JPH10156175A - 超臨界水酸化装置の起動方法、停止方法 - Google Patents

超臨界水酸化装置の起動方法、停止方法

Info

Publication number
JPH10156175A
JPH10156175A JP8321692A JP32169296A JPH10156175A JP H10156175 A JPH10156175 A JP H10156175A JP 8321692 A JP8321692 A JP 8321692A JP 32169296 A JP32169296 A JP 32169296A JP H10156175 A JPH10156175 A JP H10156175A
Authority
JP
Japan
Prior art keywords
supply
supercritical water
organic substance
temperature
decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8321692A
Other languages
English (en)
Other versions
JP3345285B2 (ja
Inventor
Taro Oe
太郎 大江
Akira Suzuki
明 鈴木
Osamu Takahashi
治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18135365&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10156175(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP32169296A priority Critical patent/JP3345285B2/ja
Publication of JPH10156175A publication Critical patent/JPH10156175A/ja
Application granted granted Critical
Publication of JP3345285B2 publication Critical patent/JP3345285B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】 【課題】 有害な有機物を閉鎖系内で完全に酸化分解し
て系外に排出することがない超臨界水酸化法を提供す
る。 【解決手段】 超臨界水酸化装置を起動させるにあた
り、有害有機物を超臨界水酸化の条件が整った状態とす
るため、反応器7内を酸化分解に適した設定圧力(臨界
圧以上)とした後に、初めに、酸化分解性の高い無害な
有機炭素を空気,超臨界水と共に供給して器内温度を昇
温させ、次いで、器内温度が臨界温度以上の所定温度に
達してから、有害有機物を反応器に供給開始する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、有機物の超臨界水
酸化に適用する新規な方法、特に、有害な廃棄物・廃液
や難分解性の廃乗物・廃液などの有機物を超臨界水酸化
により酸化分解するのに適した方法に関し、詳しくは超
臨界水酸化装置を起動あるいは停止させる方法に関す
る。
【0002】
【従来技術】本発明が対象の一つとする、例えば有害有
機物や難分解性有機物等を分解処理する分野では、近時
その処理が社会的に大きな問題となりつつあり、その理
由の一つに有機物の完全分解ができるかどうかという点
がある。
【0003】従来、有害有機物の処理は燃焼法で処理さ
れてきているが、この燃焼法では炉内に低温部分が存在
する場合のあることが無視できず、部分的に燃焼不十分
で分解不十分となる場合がある。このような場合、例え
ば塩素化合物等が分解対象であると、ダイオキシン等の
毒性の強い物質を生成してしまう危険性がある。また燃
焼法の最終生成物は、通常、排気筒から大気へと拡散さ
れるため、万一前記毒性の物質が生成した場合には問題
が広域化してしまう虞れもある。
【0004】このようなことから、例えば、各種の熱媒
や絶縁油として従来大量に使用されていたが、その後毒
性が確認されて生産及びその使用が禁止されたPCBs
は、その処理・処分が強く求められているにも拘らず、
現在認められている燃焼法での処理はあまり進展してお
らず、その所以は、上述した燃焼生成物に有害有機物が
含まれて大気拡散されるという潜在的な虞れにあるとい
われている。
【0005】以上のようなことを背景として、有害な廃
棄物・廃液、特に難分解性の物質については閉鎖系(ク
ローズド系)で完全な分解処理が求められており、この
ような処理を実現する方法として近年超臨界水酸化法が
注目されている。
【0006】超臨界水酸化法は、水の超臨界条件下(3
74℃以上、22MPa以上)の水を分解反応の媒体と
して利用することによって有機物を水と二酸化炭素など
に完全分解する方法であり、反応は熱分解、加水分解及
び酸化分解(以下「酸化分解」の語で総称する)が同時
に進行して閉鎖系内で有機物を完全分解すると共に、非
常に大きな反応速度を達成することができる特徴のある
ことが知られており、例えば特公平1−38532号公
報によって、水の臨界点を越えた条件で超臨界水酸化技
術の基本原理が示され、またフローも示されている。
【0007】その基本的なフローを簡単にいえば、基本
的要素は、超臨界水酸化の反応を行う反応器、この反応
器に分解対象有機物を含む所定の物質を供給する供給
系、反応器から生成物を排出する排出系の三つの部分で
説明され、このうちの物質の供給系は、上記公報提案で
は、分解対象有機物をフィードポンプで昇圧しエジェク
ターで超臨界水と混合し、加熱した後反応器に導入する
ようにして構成される。反応器は、酸化剤としての高圧
空気を空気圧縮機から導入させて超臨界水条件下で分解
対象物を酸化分解するようにして構成される。生成物排
出系は、酸化分解後の超臨界水の一部を前記エジェクタ
ーに再循環し、残りを例えばタービンを回すエネルギー
源に利用してエネルギー回収を行うように構成される。
ただしこの公報提案には、反応器の具体的な構成は詳述
されておらず、管式、円筒式及び流動床式のものが採用
できることが概略的に説明されているにすぎない。
【0008】前記反応器の構成としては、細長い管の始
端側から分解対象物,超臨界水,酸化剤を注入し、終端
側から分解生成物を排出するようにしたワンパス型の管
式(パイプ型)反応器が代表的なものとして知られ、ま
たこれとは別に、ベッセル型構造のものも特開平3−5
00264号公報で提案されている。
【0009】ベッセル型反応器は、構造簡単なために有
利と考えられている管式(パイプ型)反応器での問題、
すなわち無機塩を含むか或いは反応後に無機塩を生成す
る有機廃液を分解対象とした場合の課題解決のために提
案されたものである。つまり難分解性有機物や有害有機
物の処理対象物は多くの場合、塩素や硫黄、さらには窒
素,リンを含んでおり、これらの物質を超臨界水酸化処
理すると含有成分に由来して酸(塩酸、硫酸、硝酸及び
リン酸)を生成するから、酸から反応器材等を保護する
ためにアルカリで中和することが考えられ、その結果と
して無機塩(代表的にはNaCl)が生成する。しかし
この塩は超臨界水にはほとんど溶解しないことが知ら
れ、従って前記パイプ型反応器では、中和で生成する塩
によって必ずパイプ閉塞という問題を引き起こしてしま
う。そこで前記の特開平3−500264号では、酸中
和の操作で生ずる塩により閉塞問題が生じないように工
夫した反応器、具体的には筒状反応器を縦型に設置して
ベッセル型とすると共に、器内上部に超臨界ゾーンを形
成させかつ器内下部に亜臨界ゾーンを形成させ、上部の
超臨界ゾーンで析出した無機塩を密度差で下向きに移動
させて亜臨界ゾーンで亜臨界水に溶解させることで、超
臨界水酸化反応で生成した生成物中の大部分である超臨
界水,CO2 と、付着及び閉塞の原因物質となる塩とを
器内で分離できるようにした構成をなす。
【0010】上記提案は、難分解性の有機物、特に難分
解性で有害な有機物を完全分解して無害化するためには
有益な提案である。
【0011】ところで、工業的規模の装置で実際の実施
をする場合は、様々な条件変動の影響を受けるのが普通
であって、必ずしも常に分解を行う条件が整った理想的
条件下で処理が行われるものではない。例えば、装置起
動時には、反応器内が分解対象有機物の完全酸化分解に
適した水の臨界温度(374℃)以上の設定温度まで昇
温させる過程が必要であり、この昇温過程では上記の理
想的な条件が整っているとは言えない。
【0012】反応器内の昇温方法としては、電気ヒータ
等の加熱手段を用いて加熱する方法と、分解対象有機物
の酸化分解による発熱で昇温させる方法とが考えられ
る。しかし、前者では、反応器を直接加熱する方式は実
験室レベルの小型装置では可能であっても工業的規模の
大型装置では現実性がない。また、供給する物質を加熱
する間接方式も、例えば分解対象有機物を高温に加熱す
るようにすると重合等により配管の閉塞やチャーリング
を起こす問題があり、高温の超臨界水との混合で分解対
象有機物を加熱するのでは極めて高温の超臨界水が大量
に必要になってしまうため、同様に工業的規模の装置で
は適当でないし、エネルギーコストの点からも実用化が
困難である。
【0013】前記後者の有機物の発熱を利用して昇温す
る方式では、分解対象有機物の発熱で昇温する途中に理
想的な条件が整っていない昇温過程が存在することが避
けられない。この問題を低減するために、昇温過程に強
力な酸化剤を供給して時間を短縮することが考えられる
が、時間を短縮しても昇温過程で未分解物や分解過程の
副生成物を生じてこれが系外に排出される虞れは理論的
に避けられない。
【0014】なお以上の問題は、分解対象有機物の種類
により要求される条件は一律でないにしても、分解が必
ずしも容易でない難分解性の有機物において顕著であ
る。
【0015】また、装置を停止させる際には、分解対象
有機物の供給を停止することで酸化分解による発熱が急
速に低下し、装置の冷却に伴って供給終期の分解対象有
機物を酸化分解する条件が整わない状態が現われ、前記
未分解物や副生成物が系外に排出される虞れがある。
【0016】
【発明が解決しようとする課題】本発明者は、以上のよ
うな従来技術において、装置の起動から停止するまでに
渡って分解対象有機物の完全分解を実現でき、例えば有
害有機物の分解処理においては未分解物や副生物の系外
排出の不安を払拭することができて、極めて安全に有機
物を完全分解できる処理設備を提供することを究極的な
目的として本提案をするものである。
【0017】すなわち本発明は、概念的には有害有機物
の完全分解を実現できる超臨界水酸化設備システムにお
いて、超臨界水酸化の条件が整わない場合が考えられる
装置の起動時あるいは停止時に有害有機物等が排出する
虞れをなくし、有害物等の排出の危険性がなくて極めて
安全な処理が実現できる方法を提供するものである。本
発明の別の目的は、分解対象有機物を水の超臨界点を越
えた所定の設定温度に加熱するのに必要な設備的負担を
軽減し、また装置を定常運転状態に速やかに立ち上げる
ことができる工業的規模の超臨界水酸化装置に適した起
動方法を提供するところにある。
【0018】本発明の更に別の目的は、操業を停止させ
る運転終期に、温度が定常運転時から漸次低下すること
に伴う条件変動によって分解対象有機物が完全分解せず
に系から排出されることがないようにした工業的規模の
超臨界水酸化装置に適した停止方法を提供するところに
ある。
【0019】
【課題を解決するための手段】本願発明は、上述した特
許請求の範囲の請求項1ないし5に記載した起動方法、
及び請求項6ないし9に記載した停止方法を特徴とす
る。
【0020】請求項1に記載した超臨界水酸化装置の起
動方法の発明は、超臨界水酸化を行う反応器を備えた装
置を起動させるにあたり、分解対象有機物を超臨界水雰
囲気中で酸化分解させるための反応器内に、初めに、起
動時昇温用有機物を酸化剤及び超臨界水の存在下に供給
して超臨界水酸化させることで該器内を水の臨界温度以
上(374℃以上)の所定温度に上昇させ、この所定温
度を越えた器内に対して前記分解対象有機物の供給を開
始することを特徴とする。
【0021】前記方法を実施するための超臨界水酸化装
置は、上述した超臨界水酸化を行う反応器、分解対象有
機物,酸化剤,超臨界水及びその他の必要な物質(例え
ば中和剤)を反応器に供給する供給系、反応器で分解さ
れたガス,水及びその他の物質(無機粒子等)を排出す
る排出系の三要素を基本として構成されるものであり、
その他各要素に対して付属装置(熱交換器,加熱装置
等)や周辺装置(監視装置,制御装置等)が必要に応じ
て設備される。前記酸化剤としては、空気,酸素等のガ
ス、あるいは過酸化水素溶液等の液体を用いることがで
きる。反応器は、超臨界水酸化を行うためのものであれ
ば限定されることなく用いられ、上述した管式タイプ
(パイプ型)、ベッセル型のものが例示される。
【0022】上記において「起動」というのは、装置を
停止状態から、予め定めた水の臨界点を越えた設定圧
力,設定温度で定常運転される状態にまで昇温させる過
程をいう。分解対象有機物を酸化分解処理するために設
定される圧力は、有機物の種類にもよるが、一般的には
22〜50MPa、好ましくは22〜25MPaであ
り、同様に設定温度は一般的には400℃以上、好まし
くは600〜650℃とされるのが適当である場合が多
いが、いずれも限定されるものではない。超臨界水酸化
の反応時間は、一般的には1〜10分、好ましくは1〜
2分程度である。
【0023】上記発明方法の特徴は、起動にあたって、
初めに、起動時昇温用有機物を反応器に供給することに
ある。なお供給の方式としては、分解対象有機物を反応
器に供給する配管,ノズル等とは別に設けた供給用配
管,ノズル等を用いることもできるし、分解対象有機物
の供給用配管の途中に起動時昇温用有機物を供給用配管
を合流させるようにして配管,ノズルを共用することも
できる。前記の「起動時昇温用有機物」は、未分解物や
分解途中のまま系外に排出されることがあっても環境汚
染等の問題がない有害性のない有機化合物が採用され、
装置の起動初期に反応器内の温度を速やかに昇温させる
のに適した物質としては、常温で液体ないし水溶性であ
り、完全酸化分解し易く且つ発熱量が大きな有機物、限
定されるものではないが例えばn−ヘキサン等の直鎖状
ハイドロカーボン、ベンゼン等の環状ハイドロカーボ
ン、イソプロピルアルコール等のアルコール類、ブドウ
糖等の糖類などの有機炭素を好ましいものとして例示で
きる。
【0024】また、上記発明方法のもう一つの特徴は、
起動時昇温用有機物の酸化分解により所定温度を越える
ように昇温された器内に対して、分解対象有機物の供給
を開始するところにある。
【0025】前記の「所定温度」は、分解対象有機物を
反応器に供給開始したときにその完全分解が行われる臨
界温度(374℃)以上の温度、例えば限定されるもの
ではないが、分解対象有機物に応じて決められる定常運
転時の設定温度近傍の温度とするのが好ましい場合が多
い。
【0026】上記発明によれば、定常運転時の設定温度
に至っていない装置起動初期の反応器内を、起動時昇温
用有機物の超臨界水酸化による発熱反応で速やかに昇温
させることができる。したがって、分解対象有機物を起
動初期から供給する方式ではこれが反応器内で完全分解
する温度まで加熱するのに、強力な電気ヒータ等の加熱
手段が必要になったり、超臨界水との混合で分解対象有
機物を昇温させるには極めて高温でかつ大量の超臨界水
が必要であるなど、工業的規模の実施設備では負担の大
きい不具合を回避できる。また、この起動時昇温用有機
物として有害性のない有機化合物を用いることで、起動
初期に条件が整わない不十分な状態のために仮に未分解
物や副生成物が系外に排出されても環境汚染の不具合も
招くことがない。
【0027】請求項2の発明は、分解対象有機物が、有
害物質又は難分解性物質であることを特徴とする。
【0028】このような有害物質又は難分解性物質の廃
棄物・廃液としては、残留性有機汚染物質(POPs:
Persistent Organic Pollutants )或いは残留性有害生
物蓄積物質(PTBs:Persistent Toxic Bio-accumla
tives )などを挙げることができ、その代表的な物質と
しては、環境基準において有害物質指定されているPC
Bs,トリクロロエチレン、テトラクロロエチレン、廃
農薬等の有機塩素化合物を挙げることができる。また、
塩素のほかにもハロゲン化物は一般に難分解性であり、
有機臭素化合物等も処理対象となる。さらに、各種の工
場における生産工程からは様々な硫黄化合物、窒素化合
物、リン化合物等が排出され、これらも完全な分解が望
まれる。
【0029】この発明によれば、上述したように、超臨
界水酸化の条件が不十分となり易い装置の起動初期には
有害物質や難分解性物質を反応器に供給せず、起動時昇
温用有機物の超臨界水酸化による発熱反応で速やかに昇
温させた後の反応器に該有害物質や難分解性物質を供給
するので、これらの有機物の完全分解が確実に実現され
る。
【0030】請求項4の発明は、分解対象有機物の供給
開始と共に、起動時昇温用有機物の供給を停止すること
を特徴とし、また請求項5の発明は、分解対象有機物の
供給開始と起動時昇温用有機物の供給停止の切替えを、
分解対象有機物の量を徐々に供給増大させながら、起動
時昇温用有機物の量を徐々に供給減少させて行うことを
特徴とする。
【0031】装置起動時における分解対象有機物の供給
開始と起動時昇温用有機物の供給停止の切替えは、瞬時
に切替えるようにして行うこともできるが、一方の供給
を徐々に減少し、他方の供給を徐々に増大させるように
した上記後者の発明方法によれば、超臨界水酸化反応に
よる発熱量の経時的変動を小さくできるので、安定した
装置起動を実現することができる。
【0032】請求項6に記載した超臨界水酸化装置の停
止方法の発明は、稼働している超臨界水酸化装置を停止
させるにあたり、酸化剤及び超臨界水の供給を継続しな
がら分解対象有機物の供給を停止すると共に、停止時温
度維持用有機物の反応器への供給を開始することを特徴
とする。
【0033】前記において「停止時温度維持用有機物」
は、未分解物や分解途中のまま系外に排出されることが
あっても環境汚染等の問題がない有害性のない有機化合
物が用いられ、上述した起動時昇温用有機物と同じも
の、例えば有機炭素等を用いることができる。
【0034】この発明によれば、超臨界水酸化の条件が
不十分となり易い装置の停止時の終期には有害物質や難
分解性物質を反応器に供給せず、停止時温度維持用有機
物を供給して超臨界水酸化を継続するので、その発熱反
応により分解処理終期における分解対象有機物を反応器
内で完全分解するのに必要な温度状態を維持できる。し
たがって強力な電気ヒータ等の加熱装置を利用したり、
極めて高温でかつ大量の超臨界水を供給する必要がな
く、工業的規模の実施設備では負担の大きい不具合を回
避できる。
【0035】また、この停止時温度維持用有機物として
実質的に無害な有機化合物を用いるので、停止時におけ
る条件不十分なために仮に未分解物や副生成物が系外に
排出されても環境汚染の不具合も招かない。したがっ
て、この発明は、上述した起動時における有害有機物等
を分解対象とした場合の不具合がないのと同様の理由
で、有害物質又は難分解性物質を分解対象有機物とした
場合にこれらの未分解物や副生成物が系外に排出されな
いので、工業的に実施する場合に有効である。
【0036】請求項8の発明は、停止時温度維持用有機
物の供給を、供給終期の分解対象有機物が反応器内に滞
留する時間以上行うことを特徴とする。
【0037】この発明によれば、特に有害有機物の未分
解物や副生成物の系外排出を確実に防止できる。
【0038】請求項9の発明は、分解対象有機物の供給
停止と停止時温度維持用有機物の供給開始の切替えを、
分解対象有機物の量を徐々に供給減少させながら、停止
時温度維持用有機物の量を徐々に供給増大させて行うこ
とを特徴とする。
【0039】装置停止時における分解対象有機物の供給
停止と停止時温度維持用有機物の供給開始の切替えは、
瞬時に切替えるようにして行うこともできるが、一方の
供給を徐々に減少し、他方の供給を徐々に増大させる上
記発明によれば、超臨界水酸化による発熱反応の変動を
小さくできるので、変動の少ない安定した装置停止を実
現することができる。
【0040】請求項10の発明は、前記した本発明の起
動方法により装置を起動し、同様に本発明の停止方法に
より装置を停止させるようにして超臨界水酸化装置を運
転することを特徴とする。
【0041】この発明によれば、装置の起動から定常運
転を経て停止に至る全過程で、超臨界水酸化の条件が整
った状態で分解対象有機物の超臨界水酸化を行うことが
できるので、特に未分解物や副生成物の系外排出の防止
が極めて重要な有害有機物や難分解性有機物の分解処理
を有効に行うことができる。
【0042】
【発明の実施の形態】以下、本発明の好ましい実施形態
を図面に基づいて説明する。
【0043】実施形態1 図1は、本例の超臨界水酸化装置の構成概要を模式図的
に示したものであり、この図において、7は耐圧密閉式
のベッセル型(縦円筒型)反応器を示し、その内部は上
部側略2/3の範囲が水の超臨界条件に維持される超臨
界領域8、下部側が水の臨界温度よりも低い温度に維持
される亜臨界領域9とされる。
【0044】そしてこのベッセル型反応器7の上部中央
には、超臨界水酸化の反応に供する流体を該反応器7内
に噴出供給するノズル71が設けられていると共に、こ
のノズル71に連なる流体供給配管72が接続されてい
る。
【0045】この流体供給配管72には、分解対象有機
物として、例えば塩素を含んだ有害有機物の流体を給送
するための有機物供給ライン2、酸化剤としての給気を
給送するための空気供給ライン1、超臨界水を給送する
ための超臨界水供給ライン4が合流するように接続さ
れ、これらの流体の均一な混相をノズル71を通して反
応器7内に噴霧供給することができるようになってい
る。
【0046】有機物供給ライン2には、有機物に含まれ
る塩素によって反応器内のpHが低下することを防ぐた
めの中和剤(アルカリ)を途中で添加する中和剤添加ラ
イン3が接続されている。
【0047】5は、超臨界水酸化により生成された分解
生成物のうちの密度の低いガス(CO2 ,N2 等)や超
臨界水を排出するための処理流体排出ラインであり、一
端が反応器7の上端部に接続され、途中の冷却装置、減
圧装置,気液分離装置(いずれも図示せず)などを介し
て処理流体を系外に排出するようになっている。
【0048】6は、超臨界水酸化により生成された分解
生成物のうちの密度の高い物質を排出するための亜臨界
水排出ラインであり、一端が反応器7の下端部に接続さ
れていると共に、途中の冷却装置、減圧装置、気液分離
装置(いずれも図示せず)などを介して塩含有の亜臨界
水をブラインとして系外に排出するようになっている。
【0049】また、本例の超臨界水酸化装置において
は、上記の有機物供給ライン2の途中に開閉弁21が設
けられていると共に、この開閉弁21の下流位置に、起
動時昇温用有機物の補助有機物供給ライン10が合流す
るように接続され、この補助有機物供給ライン10の途
中には開閉弁11が介設されている。なお、前記起動時
昇温用有機物及びその供給のための補助有機物供給ライ
ン10は、停止時温度維持用有機物及びその供給ライン
として共用される。
【0050】以上のように構成した超臨界水酸化装置の
本例における起動は次のように行われる。
【0051】(起動手順) (1): 停止状態の装置において開閉弁21が閉じてい
ることを確認し、まず高圧ポンプ(図示せず)により,
分解対象有機物(本例では塩素を含む所定の有害有機
物)の超臨界水酸化のために設定した圧力(水の超臨界
点を越えた圧力;例えば25MPa)に加圧した空気
を、空気供給ライン1から反応器7に供給し、反応器7
内をその圧力に維持する。
【0052】(2): 次に、水を電気ヒータ等の加熱手
段で加熱して超臨界水とし、供給ポンプ(図示せず)に
より超臨界水供給ライン4から反応器7に供給する。
【0053】(3): 上記(2) の超臨界水の供給によ
り、反応器7内の温度が設定温度以上であることを確認
する。
【0054】なお設定温度とは起動時昇温用有機物が酸
化分解する温度であり、通常は水の臨界温度かまたはそ
れ以上の温度を設定温度とすることが好ましい。しかし
設定温度が臨界温度以下であっても起動時昇温用有機物
の供給により酸化分解が開始され、この酸化分解により
温度が上昇して反応器内の温度が臨界温度以上に維持さ
れる場合は、設定温度を臨界温度以下とすることができ
る。
【0055】(4): 上記確認の後、開閉弁21を閉じ
たまま、開閉弁11を開いて起動時昇温用有機物を供給
ポンプ(図示せず)により補助有機物供給ライン10か
ら反応器7に供給し、この起動時昇温用有機物の超臨界
水酸化の発熱により反応器7内の温度を水の臨界温度以
上に昇温させる。
【0056】(5): 上記(4) の操作に伴って処理流体
排出ライン5から排出されるガス中のCO濃度を測定す
ると共に、処理流体排出ライン5から排出される排出液
及び亜臨界水排出ライン6から排出される排出液中のT
OC濃度を測定し、これらの測定値が予め設定した設定
値を下回るまで上記(4) の操作を継続する。
【0057】(6): 上記(5) の測定値が設定値を下回
った時点で、開閉弁11を閉じ且つ開閉弁21を開く操
作を瞬時に行うか、あるいは、開閉弁11を徐々に閉じ
ながら開閉弁21を徐々に開く操作を行い、起動時昇温
用有機物の供給を止めると共に、有害有機物の供給を供
給ポンプ(図示せず)により有機物供給ライン2を通じ
て行う。なお、この際に同時に中和剤の添加も並行して
行う。この操作の後、有害有機物の供給と中和剤の添加
を継続して行い、該有害有機物を超臨界水酸化する定常
運転を継続する。
【0058】以上の手順で行われる起動操作において、
上記(4) で反応器7内の温度が設定温度以上であること
を確認するのは、起動時昇温用有機物の酸化が超臨界水
酸化条件下で速やかに行われるようにするためである。
【0059】また上記(5) でCO濃度、TOC濃度を測
定するのは、これらの濃度が高ければ反応器7内の超臨
界水酸化が未だ完全分解(酸化)の条件に整っていない
不十分な状態にあることを意味するから、反応器7内が
超臨界水酸化の条件が整った状態を示す値(例えばCO
濃度の検出濃度が10ppm未満、TOC濃度の検出濃
度が1ppm未満)となった時点以降に、次段(6) の有
害有機物(分解対象有機物)の供給に切り替えるように
することで、有害有機物が未分解物,副生成物として系
外に排出されない完全分解が達成される状態を確保でき
たことの目安となるからである。
【0060】なおこのCOの測定は、例えば赤外線CO
計(島津製URA−207)を用いることができ、TO
Cの測定は、例えば燃焼−赤外線式TOC計(島津製T
OC−500)を用いることができる。また排出ガス,
排出水中のCO,TOCを測定することに代えて上記
(4) の操作を所定時間継続する時間管理で同様の有害有
機物の完全分解の条件が整うように管理することもでき
る。
【0061】実施形態2 実施形態1により起動−定常運転された上記超臨界水酸
化装置の停止は次のようにして行われる。
【0062】(停止手順) (7): 定常運転状態の超臨界水酸化装置の開閉弁21
を閉じ且つ開閉弁11を開く操作を瞬時に行うか、ある
いは、開閉弁21を徐々に閉じながら開閉弁11を徐々
に開く操作を行い、これによって有害有機物(分解対象
有機物)の供給を停止すると共に、停止時温度維持用有
機物を供給ポンプ(図示せず)により補助有機物供給ラ
イン10から反応器7に供給するように切り替え、この
停止時温度維持用有機物の供給を、前記有害有機物の最
終供給部分が反応器7に滞留するより長い所定時間に渡
って継続する。なお中和が必要でなくなる時点で中和剤
の供給も停止する。
【0063】(8): 上記(7) の所定時間を経過した後
に、停止時温度維持用有機物の供給を停止する。ただ
し、空気及び超臨界水の供給は停止時温度維持用有機物
の最終供給部分が反応器7に滞留するより長い所定時間
に渡って供給継続した後、停止する。
【0064】(9): 上記(8) の所定時間を経過した後
に、空気及び超臨界水の供給を停止する。
【0065】(10): 冷却水を一定時間供給した後、全
システムを停止する。
【0066】以上の手順で行われる停止操作により、反
応器7内における有害有機物の完全分解(酸化)の超臨
界水酸化の条件が整っている状態を維持して装置稼働を
継続するので、有害有機物が未分解物,副生成物として
系外に排出されない状態が確保される。
【0067】実施形態3 図3は、本例の超臨界水酸化装置の構成概要を模式図的
に示したものであり、この図において、107は耐圧管
式(パイプ式)の螺旋状に巻かれた反応器を示し、その
内部は一端側から供給される有機物の酸化反応による発
熱のある一定長の範囲が水の超臨界条件に維持される超
臨界領域となり、その下流側は漸次温度が低下して水の
臨界温度よりも低い温度の亜臨界領域となる。
【0068】そしてこの管式反応器107の一端(図の
上端)部には、超臨界水酸化の反応に供する流体を該反
応器7内に噴出供給するノズル(図示せず)が設けられ
ていると共に、このノズルに連なる流体供給配管72が
接続されている。
【0069】この流体供給配管72には、分解対象有機
物として、分解対象有機物の流体を給送するための有機
物供給ライン2、酸化剤としての空気を給送するための
空気供給ライン1、超臨界水を給送するための超臨界水
供給ライン4が合流するように接続され、これらの流体
の均一な混相をノズルを通して反応器107内に噴霧供
給することができるようになっている。
【0070】なお分解対象有機物が塩素等の酸生成物質
を含む場合には、有機物供給ライン2に、有機物に含ま
れる塩素によって反応器内のpHが低下することを防ぐ
ための中和剤(アルカリ)を途中で添加する中和剤添加
ラインを接続するようにしてもよく、この場合には塩の
反応器内壁への付着性が低いカリウムアルカリ物を中和
剤として用いることが好ましい。
【0071】105は、管式反応器107の他端(図の
下端)に接続されて超臨界水酸化により生成された分解
生成物を排出するための処理流体排出ラインであり、気
液分離装置120を介して、処理流体は密度の低いガス
(CO2 ,N2 等)の排ガスライン121と、排水ライ
ン122を介して処理流体を系外に排出するようになっ
ている。なお前記処理流体排出ライン途中には適宜冷却
装置、減圧装置等が設けられる。
【0072】また、本例の超臨界水酸化装置において
は、上記の有機物供給ライン2の途中に開閉弁21が設
けられていると共に、流体供給配管72に、起動時昇温
用有機物の補助有機物供給ライン10が合流するように
接続され、この補助有機物供給ライン10の途中には開
閉弁11が介設されている。なお、前記起動時昇温用有
機物及びその供給のための補助有機物供給ライン10
は、停止時温度維持用有機物及びその供給ラインとして
共用される。
【0073】以上のように構成した管式反応器を有する
本例装置の起動は、以下のように実施形態1と同じ手順
で行うことができる。
【0074】(起動手順) (1)´: 停止状態の装置において開閉弁21が閉じて
いることを確認し、まず高圧ポンプ(図示せず)によ
り,分解対象有機物の超臨界水酸化のために設定した圧
力(水の超臨界点を越えた圧力;例えば25MPa)に
加圧した空気を、空気供給ライン1から反応器107に
供給し、反応器107内をその圧力に維持する。
【0075】(2)´: 次に、水を電気ヒータ等の加熱
手段で加熱して超臨界水とし、供給ポンプ(図示せず)
により超臨界水供給ライン4から反応器107に供給す
る。
【0076】(3)´: 上記 (2)´の超臨界水の供給に
より、反応器107内の温度が設定温度以上であること
を確認する。
【0077】(4)´: 上記確認の後、開閉弁21を閉
じたまま、開閉弁11を開いて起動時昇温用有機物を供
給ポンプ(図示せず)により補助有機物供給ライン10
から反応器107に供給し、この起動時昇温用有機物の
超臨界水酸化の発熱により反応器107内の温度を昇温
させる。
【0078】(5)´: 上記 (4)´の操作に伴って処理
流体排出ライン105から排出され、気液分離されて排
ガスライン121から排出される排ガス中のCO濃度を
測定すると共に、排水ライン122から排出される排水
中のTOC濃度を測定し、これらの測定値が予め設定し
た設定値を下回るまで上記 (4)´の操作を継続する。
【0079】(6)´: 上記 (5)´の測定値が設定値を
下回った時点で、開閉弁11を閉じ且つ開閉弁21を開
く操作を瞬時に行うか、あるいは、開閉弁11を徐々に
閉じながら開閉弁21を徐々に開く操作を行い、起動時
昇温用有機物の供給を止めると共に、有害有機物の供給
を供給ポンプ(図示せず)により有機物供給ライン2を
通じて行う。この操作の後、超臨界水酸化する定常運転
を継続する。
【0080】上記 (5)´でCO濃度、TOC濃度を測定
するのは実施形態1と同様の理由であり、また、排出ガ
ス中のCO、排水中のTOCを測定することに代えて、
上記(4)´の操作を所定時間継続する時間管理で同様の
有機物完全分解の条件が整うように管理することもでき
る。
【0081】この管式反応器107を有する超臨界水酸
化装置の停止操作は、上記実施形態2と同様にして行う
ことができる。
【0082】
【実施例】
実施例1 図1に示した超臨界水酸化装置を用い、実施形態1の起
動方法を以下の条件で実施し、その結果を図2に示し
た。
【0083】反応装置の仕様:ベッセル型 内径: 250mm 高さ: 1329mm 容量: 約65L(リットル) 定常運転時の超臨界条件 温度: 650℃ 圧力: 25MPa 超臨界水 温度: 600℃ 供給量: 200リットル/Hr 酸化剤: 空気 供給量: 90Nm3 /Hr 起動時昇温用有機物 イソプロピルアルコール(20wt%)(以下「IP
A」と略記する) 供給量: 40リットル/Hr 分解対象有機物 廃油 供給量: 6リットル/Hr 以上の条件の下で、開閉弁21を閉じていることを確認
してから、加圧空気を供給して反応器7内を水の臨界圧
以上(25MPa)とし、超臨界水の供給を開始し、反
応器7内の温度が400℃を越えたことを確認した1時
間後に、開閉弁11を開いてIPAの供給を開始し、更
に排ガス中のCO濃度が10ppm未満及び排水中のT
OC濃度が1ppm未満となっているIPA供給開始か
ら3時間後に、分解対象有機物の供給を開始すると共
に、瞬時にIPAの供給を停止した。
【0084】以上の手順で行った装置起動時の反応器7
内の圧力及び温度の変化、排ガス中のCO濃度,排水中
のTOC濃度の変化を測定した結果を示す図2から、I
PAを供給開始して行う昇温過程で排ガス中のCO濃度
は一時的に3ppmに上昇し、その後徐々に低下して1
ppm以下となり、分解対象有機物の供給を開始しても
大きな変動はないことが分かる。また、排水中のTOC
濃度はCOに比べて時間的に遅れて上昇するが、その後
実質的に定量下限値以下となり、その後更に低下し、分
解対象有機物の供給を開始しても大きな変動はないこと
が分かる。
【0085】以上により、起動初期にIPAを供給して
反応器7内の温度を昇温させるようにした本例によれ
ば、分解対象有機物が完全分解される条件が反応器内に
おいて整い、該分解対象有機物が起動時に系外に排出さ
れることがない状態を確実に実現されることが確認され
た。
【0086】実施例2 図3に示した超臨界水酸化装置を用い、実施形態3の起
動方法を以下の条件で実施し、その結果を図4に示し
た。
【0087】反応装置の仕様:管式(パイプ式) 内径: 10mm 長さ: 130m 容量: 約2L(リットル) 定常運転時の超臨界条件 温度: 650℃ 圧力: 25MPa 超臨界水 温度: 380℃ 供給量:480ml/Hr 酸化剤: 空気 供給量:1.6Nm3 /Hr 起動時昇温用有機物 n−ヘキサン 供給量:120ml/Hr 分解対象有機物 廃油 供給量:120ml/Hr 以上の条件の下で、開閉弁21を閉じていることを確認
してから、加圧空気を供給して反応器107内を水の臨
界圧以上(25MPa)とし、超臨界水の供給を開始
し、反応器107内の温度が380℃の状態で開閉弁1
1を開いてn−ヘキサンの供給を開始し、更に排ガス中
のCO濃度が10ppm未満及び排水中のTOC濃度が
1ppm未満となっているn−ヘキサン供給開始から2
10分後に、分解対象有機物の供給を開始すると共に、
瞬時にn−ヘキサンの供給を停止した。
【0088】以上の手順で行った装置起動時の反応器1
07内の圧力及び温度の変化、排ガス中のCO濃度,排
水中のTOC濃度の変化を測定した結果を示した図4か
ら、n−ヘキサンを供給開始して行う昇温過程で排ガス
中のCO濃度は一時的に1ppm以上に急上昇し、その
後徐々に低下して1ppmとなり、その後、分解対象有
機物の供給を開始しても大きな変動はないことが分か
る。また、排水中のTOC濃度はCOに比べて時間的に
若干遅れて2ppm程度まで上昇するが、その後定量下
限値以下まで低下し、分解対象有機物の供給を開始して
も大きな変動はないことが分かる。
【0089】以上により、起動初期にn−ヘキサンを供
給して反応器107内の温度を昇温させるようにした本
例によれば、分解対象有機物が完全分解される条件が反
応器内において整い、該分解対象有機物が起動時に系外
に排出されることがない状態を確実に実現されることが
確認された。
【0090】実施例3 図1に示した超臨界水酸化装置を用い、実施形態2の停
止方法を以下の条件で実施した。なお、装置並びに供給
する各物質は実施例1と同じものを用いた。
【0091】実施例1で示した起動方法によって起動さ
せて定常状態の運転がされている超臨界水酸化装置に対
して、開閉弁21を閉じ,6リットル/Hrで供給され
ている廃油の供給を停止すると共に、開閉弁11を開口
して40リットル/Hrの停止時温度維持用有機物であ
るイソプロピルアルコール(20wt%)を供給した。
【0092】なお、酸化用空気および超臨界水の供給は
そのままとした。
【0093】廃油からイソプロピルアルコールへの切り
替え時点から30分経過した後、酸化用空気及び超臨界
水の供給は続行したまま、イソプロピルアルコールの供
給のみを停止した。
【0094】次いで、イソプロピルアルコールの供給停
止から30分経過した後、酸化用空気及び超臨界水の供
給も停止した。
【0095】酸化用空気,超臨界水の供給を停止した時
点から反応器内の温度は徐々に低下し、超臨界水酸化装
置の完全停止状態となったが、イロプロピルアルコール
の供給開始から完全停止までに排出された流体中のCO
濃度は10ppm以下、TOC濃度は1ppm以下であ
ることが確認された。
【0096】
【発明の効果】本願の請求項1ないし5の起動方法の発
明によれば、定常運転時の設定温度に至っていない装置
起動初期の反応器内を起動時昇温用有機物の超臨界水酸
化による発熱で速やかに昇温させることができる。した
がって、電気ヒータ等の加熱装置を小型のものとでき、
また極めて高温でかつ大量の超臨界水との混合で分解対
象有機物を昇温させる必要もないため、工業的規模の実
施設備ではこれらに要する大きな負担を回避できると共
に、運転コストも安価にできるという効果が得られる。
【0097】また、起動時の昇温過程で、起動時昇温用
有機物として有害性のない有機化合物を用いるので、起
動初期における条件が整わないために発生することがあ
るこれらの未分解物や副生成物が系外に排出されても環
境汚染の不具合も招かない。そして、昇温過程の後に、
分解対象有機物の超臨界水酸化の条件が整った状態で該
分解対象有機物の反応器への供給を開始し、定常運転状
態に移行するので、有害有機物を分解対象とした場合で
あっても、この有害有機物の未分解物や副生成物系外へ
の排出の虞れがないという効果が奏される。
【0098】更に、分解対象有機物の量を徐々に供給増
大させながら、起動時昇温用有機物の量を徐々に供給減
少させて切り替える請求項5の発明によれば、超臨界水
酸化反応による発熱量の経時的変動を小さくできるの
で、安定した装置起動を実現できる。
【0099】本願請求項6ないし9の停止方法の発明に
よれば、超臨界水酸化の条件が不十分となり易い装置の
停止時の終期に、分解対象有機物の供給を停止し、これ
に代えて停止時温度維持用有機物を供給して超臨界水酸
化を継続するので、その発熱反応により分解処理終期に
おける分解対象有機物を反応器内で完全分解するのに必
要な温度状態を維持できる。したがって高温状態を維持
するために電気ヒータ等の加熱装置の利用や、高温でか
つ大量の超臨界水の供給の負担が軽減ないし省略でき、
工業的規模の装置の設備負担が低減できると共に、運転
コストの低減化を実現できる。
【0100】また、分解対象有機物の供給を停止した
後、停止時温度維持用有機物として有害性のない有機物
を供給して超臨界水酸化を継続するので、その未分解物
や副生成物が系外に排出されても環境汚染の不具合も招
かない。したがって、特に有害有機物等を分解対象とし
た場合にその未分解物や副生成物の系外への排出を確実
に防ぐことができて、工業的装置として実施する場合に
環境汚染の虞れがないため極めて有効である。
【0101】本願請求項10の発明によれば、超臨界水
酸化装置の起動から、定常運転を経て停止に至るまでの
全過程において、条件が整った状態で分解対象有機物の
超臨界水酸化処理を行うことができるので、特に未分解
物や副生成物の系外排出が環境汚染の防止のために極め
て重要な有害有機物や難分解性有機物を対象とする場合
に、この発明を効果的に実施することができる。
【図面の簡単な説明】
【図1】本発明の実施形態13の起動方法、及び実施形
態3の停止方法を実施する装置の構成概要を示した図。
【図2】図1の装置を用いて行った実施例1の起動方法
による結果を示した図。
【図3】本発明の実施形態2の起動方法を実施する装置
の構成概要を示した図。
【図4】図3の装置を用いて行った実施例2の起動方法
による結果を示した図。
【符号の説明】 1・・・空気供給ライン、2・・・有機物供給ライン、
3・・・中和剤添加ライン、4・・・超臨界水供給ライ
ン、5,105・・・処理流体排出ライン、6・・・亜
臨界水排出ライン、7,107・・・反応器、8・・・
超臨界領域、9・・・亜臨界領域、10・・・補助有機
物供給ライン、11,21・・・開閉弁、71・・・ノ
ズル、72・・・流体供給配管、120・・・気液分離
装置、121・・・排ガスライン、122・・・排水ラ
イン。

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 超臨界水酸化を行う反応器を備えた装置
    を起動させるにあたり、分解対象有機物を超臨界水雰囲
    気中で酸化分解させるための反応器内に、初めに、起動
    時昇温用有機物を酸化剤及び超臨界水の存在下に供給し
    て超臨界水酸化させることで該器内を水の臨界温度以上
    の所定温度に上昇させ、この所定温度を越えた器内に対
    して前記分解対象有機物の供給を開始することを特徴と
    する超臨界水酸化装置の起動方法。
  2. 【請求項2】 請求項1において、分解対象有機物が、
    有害物質又は難分解性物質であることを特徴とする超臨
    界水酸化装置の起動方法。
  3. 【請求項3】 請求項1又は2において、初めに供給す
    る起動時昇温用有機物が、完全酸化分解し易く且つ発熱
    量が大きな有機物であることを特徴とする超臨界水酸化
    装置の起動方法。
  4. 【請求項4】 請求項1ないし3のいずれかにおいて、
    分解対象有機物の供給開始と共に、起動時昇温用有機物
    の供給を停止することを特徴とする超臨界水酸化装置の
    起動方法。
  5. 【請求項5】 請求項4において、分解対象有機物の供
    給開始と起動時昇温用有機物の供給停止の切替えを、分
    解対象有機物の量を徐々に供給増大させながら、起動時
    昇温用有機物の量を徐々に供給減少させて行うことを特
    徴とする超臨界水酸化装置の起動方法。
  6. 【請求項6】 稼働している超臨界水酸化装置を停止さ
    せるにあたり、酸化剤及び超臨界水の供給を継続しなが
    ら、前記分解対象有機物の供給を停止すると共に、停止
    時温度維持用有機物の反応器への供給を開始することを
    特徴とする超臨界水酸化装置の停止方法。
  7. 【請求項7】 請求項6において、分解対象有機物が、
    有害物質又は難分解性物質であることを特徴とする超臨
    界水酸化装置の停止方法。
  8. 【請求項8】 請求項6又は7において、停止時温度維
    持用有機物の供給は、供給終期の分解対象有機物が反応
    器内に滞留する時間以上行うことを特徴とする超臨界水
    酸化装置の停止方法。
  9. 【請求項9】 請求項6ないし8のいずれかにおいて、
    分解対象有機物の供給停止と停止時温度維持用有機物の
    供給開始の切替えを、分解対象有機物の量を徐々に供給
    減少させながら、停止時温度維持用有機物の量を徐々に
    供給増大させて行うことを特徴とする超臨界水酸化装置
    の停止方法。
  10. 【請求項10】 請求項1ないし5のいずれかの起動方
    法により装置を起動し、定常運転を経て、請求項6ない
    し9のいずれかの停止方法により装置を停止させるよう
    にして超臨界水酸化装置を運転することを特徴とする超
    臨界水装置の運転方法。
JP32169296A 1996-12-02 1996-12-02 超臨界水酸化装置の起動方法、停止方法 Expired - Fee Related JP3345285B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32169296A JP3345285B2 (ja) 1996-12-02 1996-12-02 超臨界水酸化装置の起動方法、停止方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32169296A JP3345285B2 (ja) 1996-12-02 1996-12-02 超臨界水酸化装置の起動方法、停止方法

Publications (2)

Publication Number Publication Date
JPH10156175A true JPH10156175A (ja) 1998-06-16
JP3345285B2 JP3345285B2 (ja) 2002-11-18

Family

ID=18135365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32169296A Expired - Fee Related JP3345285B2 (ja) 1996-12-02 1996-12-02 超臨界水酸化装置の起動方法、停止方法

Country Status (1)

Country Link
JP (1) JP3345285B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149767A (ja) * 1999-11-30 2001-06-05 Japan Organo Co Ltd 超臨界水処理装置及び超臨界水処理方法
JP2006043551A (ja) * 2004-08-03 2006-02-16 Japan Organo Co Ltd 水熱反応装置の運転停止方法
CN102295366A (zh) * 2011-08-04 2011-12-28 丰城向华水基科学技术有限公司 一种超临界水氧化处理废水工艺及其反应设备
JP2016022468A (ja) * 2014-07-24 2016-02-08 株式会社ピーシーエス 亜臨界水処理方法及び装置
CN106495385A (zh) * 2016-12-01 2017-03-15 莫比森(北京)石油天然气技术开发有限公司 一种处理废水的超临界氧化方法
JP2017127845A (ja) * 2016-01-22 2017-07-27 株式会社ピーシーエス 亜臨界水処理方法及び装置
CN113912175A (zh) * 2021-11-12 2022-01-11 东力(南通)化工有限公司 一种甲基肼废水超临界处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058864A (zh) * 2020-08-28 2020-12-11 深圳朴坂科技有限公司 一种基于超临界水氧化处理生活垃圾的发电装置及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149767A (ja) * 1999-11-30 2001-06-05 Japan Organo Co Ltd 超臨界水処理装置及び超臨界水処理方法
JP2006043551A (ja) * 2004-08-03 2006-02-16 Japan Organo Co Ltd 水熱反応装置の運転停止方法
JP4508766B2 (ja) * 2004-08-03 2010-07-21 オルガノ株式会社 水熱反応装置の運転停止方法
CN102295366A (zh) * 2011-08-04 2011-12-28 丰城向华水基科学技术有限公司 一种超临界水氧化处理废水工艺及其反应设备
JP2016022468A (ja) * 2014-07-24 2016-02-08 株式会社ピーシーエス 亜臨界水処理方法及び装置
JP2017127845A (ja) * 2016-01-22 2017-07-27 株式会社ピーシーエス 亜臨界水処理方法及び装置
CN106495385A (zh) * 2016-12-01 2017-03-15 莫比森(北京)石油天然气技术开发有限公司 一种处理废水的超临界氧化方法
CN106495385B (zh) * 2016-12-01 2019-11-22 莫比森(北京)石油天然气技术开发有限公司 一种处理废水的超临界氧化方法
CN113912175A (zh) * 2021-11-12 2022-01-11 东力(南通)化工有限公司 一种甲基肼废水超临界处理方法

Also Published As

Publication number Publication date
JP3345285B2 (ja) 2002-11-18

Similar Documents

Publication Publication Date Title
KR100625882B1 (ko) 유기물 함유 폐액의 초임계수 산화 분해 공정
US6929752B2 (en) Method for treating waste by hydrothermal oxidation
JP3345285B2 (ja) 超臨界水酸化装置の起動方法、停止方法
JP3583606B2 (ja) 超臨界水酸化方法及び反応装置
JP3347610B2 (ja) 超臨界水酸化方法及び装置
JP4763789B2 (ja) テレフタル酸工程から発生する廃棄物の処理方法
JP3836270B2 (ja) 超臨界水反応装置の運転停止方法
JP3437408B2 (ja) 超臨界水酸化方法及び装置
JP2006043552A (ja) 水熱反応方法および装置
JPH10137774A (ja) 超臨界水酸化の反応器に流体を供給する方法、供給装置、及び超臨界水酸化装置
JPH10314768A (ja) 超臨界水酸化方法
JP2003236594A (ja) 汚泥の処理装置
JP3686778B2 (ja) 超臨界水反応装置の運転方法
JP2001269566A (ja) 超臨界水反応装置
JP3669881B2 (ja) 難分解物質の分解処理方法及びその装置
JP3464897B2 (ja) 超臨界水酸化方法及び装置
JP3495904B2 (ja) Tmah廃液の超臨界水酸化処理方法
WO2023286525A1 (ja) プラスチック油化装置及び方法
JP2002224681A (ja) 有機性被処理液の酸化処理方法及び装置
JP3816218B2 (ja) ハロゲン原子および/または硫黄原子を含む有機化合物の分解処理方法およびその装置
JP3437409B2 (ja) 超臨界水酸化方法及び装置
JP3801803B2 (ja) 超臨界水酸化装置のスケール除去方法
JP2006007157A (ja) 反応装置および反応方法
JP2002136860A5 (ja)
JP2006000732A (ja) 水熱反応方法および装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees