重量基準のトナーの重量平均粒径
(D4)(各チャンネルの中央値をチャンネル毎の代表
値とする)を求める。
【0114】チャンネルとしては、2.00〜2.52
μm;2.52〜3.17μm;3.17〜4.00μ
m;4.00〜5.04μm;5.04〜6.35μ
m;6.35〜8.00μm;8.00〜10.08μ
m;10.08〜12.70μm;12.70〜16.
00μm;16.00〜20.20μm;20.20〜
25.40μm;25.40〜32.00μm;32.
00〜40.30μmの13チャンネルを用いる。
【0115】凝集度測定方法 試料(外添剤を有するトナー等)の流動特性を測定する
一手段として凝集度を用いるものであり、この凝集度の
値が大きいほど試料の流動性は悪いと判断する。
【0116】測定装置としては、デジタル振動計(デジ
バイブロMODEL1332)を有するパウダーテスタ
ー(細川ミクロン社製)を用いる。
【0117】測定法としては、振動台に200メッシ
ュ,100メッシュ,60メッシュの篩いを目開の狭い
順に、すなわち60メッシュ篩いが最上位にくるように
200メッシュ,100メッシュ,60メッシュの篩い
順に重ねてセットする。
【0118】このセットした60メッシュ篩い上に正確
に秤量した試料5gを加え、振動台への入力電圧を2
1.7Vになるようし、デジタル振動計の変位の値を
0.130にし、その際の振動計の振幅が60〜90μ
mの範囲に入るように調製し(レオスタット目盛り約
2.5)、約15秒間振動を加える。その後、各篩い上
に残った試料の重量を測定して下式にもとづき凝集度を
得る。
【0119】
【外4】
【0120】試料は23℃,60%RHの環境下で約1
2時間放置したものを用い、測定環境は23度,60%
RHである。
【0121】次に、本発明のトナーを使用して非磁性一
成分トナー現像を行う場合の現像装置の一例を説明す
る。必ずしもこれに限定されるものではない。図2に、
静電荷像保持体上に形成された静電荷像を現像する装置
を示す。静電荷像保持体1において、静電荷像形成は図
示しない電子写真プロセス手段又は静電記録手段により
なされる。トナー担持体2は、アルミニウム或いはステ
ンレス等からなる非磁性スリーブからなる。非磁性一成
分カラートナーはホッパー3に貯蔵されており、供給ロ
ーラー4によりトナー担持体2上へ供給される。供給ロ
ーラー4は現像後のトナー担持体2上のトナーのはぎ取
りも行っている。トナー担持体2上に供給されたトナー
はトナー塗布ブレード5によって均一且つ薄層に塗布さ
れる。トナー塗布ブレード5とトナー担持体2との当接
圧力は、スリーブ母線方向の線圧として、3〜250g
/cm、好ましくは10〜120g/cmが有効であ
る。当接圧力が3g/cmより小さい場合、トナーの均
一塗布が困難になり、トナーの帯電量分布がブロードに
なり、カブリや飛散の原因となり易い。当接圧力が25
0g/cmを超えると、トナーに大きな圧力がかかるた
めに、トナー同士が凝集したり、或いは粉砕され易く好
ましくない。当接圧力を3〜250g/cmに調整する
ことで小粒径トナーの凝集を良好にほぐすことが可能に
なり、トナーの摩擦帯電量を瞬時に立ち上げることが可
能になる。トナー塗布ブレード5は、所望の極性にトナ
ーを帯電するに適した摩擦帯電系列の材質のものを用い
ることが好ましい。
【0122】現像剤塗布ブレードは、シリコーンゴム、
ウレタンゴム、スチレン−ブタジエンゴムが好適であ
る。導電性ゴムを使用すれば、トナーが過剰に摩擦帯電
するのを防ぐことができて好ましい。更に必要に応じて
ブレード5の表面コートを行ってもよい。特に、ネガト
ナーとして使用する場合、ポリアミド樹脂の如き正帯電
性樹脂をコートするのが好適である。
【0123】ブレード5によりトナー担持体2上にトナ
ーを薄層コートするシステムにおいては、充分な画像濃
度を得るために、トナー担持体2上のトナー層の厚さを
トナー担持体2と静電荷像保持体1との対向空隙長より
も小さくし、この空隙に交番電場を印加することが好ま
しい。図2に示すバイアス電源6によりトナー担持体2
と静電荷像保持体1間に交番電場または交番電場に直流
電場を重畳した現像バイアスを印加することにより、ト
ナー担持体2上から静電荷像保持体1上のトナーの移動
を容易にし、更に良質の画像を得ることができる。
【0124】本発明のトナーをフルカラー画像形成方法
を良好に実施得るための画像形成装置を図3を参照しな
がら説明する。
【0125】図3に示されるカラー電子写真装置は、装
置本体1の右側(図1右側)から装置本体の略中央部に
わたって設けられている転写材搬送系1と、装置本体1
の略中央部に、上記転写材搬送系Iを構成している転写
ドラム315に近接して設けられている静電荷像形成部
IIと、上記静電荷像形成部IIと近接して配設されて
いる現像手段(すなわち回転式現像装置)IIIとに大
別される。
【0126】上記転写材搬送システムIは、以下の様な
構成となっている。上記装置本体1の右壁(図2右側)
に開口部が形成されており、該開口部に着脱自在な転写
材供給用トレイ302及び303が一部機外に突出して
配設されている。該トレイ302及び303の略直上部
には給紙用のローラー304及び305が配設され、こ
れら給紙用ローラー304及び305と左方に配された
矢印A方向に回転自在な転写ドラム305とを連係する
ように、給紙用ローラー306及び給紙ガイド307及
び308が設けられている。上記転写ドラム315の外
周面近傍には回転方向上流側から上流側に向かって当接
用ローラー309、グリッパ310、転写材分離用帯電
器311、分離爪312が順次配設されている。
【0127】上記転写ドラム315の内周側には転写帯
電器313、転写材分離用帯電器314が配設されてい
る。転写ドラム315の転写材が巻き付く部分にはポリ
弗化ビニリデンの如き、ポリマーで形成されている転写
シート(図示せず)が貼り付けられており、転写材は該
転写シート上に静電的に密着貼り付けされている。上記
転写ドラム315の右側上部には上記分離爪312と近
接して搬送ベルト手段316が配設され、該搬送ベルト
手段316の転写材搬送方向終端(右側)には定着装置
318が配設されている。該定着装置318よりもさら
に搬送方向後流には装置本体301の外へと延在し、装
置本体301に対して着脱自在な排出用トレイ317が
配設されている。
【0128】次に、上記静電荷像形成部IIの構成を説
明する。図3矢印方向に回転自在な静電荷像担持体であ
る感光ドラム(例えば、OPC感光ドラム)319が、
外周面を上記転写ドラム315の外周面と当接して配設
されている。上記感光ドラム319の上方でその外周面
近傍には、該感光ドラム319の回転方向上流側から下
流側に向かって除電用帯電器320、クリーニング手段
321及び一次帯電器323が順次配設され、さらに上
記感光ドラム319の外周面上に静電荷像を形成するた
めのレーザービームスキャナのごとき像露光手段32
4、及びミラーのごとき像露光反射手段325が配設さ
れている。
【0129】上記回転式現像装置IIIの構成は以下の
ごとくである。上記感光ドラム319の外周面と対向す
る位置に、回転自在な筺体(以下「回転体」という)3
26が配設され、該回転体326中には四種類の現像装
置が周方向の四位置に搭載され、上記感光ドラム319
の外周面上に形成された静電荷像を可視化(すなわち現
像)するようになっている。上記四種類の現像装置は、
それぞれイエロー現像装置327Y、マゼンタ現像装置
327M、シアン現像装置327C及びブラック現像装
置327BKを有する。
【0130】上記したごとき構成の画像形成装置全体の
シーケンスについて、フルカラーモードの場合を例とし
て説明する。上述した感光ドラム319が図3矢印方向
に回転すると、該感光ドラム319上の感光体は一次帯
電器323によって帯電される。図3の装置において
は、各部動作速度(以下、プロセススピードとする)は
100mm/sec以上(例えば、130〜250mm
/sec)である。一次帯電器323による感光ドラム
319に対する帯電が行われると、原稿328のイエロ
ー画像信号にて変調されたレーザー光Eにより画像露光
が行われ、感光ドラム319上に静電荷像が形成され、
回転体326の回転によりあらかじめ現像位置に定着さ
れたイエロー現像装置327Yによって上記静電荷像の
現像が行われ、イエロートナー画像が形成される。
【0131】給紙ガイド307、給紙ローラー306、
給紙ガイド308を経由して搬送されてきた転写材は、
所定のタイミングにてグリッパ310により保持され、
当接用ローラー309と該当接用ローラー309と対向
している電極とによって静電的に転写ドラム315に巻
き付けられる。転写ドラム315は、感光ドラム319
と同期して図2矢印方向に回転しており、イエロー現像
装置327Yにより形成されたイエロートナー画像は、
上記感光ドラム319の外周面と上記転写ドラム315
の外周面とが当接している部位にて転写帯電器313に
よって転写材上に転写される。転写ドラム315はその
まま回転を継続し、次の色(図3においてはマゼンタ)
の転写に備える。
【0132】感光ドラム319は、上記除電用帯電器3
20により除電され、クリーニングブレードによるクリ
ーニング手段321によってクリーニングされた後、再
び一次帯電器323によって帯電され、次のマゼンタ画
像信号により画像露光が行われ、静電荷像が形成され
る。上記回転式現像装置は、感光ドラム319上にマゼ
ンタ画像信号による像露光により静電荷像が形成される
間に回転して、マゼンタ現像装置327Mを上述した所
定の現像位置に配置せしめ、所定のマゼンタトナーによ
り現像を行う。引き続いて、上述したごときプロセスを
それぞれシアン色及びブラック色に対しても実施し、四
色のトナー像の転写が終了すると、転写材上に形成され
た四色顕画像は各帯電器322及び314により除電さ
れ、上記グリッパ310による転写材の把持が解除され
ると共に、該転写材は、分離爪312によって転写ドラ
ム315より分離され、搬送ベルト316で定着装置3
18に送られ、熱と圧力により定着され一連のフルカラ
ープリントシーケンスが終了し、所要のフルカラープリ
ント画像が転写材の一方の面に形成される。
【0133】このとき、定着装置318での定着動作速
度は、本体のプロセススピード(例えば160mm/s
ec)より遅い(例えば90mm/sec)で行われ
る。これは、トナーが二層から四層積層された未定着画
像を溶融混色させる場合、十分な加熱量をトナーに与え
なければならないためで、現像速度より遅い速度で定着
を行うことによりトナーに対する加熱量を多くしてい
る。
【0134】
【実施例】以下に本発明に関する製造例及び実施例を示
すが、本発明はこれらにのみに限定されるものではな
い。
【0135】酸化チタン微粒子の製造例1 出発原料としてTiO2 相当分を50重量%含有してい
るイルメナイト鉱石を使用した。この原料を150℃で
2時間乾燥させた後、硫酸を添加して溶解させることに
よって、TiOSO4 の水溶液を得た。これを濃縮し、
TiOSO4 を120℃で加水分解を行ない、不純物を
含有しているTiO(OH)2 のスラリーを得た。この
スラリーをpH5〜6で繰り返し水洗浄を行ない、硫
酸、FeSO4 、不純物を十分に除去した。そして、高
純度のメタチタン酸〔TiO(OH)2 〕のスラリーを
得た。
【0136】このメタチタン酸のスラリーのpHを8〜
9に調整し、ボールミルで十分にメタチタン酸の粉砕を
行なった。その後、十分に撹拌しながらスラリーの温度
を30℃、pHを約2に調整した。メタチタン酸はスラ
リー中に約6重量%含有していた。スラリー中にのメタ
チタン酸100重量部に対して、疎水化剤としてi−C
49 −Si−(OCH33 を固型分で50重量部
を、粒子の合一が生じないように十分に撹拌しながら滴
下混合し、反応させた。さらに、十分に撹拌しながら、
スラリーのpHを6.5に調整した。
【0137】これを、ろ過、乾燥した後、170℃で2
時間加熱処理し、疎水性酸化チタン微粒子を生成し、そ
の後、疎水性酸化チタン微粒子の凝集体がなくなるま
で、繰り返しジェットミルにより解砕処理を行ない、2
θ=25.1degのときIa=1.09Kcps、2
θ=32.2degのときIb =0.10Kcps、強
度比(Ia /Ib )=10.9、BET比表面積=18
0m2 /g、個数平均粒径=25nm、疎水化度58%
の疎水性酸化チタン微粒子Aを得た。X線回折チャート
を図1に示す。
【0138】酸化チタン微粒子の製造例2 原料にチタンテトライソプロポキシドを使用した。ケミ
カルポンプで原料をごく少量ずつ、チッ素ガスをキャリ
アガスとして使用して、200℃に加熱したペーパーラ
イザーのグラスウールに送り込んで蒸発させ、反応器内
で温度320℃で加熱分解した後、急冷却を行い、生成
物を捕集し、親水性のアモルファスの酸化チタン微粉体
(1)を得た。これを300℃で2時間焼成し、親水性
の結晶性の酸化チタン微粉体(2)を得た。
【0139】次に、水中で酸化チタン微粉体(2)を均
一分散させた後、疎水化剤i−C49 −Si−(OC
33 を酸化チタン微粉体100重量部に対して固型
分で30重量部になるように粒子の合一生じないように
分散させながら滴下混合し、疎水化処理をおこなった。
【0140】その後、ろ過、乾燥した後、120℃で2
時間加熱し、その後ジェットミルにより解砕処理し、2
θ=25.7degのときIa =1.15Kcps、2
θ=31.5degのときIb =0.12Kcps、強
度比(Ia /Ib )=9.6、BET比表面積=115
2 /g、個数平均粒径=30nm、疎水化度=62%
の疎水性酸化チタン微粒子Bを得た。
【0141】酸化チタン微粒子の製造例3 酸化チタン微粒子の製造例1において、疎水化剤として
i−C49 −Si−(OCH33 とC613−Si
−(OCH33 とを1:1で混合したものを使用する
こと以外は、製造例1と同様にして、2θ=24.9d
egのときIa=1.0Kcps、2θ=32.0de
gのときIb =0.12Kcps、強度比(Ia /I
b )=8.3、BET比表面積=130m2 /g、個数
平均粒径=65nm、疎水化度=67%の疎水性酸化チ
タン微粒子Cを得た。
【0142】酸化チタン微粒子の製造例4 酸化チタン微粒子の製造例1において、疎水化剤の添加
量を20重量部とし、疎水化処理後の解砕処理を酸化チ
タンの凝集体が存在しなくなるまで繰り返し行なう以外
は同様にして、2θ=25.1degのときIa =0.
8Kcps、2θ=30.0degのときIb =0.1
1Kcps、強度比(Ia /Ib )=7.3、BET比
表面積=350m2 /g、個数平均粒径=23nm、疎
水化度=30%の疎水化酸化チタン微粒子Dを得た。
【0143】酸化チタン微粒子の製造例5 酸化チタン微粒子の製造例2において、疎水化剤の添加
量を60重量部とし、疎水化処理後の解砕処理を酸化チ
タンの凝集体が存在しなくなるまで繰り返し行なう以外
は同様にして、2θ=25.7degのときIa =1.
18Kcps、2θ=31.4degのときIb =0.
11Kcps、強度比(Ia /Ib )=10.7、BE
T比表面積=101m2 /g、個数平均粒径=80n
m、疎水化度=95%の疎水性酸化チタン微粒子Eを得
た。
【0144】比較酸化チタン微粒子の製造例6 酸化チタン微粒子の製造例1で得られたメタチタン酸を
300℃で5時間加熱処理した後、十分に解砕処理を行
ない、BET比表面積=120m2 /g、個数平均粒径
=100nmの親水性のアナターゼ型結晶の親水性酸化
チタン微粉体を得た。
【0145】次に、水中で上記親水性の酸化チタン10
0重量部に対して、疎水化剤としてi−C49 −Si
−(OCH33 を固型分で20重量部を、十分に分散
させながら滴下混合し、疎水化処理を行なった。
【0146】その後、ろ過し、120℃で5時間乾燥し
た後、170℃で5時間加熱処理し、その後、疎水性酸
化チタン微粒子の凝集体がなくなるまで、ジェットミル
による解砕処理を行ない2θ=25.4degのときI
a =1.83Kcps、2θ=29.2degのときI
b =0.11Kcps、強度比(Ia /Ib )=16.
6、BET比表面積=90m2 /g、個数平均粒径=1
30nm、疎水化度=55%の疎水性酸化チタン微粒子
Fを得た。
【0147】比較酸化チタン微粒子の製造例7 酸化チタン微粒子の製造例1で得られたメタチタン酸を
150℃で2時間加熱処理した後、十分に解砕処理を行
ない、BET比表面積=135m2 /g、平均粒径=9
0nmの親水性、アナターゼ型結晶の親水性酸化チタン
微粉体を得た。
【0148】次に、水中で上記親水性の酸化チタン10
0重量部に対して、疎水化剤としてi−C49 −Si
−(OCH33 を固型分で20重量部を、十分に分散
させながら滴下混合し、疎水化処理を行なった。
【0149】その後、ろ過、170℃で3時間加熱処理
し、その後、疎水性酸化チタン微粒子の凝集体がなくな
るまで、ジェットミルによる解砕処理を行なった。
【0150】その結果、2θ=25.3degのときI
a =1.45Kcps、2θ=29.4degのときI
b =0.11Kcps、強度比(Ia /Ib )=13.
2、BET比表面積=110m2 /g、個数平均粒径=
110nm、疎水化度=55%の疎水性酸化チタン微粒
子Gを得た。
【0151】比較酸化チタン微粒子の製造例8 酸化チタン微粒子の製造例2で得られたアモルファス酸
化チタン微粉体(1)を水中で均一分散させた後、疎水
化剤i−C49 −Si−(OCH33 を酸化チタン
微粉体100重量部に対して固型分で20重量部となる
ように撹拌しながら滴下混合し、疎水化処理をおこなっ
た。
【0152】その後、ろ過、乾燥した後、120℃で加
熱処理し、その後ジェットミルによる解砕処理し、2θ
=39.6degのときIa =0.13Kcps、2θ
=20.6degのときIb =0.04Kcps、強度
比(Ia /Ib )=3.3、BET比表面積=120m
2 /g、個数平均粒径=25nm、疎水化度=65%の
疎水性酸化チタン微粒子Hを得た。
【0153】比較酸化チタン微粒子の製造例9 酸化チタン微粒子の製造例2において、アモルファス酸
化チタン微粉体(1)を800℃で5時間焼成すること
以外は製造例2と同様にして、2θ=25.4degの
ときIa =1.81Kcps、2θ=29.4degの
ときIb =0.12Kcps、強度比(Ia /Ib )=
15.1、BET比表面積=85m2 /g、個数平均粒
径=60nm、疎水化度=52%のアナターゼ型結晶の
疎水化酸化チタン微粒子Iを得た。
【0154】比較酸化チタン微粒子の製造例10 四塩化チタンの火炎法によって得られる親水性のアナタ
ーゼ型結晶及びルチル型結晶の混在した酸化チタン微粉
体(日本アエロジル(株)製、Titanium Ox
idep25)100重量部を水中で均一分散させた。
その後、疎水化剤としてi−C49 −Si−(OCH
33 を固型分で20重量部を、粒子合一しないように
分散させながら滴下混合し、疎水化処理をおこなった。
【0155】その後、ろ過、乾燥した後、120℃で2
時間加熱処理し、その後ジェットミルによる解砕処理
し、2θ=27.3degのときIa =1.68Kcp
s、2θ=29.2degのときIb =0.12Kcp
s、強度比(Ia /Ib )=14、BET比表面積=6
5m2 /g、個数平均粒径=55nm、疎水化度=50
%の疎水性酸化チタン微粒子Jを得た。
【0156】上記の酸化チタン微粒子の特性値を第1表
に示す。
【0157】
【表1】
【0158】実施例1 プロポキシ化ビスフェノールとフマル酸を縮合して得ら
れたポリエステル樹脂(結着樹脂,重量平均分子量25
000) 100重量部 フタロシアニン顔料(シアン着色剤) 4重量部 ジ−tert−ブチルサリチル酸のクロム錯体(負荷電
性制御剤) 4重量部
【0159】上記化合物をヘンシェルミキサーにより十
分予備混合を行ない、二軸押出式混練機により溶融混練
し、冷却後ハンマーミルを用いて約1〜2mm程度に粗
粉砕し、次いでエアージェット方式による微粉砕機で微
粉砕した。さらに得られた微粉砕物を分級して、重量平
均粒径が6.0μm(粒径4.0μm以下が21.3個
数%、粒径5.04μm以下が48.5個数%、粒径
8.0μm以上が6.1体積%、粒径10.08μm以
上が0.6体積%)である負摩擦帯電性の非磁性のシア
ントナー粒子を得た。
【0160】上記シアントナー粒子100重量部と疎水
性酸化チタン微粒子A1.5重量部をヘンシェルミキサ
ーで混合し、非磁性のシアントナーを得た。得られたシ
アントナーは、シアントナー粒子と実質的に同一の粒度
分布を有していた。
【0161】前述のシアントナーとシリコン樹脂コート
フェライトキャリアとをトナー濃度6%で混合して二成
分系現像剤を作製し、図3に示す画像形成装置と類似し
ている構成を有するフルカラー複写機CLC−800
(キヤノン製,単色モードA4サイズ28枚/分)を用
い画像面積比率25%のオリジナル原稿を用いて高温高
湿環境下(30℃/80%)、常温低湿環境下(23℃
/5%)にてモノカラーモードで1万枚の画出しをおこ
なった。結果を第2表に示す。
【0162】上述の二成分系現像剤は、耐刷試験におけ
る画像濃度、カブリ、トナー帯電量の変動が極めて小さ
く、1万枚後のトナー飛散も問題なく、非常に優れた結
果が得られた。耐久1万枚後のOPC感光ドラム表面を
走査電子顕微鏡で観察したが、付着物、傷は、全く無く
良好な表面状態であった。
【0163】以下の実施例及び比較例の結果も第2表に
示した。
【0164】実施例2 疎水化酸化チタン微粒子Bを用いることを除いて、実施
例1と同様にして二成分系現像剤を調製し、実施例1と
同様の実験を行なったところ、耐久1万枚後でもトナー
帯電量の変動が小さく、画像濃度が高く且つ安定し、カ
ブリがなくハイライト再現性に優れた高精細な画像が得
られ、トナー飛散も発生せず良好な結果が得られた。
【0165】また、耐久後の感光体表面に、付着物、傷
の発生は、認められなかった。
【0166】実施例3 酸化チタン微粒子Cを用いることを除いて、実施例1と
同様にして二成分系現像剤を調製し、実施例1と同様の
実験を行なったところ、耐久1万枚後でもトナーの帯電
量の変動が小さく、画像濃度が高く且つ安定し、カブリ
のない良質な画像が得られた。また、トナー飛散も発生
せず良好な結果が得られた。さらに、耐久後の感光体表
面に、付着物、傷の発生は認められなかった。
【0167】本実施例のトナーは、凝集度がやや高めで
あるために、ハイライト部の再現性に関して実施例1と
比較して劣るものの、実用上問題となるようなレベルで
はなかった。
【0168】実施例4 酸化チタン微粒子Dを用いることを除いて実施例1と同
様にして二成分系現像剤を調製し、実施例1と同様の実
験を行なったところ、耐久1万枚後で若干トナー帯電量
が低下したため、画像濃度がやや高くなり、若干のカブ
リの発生も見られ、極く少量のトナー飛散も生じた。し
かしながら、これらの現象は、実用上問題となるほどの
レベルではなかった。
【0169】また、耐久後の感光体表面に、付着物、傷
の発生は、認められなかった。
【0170】実施例5 酸化チタン微粒子Eを用いることを除いて実施例1と同
様にして二成分系現像剤を調製し、実施例1と同様の実
験を行なったところ、耐久1万枚後で若干トナーの帯電
量が上昇したため、画像濃度がやや低下したものの、カ
ブリ、トナー飛散が見られず良好な結果が得られた。
【0171】また、耐久後の感光体表面に、酸化チタン
微粒子の凝集体によるものと思われる軽度の傷の発生が
認められたが、画像欠陥は生じておらず実用上問題とな
るようなレベルではなかった。
【0172】実施例6 実施例1と同様にして製造した重量平均粒径が2.5μ
mの負摩擦帯電性の非磁性シアントナー粒子を用いるこ
と以外は、実施例1と同様に二成分系現像剤を調製し、
実施例1と同様の実験を行なったところ、どちらの環境
下においても耐久1万枚後に若干画像濃度が低下し、カ
ブリ、トナー飛散が若干発生したが、実用上問題となる
レベルではなかった。
【0173】これは、シアントナー粒子の重量平均粒径
が小さく、単位重量あたりの帯電量が高くなったため
に、若干の画像濃度低下が生じたものと考えられる。ま
た、キャリアとの接触帯電がスムーズに行なわれにくい
ために、帯電が不十分なトナーが生じ、若干のカブリ、
トナー飛散が発生したものと推察される。
【0174】実施例7 実施例1と同様にして製造した重量平均粒径が9.5μ
mの負摩擦帯電性の非磁性シアントナー粒子を用いるこ
と以外は、実施例1と同様にして二成分系現像剤を調製
し、実施例1と同様の実験を行なったところ、どちらの
環境下においても高い画像濃度は得られたものの、細線
再現性レベルがやや悪く、若干精細性に欠ける画像であ
った。しかし、実用上問題となるレベルではなかった。
【0175】これは、シアントナー粒子の重量平均粒径
が大きいために、細線再現性に大きく寄与する粒径4μ
m以下のトナー粒子が少ないためであると考えられる。
【0176】実施例8 シアン着色剤のかわりにマゼンタ着色剤(ジメチルキナ
クリドン顔料)を用いることを除いて実施例1と同様に
して重量平均粒径が6μmの負摩擦帯電性の非磁性のマ
ゼンタトナー粒子を生成し、マゼンタトナー粒子100
重量部と疎水性酸化チタン微粒子Aの1.3重量部とを
混合して非磁性マゼンタトナーを得た。次いで、実施例
1と同様にして二成分系現像剤を得、実施例1と同様に
して単色モードA4サイズ28枚/分のプロセススピー
ドで画出し試験をおこなったところ、実施例1と同様
に、良好なマゼンタ色の画像が得られ、良好な環境安定
性と、良好な多数枚耐久性とを示した。
【0177】実施例9 シアン着色剤のかわりにイエロー着色剤(C.I.Pi
gment Yellow17)を用いることを除いて
実施例1と同様にして重量平均粒径が6μmの負摩擦帯
電性の非磁性のイエロートナー粒子を生成し、イエロー
トナー粒子100重量部と疎水性酸化チタンAの1.0
重量部とを混合して非磁性イエロートナーを得た。次い
で、実施例1と同様にして二成分系現像剤を得、実施例
1と同様にして単色モードA4サイズ28枚/分のプロ
セススピードで画出し試験をおこなったところ、実施例
1と同様に、良好なイエロー色の画像が得られ、良好な
環境安定性と、良好な多数枚耐久性とを示した。
【0178】次に、実施例1で調製されたシアン色用の
二成分系現像剤と、実施例8で調製されたマゼンタ色用
の二成分系現像剤と、本実施例で調製されたイエロー色
用の二成分系現像剤とを使用して該フルカラー複写機に
よりフルカラーモードで画出し試験をおこなったところ
オリジナルのフルカラー画像を忠実に再現した高品質な
フルカラー画像が得られた。
【0179】比較例1 疎水性酸化チタン微粒子Fを用いることを除いて、実施
例1と同様にして二成分系現像剤を調製し、実施例1と
同様の実験を行なったところ、耐久1万枚後にトナー帯
電量が極端に低下し、かつ帯電量分布幅が広いため画像
濃度が著しく上昇し、カブリ、トナー飛散が発生した。
これら現象は、特に、高温高湿環境下で顕著に発生し
た。
【0180】また、耐久後のOPC感光ドラム表面を観
察したところ、全面に深い傷が多数生じている様子が見
られ、これらの傷は画像欠陥として現われた。
【0181】本比較例で使用した酸化チタン微粒子Fは
強度比(Ia /Ib )が大きく、凝集体を多数含んでお
り、トナー粒子に外添した場合には、十分なトナー流動
性が得られない上に、感光体表面を損傷した。また、表
面が疎水化剤で均一に処理されていない酸化チタン微粒
子が存在するために、トナーの帯電量の制御性が低く、
これらのことが原因となって、上記のような弊害を生じ
たものと考えられる。
【0182】比較例2 酸化チタン微粒子Gを用いることを除いて、実施例1と
同様にして二成分系現像剤を調製し実施例1と同様の実
験を行なったところ、耐久1万枚後にトナーの帯電量が
低下し、且つ帯電量分布幅がブロード化したため画像濃
度が上昇し、カブリ、トナー飛散が発生した。これらの
現象は、特に、高温高湿環境下で顕著に発生した。
【0183】また、耐久後のOPC感光ドラム表面を観
察したところ、全面に深い傷が多数発生している様子が
見られ、これらの傷は画像欠陥として現われた。
【0184】本比較例で使用した酸化チタン微粒子Gは
疎水化処理前に焼成しているために結晶が成長している
上に、強度比(Ia /Ib )が大きく、凝集体を多数含
んでおり、トナー粒子に外添した場合には、流動性が十
分に得られないだけでなく、OPC感光ドラム表面を傷
つけた。また、表面が疎水化剤で均一に処理されていな
い酸化チタン微粒子が存在するために、トナーの帯電量
の制御性が低く、これらのことが原因となって、上記の
弊害を生じたものと考えられる。
【0185】比較例3 疎水性酸化チタン微粒子Hを用いることを除いて、実施
例1と同様にして二成分系現像剤を調製し、実施例1と
同様の実験を行なったところ、耐久1万枚後でも、トナ
ーの帯電量、画像濃度の変動は、問題とならないレベル
であった。また、カブリ、トナー飛散は見られたものの
問題のないレベルであった。
【0186】しかし、耐久後OPC感光ドラム表面を観
察したところ、傷は付いていないもののトナーの付着し
ているところが多数確認された。そして、トナーの付着
している部分は、画像欠陥として現われており、実用上
適さないレベルであった。
【0187】本比較例で使用した疎水性酸化チタン微粒
子Hは強度比(Ia /Ib )が小さく、また、X線回折
において明確な高いピークを有しないことから非結晶の
酸化チタン微粒子であり、このため、該酸化チタン微粒
子は、全く結晶成長してないために、粒子としては柔ら
かいものとなり、平均粒径が25nmの微粒子であって
も、トナーに対する研磨性付与能が低く、OPC感光ド
ラム表面に付着したトナーを除去することができなかっ
たものと考えられる。
【0188】比較例4 疎水性酸化チタン微粒子Iを用いることを除いて、実施
例1と同様にして二成分系現像剤を調製し実施例1と同
様の実験を行なったところ、耐久1万枚後にトナー帯電
量が低下し、さらには帯電量分布幅が広くなったため画
像濃度が上昇し、カブリ、トナー飛散が生じた。
【0189】また、耐久後のOPC感光ドラム表面を観
察したところ、全面に傷が多数発生している様子が見ら
れ、これらの傷の部分は、画像上に白い点として現われ
た。
【0190】本比較例で使用した疎水性酸化チタン微粒
子Iは、高温で長時間焼成して得られた酸化チタン微粉
体を疎水化処理したものであるため、強度比(Ia /I
b )が大きく、BET比表面も小さく、凝集体を多く含
んでいた。該疎水性酸化チタン微粒子Iをトナー粒子に
外添した場合には、トナーの流動性が十分に得られない
ため、ハイライト再現性レベルが悪く、トナーの帯電量
の良好な制御が困難であった。また、該酸化チタンの微
粒子の凝集体がOPC感光ドラム表面を傷つけたものと
解される。
【0191】比較例5 疎水化酸化チタン微粒子Jを用いることを除いて、実施
例1と同様にして二成分系現像剤を調製し実施例1と同
様の実験を行なったところ、耐久1万枚後ではトナーの
帯電量が低下し、かつ帯電量分布がブロード化したため
画像濃度が上昇し、カブリ及びトナー飛散も発生した。
【0192】また、耐久後のOPC感光ドラム表面に
は、全面に多数の深い傷が生じている様子が観察され、
これらの傷は画像欠陥として現われた。
【0193】本比較例で使用した疎水性酸化チタン微粒
子Jは、アナターゼ型及びルチル型結晶を含有してお
り、強度比(Ia /Ib )が大きいために、BET比表
面積が小さく、凝集体を多数含んでいるために該酸化チ
タン微粒子をトナー粒子に外添した場合には、十分なト
ナーの流動性が得られない上に、OPC感光ドラム表面
を傷つけた。さらには、トナーの帯電量の良好な制御が
困難であり、これらのことが原因となって、上記のよう
な弊害を生じたものと考えられる。
【0194】比較例6 疎水性酸化チタン微粒子Aのかわりに、疎水性シリカ微
粒子(日本アエロジル社(株)製、R972)を使用す
ることを除いて、実施例1と同様にして二成分系現像剤
を調製し、実施例1と同様にして画出し試験をおこなっ
た。
【0195】結果を第2表に示す。
【0196】各評価方法を以下に説明する。
【0197】トナーのOHP透明性 OHP用シートにトナー像を転写し、定着したものをオ
ーバーヘッドプロジェクターで透光し、スクリーン上の
投影像を観察する。A=(良好);スクリーン上の投影
像は鮮明であり、色のくすみも見られない。B=(実用
上問題なし)スクリーン上の投影像は鮮明で、若干色の
くすみが見られるが、実用上問題のないレベルである。
C=(実用上問題あり)スクリーン上の投影像が鮮明性
に欠け、色のくすみが見られ実用上問題となるレベルで
ある。D=(使用不可)スクリーン上の投影像が不鮮明
であり、色のくすみが見られ実用不可能なレベルであ
る。
【0198】カブリ カブリの評価は、東京電色社製REFRECTOMET
ER MODEL TC−6DSを使用して測定し、シ
アントナー画像ではamberフィルターを使用し、下
記式より算出した。数値が小さいほど、カブリが少ない
ことを示す。
【0199】カブリ(反射率)(%)=標準紙の反射率
(%)−サンプルの非画像部の反射率(%)
【0200】A;カブリが1.0%以下であり、良好な
レベルである。 B;1.0%〜2.0%であり、実用上問題のないレベ
ルである。 C;2.0〜4.0%であり、実用上問題となるレベル
である。 D;4.0%以上であり、実用不可能なレベルである。
【0201】トナー飛散 耐久1万枚後の現像装置、本体内現像装置周辺のトナー
による汚れ具合を観察する。 A;現像装置、本体内現像装置周辺のトナーによる汚れ
が全く観察されない。 B;現像装置で微量のトナーによる汚れが観察されるが
実用問題のないレベルである。 C;現像装置、本体内現像装置周辺のトナーによる汚れ
が観察され、実用上問題となるレベルである。 D;現像装置、本体内現像装置周辺がトナーによって著
しく汚れ、本体機能にも悪影響を及ぼし、実用不可能な
レベルである。
【0202】ハイライト再現性 マクベス画像濃度0.3〜0.6の画像を出力し、濃度
の均一性、がさつきの程度を目視により評価する。 A;画像濃度の均一性に優れた良好な出力画像である。 B;画像濃度の均一性にやや欠けるが実用上問題のない
レベルである。 C;画像濃度の均一性が悪く、がさついた出力画像であ
り、実用上問題となるレベルである。 D;画像濃度の均一性が著しく悪く、がさついた出力画
像であり、実用不可能なレベルである。
【0203】感光体表面状態 耐久1万枚後の感光体表面30ヶ所を走査型電子顕微鏡
で観察する。 A;トナー等の付着物、傷が観察されない。 B;トナー等の付着物、傷が数ヶ所で観察されるが、画
像欠陥として現れない程度であり、実用上問題のないレ
ベルである。 C;トナー等の付着物、傷が十数カ所で観察され、画像
欠陥として現れ、実用上問題となるレベルである。 D;トナー等の付着物、傷が多数観察され、著しい画像
欠陥として現れ、実用不可能なレベルである。
【0204】
【表2】
【0205】
【表3】
【0206】
【発明の効果】本発明のトナーは、良好な帯電性、流動
性、転写性を有し、各環境下で高精細且つ高品位な画像
を安定して提供することができる。
【0207】さらに、本発明のトナーは、含有する酸化
チタン微粒子の研磨効果により、長期間の使用において
も感光体表面への付着物が発生せず、また、感光体表面
に付着物が発生した際には、それを研磨、除去するた
め、画像欠陥のない高品位な画像を安定的に提供でき
る。
【図面の簡単な説明】
【図1】本発明に使用する酸化チタン微粒子のX線回折
チャートの一例を示す図である。
【図2】非磁性一成分系トナーを使用する現像装置の一
具体例を示す概略的説明図である。
【図3】二成分系現像剤を使用するフルカラー画像形成
装置の一具体例を示す概略的説明図である。
【符号の説明】
1 潜像保持体(感光ドラム) 2 現像剤担持体(現像スリーブ) 3 ホッパー 4 供給ローラー 5 現像剤塗布ブレード 6 電源 315 転写ドラム 319 OPC感光ドラム

Claims (28)

    【特許請求の範囲】
  1. 【請求項1】 トナー粒子及び疎水性酸化チタン微粒子
    を少なくとも有する静電荷像現像用トナーであり、 該疎水性酸化チタン微粒子は、X線回折において、2θ
    =20.0〜40.0degの範囲における最大強度I
    a と最小強度Ib の強度比(Ia /Ib )が、5.0≦
    a /Ib ≦12.0であることを特徴とする静電荷像
    現像用トナー。
  2. 【請求項2】 疎水性酸化チタン微粒子は、BET比表
    面積が100〜350m2 /gである請求項1のトナ
    ー。
  3. 【請求項3】 疎水性酸化チタン微粒子は、個数平均粒
    径が1〜100nmである請求項1又は2のトナー。
  4. 【請求項4】 疎水性酸化チタン微粒子は、疎水化度が
    40〜90である請求項1乃至3のいずれかのトナー。
  5. 【請求項5】 トナーは、重量平均粒径が3〜9μmで
    ある請求項1乃至4のいずれかのトナー。
  6. 【請求項6】 疎水性酸化チタン微粒子は、X線回折に
    おいて2θ=20.0〜40.0degの範囲内で最大
    強度Ia が2θ=24.0〜26.0dergにあり、
    最小強度Ib が2θ=28.0〜33.0degにある
    請求項1乃至5のいずれかのトナー。
  7. 【請求項7】 疎水性酸化チタン微粒子は、下記式 Rm SiYn 〔式中、Rはアルコキシ基を示し、 mは1〜3の整数を示し、 Yはアルキル基、ビニル基、フェニル基、メタアクリル
    基、アミノ基、エポキシ基、メルカプト基又はこれらの
    誘導体を示し、 nは1〜3の整数を示す〕で示されるシランカップリン
    グ剤で処理されている請求項1乃至6のいずれかのトナ
    ー。
  8. 【請求項8】 疎水性酸化チタン微粒子は、100重量
    部当り1〜60重量部のシランカップリング剤で処理さ
    れている請求項1乃至7のいずれかのトナー。
  9. 【請求項9】 疎水性酸化チタン微粒子は、100重量
    部当り3〜50重量部のシランカップリング剤で処理さ
    れている請求項1乃至7のいずれかのトナー。
  10. 【請求項10】 疎水性酸化チタン微粒子は、下記式 【外1】 〔式中、nは4〜12の整数を示し、mは1〜3の整数
    を示す。〕で示されるアルキルアルコキシシランカップ
    リング剤で処理されている請求項1乃至9のいずれかの
    トナー。
  11. 【請求項11】 疎水性酸化チタン微粒子は、100重
    量部当り1〜60重量部のアルキルアルコキシシランカ
    ップリング剤で処理されている請求項1乃至10のいず
    れかのトナー。
  12. 【請求項12】 疎水性酸化チタン微粒子は、トナー粒
    子100重量部当り、0.1〜5重量部外添されている
    請求項1乃至11のいずれかのトナー。
  13. 【請求項13】 トナーは、個数分布基準で、粒径4μ
    m以下の粒径のトナー粒子を8〜70個数%含有してい
    る請求項1乃至12のいずれかのトナー。
  14. 【請求項14】 トナーは、個数分布基準で、粒径4μ
    m以下の粒径のトナー粒子を10〜60個数%含有して
    いる請求項1乃至12のいずれかのトナー。
  15. 【請求項15】 トナーは、個数分布基準で、5.04
    μm以下の粒径のトナー粒子を10〜90個数%含有し
    ている請求項1乃至14のいずれかのトナー。
  16. 【請求項16】 トナーは、個数分布基準で、5.04
    μm以下の粒径のトナー粒子を15〜80個数%含有し
    ている請求項1乃至のいずれかのトナー。
  17. 【請求項17】 トナーは、体積分布基準で10.08
    μm以上の粒径のトナー粒子を2〜25体積%含有して
    いる請求項1乃至16のいずれかのトナー。
  18. 【請求項18】 トナーは、体積分布基準で10.08
    μm以上の粒径のトナー粒子を3.0〜20.0体積%
    含有している請求項1乃至16のいずれかのトナー。
  19. 【請求項19】 トナーは、凝集度が2〜25%である
    請求項1乃至18のいずれかのトナー。
  20. 【請求項20】 トナーは、凝集度が2〜20%である
    請求項1乃至18のいずれかのトナー。
  21. 【請求項21】 トナーは、凝集度が2〜15%である
    請求項1乃至18のいずれかのトナー。
  22. 【請求項22】 トナー粒子は、少なくとも結着樹脂及
    び着色剤を含有している請求項1乃至21のいずれかの
    トナー。
  23. 【請求項23】 トナー粒子は、非磁性カラートナー粒
    子である請求項1乃至22のいずれかのトナー。
  24. 【請求項24】 トナー粒子は、非磁性シアントナー粒
    子である請求項1乃至22のいずれかのトナー。
  25. 【請求項25】 トナー粒子は、非磁性マゼンタトナー
    粒子である請求項1乃至22のいずれかのトナー。
  26. 【請求項26】 トナー粒子は、非磁性イエロートナー
    粒子である請求項1乃至22のいずれかのトナー。
  27. 【請求項27】 結着樹脂は、ポリエステル樹脂である
    請求項1乃至26のいずれかのトナー。
  28. 【請求項28】 疎水性酸化チタン微粒子は、メタチタ
    ン酸粒子を分散している水系媒体中にシランカップリン
    グ剤を添加し、メタチタン酸粒子を疎水化し、疎水化さ
    れたメタチタン酸粒子を水系媒体から分離後に加熱処理
    することにより生成されたものである請求項1乃至27
    のいずれかのトナー。
JP31823997A 1996-11-19 1997-11-19 静電荷像現像用トナー Expired - Fee Related JP3748486B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31823997A JP3748486B2 (ja) 1996-11-19 1997-11-19 静電荷像現像用トナー

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-307713 1996-11-19
JP30771396 1996-11-19
JP31823997A JP3748486B2 (ja) 1996-11-19 1997-11-19 静電荷像現像用トナー

Publications (2)

Publication Number Publication Date
JPH10207117A true JPH10207117A (ja) 1998-08-07
JP3748486B2 JP3748486B2 (ja) 2006-02-22

Family

ID=26565236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31823997A Expired - Fee Related JP3748486B2 (ja) 1996-11-19 1997-11-19 静電荷像現像用トナー

Country Status (1)

Country Link
JP (1) JP3748486B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198064A (ja) * 1997-01-13 1998-07-31 Fuji Xerox Co Ltd 画像形成方法
JP2003098732A (ja) * 2001-09-20 2003-04-04 Ricoh Co Ltd 静電荷現像用トナー及び画像形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198064A (ja) * 1997-01-13 1998-07-31 Fuji Xerox Co Ltd 画像形成方法
JP2003098732A (ja) * 2001-09-20 2003-04-04 Ricoh Co Ltd 静電荷現像用トナー及び画像形成方法

Also Published As

Publication number Publication date
JP3748486B2 (ja) 2006-02-22

Similar Documents

Publication Publication Date Title
EP0843224B1 (en) Toner for developing electrostatic image
JP5471680B2 (ja) 静電荷像現像用キャリア、静電荷像現像剤、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP3652161B2 (ja) トナー
JP4000209B2 (ja) 静電潜像現像剤用トナー、静電潜像現像剤用トナーの製造方法、静電潜像現像剤、および画像形成方法
JP4113304B2 (ja) 画像形成方法、トナー、及び、画像形成装置
JP2675950B2 (ja) 静電荷像現像用トナー
JP3030603B2 (ja) 静電荷像現像用トナー
JP2009069259A (ja) 2成分現像剤とそれを用いた画像形成方法及び画像形成装置
JPH086286A (ja) カラートナー及び現像剤
JP3748486B2 (ja) 静電荷像現像用トナー
JP4227276B2 (ja) 樹脂被覆キャリア、二成分系現像剤及び画像形成方法
JP4311053B2 (ja) 静電潜像現像用乾式トナー、現像剤及び画像形成方法
JPH0675430A (ja) カラートナー、カラー現像剤及び画像形成方法
JP2000131873A (ja) トナー
JP3937882B2 (ja) トナー
JP3066942B2 (ja) 電子写真用キャリア、二成分系現像剤及び画像形成方法
JP3198367B2 (ja) トナー
JPH11194527A (ja) 電子写真用トナー
JPH09304961A (ja) 一成分系現像剤及び画像形成方法
JP3284486B2 (ja) 電子写真用トナー
JP2003029448A (ja) トナー
JPH10115947A (ja) 非磁性一成分系現像剤および画像形成方法
JP3445043B2 (ja) 静電荷像現像用負帯電性カラートナー
JP3950572B2 (ja) 電子写真用トナー
JPH10133414A (ja) 画像形成方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040927

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees