JP3347610B2 - 超臨界水酸化方法及び装置 - Google Patents

超臨界水酸化方法及び装置

Info

Publication number
JP3347610B2
JP3347610B2 JP30285296A JP30285296A JP3347610B2 JP 3347610 B2 JP3347610 B2 JP 3347610B2 JP 30285296 A JP30285296 A JP 30285296A JP 30285296 A JP30285296 A JP 30285296A JP 3347610 B2 JP3347610 B2 JP 3347610B2
Authority
JP
Japan
Prior art keywords
decomposed
supercritical water
reactor
reaction
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30285296A
Other languages
English (en)
Other versions
JPH10137775A (ja
Inventor
明 鈴木
治 高橋
太郎 大江
徳幸 安生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP30285296A priority Critical patent/JP3347610B2/ja
Publication of JPH10137775A publication Critical patent/JPH10137775A/ja
Application granted granted Critical
Publication of JP3347610B2 publication Critical patent/JP3347610B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば難分解性の
廃棄物・廃液や有害な廃乗物・廃液などの有機物を分解
処理する方法及び装置、特には、環境基準において有害
物質指定されているPCBs、トリクロロエチレン、テ
トラクロロエチレン等の有機塩素化合物をはじめ、各種
の硫黄化合物、窒素化合物、リン化合物等が包含される
難分解性物質や有害有機物を完全分解処理するのに適し
た超臨界水酸化処理方法及び装置に関するものである。
【0002】
【従来技術】本発明が対象の一つとする難分解性有機物
や有害有機物等を分解処理する分野においては、近時そ
の処理が社会的に大きな問題となりつつあり、その理由
の一つに有機物の完全分解ができるかどうかという問題
がある。
【0003】この問題を一例的に言えば、有機物の処理
は従来燃焼法で処理されてきているが、従来の燃焼法で
は炉内に低温部分が存在する場合のあることが無視でき
ず、燃焼不十分なために分解が不十分となる場合があ
る。このような場合、塩素化合物等を分解対象とすると
ダイオキシン等の毒性の強い物質を生成してしまう危険
性がある。また燃焼法の最終生成物は通常排気筒から大
気へと拡散されるため、万一前記毒性の物質が生成した
場合には問題が広域化してしまう虞れもある。
【0004】このようなことから、例えば各種の熱媒や
絶縁油として従来大量に使用されその後毒性が確認され
て生産及びその使用が禁止されたPCBsについては、
その処理・処分が強く求められているにもかかわらず現
在認められている燃焼法による処理の実際はあまり進展
していない。その所以は、上述した燃焼生成物に有害有
機物が含まれて大気拡散されるという潜在的な虞れにあ
るといわれている。
【0005】以上のようなことを背景として、難分解性
でかつ有害な廃棄物・廃液に対してはクローズドで完全
な分解処理が求められており、このような処理を実現す
る方法として近年超臨界水酸化法が注目されている。こ
の超臨界水酸化法は、超臨界条件下(374℃以上、2
2MPa以上)の水を分解反応の媒体として利用するこ
とによって、有機物を水と二酸化炭素にまで完全分解す
る方法であり、反応は熱分解、加水分解及び酸化分解が
同時に進行してクローズドな系内で完全分解を行うこと
ができると共に、非常に大きな反応速度を達成すること
ができる特徴のがあることが知られている。
【0006】この超臨界水酸化技術は、例えば特公平1
−38532号公報によって、水の臨界点を越えた条件
で酸化反応を行なう基本原理が示され、また基本フロー
も示されている。
【0007】その基本フローを簡単にいえば、基本的要
素は、超臨界水酸化の反応を行う反応器、この反応器に
分解対象物を含む所定の物質を供給する供給系、反応器
から生成物を排出する排出系の三つの部分で説明され、
このうちの物質の供給系は、上記公報提案では、分解対
象物をフィードポンプで昇圧しエジェクターで超臨界水
と混合し、加熱した後反応器に導入するようにして構成
される。反応器は、酸化剤としての高圧空気を空気圧縮
機から導入させて超臨界水条件下で分解対象物を酸化分
解するようにして構成される。生成物排出系は、酸化分
解後の超臨界水の一部を前記エジェクターに再循環し、
残りを例えばタービンを回すエネルギー源に利用してエ
ネルギー回収を行うように構成される。ただしこの公報
提案には、反応器の具体的な構成は詳述されておらず、
管式、円筒式及び流動床式のものが採用できることが概
略的に説明されているにすぎない。
【0008】前記反応器の構成としては、細長い管の始
端側から分解対象物,超臨界水,酸化剤を注入し、終端
側から分解生成物を排出するようにしたワンパス型の管
式(パイプ型)反応器が代表的なものとして知られ、ま
たこれとは別に、ベッセル型構造のものも特開平3−5
00264号公報で提案されている。
【0009】ベッセル型反応器は、無機塩を含むか或い
は反応後に無機塩を生成する有機廃液を対象にした場合
に適したものとして提案されたもので、構造が簡単とい
う理由で一般に有利な反応器と考えられている前記管式
(パイプ型)反応器で問題となる課題を解決する。すな
わち、超臨界水酸化技術の代表的な処理対象物は難分解
性有機物や有害有機物であり、また多くの場合、塩素や
硫黄、さらには窒素,リンを含んでいる。そしてこれら
の物質を超臨界水酸化処理すると含有成分に由来して酸
(塩酸、硫酸、硝酸及びリン酸)を生成するから、これ
らの酸から反応器材等を保護するためにアルカリで中和
することが考えられ、その結果として無機塩(代表的に
はNaCl)が生成する。しかしこのNaClは超臨界
水にはほとんど溶解しないことが一般に知られ、従って
前記のパイプ型反応器を用いた場合には、中和で生成す
るNaCl塩によって必ずパイプ閉塞という問題を引き
起こしてしまう。そこで前記の特開平3−500264
号では、酸中和の操作で生ずる塩により閉塞問題が生じ
ないように工夫した反応器、具体的には筒状反応器を縦
型に設置してベッセル型とすると共に、器内上部に超臨
界ゾーンを形成させかつ器内下部に亜臨界ゾーンを形成
させ、上部の超臨界ゾーンで析出した無機塩を密度差で
下向きに移動させて亜臨界ゾーンで亜臨界水に溶解させ
ることで、超臨界水酸化反応で生成した生成物中の大部
分である超臨界水,CO2 と、付着及び閉塞の原因物質
となる塩とを器内で分離できるようにしたベッセル型反
応器を提案している。
【0010】
【発明が解決しようとする課題】ところで、有機物を分
解処理するのに上述した超臨界水酸化の反応を用いるた
めには、分解対象有機物を高温・高圧にして反応器に供
給する必要があるが、この場合に、分解対象物を供給管
を通して供給する径路の途中で温度を昇温させたり、高
温とした分解対象物を配管を通して供給するようにする
と、分解対象有機物が重合反応やチャーリングを起こし
て供給配管内で閉塞を引き起こす虞れがある。また、有
機物が難分解性有機物である場合には重合反応等によっ
てより難分解なものに変化してしまい分解率を低下させ
る虞れがある。そこで、分解対象有機物を反応器に供給
する直前で一気に昇温させる方法が考えられ、水を専用
の予熱器で加熱して超臨界状態とし、この予熱した超臨
界水と分解対象物質を反応器直前で混合することで分解
対象有機物を昇温する方法が提案されている(特開平7
−275871号公報)。
【0011】しかしながら、分解対象有機物の温度を反
応器への供給直前において前記方法で一気に臨界温度以
上まで昇温させる操作を行って超臨界水酸化処理を実施
する場合は、分解対象物の分解のために必要な超臨界水
の量は、実際の反応温度、反応器への分解対象物の供給
量、分解対象物を予熱して供給する温度などにより決ま
ることになるが、前記予熱に必要な熱エネルギー量を低
減できればエネルギー効率の優れたものとでき、特に工
業的規模の装置ではその工夫が望まれる。
【0012】また、多くの水不溶性の有機物についての
溶媒として超臨界水の性質は優れた溶媒特性を示すもの
ではあるが、前記方法のように反応器の直前で有機物と
超臨界水を混合させる場合には、分解対象有機物,酸化
剤(代表的には空気)との充分な混合は、その量,時
間,反応器構造,混合手段の構造などの影響は無視でき
ないところであり、有機物が多量である場合には短時間
に超臨界水と均一混合させることは容易でない。このた
め部分的に各物質が分離したままで存在して分解率の低
下を招く原因となる虞れがあり、特に有害有機物を対象
とする場合にはこの問題の解決が強く求められる。
【0013】なおこの問題は、未分解物や分解変性物を
処理するための付属的な設備を設けることで回避するこ
とはもちろん可能であるが、完全分解が求められる有害
有機物のための工業的処理方法、装置としては有利でな
い。
【0014】以上のように、分解対象有機物、特に難分
解性有機物や有害有機物を分解処理する方法,装置とし
て近年注目されている超臨界水酸化処理は、概念的には
極めて優れているものの、この技術を工業的規模で安定
かつ安価に実施することを可能とする具体的な技術提案
は殆どされていないのが現状であり、本発明者はこのよ
うな種々の技術課題の達成を目的として鋭意研究を重ね
て本発明をなすに至った。
【0015】
【課題を解決するための手段】本願発明の目的は、上記
特許請求の範囲の各請求項に記載した発明により達成さ
れる。
【0016】本願の請求項1の超臨界水酸化方法の発明
は、温度及び圧力が水の臨界点以上の条件下の反応領域
に連続的に分解対象有機物を含む流体を供給し、該反応
領域で超臨界水の存在下に有機物を酸化分解させ、反応
生成流体を連続的に反応領域から排出する超臨界水酸化
方法であって、反応領域の流体が流れる方向に離隔した
複数の位置から分解対象有機物を導入し、このうちの初
段導入位置では分解対象有機物と超臨界水を導入時に混
合するか或いは混合した後直ちに導入し、次段以降の導
入位置では前段で反応生成した流体中に分解対象有機物
を再び導入することを特徴とする。
【0017】この発明によれば、単位量の分解対象有機
物のうち、初段で導入した有機物の酸化分解で生成され
た水(超臨界水)が次段以降で導入される分解対象有機
物の溶媒として利用でき、またその熱で有機物を臨界温
度以上に予熱昇温させることができるので、外部からの
超臨界水の供給が基本的に必要ない。したがってその分
だけ初段で導入する分解対象有機物を少なくでき、反応
領域に供給する超臨界水の全体量を少なくできる。
【0018】また、初段で導入する分解対象有機物量が
少ないので、高温の超臨界水との混合でこの有機物を予
熱昇温する熱エネルギーを少なくでき、超臨界水の量の
低減,温度の低下、あるいは分解対象有機物の予熱温度
の低下ないし予熱の省略を図ることができる。この点を
更に具体的に説明すると、前述したように、重合・チャ
ーリングを防止すべく分解対象有機物を反応領域近く
(又は内部)で一気に臨界温度以上まで昇温する手段と
して別途製造した超臨界水(あるいは酸化分解して生成
した超臨界水を循環使用)を分解対象有機物に混合する
方法を考えると、反応領域に導入した単位重量の分解対
象有機物を臨界温度(374℃)以上とするのに高温の
超臨界水が何倍量必要であるかを、有機物を常温の水
(比熱1)で模擬して計算した結果を図4に示した。
【0019】この図4のグラフより、400℃の超臨界
水を用いた場合には略3倍量で臨界温度以上になり、5
00℃及び600℃の超臨界水を用いた場合には略2倍
量で臨界温度以上まで到達することがわかる。ここで、
超臨界水酸化の反応温度を600℃と仮定すると、分解
対象物自身の温度を600℃まで加熱する熱量に加えて
400℃の超臨界水を用いた場合には、加えた3倍量の
超臨界水を400℃から600℃までさらに加熱するエ
ネルギーが必要となる。同様に500℃の場合には、2
倍量の超臨界水を500℃から600℃まで加熱するエ
ネルギーがプラスされる。一方、600℃の超臨界水を
使うならば、分解対象物自身の温度を600℃まで加熱
する熱量だけでよいこととなる。従って、処理対象物質
の発熱量が十分に高ければ、400℃の超臨界水を予熱
源として使用しうるが、対象物質が含水物のような発熱
量の値に制限がある場合、500〜600℃の超臨界水
が必要となる。いずれにせよ、酸化反応が急速に進行す
る超臨界水場を作るには、エネルギー的にかなりの量の
超臨界水の混合が必要となる。
【0020】これに対し、分解対象有機物を分割して反
応領域に供給(圧入)する本発明では、反応領域に外部
から導入する超臨界水の量を以下のように大幅に低減で
きる。すなわち、分解対象有機物の導入位置の分割数と
各位置への分解対象有機物の導入量(供給量)、及び初
段超臨界水導入量の関係は下記表1に示される(ただし
この表1では分解対象有機物の2倍量の超臨界水(SC
W)を混合するという条件で計算した)。
【0021】
【表1】
【0022】この表からわかるように、分割数が1、す
なわち全量を初段で導入(圧入)する従来法の場合は、
必要となる超臨界水量が2であるのに対し、本発明によ
る分割数が2の場合は0.8と半分以下になり、分割数
が増すごとに初段で導入が必要な超臨界水量は減少し、
分割数が5では0.16と従来法の略1/10以下に減
少する。このように、分解対象物を反応領域に分割導入
する本発明の方法はエネルギー的に優れていることが分
かる。なお工業的な装置では分割数は2〜5程度とする
のが適当である場合が多いが、それ以上としてもよく限
定されるものではない。またこの表による分配比の説明
はモデル的なものであって、実際の実施装置における有
機物の分配比がこれに限定されるものではないことは当
然である。
【0023】また前記発明によれば、導入する超臨界水
の量を削減できるために反応領域からの流体の排出総量
を低減できて排出系の設備負担を軽減でき、更に重合・
チャーリングを防止しながら分解対象有機物を反応領域
に供給する系を簡易に構成することができる。
【0024】更にまた、分解対象有機物を反応領域に分
割して導入(圧入)するため各分割位置での導入量が少
なく、導入有機物と超臨界水との混合を良好に与えるこ
とができ、有機物の完全酸化分解に有効であり、特に難
分解性有機物,有害有機物の酸化分解のためには極めて
有効となる。
【0025】なお前記構成において、温度及び圧力が水
の臨界点以上の条件下とされる反応領域は、管式反応器
あるいはベッセル型反応器(縦型筒状反応器)などのい
ずれの反応器内に形成されるものであってもよく、反応
器の型式に限定されるものではない。また「分解対象有
機物を含む流体」とは、分解対象有機物の他に超臨界水
酸化反応に必要な他の物質(例えば酸化剤)を混合した
流体の場合、或いはこれらを混合しない流体の場合のい
ずれをも含む。混合しない流体の場合は、それぞれの流
体を独立した供給系(配管,送給手段,加圧手段,加熱
手段等で構成)で供給することができる。分解対象物質
と共に反応領域に供給される物質としては、水の臨界点
以上、すなわち374℃以上で22MPa以上の条件下
に存在する水(超臨界水)、酸素,空気等のガス状酸化
剤あるいは過酸化水素水等の液状酸化剤を挙げることが
でき、更に、超臨界水酸化反応により塩酸等の酸が生成
される場合にはこれを中和するためのアルカリ(NaO
H,KOH,Na2 CO3,K2 CO3 等)を供給する
ことができる。
【0026】また、前記構成の初段導入位置に分解対象
有機物と超臨界水を導入する場合の「導入時に混合す
る」とは、例えば2流体ノズル等の多重管ノズルなどを
用いて反応領域にこれらの流体を送り込む際に混合する
ことをいい、また「混合した後直ちに導入」とは、反応
領域に送り込む前に配管中などで混合してから送り込む
ことをいう。「直ちに」というのはできるだけ反応領域
に近い位置で混合することをいうが、混合により分解対
象有機物が昇温する結果として重合反応,チャーリング
を起こす弊害がない範囲であれば差し支えない。
【0027】本願の請求項2の方法発明は、温度及び圧
力が水の臨界点以上の条件下の反応領域とされた管式反
応器内で、超臨界水の存在下に有機物を酸化分解する超
臨界水酸化方法であって、分解対象有機物と超臨界水を
管式反応器の始端部への導入時に混合するか或いは混合
した後直ちに導入して酸化分解反応を行わせると共に、
管式反応器内に導入した有機物の酸化分解反応により生
成した流体中に所定位置に分解対象有機物を再び導入し
て酸化分解反応を継続させ、この酸化分解反応を継続さ
せる分解対象有機物の再導入操作を反応器内の流体の流
れる方向に沿って少なくとも一又は二以上の位置で行う
ことを特徴とし、前記請求項1の発明を管式反応器を用
いて実施する場合に相当する。
【0028】この発明によれば、簡易な構造の管式反応
器を用いて前記請求項1の発明の作用・効果を達成で
き、特に酸生成がない有機物の分解処理を好適に実施す
ることができる。
【0029】本願の請求項3の方法発明は、温度及び圧
力が水の臨界点以上の超臨界条件下の反応領域を器内上
部に有しかつ亜臨界条件下の領域を器内下部に有する縦
型筒状反応器(ベッセル型反応器)の複数に対して、流
体が各反応器の反応領域を連続して流れながら、各反応
領域で超臨界水の存在下に有機物を酸化分解する超臨界
水酸化方法であって、初段反応器の反応領域には、分解
対象有機物と超臨界水を導入時に混合するか或いは混合
した後直ちに導入して酸化分解反応を行わせ、次段以降
の反応器の反応領域には、前段で反応生成した流体を流
すと共に分解対象有機物を再び導入することを特徴と
し、前記請求項1の発明をベッセル型反応器を用いて実
施する場合に相当する。
【0030】この発明によれば、酸化分解により生成し
た酸を亜臨界条件の領域(亜臨界領域)から亜臨界水に
溶解させて排出できるので、超臨界条件下の領域(超臨
界領域すなわち反応領域)に析出した塩で閉塞するなど
の問題を回避しながら、前記請求項1の発明の作用・効
果を達成でき、したがってアルカリ中和で塩が生成する
ような有機物を分解対象物とした場合の処理を好適に実
施でき、アルカリ中和による塩の生成が一般的に考えら
れる難分解性有機物,有害有機物の超臨界水酸化分解の
処理用として特に有用である。
【0031】なお、前記構成において複数の「各反応器
の反応領域を連続して流れる」ことは、複数の反応器の
超臨界領域を配管等によりできるだけ短い移送距離とな
るように接続することで与えられる。
【0032】以上の各発明において分解処理対象となる
廃棄物・廃液としては、一般的な有機物質は勿論のこ
と、特には、残留性有機汚染物質(POPs:Persiste
nt Organic Pollutants )或いは残留性有害生物蓄積物
質(PTBs:Persistent Toxic Bio-accumlatives )
などを挙げることができ、その代表的な物質としては、
環境基準において有害物質指定されているPCBs,ト
リクロロエチレン、テトラクロロエチレン、廃農薬等の
有機塩素化合物を挙げることができる。また、塩素のほ
かにもハロゲン化物は一般に難分解性であり、有機臭素
化合物等も処理対象となる。さらに、各種の工場におけ
る生産工程からは様々な硫黄化合物、窒素化合物、リン
化合物等が排出され、これらの完全な分解が求められる
有機物の処理に特に有効に用いられる。
【0033】前記各発明の超臨界水酸化反応の条件は、
反応温度は一般には400℃以上、好ましくは600〜
650℃前後であり、反応圧力は、22〜50MPa、
好ましく22〜25MPaである。反応時問は、1〜
10分、好ましくは1〜2分である。
【0034】前記各発明の反応領域に導入される分解対
象有機物は、予熱することなく超臨界水と混合すること
により臨界温度以上となるようにして利用できるが、上
述した重合・チャーリングの弊害を招く虞れのない範囲
で低温度に予熱(例えば100〜350℃、好ましくは
200〜300℃)した状態で反応領域の近傍まで送る
こともできる。このように予熱することなく或いは前記
程度に低温度に予熱した分解対象有機物に混合させる超
臨界水としては、500〜650℃、好ましくは550
〜600℃程度に加熱したものを用いるのが適当である
場合が多く、この超臨界水としては反応器下流の排出系
から排出された反応生成流体を循環して用いることも可
能である。分解対象有機物を予熱しないで反応領域に導
入する場合には、供給系の配管等の設備の構造をより簡
易とでき、また制御も容易となる。
【0035】本願の請求項7の発明は、前記した各発明
において、有機物の酸化分解に必要な酸化剤を、分解対
象有機物又は超臨界水に混合して反応領域に導入する
か、或いは反応領域への導入時にこれらに混合すること
を特徴とする。酸化剤の導入方法としては、本願の請求
項8の発明のように、分解対象有機物の酸化分解に必要
な酸化剤の全量を初段の反応領域に導入する方法、或い
は分割して導入する各位置での分解対象有機物の導入量
に応じて分割導入する方法のいずれを採用してもよい。
【0036】本願の請求項9の発明は、前記した各発明
において、超臨界水酸化反応により生成する酸を中和す
るために導入するアルカリを、分解対象有機物,超臨界
水,酸化剤のいずれかに混合して反応領域に導入する
か、或いは反応領域への導入時にこれらに混合すること
を特徴とする。このアルカリの導入方法としては、本願
の請求項10の発明のように、超臨界水酸化反応により
生成する酸を中和するのに必要なアルカリの全量を初段
の反応領域に導入する方法、或いは各位置に分割して導
入される分解対象有機物の各位置への導入量に応じてそ
の位置毎に導入する方法のいずれを採用してもよい。
【0037】本願の請求項11の超臨界水酸化装置の発
明は、超臨界水酸化反応のための条件を形成する管式反
応器と、この反応器に分解対象有機物を含む流体を連続
的に供給する供給手段と、反応生成流体を反応器から連
続的に排出する排出手段とを備え、前記供給手段は、管
式反応器の始端部と、流体の流れに沿った下流側の少な
くとも一カ所以上の位置とに分けて分解対象有機物を供
給する位置を有するように設けられ、かつ管式反応器の
始端部への供給手段は分解対象有機物と超臨界水とを混
合する混合手段を有することを特徴とする。
【0038】この発明によれば、管式反応器の始端部か
らと、該反応器の下流側の一或いは二以上の位置からと
に分けて、分解対象有機物を分割して供給(導入)する
ことができ、しかも、その下流側の分割供給位置では、
前段で供給され酸化分解して生成された流体である超臨
界水が下流側で供給される分解対象有機物の溶媒として
利用でき、またその熱が導入有機物の予熱源ともなるの
で、外部からの超臨界水の供給が不要であり、これによ
って反応器始端部から分解対象有機物と共に供給する超
臨界水の量を、下流側に分割した量に対応して少なくで
きる。そしてこのことにより、超臨界水製造エネルギー
の低減、排出流体量の低減が実現されると共に、反応器
に分解対象有機物を供給する配管等の中での該有機物の
重合反応・チャーリングを簡易な構造で防止して、少な
いエネルギーで分解対象有機物を一気に臨界温度以上に
昇温できる超臨界水酸化装置を提供することができる。
【0039】また、反応器の始端部をはじめとして、分
割した各位置で供給する分解対象有機物の量を、始端部
で全量供給する従来方式に比べて相対的に少なくできる
ため、有機物と超臨界水の混合を良好な状態とできるた
めに完全分解を効果的に実現できる。
【0040】なお前記構成において「管式反応器」とい
うのは、直線的に延びた構造、曲線的に延びた構造、こ
れらを組み合わせた構造等のいずれのものであってもよ
く、その延設構造などによって限定されるものではな
い。また、下流側の分割導入する位置の設定は、前段で
供給(導入)された有機物の酸化分解反応が終了する位
置を目安とされるが、厳密なものではない。
【0041】前記構成において「供給手段」は、配管,
フィードポンプ等の送給手段,加圧ポンプ等の加圧手
段,熱交換器等の加熱手段などの既知の構成を採用する
ことができ、分解対象有機物の供給系としては、一般的
には、反応器の近傍まで単一の系で導いた後、反応器近
傍で各分割供給位置に分配する構成とするのが、装置構
成を簡易とするために適当である場合が多い。分配量の
比は、上述した表1で説明したように分割数に応じて決
められる。「排出手段」は、配管,フィードポンプ等の
送給手段,減圧弁等の減圧手段,熱交換器等の冷却手段
などの既知の構成を採用することができる。「混合手
段」としては、2流体ノズル,圧力噴霧ノズル,渦巻き
噴霧ノズル,スタテックミキサーなど適宜のものを用い
ることができるが、後述するように2流体ノズルが好ま
しく採用される。
【0042】本願の請求項12の超臨界水酸化装置の発
明は、超臨界水酸化反応を行うための超臨界領域を器内
上部に有しかつ亜臨界領域を器内下部に有する複数の縦
型筒状反応器(ベッセル型反応器)と、各反応器の超臨
界領域が実質的に連続するように接続(シリーズに接
続)する配管と、各反応器の超臨界領域にそれぞれ分解
対象有機物を供給する供給手段と、最後段の反応器の超
臨界領域から反応生成流体を排出する排出手段と、各反
応器の亜臨界領域から塩を溶解した亜臨界水を排出する
塩排出手段とを備えるように構成された超臨界水酸化装
置であって、初段反応器の超臨界領域に分解対象有機物
を供給する供給手段は、超臨界領域に分解対象有機物と
超臨界水とを混合する混合手段を有することを特徴とす
る。
【0043】この発明によれば、シリーズに接続した複
数のベッセル型反応器の初段のものと、次段以降の一又
は二以上の反応器とに分けて、分解対象有機物を分割し
て供給(導入)することができ、しかも、2段目以降の
反応器では、前段で酸化分解して生成された流体である
超臨界水が、分割供給される分解対象有機物の溶媒にな
ると共に予熱源ともなるので、外部からの超臨界水の供
給が不要であり、これによって初段反応器で分解対象有
機物と共に供給する超臨界水の量を、分割数に対応して
少なくできる。そしてこのことにより、超臨界水製造エ
ネルギーの低減、排出流体の低減、反応器に分解対象有
機物を供給する配管等の中での重合反応・チャーリング
を防止して、供給有機物を少ないエネルギーで一気に昇
温させることが可能な効率的な超臨界水酸化装置を提供
することができる。
【0044】またこの発明におけるベッセル型反応器
は、器内上部の超臨界領域で生成した酸をアルカリで中
和して器内下部の亜臨界領域に落下させ、亜臨界水に溶
解させて反応器から排出することができるので、酸を生
成するような物質を含む有機物、例えば難分解性有機
物,有害有機物の分解用として特に好適に用いることが
できる。
【0045】なお前記構成において、「供給手段」、
「排出手段」、「混合手段」は前記の請求項11の場合
と同じである。
【0046】本願の請求項13の発明は、前記各装置発
明において、管式反応器の始端部、或いは初段のベッセ
ル型反応器に、分解対象有機物と超臨界水を混合して導
入する混合手段が2流体ノズルであることを特徴とす
る。
【0047】この発明によれば、効率的に完全分解を実
現した超臨界水酸化処理を行うことができる。すなわ
ち、導入有機物と超臨界水,酸化剤との混合が不十分で
あると分解対象有機物が充分な酸化分解を受けないで反
応領域を通過してしまう虞れがあるが、2流体ノズルを
用いる場合には、ノズルの形状や内外管の流量を調節す
ることにより分解対象有機物を反応器の中へ所定の大き
さ(粒径)で供給(導入,圧入)することが可能とな
り、上記の不具合を十分に解消できる。特にベッセル型
反応器を用いた装置で難分解性有機物や有害有機物を分
解処理する場合には、未分解物が下部亜臨界領域に落下
してしまう問題を防止できることは、有害有機物の外部
への排出防止を図る上で極めて有効である。また、ノズ
ルからの噴霧粒径があまり小さすぎると、析出塩の大き
さが非常に小さくなり、ベッセル型反応器では密度差で
塩が亜臨界領域に落下して溶解するのではなく、密度の
低い反応生成流体(超臨界水、二酸化炭素、窒素等)と
ともに上向きに流れを反転・上昇して、上部排出口から
排出系に析出塩が排出することも考えられ、反応器内壁
面への析出塩の固着、反応器以降の配管、熱交換器等の
閉塞の虞れを招くが、かかる不具合も2流体ノズルを用
いることで有効に解消できる。
【0048】更に、管式反応器を用いる場合にあって
は、反応器内部での導入有機物,超臨界水,酸化剤の混
合度合を高めるためには、十分な乱流状態(レイノルズ
数>10,000〜20,000)とすることが有効で
あるが、このためには口径が小さく長い反応器を使用す
ることが必要となる。しかしこのような反応器は、工業
的な装置では必ずしも有利でない。これに対し、2流体
ノズルを用いて導入有機物と酸化剤等の混合を行わせる
場合には、混合が良好に行われるため反応器設計の自由
度が大きくなるという利点が得られる。
【0049】このように用いられる2流体ノズルは、噴
射速度の小さい分解対象流体と噴射速度の大きい超臨界
水及び酸化剤流体との間の大きな相対速度の違いにより
せん断力による微粒化という作用を有する外部混合型の
ものが特に好ましく採用される。なお前記の外部混合型
の2流体ノズルは、流体吐出口を反応領域に臨ませて、
反応領域に各流体を吐出しながら混合を行う形式のもの
をいう。
【0050】前記構成の2流体ノズルにおいては、分解
対象有機物の重合反応・チャーリング防止のために、内
管に該有機物を通し、外管にその他の物質(例えば超臨
界水,酸化剤あるいはこれらの混合物)を通すように用
いることが好ましい。
【0051】本願の請求項14の発明は、管式反応器の
始端部を除く下流側位置に分解対象有機物を導入する導
入手段を有し、この導入手段が分解対象有機物と酸化剤
を混合する2流体ノズルであることを特徴とする。
【0052】この発明によれば、管式反応器の始端部を
除く下流側の位置から導入する分解対象有機物と酸化剤
の混合を効果的に与えることができる。
【0053】なお、管式反応器の途中にノズルを組み込
む構成としては、例えば管式反応器がほぼ直管の場合は
図1に示したように適宜の位置に組み込むことができ、
また管式反応器が相互に180°反転して蛇管状となっ
ている場合はその反転曲線を形成している部分にノズル
を下流側に向けて組み込み構造などを例示することがで
きる。2流体ノズルとして外部混合型が好ましく用いら
れること、内管に有機物を通し外管には酸化剤を通すこ
とが好ましいことは前記と同じである。
【0054】本願の請求項15の発明は、ベッセル型反
応器を用いる前記超臨界水酸化装置において、2段目以
降の反応器に分解対象有機物と前段反応器からの反応生
成流体を混合して導入する導入手段を有し、この導入手
段が分解対象有機物と前記反応生成流体を混合する2流
体ノズルであることを特徴し、本願の請求項16の発明
は、前記2流体ノズルを、分解対象有機物を内管に通し
該分解対象有機物に混合するその他の物質(反応生成流
体,酸化剤あるいはこれらの混合物)を外管に通すよう
にして用いることを特徴とする。
【0055】これらの発明によれば、2段目以降のベッ
セル型反応器においても導入有機物と酸化剤の混合を効
果的に与えることができる。
【0056】なお、2流体ノズルとして外部混合型が好
ましく用いられること、内管に有機物を通し、外管に前
段反応器からの生成流体等のその他の物質(反応生成流
体,酸化剤溶液あるいはこれらの混合物)を通すことが
好ましいことは前記と同じである。
【0057】
【発明の実施の形態】以下、本発明の実施形態をそのフ
ローシートを示す図を用いて説明する。
【0058】実施形態1 図1に示した本例は、管式反応器に対して本発明を適用
した場合の一例を示す。
【0059】図1において、1は管式反応器を示し、本
例はこの反応器1に対して分解対象有機物の導入位置を
3分割している、すなわち、3分割した有機物の一つは
反応器1の始端部2から2流体ノズル(図示せず)を介
して超臨界水および酸化剤と共に該反応器1に導入し、
3分割の他の一つは、始端部(第一位置)で導入した有
機物の酸化分解が終了すると推定される下流側の第二位
置3から2流体ノズル(同じく図示せず)を介して反応
器1に導入し、残りの他の一つは、更に下流側の第三位
置4から同じ構造の2流体ノズルを介して反応器1に導
入するようにし、最終的には、酸化分解反応生成物であ
る流体を、該反応器1の終端部6から排出系の配管7に
排出するようにした装置を示している。なおこの図1の
図示では、反応器1の始端部2への第一供給系の配管5
の途中で前記三つの流体を混合するように図示している
が、これは説明を簡単にするためであって必ずしも装置
の実際構成を示しているものではない。
【0060】工業的に有利な実施装置としては、上述し
た始端部2では図示しない2流体ノズルを介して各物質
を反応器内に供給(導入)させる構成を採用し、より好
ましくは内管を通して分解対象有機物を供給すると共に
外管を通して酸化剤を混合した超臨界水を供給する構成
が採用される。また同様に、有機物を導入する前記下流
側の位置3,4では、図示しない2流体ノズルの内管を
通して分解対象有機物を供給すると共に外管を通して酸
化剤を供給する構成が好ましく採用される。
【0061】なお、2流体ノズルを介しての有機物の導
入、特には、複数の物質がノズル吐出口から吐出した直
後に混合される外部混合型の2流体ノズルを用いた導入
により、分解対象有機物と酸化剤(及び超臨界水)との
ムラのない好ましい混合状態が得られ、したがって導入
有機物の完全分解に有効であることは上述した通りであ
る。
【0062】本例において用いる前記の2流体ノズル
は、設計的には個々の具体的な超臨界水酸化装置に適し
たものが採用されるが、原理的には2流体ノズルとして
既知の構成を採用できる。反応器始端部2に用いられる
2流体ノズルとしては、例えば燃焼工学第2版(水谷幸
雄著:森北出版)で開示されたもの適当なものとして
挙げることができる。また、前記下流側の位置3,4に
おいて用いられる2流体ノズルとしては、ノズルを反応
器の側壁から中央部に嵌入させ下流側に向かって導入物
を噴出させるように組み付ける構造のものを採用するこ
とができる。またパイプ状の管式反応器の壁面に周状に
吐出口を設けて、これから有機物を、反応器の例えば管
の中心方向に向けて斜めに噴出させるように構成したも
のを用いることも例示できる。
【0063】本例で例示する管式反応器1は、耐熱性及
び耐圧性の材料を用いてパイプ状に構成されたものを使
用して構成したものを用いることができ、径,延長長さ
などは、分解処理量,時間等を考慮して設計される。排
出系は、通常はこの反応器と同径のパイプ状の配管を接
続して構成することができる。
【0064】また本例の構成においては、反応器内を超
臨界水酸化反応に適した条件下とするために、上記の各
供給(導入)物は、反応器に導入する時点において所定
の条件下におかれるようにされる。すなわち各物質の供
給系は、所定の加熱,加圧の処理手段(図示せず)を有
するように構成され、具体的に言えば、圧力条件は分解
対象有機物,超臨界水,酸化剤はそれぞれ図示しない高
圧ポンプ等の加圧手段により22MPa以上の水の臨界
圧以上に加圧される。また温度条件については、超臨界
水は374℃以上の水の臨界温度以上好ましくは500
〜600℃に加熱され、分解対象有機物は予熱されてい
ないか重合やチャーリングを起こさない程度の低温度に
予熱される。酸化剤は必要に応じて加熱或いは加熱せず
に超臨界水に混合される。
【0065】図1に示した本例の三つの位置に分割して
分解対象有機物を導入するように設けられた管式反応器
を有する超臨界水酸化装置の各導入位置への各物質の供
給量と、反応器からの反応生成物の排出量との関係の一
例を図2に示す。なおこの図2に記した記号と数値のう
ち、記号Fは有機物、Aは酸化剤、Sは超臨界水をそれ
ぞれ示し、数値は、ある特定の分解対象有機物において
考えられる理想的な反応に必要な導入量を例示的に示し
たものであって、これらの数値は分解対象物質により異
なるので本発明がこれにより限定されるものではない。
次に本例の装置において行われる超臨界水酸化について
説明すると、予熱しないか低温度に予熱された分解対象
有機物は、管式反応器の始端部2から導入(圧入)さ
れ、該始端部から一定長の反応器内(以下「第一反応ゾ
ーン10」という)に導入された直後に、500〜60
0℃の超臨界水と混合されることにより臨界点以上の温
度となり急激な酸化反応が開始される。
【0066】そして、第一反応ゾーン10では流れ方向
に沿ってプラグフロー的に温度が高くなり、最高反応温
度に到達した後、一定時間反応が継続され、完全に酸化
分解が行われる。通常、最高反応温度は550〜650
℃である。ここで、第一反応ゾーンの容量は分解対象有
機物を完全分解するに十分な容積であり、反応時間に換
算すると、通常1〜2分である。
【0067】次に、完全に酸化分解された生成流体(処
理流体)が図1の位置3の下流の範囲(以下「第二反応
ゾーン11」という)に入るところで、再び流量調整さ
れた分解対象有機物及び酸化剤が、第二位置への第二供
給系の配管8より、内管に分解対象有機物を通し外管に
酸化剤を通す2流体ノズルを介して反応器1に導入され
る。ここで導入された分解対象有機物は、反応ゾーン1
0で完全分解された処理流体との混合により、臨界点以
上の温度となり再び酸化反応が進行する。
【0068】更にこれに次いて、完全に酸化分解された
処理流体が図1の位置4の下流の範囲(以下「第三反応
ゾーン12」という)に入るところで、再び流量調整さ
れた分解対象有機物及び酸化剤が、第三位置4への第三
供給系の配管9より、内管に分解対象有機物を通し外管
に酸化剤を通す2流体ノズルを介して反応器1に導入さ
れ、ここでも第二反応ゾーン11と同様に、導入された
分解対象有機物は第二反応ゾーン11からの処理流体と
の混合により臨界点以上の温度となり再び酸化反応が進
行する。最終的に酸化分解処理が完了した処理流体は、
排出系の配管7より反応器1から排出される。
【0069】なお、図示していないが、反応器1から排
出された処理流体は熱回収、冷却、減圧が行われて大気
圧下に排出されるが、この熱回収のところで反応器入口
部に導入するための超臨界水を製造(加熱)するように
構成することが熱バランス的には優れており、好ましく
行われる。
【0070】以上のように有機物の3分割方式に構成し
た本例装置によれば、前記表1で説明した場合であれ
ば、管式反応器1の始端部(第一位置)に一部の有機物
と共に供給する超臨界水は、該始端部に有機物全量を供
給する方式に比べて、約5分の1に減少でき、また導入
有機物量も約5分の1に減少する。また分割して導入す
る量が最も多い第三位置での導入有機物量も、始端部全
量方式に比べて約半分である。
【0071】これらのことから、反応器に導入する超臨
界水の量は大幅に少なくでき、また分割して各位置に導
入する有機物も少ないので、有機物と酸化剤とが混合し
易い状態となり、有機物の偏在などによる分解不良が起
こって未分解物が反応器を通過してしまう虞れを解消な
いし大幅に低減できる。
【0072】本例の装置は、管式反応器という構造が簡
単なものであるため、装置的には工業的な実施化が比較
的に容易で、設備費用も安価とでき、特に超臨界水酸化
により酸を副生しないためにアルカリ中和で塩が生成し
ない有機物を対象とする場合、あるいは塩を生成しても
反応器等の壁面付着を生じて閉塞などの問題を招かない
場合の超臨界水酸化処理に有効に用いられる。
【0073】実施形態2 図3に示した本例は、ベッセル型反応器に対して本発明
を適用した場合の一例を示す。
【0074】この図3において、第一反応器101,第
二反応器102,第三反応器103はそれぞれベッセル
型反応器を示し、例えば上述した特開平3−50026
4号に記載されたように、器内上部に超臨界領域、器内
下部に亜臨界領域が形成されるようになっており、器上
部から超臨界水酸化のための各流体が供給されると共に
同じく器上部から、超臨界水酸化で生成した密度の小さ
い物質(完全分解されて実質的に超臨界水,炭酸ガス)
が排出されるように構成される。なおこれらの三つの反
応器101〜103は、供給系,排出系の配管との接続
が異なるが、他は同じ構造をなしていて、短い接続配管
104,105によりシリーズにつながれている。
【0075】前記第1反応器101は、器上部から内部
に向かって外部混合型の2流体ノズル(図示せず)が臨
み、この2流体ノズルを介して供給系の配管107か
ら、該ノズルの内管を通して予熱しないか低温度に予熱
された分解対象有機物を導入すると共に、外管を通して
酸化剤を添加した例えば500〜600℃の超臨界水を
導入するようになっている。また器下部は、臨界温度以
下とされて亜臨界水が一定深さで貯溜され、図示しない
亜臨界水の導入管,導出管により少量づつの亜臨界水の
器外排出を行なうことで、この亜臨界水に溶解している
塩を器外に排出するように構成されている。また更に、
器上部には前記接続配管104が接続されていて、第二
反応器102の器上部に設けられた2流体ノズルの内管
を通して、処理流体を該第二反応器102に導入させる
ようになっている。
【0076】第二反応器102は、器上部に設けた2流
体ノズルの内管を通して供給系の配管108から分解対
象有機物を導入し、外管を通して前記第一反応器101
からの生成流体(処理流体)を導入するようにしている
点が該第一反応器と異なるが、他は第一反応器101と
同じである。この第二反応器102で生成された処理流
体は、接続配管105を介して第三反応器103に送ら
れる。
【0077】第三反応器103は、器上部に設けた2流
体ノズルの内管を通して供給系の配管109から分解対
象有機物を導入し、外管を通して前記第二反応器102
からの生成流体(処理流体)を導入するようにしている
点と、器上部に接続した排出系配管を通して、処理流体
を排出系に排出するようになっている点が該第二反応器
と異なるが、他は第二反応器102と同じである。
【0078】本例の反応器に用いる2流体ノズルには、
実施形態1で用いたのと同様のものが用いられる。
【0079】次に本例の装置において行われる超臨界水
酸化について、難分解性で有害な有機物を酸化分解する
場合を例にして説明する。なおこの有機物は酸化分解に
伴って酸を副生するため、酸中和のためのアルカリが導
入されるようにしている。まず第一反応器101には、
予熱しないか低温度に予熱された分解対象有機物及びア
ルカリが第一供給系の配管107から2流体ノズルの内
管を通して第一反応器101に導入(圧入)され、外管
からは所定量の酸化剤が添加された超臨界水が導入され
る。なお、本例では第一〜第三反応器101,102,
103での酸化反応に必要な酸化剤の全量、及び副生す
る酸の中和に必要なアルカリの全量が第一反応器101
において導入されるようにしている。
【0080】前記各物質の導入直後に、500〜600
℃の超臨界水と有機物が混合することにより臨界点以上
の温度となり急激な酸化反応が開始され、この酸化反応
は一定時間継続されて完全に酸化分解が行われる。通
常、最高反応温度は550〜650℃である。ここで、
第一反応器の容量は分解対象有機物を完全分解するに十
分な容積であり、反応時間に換算すると、通常1〜2分
であり、酸化分解で生成された処理流体は、接続配管1
04を介して第二反応器102に送られる。また副生さ
れた酸はアルカリと中和反応して塩として析出し、下向
きに亜臨界領域に落下して亜臨界水に溶解する。この溶
解した塩は亜臨界水の器外への排出に伴って排出され
る。
【0081】次に、前段反応器(第一反応器101)で
完全に酸化分解された生成流体(処理流体)が第二供給
系の配管108に接続された2流体ノズルの外管を通し
て第二反応器102に入り、この時ノズルの内管を通し
て、流量調整された分解対象有機物が該第二反応器10
2に導入される。ここで導入された分解対象有機物は、
前段反応器で完全分解された処理流体と混合して臨界点
以上の温度となり再び酸化反応が進行する。酸化分解で
生成された処理流体は、接続配管105を介して第三反
応器103に送られる。
【0082】第三反応器103では、前記第二反応器1
02と同様の酸化分解が行われる。すなわち、第三供給
系の配管109に接続された2流体ノズルの外管を通し
て前段反応器(第二反応器102)からの処理流体が導
入され、これと同時にノズルの内管を通して分解対象有
機物が導入され、混合により臨界点以上の温度となって
再び酸化反応が進行する。最終的に酸化分解処理が完了
した処理流体は、排出系の配管106から排出される。
【0083】以上の有機物をシリーズに接続した三つの
ベッセル型反応器に3分割して導入するようにした本例
装置によれば、前記表1で説明した場合であれば、第一
反応器101に一部の有機物と共に供給する超臨界水
は、一つのベッセル型反応器に有機物全量を供給する方
式に比べて、約5分の1に減少でき、また導入有機物量
も約5分の1に減少する。また分割して導入する量が最
も多い第三反応器103でも、有機物の導入量は全量方
式に比べて約半分である。
【0084】これらのことから、反応器に導入する超臨
界水の量は大幅に少なくでき、また分割して各位置に導
入する有機物も少ないので、有機物と酸化剤とが混合し
易い状態となり、有機物の偏在などによる分解不良が起
こって未分解物が反応器を通過してしまう虞れを解消な
いし大幅に低減できる。
【0085】また本例の装置は、ベッセル型反応器を用
いるものであり、難分解性有機物,有害有機物などの酸
化分解、特に反応により酸が副生する有機物の分解処理
用として適しており、クローズドな系でこれらの有機物
を完全に分解できるという工業的に極めて優れた装置を
提供できる。
【0086】
【発明の効果】以上説明したように、本発明によれば以
下に述べる種々の優れた効果が得られる。
【0087】本願の請求項1の発明、すなわち温度及び
圧力が水の臨界点以上の条件下の反応領域に連続的に分
解対象有機物を含む流体を供給し、該反応領域で超臨界
水の存在下に有機物を酸化分解させ、反応生成流体を連
続的に反応領域から排出する超臨界水酸化方法であっ
て、反応領域の流体が流れる方向に離隔した複数の位置
から分解対象有機物を導入し、このうちの初段導入位置
では分解対象有機物と超臨界水を導入時に混合するか或
いは混合した後直ちに導入し、次段以降の導入位置では
前段で反応生成した流体中に分解対象有機物を再び導入
することを特徴とする超臨界水酸化方法の発明によれ
ば、分解対象有機物の分割導入(供給)により、分解対
象有機物の臨界温度以上への急速昇温が可能で、高温状
態の有機物の移相や緩速加熱に起因する分解対象有機物
の重合・チャーリングを防止でき、対象有機物の完全分
解が達成できる。また、反応器に外部から供給する超臨
界水の量が少ないのでエネルギー的に有利で、反応器か
ら排出される流体量も少ない。これらのことから、超臨
界水酸化装置やその供給系、排出系を含む設備全体の小
型化が実現できる。
【0088】請求項2の発明によれば、簡易な構造の管
式反応器を用いて前記発明の効果を達成でき、特に酸生
成がない有機物の分解処理を好適に実施することができ
る。請求項3の発明によれば、酸化分解により生成した
酸を亜臨界領域から亜臨界水に溶解させて排出できるの
で、超臨界領域に析出した塩で閉塞するなどの問題を回
避しながら、前記発明の効果を達成でき、特に、アルカ
リ中和で塩が生成するような有機物を分解対象物とした
場合の処理を好適に実施できる。
【0089】また、通常、アルカリ中和による塩の生成
が考えられるPCBs,トリクロロエチレン、テトラク
ロロエチレン、廃農薬等の有機塩素化合物などの難分解
性有機物,有害有機物の超臨界水酸化分解処理用として
特に有用である。
【0090】請求項5の発明によれば、分解対象有機物
を低温度に予熱するか又は予熱することなく反応器に供
給できるので、重合・チャーリング等の防止が図れるこ
とに加えて、加熱設備を省略ないし簡略化できるという
効果が奏される。
【0091】請求項11の超臨界水酸化装置の発明によ
れば、管式反応器の始端部からと該反応器の下流側の一
或いは二以上の位置からとに分けて分解対象有機物を分
割して供給し、下流側の分割供給位置では前段からの生
成流体(超臨界水)が下流側で分解対象有機物の溶媒と
して利用され、かつその熱が導入有機物の予熱源ともな
るので、外部からの超臨界水の供給が不要となる。これ
によって反応器に供給する超臨界水の量を少なくでき
る。更に超臨界水製造エネルギーの低減、排出流体量の
低減が実現され、少ないエネルギーで分解対象有機物を
一気に臨界温度以上に昇温できるという効果が奏され
る。
【0092】また、反応器の始端部をはじめとして、分
割した各位置で供給する分解対象有機物の量を、始端部
で全量供給する従来方式に比べて相対的に少なくでき
て、有機物と超臨界水の混合を良好な状態とできるため
特に難分解性有機物、有害有機物の完全分解を効果的に
実現できる。
【0093】請求項12の超臨界水酸化装置の発明によ
れば、初段の反応器と次段以降の一又は二以上の反応器
とに分けて分解対象有機物を分割して供給するので、2
段目以降の反応器では、前段で生成した流体(超臨界
水)が分解対象有機物の溶媒になると共に予熱源ともな
るので外部からの超臨界水の供給が不要となり、初段反
応器に供給する超臨界水の量を少なくできる。このこと
により、超臨界水製造エネルギーの低減、排出流体の低
減、反応器に分解対象有機物を供給する配管等の中での
重合反応・チャーリングを防止して、供給有機物を少な
いエネルギーで一気に昇温させることが可能な効率的な
超臨界水酸化装置を提供できる。
【0094】またベッセル型反応器を用いているので、
酸を生成するような物質を含む有機物、例えば難分解性
有機物,有害有機物の分解用として特に好適に用いるこ
とができる。
【0095】請求項13の発明、すなわち管式反応器の
始端部或いは初段のベッセル型反応器に、分解対象有機
物と超臨界水を混合して導入する混合手段を2流体ノズ
ルとした発明によれば、ノズルの形状や内外管の流量を
調節することにより分解対象有機物を反応器の中へ所定
の粒径で供給することが可能となり、効率的に完全分解
を実現した超臨界水酸化処理を実現できる。
【0096】またベッセル型反応器を用いた装置は、難
分解性有機物や有害有機物の未分解物が下部亜臨界領域
に落下してしまう問題を防止でき、有害有機物の外部へ
の排出防止を図る上で極めて有効である。更に、析出塩
の粒径をあまり小さくしないことで最後段の反応器から
下流の排出系に該析出塩が排出することを防止でき、反
応器以降の配管や熱交換器等の閉塞の虞れを解消でき
る。
【0097】請求項14〜18の発明によれば、管式反
応器の下流側、或いは2段目以降のベッセル型反応器に
導入する有機物を2流体ノズルを用いて酸化剤と効率よ
く混合させるので、有機物の完全分解をより一層確実に
できるという効果が奏される。
【0098】これらのことから、本発明の超臨界水酸化
処理方法及び装置は、これを工業的に実施する際に技術
的、経済的に非常に有利な方法、装置を提供できる。
【0099】特に、分割して導入するため各位置での有
機物導入量が少ないために、導入有機物,超臨界水,酸
化剤の混合を良好に与えることができ、難分解性有機
物,有害有機物の完全酸化分解に極めて有効であるとい
う優れた効果が奏される。
【図面の簡単な説明】
【図1】管式反応器を用いて構成した本発明の超臨界水
酸化装置の一実施態様をフローで示した図。
【図2】図1の装置における各分割導入位置への有機
物、超臨界水及び酸化剤の供給量と、排出系への排出量
との関係を説明するための図。
【図3】ベッセル型式反応器を用いて構成した本発明の
超臨界水酸化装置の他の実施態様をフローで示した
図。
【図4】超臨界水を混合したときの被混合物の温度上昇
を説明するための図。
【符号の説明】
1・・・管式反応器、2・・・始端部、3・・・第二位
置、4・・・第三位置、5・・・第一供給系の配管、6
・・・終端部、7・・・排出系の配管、8・・・第二供
給系の配管、9・・・第三供給系の配管、10・・・第
一反応ゾーン、ll・・・第二反応ゾーン、12・・・
第三反応ゾーン。101・・・第一反応器、102・・
・第二反応器、103・・・第三反応器、104,10
5・・・接続配管、106・・・排出系の配管、107
・・・第一供給系の配管、108・・・第二供給系の配
管、109・・・第三供給系の配管。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B09B 3/00 B09B 3/00 304Z (72)発明者 安生 徳幸 埼玉県戸田市川岸1丁目4番9号 オル ガノ株式会社総合研究所内 (56)参考文献 米国特許5492634(US,A) 米国特許5421998(US,A) 米国特許4822497(US,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/74 A62D 3/00 B01J 3/00 B09B 3/00 JICSTファイル(JOIS) WPI(DIALOG)

Claims (18)

    (57)【特許請求の範囲】
  1. 【請求項1】 温度及び圧力が水の臨界点以上の条件下
    の反応領域に連続的に分解対象有機物を含む流体を供給
    し、該反応領域で超臨界水の存在下に有機物を酸化分解
    させ、反応生成流体を連続的に反応領域から排出する超
    臨界水酸化方法であって、反応領域の流体が流れる方向
    に離隔した複数の位置から分解対象有機物を導入し、こ
    のうちの初段導入位置では分解対象有機物と超臨界水を
    導入時に混合するか或いは混合した後直ちに導入し、次
    段以降の導入位置では前段で反応生成した流体中に分解
    対象有機物を再び導入することを特徴とする超臨界水酸
    化方法。
  2. 【請求項2】 温度及び圧力が水の臨界点以上の条件下
    の反応領域とされた管式反応器内で、超臨界水の存在下
    に有機物を酸化分解する超臨界水酸化方法であって、分
    解対象有機物と超臨界水を管式反応器の始端部への導入
    時に混合するか或いは混合した後直ちに導入して酸化分
    解反応を行わせると共に、管式反応器内に導入した有機
    物の酸化分解反応により生成した流体中に所定位置に分
    解対象有機物を再び導入して酸化分解反応を継続させ、
    この酸化分解反応を継続させる分解対象有機物の再導入
    操作を、反応器の流体の流れる方向に沿って少なくとも
    一又は二以上の位置で行うことを特徴とする超臨界水酸
    化方法。
  3. 【請求項3】 温度及び圧力が水の臨界点以上の超臨界
    条件下の反応領域を器内上部に有しかつ亜臨界条件下の
    領域を器内下部に有する縦型筒状反応器の複数に対し
    て、流体が各反応器の反応領域を連続して流れながら、
    各反応領域で超臨界水の存在下に有機物を酸化分解する
    超臨界水酸化方法であって、初段反応器の反応領域に
    は、分解対象有機物と超臨界水を導入時に混合するか或
    いは混合した後直ちに導入して酸化分解反応を行わせ、
    次段以降の反応器の反応領域には、前段で反応生成した
    流体を流すと共に分解対象有機物を再び導入することを
    特徴とする超臨界水酸化方法。
  4. 【請求項4】 請求項1ないし3のいずれかにおいて、
    分解対象有機物が、難分解性有機物,有害有機物である
    ことを特徴とする超臨界水酸化方法。
  5. 【請求項5】 請求項1ないし4のいずれかにおいて、
    分解対象有機物は、低温度に予熱するか又は予熱するこ
    となく超臨界水と混合して臨界温度以上となるようにし
    たことを特徴とする超臨界水酸化方法。
  6. 【請求項6】 請求項5において、反応領域に導入する
    超臨界水の温度が500〜650℃であることを特徴と
    する超臨界水酸化方法。
  7. 【請求項7】 請求項1ないし6のいずれかにおいて、
    分解対象有機物の酸化分解に必要な酸化剤を、分解対象
    有機物又は超臨界水に混合して反応領域に導入するか、
    或いは反応領域への導入時に混合することを特徴とする
    超臨界水酸化方法。
  8. 【請求項8】 請求項7において、反応領域に導入され
    る分解対象有機物の酸化分解に必要な酸化剤の全量を初
    段の反応領域に導入するか、或いは反応領域に分割して
    導入される分解対象有機物の各位置の導入量に応じてそ
    の位置毎に導入することを特徴とする超臨界水酸化方
    法。
  9. 【請求項9】 請求項1ないし8のいずれかにおいて、
    超臨界水酸化反応により生成する酸を中和するアルカリ
    を、分解対象有機物,超臨界水,酸化剤のいずれかに混
    合して反応領域に導入するか、或いは反応領域への導入
    時に混合することを特徴とする超臨界水酸化方法。
  10. 【請求項10】 請求項9において、超臨界水酸化反応
    により生成する酸を中和するのに必要なアルカリの全量
    を初段の反応領域に導入するか、或いは反応領域に分割
    して導入される分解対象有機物の各位置の導入量に応じ
    てその位置毎に分注することを特徴とする超臨界水酸化
    方法。
  11. 【請求項11】 超臨界水酸化反応のための条件を形成
    する管式反応器と、この反応器に分解対象有機物を含む
    流体を連続的に供給する供給手段と、反応生成した流体
    を反応器から連続的に排出する排出手段とを備え、前記
    供給手段は、管式反応器の始端部と、流体の流れに沿っ
    た下流側の少なくとも一カ所以上の位置とに分けて分解
    対象有機物を供給する位置を有するように設けられ、か
    つ管式反応器の始端部への供給手段は分解対象有機物と
    超臨界水とを混合する混合手段を有することを特徴とす
    る超臨界水酸化装置。
  12. 【請求項12】 超臨界水酸化反応を行うための超臨界
    領域を器内上部に有しかつ亜臨界領域を器内下部に有す
    る複数の縦型筒状反応器と、各反応器の超臨界領域が実
    質的に連続する配管と、各反応器の超臨界領域にそれぞ
    れ分解対象有機物を供給する供給手段と、最後段の反応
    器の超臨界領域から反応生成流体を排出する排出手段
    と、各反応器の亜臨界領域から塩を溶解した亜臨界水を
    排出する塩排出手段とを備えるように構成された超臨界
    水酸化装置であって、初段反応器の超臨界領域に分解対
    象有機物を供給する供給手段は、分解対象有機物と超臨
    界水とを混合する混合手段を有することを特徴とする超
    臨界水酸化装置。
  13. 【請求項13】 請求項11又は12において、分解対
    象有機物と超臨界水を混合して反応器に導入する混合手
    段が2流体ノズルであることを特徴とする超臨界水酸化
    装置。
  14. 【請求項14】 請求項11において、管式反応器の始
    端部を除く下流側位置に分解対象有機物を導入する導入
    手段を有し、この導入手段が分解対象有機物と酸化剤を
    混合する2流体ノズルであることを特徴とする超臨界水
    酸化装置。
  15. 【請求項15】 請求項12において、2段目以降の反
    応器に分解対象有機物と前段反応器からの反応生成流体
    を混合して導入する導入手段を有し、この導入手段が、
    分解対象有機物と前記反応生成流体を混合する2流体ノ
    ズルであることを特徴とする超臨界水酸化装置。
  16. 【請求項16】 請求項13ないし15のいずれかにお
    いて、2流体ノズルは、分解対象有機物を内管に通し、
    該分解対象有機物に混合するその他の物質を外管に通す
    ことを特徴とする超臨界水酸化装置。
  17. 【請求項17】 請求項16において、酸化剤を2流体
    ノズルの外管を通して導入することを特徴とする超臨界
    水酸化装置。
  18. 【請求項18】 請求項16または17において、2流
    体ノズルが外部混合型であることを特徴とする超臨界水
    酸化装置。
JP30285296A 1996-11-14 1996-11-14 超臨界水酸化方法及び装置 Expired - Fee Related JP3347610B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30285296A JP3347610B2 (ja) 1996-11-14 1996-11-14 超臨界水酸化方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30285296A JP3347610B2 (ja) 1996-11-14 1996-11-14 超臨界水酸化方法及び装置

Publications (2)

Publication Number Publication Date
JPH10137775A JPH10137775A (ja) 1998-05-26
JP3347610B2 true JP3347610B2 (ja) 2002-11-20

Family

ID=17913881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30285296A Expired - Fee Related JP3347610B2 (ja) 1996-11-14 1996-11-14 超臨界水酸化方法及び装置

Country Status (1)

Country Link
JP (1) JP3347610B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052207A1 (en) * 2004-11-15 2006-05-18 Chematur Engineering Ab Method and system for supercritical water oxidation of a stream containing oxidizable material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171509B1 (en) 1998-06-12 2001-01-09 Chematur Engineering Ab Method and apparatus for treating salt streams
JP3057250B2 (ja) * 1998-11-18 2000-06-26 財団法人石炭利用総合センター 有機廃棄物の処理方法
US6464797B1 (en) 1999-07-28 2002-10-15 Ricoh Company, Ltd. Method of separating electrophotographic carrier compositions and recycling the compositions
JP2001149767A (ja) * 1999-11-30 2001-06-05 Japan Organo Co Ltd 超臨界水処理装置及び超臨界水処理方法
FR2813599B1 (fr) * 2000-09-07 2003-05-16 Centre Nat Rech Scient Procede de traitement des dechets par oxydation hydrothermale
ES2255443B1 (es) * 2004-12-03 2007-07-01 Universidad De Cadiz Sistema y procedimiento para la oxidacion hidrotermica de residuos organicos insolubles en agua.
FR2970247B1 (fr) * 2011-01-12 2014-09-26 Innoveox Procede optimise de traitement de dechets par traitement hydrothermal
JP6836046B1 (ja) * 2019-11-20 2021-02-24 清水 幹治 有機物の亜臨界又は超臨界連続処理設備及び方法
CN112062880A (zh) * 2020-09-01 2020-12-11 南京天诗新材料科技有限公司 一种超临界水氧化高分子量聚乙烯方法及其装置
CN112358026B (zh) * 2020-10-30 2024-01-23 西安理工大学 一种有机危废超临界水强化氧化处置耦合发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052207A1 (en) * 2004-11-15 2006-05-18 Chematur Engineering Ab Method and system for supercritical water oxidation of a stream containing oxidizable material

Also Published As

Publication number Publication date
JPH10137775A (ja) 1998-05-26

Similar Documents

Publication Publication Date Title
JP3347610B2 (ja) 超臨界水酸化方法及び装置
US6929752B2 (en) Method for treating waste by hydrothermal oxidation
CN108751384B (zh) 针对难降解有机废水内循环流化床型超临界水氧化系统
JP2013136045A (ja) 廃液処理装置及び廃液処理方法
CN108622993A (zh) 一种含氮有机废水的超临界水氧化处理装置
JP3583606B2 (ja) 超臨界水酸化方法及び反応装置
CN111491699B (zh) 用于废物处理的系统、方法和技术
CN109231625A (zh) 一种有机废水的高温氧化处理方法及设备
JP2009125684A (ja) 水処理装置
JP3345285B2 (ja) 超臨界水酸化装置の起動方法、停止方法
JP3440835B2 (ja) 高温高圧水蒸気を用いた有機性廃棄物処理方法
CN207405000U (zh) 一种复合高级氧化工艺处理高cod废液的装置
JP3405295B2 (ja) 水熱反応による動植物残渣処理装置
JP3801807B2 (ja) 超臨界水反応装置
JP2003236594A (ja) 汚泥の処理装置
JP2003299941A (ja) 水熱酸化反応処理装置および方法
CN102295366A (zh) 一种超临界水氧化处理废水工艺及其反应设备
JPH10137774A (ja) 超臨界水酸化の反応器に流体を供給する方法、供給装置、及び超臨界水酸化装置
JP2001205279A (ja) 超臨界水酸化装置
JP2002119996A (ja) し尿および/または浄化槽汚泥の処理方法および装置
JP3686778B2 (ja) 超臨界水反応装置の運転方法
JPH10314768A (ja) 超臨界水酸化方法
JP2001259696A (ja) し尿および/または浄化槽汚泥の処理方法および装置
JP2002292268A (ja) 超臨界水反応生成物流体冷却方法及び超臨界水反応冷却装置
CN217202478U (zh) 湿式氧化设备

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees