JPH09297181A - 放射線撮像装置 - Google Patents

放射線撮像装置

Info

Publication number
JPH09297181A
JPH09297181A JP8112326A JP11232696A JPH09297181A JP H09297181 A JPH09297181 A JP H09297181A JP 8112326 A JP8112326 A JP 8112326A JP 11232696 A JP11232696 A JP 11232696A JP H09297181 A JPH09297181 A JP H09297181A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
substrate
radiation imaging
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8112326A
Other languages
English (en)
Inventor
Shinichi Takeda
慎市 竹田
Eiichi Takami
栄一 高見
Tadao Endo
忠夫 遠藤
Chiori Mochizuki
千織 望月
Shinichi Hayashi
眞一 林
Akira Tonagoshi
章 冨名腰
Masakazu Morishita
正和 森下
Akira Tago
晃 多胡
Toshikazu Tamura
敏和 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8112326A priority Critical patent/JPH09297181A/ja
Publication of JPH09297181A publication Critical patent/JPH09297181A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 蛍光体で変換された間接光による光学的クロ
ストーク等で起こる光学的ノイズの減少及び外光遮光に
伴う装置の簡素化を促し、高画質で小型化、軽量化、及
び低コスト化をはかり得る大面積の放射線撮像装置を提
供する. 【解決手段】 複数の光電変換素子が形成された透光性
基板1と前記透光性基板1上に形成された蛍光体層CS
Iとを有する放射線撮像基板からなる放射線撮像装置に
おいて、前記放射線撮像基板は、少なくとも前記蛍光体
層CSIの放射線入射面と、前記透光性基板1の前記光
電変換素子が形成されている面とは反対側の面a及び前
記透光性基板1の少なくとも1つの端面bが光吸収材料
COT1で覆われていることを特徴とする放射線撮像装
置。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、放射線撮像装置に
係わり、特に大面積プロセスを用いて形成した光電変換
素子を二次元に配置した光電変換装置を用い、蛍光体の
発光による放射線像を直接且つ電気信号として読み取り
を行う、医療機器のレントゲン装置や非破壊検査等のデ
ィジタル画像X線撮像装置に好適に用いられる放射線撮
像装置に関するものである。
【0002】
【従来の技術】従来の放射線写真は、遮光カセット格納
装置内のハロゲン化銀感光フィルムを使用して、放射線
写真潜像し、その後化学的現像と定着を行い可視像の写
真フィルムとして得ている。ハロゲン化銀感光フィルム
は、X線放射に対する感度があまりよくなく、像を得る
ために大量の露光を必要とするので、多くの装置は、X
線を可視光に変換する蛍光体を持つ増感スクリーンをハ
ロゲン化銀フィルムと併用して、露光の減少化を達成し
ている。
【0003】近年装置の小型化、デジタル画像によるフ
ィルムレス化や装置の動画・リアルタイムな静止画への
対応に伴い、水素化アモルファスシリコン(以下a−S
iと記す)に代表される光電変換材料を用いた光電変換
素子及び信号処理部を大面積の基板に形成した光電変換
装置をハロゲン化銀感光フィルムに代え配置し蛍光体層
からの情報を等倍の光学系で直接電気信号として読み取
る放射線撮像装置の開発がめざましい。
【0004】特にa−Siは光電変換材料としてだけで
なく、薄膜電界効果型トランジスタ(以下TFTと記
す)としても用いることができるので光電変換半導体層
とTFTの半導体層とを同時に形成することができる利
点を有している。
【0005】図5(a)〜(c)は従来の光電変換素子
の構成を示す図であり、図5(a)、(b)は二種類の
光センサの層構成を示し、図5(c)は共通した代表的
な駆動方法を示している。
【0006】図5(a)、(b)共にフォト・ダイオー
ド型の光センサであり、図5(a)はPIN型、図5
(b)はショットキー型と称されている。図5(a)、
(b)中1は絶縁基板、2は下部電極、3はp型半導体
層(以下p層と記す)、4は真性半導体層(以下i層と
記す)、5はn型半導体層(以下n層と記す)、6は透
明電極である。図5(b)のショットキー型では下部電
極2の材料を適当に選び、下部電極2からi層4に電子
が注入されないようショットキーバリア層が形成されて
いる。
【0007】図5(c)において、10は上記光電変換
素子を記号化して表わした光電変換素子を示し、11は
電源、12は電流アンプ等の検出部を示している。光電
変換素子10中Cで示された方向は図5(a)、(b)
中の透明電極6側、Aで示された方向が下部電極2側で
あり、電極11はA側に対しC側に正の電圧が加わる様
に設定されている。
【0008】ここで動作を簡単に説明する。図5
(a)、(b)に示されるように、矢印で示された方向
から光が入射され、i層4に達すると、光は吸収され電
子とホールが発生する。i層4には電源11により電界
が印加されているため電子はC側、つまりn層5を通過
して透明電極6に移動し、ホールはA側つまり下部電極
2に移動する。よって、光電変換素子10に光電流が流
れたことになる。
【0009】また、光が入射しない場合i層4で電子も
ホールも発生せず、また、透明電極内6のホールはn層
5がホールの注入阻止層として働き、下部電極2内の電
子は図5(a)のPIN型ではp層3が、図5(b)の
ショットキー型ではショットキーバリア層が、電子の注
入阻止層として働き、電子、ホール共に移動できず、電
流は流れない。したがって光の入射の有無で電流が変化
し、これを図5(c)の検出部12で検出すれば光電変
換素子として動作する。
【0010】しかしながら、上記従来の光電変換素子で
SN比が高く、低コストの光電変換装置を生産するのは
困難であった。以下その理由について説明する。
【0011】第一の理由は、図5(a)のPIN型、図
5(b)のショットキー型は、共に2カ所に注入阻止層
が必要なところにある。図5(a)のPIN型におい
て、注入阻止層であるn層5は電子を透明電極6に導く
と同時にホールがi層4に注入するのを阻止する特性が
必要である。どちらかの特性を逸すれば光電流が低下し
たり、光が入射しない時の電流(以下暗電流と記す)が
発生、増加することになりSN比の低下の原因になる。
この暗電流はそれ自身がノイズと考えられると同時にシ
ョットノイズと呼ばれるゆらぎ、いわゆる量子ノイズを
含んでおり、たとえ検出部12で暗電流を差し引く処理
をしても、暗電流に伴う量子ノイズを小さくすることは
できない。通常この特性を向上させるためi層4やn層
5の成膜の条件や、作成後のアニールの条件の最適化を
図る必要がある。
【0012】しかし、もう一つの注入阻止層であるp層
3についても電子、ホールが逆ではあるが同等の特性が
必要であり、同様に各条件の最適化が必要である。通
常、前者n層の最適化と後者p層の最適化の条件は同一
でなく、両者の条件を同時に満足させるのは困難であ
る。つまり、同一光電変換素子内に二カ所の注入阻止層
が必要なことは高SN比の光電変換素子の形成を困難に
する。
【0013】これは、図5(b)のショットキー型にお
いても同様である。また図5(b)のショットキー型に
おいては片方の注入阻止層にショットキーバリア層を用
いているが、これは下部電極2とi層4の仕事関数の差
を利用するもので、下部電極2の材料が限定されたり、
界面の局在準位の影響が特性に大きく影響し、条件を満
足させるのはさらに困難である。
【0014】また、さらにショットキーバリア層の特性
を向上させるために、下部電極2とi層4の間に100
オングストローム前後の薄いシリコンや金属の酸化膜、
窒化膜を形成することも報告されているが、これはトン
ネル効果を利用し、ホールを下部電極2に導き、電子の
i層4への注入を阻止する効果を向上させるもので、や
はり仕事関数の差を利用しているため下部電極2の材料
の限定は必要であるし、電子の注入の阻止とトンネル効
果によるホールの移動という逆の性質を利用するため酸
化膜や窒化膜は100オングストローム前後と非常に薄
いところに限定され、かつ、厚さや膜質の制御は難しく
生産性を低下させられる。
【0015】また、注入阻止層が2カ所必要なことは生
産性を低下させコストもアップする。これは注入阻止層
が特性上重要な為2カ所中1所でもゴミ等で欠陥が生じ
た場合、光電変換素子としての特性が得られないからで
ある。
【0016】第二の理由を、図6を用いて説明する。図
6は薄膜の半導体膜で形成した電界効果型トランジスタ
(以降TFTと記す)の層構成を示している。TFTは
光電変換装置を形成するうえで制御部の一部として利用
することがある。図中図5と同一なものは同番号で示し
てある。図6において、7はゲート絶縁膜であり、60
は上部電極である。形成法を順を追って説明する。絶縁
基板1上にゲート電極(G)として働く下部電極2、ゲ
ート絶縁膜7、i層4、n層5、ソース、ドレイン電極
(S,D)として働く上部電極60を順次成膜し、上部
電極60をエッチングしてソース、ドレイン電極を形成
し、その後n層5をエッチングしてチャネル部を構成し
ている。TFTの特性はゲート絶縁膜7とi層4の界面
の状態に敏感で通常その汚染を防ぐために同一真空内で
連続に堆積する。
【0017】従来の光電変換素子をこのTFTと同一基
板上に形成する場合、この層構成が問題となりコストア
ップや特性の低下を招く。この理由は図5に示した従来
の光電変換素子の構成が、図5(a)のPIN型が電極
/p層/i層/n層/電極、図5(b)のショットキー
型が電極/i層/n層/電極という構成であるのに対
し、TFTは電極/絶縁膜/i層/n層/電極という構
成で両者が異なるからである。これは同一プロセスで形
成できないことを示し、プロセスの複雑化による歩留ま
りの低下、コストアップを招く。また、i層/n層を共
通化するにはゲート絶縁膜7やp層3のエッチング工程
が必要となり、先に述べた光センサの重要な層である注
入阻止層のp層3とi層4が同一真空内で成膜できなか
ったり、TFTの重要なゲート絶縁膜7とi層4の界面
がゲート絶縁膜のエッチングにより汚染され、特性の劣
化やSN比の低下の原因になる。
【0018】また、前述した図5(b)のショットキー
型の特性を改善するため下部電極2とi層4の間に酸化
膜や窒化膜を形成したものは膜構成の順は同一であるが
先に述べたように酸化膜や窒化膜は100オングストロ
ーム前後である必要がありゲート絶縁膜と共用すること
は困難である。
【0019】図7に、ゲート絶縁膜とTFTの歩留まり
について、我々が実験した結果を示す。ゲート絶縁膜厚
が1000オングストローム以下で歩留まりは急激に低
下し、800オングストロームで歩留まりは約30%、
500オングストロームで歩留まりは0%、250オン
グストロームではTFTの動作すら確認できなかった。
トンネル効果を利用した光センサの酸化膜や窒化膜と、
電子やホールを絶縁しなければならないTFTのゲート
絶縁膜を共用化することは明らかに困難であり、これを
データが示している。
【0020】またさらに、図示していないが電荷や電流
の積分値を得るのに必要となる素子である容量素子(以
下コンデンサと記す)を従来の光電変換素子と同一の構
成でリークが少ない良好な特性のものを作るのは難し
い。コンデンサは2つの電極間に電荷を蓄積するのが目
的なため電極間の中間層には必ず電子とホールの移動を
阻止する層が必要であるのに対し、従来の光電変換素子
は電極間に半導体層のみ利用しているため熱的にリーク
の少ない良好な特性の中間層を得るのは難しいからであ
る。
【0021】このように光電変換装置を構成するうえで
重要な素子であるTFTやコンデンサとプロセス的にま
たは特性的にマッチングが良くないことは複数の光セン
サを二次元に多数配置し、この光信号を順次検出するよ
うなシステム全体を構成するうえで工程が多くかつ複雑
になるため歩留まりが非常に悪く、低コストで高性能多
機能な装置を作るうえで重大な問題になる。
【0022】[先行技術]そこで我々は、以前図8に示
す光電変換装置を用いた放射線撮像装置を提案した(特
願平6−313392号)。
【0023】図8は、以前我々が提案した光電変換装置
を用いた放射線撮像装置を示す全体回路図、図9(a)
は以前我々が提案した光電変換装置を用いた放射線撮像
装置の1画素に相当する各構成素子の平面図、図9
(b)は図9(a)のA−B線断面図である。図8にお
いて、S11〜S33は光電変換素子で下部電極側を
G、上部電極側をDで示している。C11〜C33は蓄
積用コンデンサ、T11〜T33は転送用TFTであ
る。Vsは読み出し用電源、Vgはリフレッシュ用電源
であり、それぞれスイッチSWs,SWgを介して全光
電変換素子S11〜S33のG電極に接続されている。
スイッチSWsはインバータを介して、スイッチSWg
は直接にリフレッシュ制御回路RFに接続されており、
リフレッシュ期間はスイッチSWgがonするよう制御
されている。
【0024】1画素は、1個の光電変換素子とコンデン
サ、およびTFTで構成され、その信号出力は信号配線
SIGにより検出用集積回路ICに接続されている。以
前我々が提案した光電変換装置は計9個の画素を3つの
ブロックに分け1ブロックあたり3画素の出力を同時に
転送しこの信号配線SIGを通して検出用集積回路IC
によって順次出力に変換され出力される(Vout)。
また1ブロック内の3画素を横方向に配置し、3ブロッ
クを順に縦に配置することにより各画素を二次元的に配
置している。
【0025】図中破線で囲んだ部分は、大面積の同一透
光性基板上に形成されているが、このうち第1画素に相
当する部分の平面図を図9(a)に示す。また図中破線
A−Bで示した部分の断面図を図9(b)に示す。S1
1は光電変換素子、T11はTFT、C11はコンデン
サ、およびSIGは信号配線である。以前我々が提案し
た光電変換装置においてはコンデンサC11と光電変換
素子S11は特別に素子を分離しておらず、光電変換素
子S11の電極の面積を大きくすることによりコンデン
サC11を形成している。これは光電変換素子とコンデ
ンサが同じ層構成であるから可能なことで以前我々が提
案した光電変換装置の特徴でもある。
【0026】また、画素上部にはパッシベーション用窒
化シリコン膜SiNとX線を可視光に変換するヨウ化セ
シウム等の蛍光体CSIが形成されている。上方よりX
線Xが入射すると蛍光体CSIにより可視光(破線矢
印)に変換され、この光が光電変換素子に入射される。
【0027】次に図8と図10によって以前我々が提案
した光電変換装置の動作について説明する。図10は図
8の動作を示すタイミングチャートである。
【0028】はじめにシフトレジスタSR1およびSR
2により制御配線g1〜g3、s1〜s2にHiが印加
される。すると転送用TFT・T11〜T33とスイッ
チM1〜M3がonし導通し、全光電変換素子S11〜
S33のD電極はGND電位になる(積分検出器Amp
の入力端子はGND電位に設計されているため)。同時
にリフレッシュ制御回路RFがHiを出力しスイッチS
Wgがonし全光電変換素子S11〜S33のG電極は
リフレッシュ用電源Vgにより正電位になる。すると全
光電変換素子S11〜S33はリフレッシュモードにな
りリフレッシュされる。
【0029】つぎに、リフレッシュ制御回路RFがLo
を出力しスイッチSWsがonし全光電変換素子S11
〜S33のG電極は読み取り用電源Vsにより負電位に
なる。すると全光電変換素子S11〜S33は光電変換
モードになり同時にコンデンサC11〜C33は初期化
される。この状態でシフトレジスタSR1およびSR2
により制御配線g1〜g3、s1〜s2にLoが印加さ
れる。
【0030】すると転送用TFT・T11〜T33のス
イッチM1〜M3がoffし、全光電変換素子S11〜
S33のD電極はDC的にはオープンになるがコンデン
サC11〜C33によって電位は保持される。しかしこ
の時点ではX線は入射されていないため全光電変換素子
S11〜S33には光は入射されず光電流は流れない。
この状態でX線がパルス的に出射され人体等を通過し蛍
光体CsIに入射すると光に変換され、その光がそれぞ
れの光電変換素子S11〜S33に入射する。この光は
人体等の内部構造の情報が含まれている。この光により
流れた光電流は電荷としてそれぞれのコンデンサC11
〜C33に蓄積されX線の入射終了後も保持される。
【0031】つぎにシフトレジスタSR1により制御配
線g1にHiの制御パルスが印加され、シフトレジスタ
SR2の制御配線s1〜s3への制御パルス印加によっ
て転送用TFT・T11〜T33のスイッチM1〜M3
を通してv1〜v3が順次出力される。同様にシストレ
ジスタSR1,SR2の制御により他の光信号も順次出
力される。これにより人体等の内部構造の二次元情報が
v1〜v9として得られる。
【0032】静止画像を得る場合はここまでの動作であ
るが動画像を得る場合はここまでの動作を繰り返す。
【0033】以前我々が提案した光電変換装置を用いた
放射線撮像装置では光電変換素子のG電極が共通に接続
され、この共通の配線をスイッチSWgとスイッチSW
sを介してリフレッシュ用電源Vgと読み取り用電源V
sの電位に制御している為、全光電変換素子を同時にリ
フレッシュモードと光電変換モードとに切り換えること
ができる。このため複雑な制御なくして1画素あたり1
個のTFTで光出力を得ることができる。
【0034】以前我々が提案した光電変換装置を用いた
放射線撮像装置では9個の画素を3×3に二次元配置し
3画素ずつ同時に、3回に分割して転送・出力したがこ
れに限らず、例えば縦横1mmあたり5×5個の画素を
2000×2000個の画素として二次元的に配置すれ
ば40cm×40cmのX線検出器が得られる。これを
ハロゲン化銀感光フィルムの代わりにX線発生器と組み
合わせX線レントゲン装置を構成すれば胸部レントゲン
検診や乳ガン検診に使用できる。するとフィルムと異な
り瞬時にその出力をCRTで映し出すことが可能で、さ
らに出力をディジタルに変換しコンピュータで画像処理
して目的に合わせた出力に変換することも可能である。
また光磁気ディスクに保管もでき、過去の画像を瞬時に
検索することもできる。また感度もハロゲン化銀感光フ
ィルムより良く人体に影響の少ない微弱なX線で鮮明な
画像を得ることもできる。
【0035】図11、図12に2000×2000個の
画素を持つ放射線撮像装置を示す平面図を示す。200
0×2000個の検出器を構成する場合図8で示した破
線内の素子を縦・横に数を増せばよいが、この場合制御
配線もg1〜g2000と2000本になり信号配線S
IGもsig1〜sig2000と2000本になる。
またシフトレジスタSR1や検出用集積回路ICも20
00本の制御・処理をしなければならず大規模となる。
これをそれぞれ1個のICチップで行うことは1個のI
Cチップが非常に大きくなり製造時の歩留まりや価格等
で不利である。そこで、シフトレジスタSR1は例えば
100段ごと1個のICチップに形成し、20個(SR
1−1〜SR1−20)を使用すれば良い。また検出用
集積回路も100個の処理回路ごと1個のチップに形成
し、20個(IC1〜IC20)を使用する。
【0036】図11には左側(L)に20チップ(SR
1−1〜SR1−20)と下側(D)に20チップ実装
し、1チップあたり100本の制御配線、信号配線を各
々ワイヤーボンディングで各ICチップと接線してい
る。図11中破線部は図8の破線部に相当する。また外
部への接続は省略している。また、SWg,SWs,V
g,Vs,RF等も省略している。検出集積回路IC1
〜IC20からは20本の出力(Vout)があるが、
これらはスイッチ等を介して1本にまとめたり、20本
をそのまま出力し並列処理すればよい。
【0037】図12には別の例を示す。左側(L)に1
0チップ(SR1−1〜SR1−10)と右側(R)に
10チップ(SR1−11〜SR1−20)と上側
(U)に10チップ(IC1〜10)、下側(D)に1
0チップ(IC11〜20)を実装している。この構成
は上・下・左・右側(U,D,L,R)にそれぞれ各配
線を1000本ずつに振り分けているため、各辺の配線
の密度が小さくなり、また各辺のワイヤーボンディング
の密度も小さく、歩留まりが向上する。配線の振り分け
は左側(L)にg1,g3,g5,…,g1999、右
側(R)にg2,g4,g6,…,g2000とし、つ
まり奇数番目の制御線を左側(L)、偶数番目の制御線
を右側(R)に振り分ける。こうすると各配線は等間隔
に引き出され配線されるので密度の集中なく歩留まりが
向上する。また、上側(U)下側(D)への配線も同様
に振り分ければよい。
【0038】また、図示していないが、別の例として配
線の振り分けは左側(L)にg1〜100,g201〜
g300,…,g1801〜g1900、右側(R)に
g101〜g200,g301〜g400,…,g19
01〜g2000を振り分け、つまり、1チップごと連
続な制御線を振り分け、これを左・右側(L・R)交互
に振り分ける。こうすると、1チップ内は連続に制御で
き、駆動タイミングが楽で回路を複雑にしなくてよく安
価なものが使用できる上・下側(U・D)についても同
様で、連続な処理が可能で安価な回路が使用できる。
【0039】また、図11、図12共に1枚の基板上に
破線部の回路を形成した後、その基板上にチップを実装
してもよいし、別の大きな基板上に破線部の回路基板と
チップを実装してもよい。また、チップをフレキシブル
基板上に実装して破線部の回路基板に張り付け接線して
もよい。
【0040】また、このような非常に多くの画素をもつ
大面積の光電変換装置を用いた放射線撮像装置は従来の
光電変換素子を用いた複雑な工程では不可能であった
が、以前我々が提案した光電変換装置の工程は各素子を
共通な膜で同時に形成しているため工程数が少なく、簡
易的な工程ですむため高歩留まりが可能で低コストで大
面積・高性能の光電変換装置を用いた放射線撮像装置の
生産を可能としている。また、コンデンサと光電変換素
子とが同じ素子内で構成でき、実質上素子を半減するこ
とが可能でさらに歩留まりを向上できる。
【0041】以上説明したように、以前我々が提案した
光電変換装置を用いた放射線撮像装置によれば光電変換
装置内の光電変換素子は注入素子層が一カ所のみで光の
入射量を検出することができ、プロセスの最適化が容易
で、歩留まりの向上が図れ、製造コストの低減が可能
で、SN比の高い低コストの光電変換装置を提供するこ
とができる効果がある。また、第一の電極層/絶縁層/
光電変換半導体層においてトンネル効果や、ショットキ
ーバリアを利用していないため、電極材料は自由に選択
でき、絶縁層の厚さやその他の制御も自由度が高い。
【0042】また同時に形成する薄膜電界効果トランジ
スタ(TFT)等のスイッチ素子または/および容量素
子とはマッチングが良く、同一膜構成のため共通な膜と
して同時に形成可能でかつ光電変換素子、TFT共に重
要な膜構成は同一真空内で同時に形成可能であり、さら
に光電変換装置を高SN化、低コスト化することができ
る効果がある。またコンデンサも中間層に絶縁層を含ん
でおり良好な特性で形成でき複数の光電変換素子で得ら
れた光情報の積分値を簡単な構成で出力できる高機能の
光電変換装置を用いた放射線撮像装置が提供できる効果
がある。また低コストで大面積・高機能・高特性のX線
レントゲン装置を提供できるという効果もある。
【0043】
【発明が解決しようとする課題】しかしながら、以前我
々が提案した大面積の光電変換装置を用いた放射線撮像
装置では、高S/Nの光電変換素子を用いても透光性基
板による光学的ノイズの影響によって放射線撮像装置自
体の高S/N即ち高画質画像を得ることが難しかった。
以下に図を用いて説明する。
【0044】図13は、図11に示した我々が提案した
光電変換装置を用いた放射線撮像装置のA−B断面図で
ある。図13において、1は透光性基板、PXLは図9
で説明した一画素を模式的に示しており、前述したよう
に、画素内には光電変換素子、TFT、コンデンサ、信
号配線及び制御配線が形成されている。また、SINは
画素を保護するパッシベーション層、CSIはX線を可
視光に変換する蛍光体である。
【0045】X線X1が蛍光体CSIに入射するとX線
X1は蛍光体内の発光点H1で可視光Ld及びLm1に
変換され、蛍光体及び各素子のパッシベーションSIN
を経て画素PXL内の光電変換素子に入射し、光電変換
され電気信号として読み出される。しかし、蛍光体で変
換された可視光は、直接、画素PXL内の光電変換素子
に入射する直接光Ldの他に、図9のMで示される画素
内の素子及び配線の未形成部即ち窓部Mを経て、透光性
基板1内に入射する間接光Lm1がある。この間接光L
m1は、更に透光性基板1の裏面aに到達し、そこで透
過・散乱し、一部の間接光Lm1は再度画素PXL内の
窓部M及びパッシベーションSIN透過し蛍光体CSI
に至り、各所の界面や蛍光体CSI内で透過・散乱を引
き起こす。
【0046】各所で散乱した光の一部が発光点H下の画
素の光電変換素子や周辺の画素の光電変換素子に入射
し、読み取り信号のレベルシフトや光学的クロストーク
を引き起こし、読み取り信号の分解能の低下、即ち、画
像品位の低下を招いている。
【0047】更に、一様に配置された画素の外郭部に位
置する画素即ち透光性基板1の端面周辺の画素は、同図
13のNONに示すように、画素パターンの未形成部や
配線のみの部分ができており、窓部が画素PXL内に比
べ非常に多くの面積になる。
【0048】つまり、X線X2により変換された間接光
Lm2およびLm3の量が多く、更に間接光Lm3の様
に透光性基板1の端面bに到達し、透過・散乱した光が
透光性基板1の裏面aに到達する間接光が加わるため、
透光性基板1の端面周辺は透光性基板1の中央に比べ画
像品位が著しく低下する。
【0049】また、このような放射線撮像装置では、室
内の蛍光灯や太陽光による外光の入射を防ぐため放射線
撮像装置を覆う為の遮光カセット等の遮光部材内に納め
る必要があると同時に微弱な光も漏れることが許されな
い為、遮光カセット内外との電気接続のための開口部処
理や遮光カセット自体が複雑になってしまう。よって、
部品点数の増加・工数アップによるコスト高や装置の大
型化を招くという問題点がある。
【0050】[発明の目的]つまり、本発明の目的は、
高S/Nな光電変換素子を用いた放射線撮像装置におい
て、蛍光体で変換された可視間接光による光学的クロス
トーク等で起こる光学的ノイズの減少及び外光遮光に伴
う装置の簡素化を促すことにより、高画質で小型化、軽
量化、及び低コスト化をはかり得る大面積の放射線撮像
装置を提供することである。
【0051】
【課題を解決するための手段及び作用】上記目的を達成
する為、本発明は、複数の光電変換素子が形成された透
光性基板と前記透光性基板上に形成された蛍光体層とを
有する放射線撮像基板からなる放射線撮像装置におい
て、前記放射線撮像基板は、少なくとも前記蛍光体層の
放射線入射面と、前記透光性基板の前記光電変換素子が
形成されている面とは反対側の面、及び前記透光性基板
の少なくとも1つの端面が光吸収材料で覆われているこ
とを特徴とする放射線撮像装置、をその手段とするもの
である。
【0052】[作用]上記構成における放射線撮像装置
によれば、蛍光体で変換発光した可視光の画素内の窓等
の素子及び配線が未形成な部分の窓部を経て透光性基板
内に入射し、透光性基板内で透過・散乱を繰り返し光電
変換素子へ入射する間接光を、透光性基板の裏面及び端
面を覆う光吸収材料によって吸収させ、間接光を減少す
ることにより、光学的な影響による不均一なレベルシフ
トやクロストーク等の光学的ノイズを減少させることが
できる。
【0053】更に、蛍光体層入射面も可視光吸収材料で
覆うことにより、放射線撮像装置自体に外光遮断機能を
有するため遮光部材の簡素化・部材レス化ができる。
【0054】
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
【0055】[第1の実施形態]図1及び図2は、本発
明第1の実施形態に係わる放射線撮像装置の構成図であ
り、図1は、全体平面図、図2は、図1のA−Bで示す
模式的断面図である。尚、従来例の項で説明した図9
(a)、図9(b)、図11及び図13と同一機能の部
分には、同一符号を付してあり、説明を省略する場合が
ある。
【0056】図中、1は透光性基板、PXLは画素を模
式的に表しており、従来例の図9(a)及び図9(b)
で説明した一画素分の光電変換素子、コンデンサ、TF
T、制御配線、信号配線が形成され、従来例の図11で
の説明と同様に2000×2000個の画素を透光性基
板1上に二次元的に配置している(図1中一点破線
内)。
【0057】従来例の図11での説明と同様に、SR1
−1〜SR1−20はシフトレジスタ又IC−1〜IC
−20は検出用集積回路(それぞれ、図1中は破線で図
示)であり、従来例の図11と同様それぞれ各画素に接
続されている制御配線(不図示)及び信号配線(不図
示)とワイヤーボンディングWBによって接続されてい
る。SINは画素を保護するパッシベーション、CSI
はX線を可視光に変換する蛍光体、COT1は可視光吸
収材料である黒色樹脂等で形成した光吸収層、COT2
はSR1−1〜SR1−20のシフトレジスタ及びIC
−1〜IC−20の検出用集積回路のICチップやワイ
ヤーボンディングを保護するIC封止である。
【0058】同図を用いて本実施形態の放射線撮像装置
の作製方法について簡単に説明する。
【0059】透光性基板1上に、薄膜半導体プロセス
(プラズマCVDや蒸着装置を用いた成膜工程による各
層の薄膜形成及びホトリソ工程によるパターニング)に
より画素PXL及びパッシベーションSINを形成し、
その上に画素PXLを覆うようCsI等の材料を用い蒸
着形成により蛍光体CSIを形成する。
【0060】次に、光吸収層COT1をシフトレジスタ
SR1−1〜SR1−20及び検出用集積回路IC−1
〜IC−20のICチップのダイボンド部(IC封止C
OT2部)や不図示のICと装置外部との接続部等の未
形成領域をマスキングし、可視光等の光吸収材料からな
る黒色樹脂(例えば、染料もしくは顔料を含んだアクリ
ル塗料等)をスプレー等の噴霧により透光性基板1の全
周面(4端面・裏面及び蛍光体CSI形成面)を塗布
し、加熱硬化させ形成する。
【0061】その後、シフトレジスタSR1−1〜SR
1−20、検出用集積回路IC−1〜IC−20のIC
チップをダイボンド及びワイヤーボンディングWBによ
る各制御配線及び信号配線との電気接続を行う。
【0062】その後、黒色のエポキシ樹脂等でIC封止
COT2を形成することにより本実施形態の放射線撮像
装置が形成される。
【0063】図1及び図2に示す様に、本実施形態にお
いては、蛍光体のX線Xの入射面、透光性基板1の裏面
a、端面b及び端面b′が可視光等の光吸収材料からな
る黒色樹脂で形成された光吸収層COT1で覆われてい
る。
【0064】このように、透光性基板1の裏面a、端面
b及び端面b′が光吸収層COT1で覆われているた
め、蛍光体CSIで変換された可視光の間接光(画素内
や透光性基板端部周辺の窓部を経て、透光性基板1内に
入射した光)が、透光性基板1の内部(透光性基板1の
裏面や端面)で透過・散乱することなく光吸収層に吸収
され、間接光を減少させることができる。
【0065】また、蛍光体のX線Xの入射面も同様の光
吸収層で覆われているため、放射線撮像装置のほとんど
の面が光吸収層で覆う構成となり、外光の入射を防ぐ遮
光カセット等の遮光部材を簡素化できる。更に、本実施
形態では、IC封止や外部との接続部を黒色の封止材料
を用いることにより、完全に外光遮光の機能を有する放
射線撮像装置を提供することができる。
【0066】尚、本実施形態においては、蛍光体のX線
の入射面、透光性基板の裏面及び端面に形成した光吸収
層を同時且つ同一の材料を用いて形成したが、これに限
定するものではなく、例えば、蛍光体のX線入射面をス
クリーン印刷、透光性基板の端面をディッピングにより
光吸収層を塗布形成したりし、光吸収材料を各塗布方法
や各形成面に適した材料を用いることもできる。
【0067】また、本実施形態のように、各素子上に直
接蛍光体を蒸着形成した場合、通常湿気等の影響を防ぐ
ため蛍光体を覆うように保護膜を形成するが、本実施形
態では蛍光体面を覆う光吸収層にその機能を有する材料
を適宜選定することにより蛍光体の保護膜としての機能
を付加することができる。
【0068】[第2の実施形態]図3及び図4は本発明
第2の実施形態に係わる放射線撮像装置の構成図であ
り、低コストで大面積の放射線撮像装置を得るために小
さな放射線基板を複数枚張り合わせた例である。
【0069】大面積の光電変換装置では製造時の微少な
ちり、特にアモルファスシリコン層を基板に堆積する時
に薄膜堆積装置の壁から剥れ出るゴミ及びメタル層を基
板に堆積する時に基板上に残っているほこりを完全にな
くすことが不可能であったため、配線の不具合、即ち配
線のショートまたはオープンをゼロにすることは困難で
あった。
【0070】大面積の光電変換装置では、制御配線また
は信号配線がショートまたはオープンになると、その配
線に接続されている光電変換素子の全ての出力信号が不
正確なものとなり、光電変換装置としては使用不可能と
なるのである。
【0071】つまり、大面積の光電変換装置を用いた放
射線撮像装置を作製する時の1枚の基板が大きくなれば
なるほど基板1枚あたりの歩留まりは低くなり、同時に
基板1枚あたりの不具合による損失額も大きくなってし
まい放射線撮像装置のコスト高を招くこともあった。
【0072】以下に、本実施形態を図面を用いて説明す
る。
【0073】図3は全体平面図、図4は図1のA−Bで
示す模式的断面図である。尚、従来例の項で説明した図
9(a)、図9(b)、図11、図13及び本発明第1
の実施形態の項で説明した図1、図2と同一機能の部分
には、同一符号を付してあり、説明を省略する場合があ
る。
【0074】図3及び図4に示す放射線撮像装置におい
て特徴的な点は、A1やガラス等の基台500の同一平
面上に4枚の放射線撮像基板100を各々隣接する放射
線撮像基板100の画素端の間隔を一画素分あけてシリ
コン樹脂等の接着剤300で張り合わせることによって
1つの大面積な放射線撮像装置を構成していることであ
る。
【0075】放射線撮像基板100には、透光性基板1
上に従来例の図9(a)、図9(b)及び本発明の図
1、図2で説明または用いた画素と同様の画素PXLが
1000×1000個配置され、不図示の制御配線g1
〜g1000と信号配線sig1〜sig1000に各
々接続されている。シフトレジスタSR1及び検出用集
積回路は、それぞれ100段又は100個の処理回路ご
とに一個のICチップに形成してあり、各透光性基板1
上にはシフトレジスタSR1−1〜SR1−10、検出
用集積回路IC−1〜IC−10のそれぞれ10個のI
Cチップが配置されている。シフトレジスタSR1−1
〜SR1−10は制御配線g1〜g1000と、検出用
集積回路IC1〜IC10は信号配線sig1〜sig
1000とそれぞれ接続されている。
【0076】また、本実施形態の放射線撮像基板100
は、画素、制御配線、信号配線、シフトレジスタ、検出
用集積回路の数及び配置以外は、本発明の第1の実施形
態の図1及び図2で説明した放射線撮像装置と同様に構
成され、かつ同様の作成方法で形成されており、蛍光体
のX線Xの入射面、透光性基板1の裏面及び端面は可視
光吸収材料からなる黒色樹脂で形成された光吸収層CO
T1で覆われている。
【0077】図3に示すように4枚の放射線撮像基板を
作製し、その4枚の放射線撮像基板を若干の隙間をあけ
て貼り合わせて大面積の放射線撮像装置を構成すること
により、基板1枚あたりの歩留まりは高くなり、同時に
基板1枚あたりの不具合による損失額を小さくすること
ができる。具体的には、図3の大面積の放射線撮像装置
における画素が配置してある面積と、図11の放射線撮
像装置における画素が配置してある面積が同じ場合、図
3に示す各基板内のすべての制御配線とすべての信号配
線の合計の長さは図11に示す放射線撮像装置内のすべ
ての制御配線とすべての信号配線の合計の長さの約1/
4となる。このような光電変換装置において制御配線及
び信号配線のショートまたはオープンはその配線に接続
されている光電変換素子のすべての出力信号が不正確な
ものとなるため、光電変換装置としては使用不可能とな
ってしまう。そのため、すべての制御配線及びすべての
信号配線の合計の長さにほぼ比例して上記のような不具
合が生じ、歩留まりを下げるのである。
【0078】よって図3に示す基板1枚あたりの配線の
不具合による歩留まりは、図11に示す光電変換装置の
約4倍となる。また、図3に示す基板1が不具合とな
り、使用不可能になった場合の損失額は、基板の面積に
ほぼ比例するため、図11に示す光電変換装置において
不具合が発生し使用不可能になった場合の損失額の約1
/4となるのである。
【0079】また、本実施形態の放射線撮像装置も本発
明第1の実施形態と同様に蛍光体CSIで変換された可
視光の間接光(画素内や透光性基板端部周辺の窓部を経
て、透光性基板1内に入射した光)が、透光性基板1の
内部(透光性基板1の裏面や端面)で透過・散乱するこ
となく光吸収層に吸収され、間接光を減少させることが
でき、また、蛍光体のX線Xの入射面も同様の光吸収層
で覆われているため、放射線撮像装置のほとんどの面が
光吸収層で覆う構成となり、外光の入射を防ぐ遮光カセ
ット等の遮光部材を簡素化できる。更に、IC封止や外
部との接続部を黒色の封止材料を用いることにより、完
全に外光遮光の機能を有する放射線撮像装置を提供する
ことができる。
【0080】また、放射線撮像基板を基台に張り合わせ
た場合、透光性基板を透過した間接光が基台表面で散乱
し再度透光性基板に入射したりする為に基台の選定に制
限ができたり、接着剤の塗布ムラが起こると透光性基板
裏面の場所によって透過・散乱の度合いが変わる為に張
り合わせ工程が複雑になったり、更に放射線撮像基板間
の不感度域(画素抜け)を最小限にする必要から他の基
板を張り合わせる基板端面と画素が非常に近接し間接光
の影響が大きくなる為張り合わせ後の基板間の極小な隙
間に樹脂を充填させる難度の高い工程が増加することが
発生するが、本実施形態の放射線撮像装置は既に張り合
わせ前の放射線撮像基板100に蛍光体のX線Xの入射
面、透光性基板1の裏面及び端面は可視光吸収材料から
なる黒色樹脂で形成された光吸収層COT1で覆われて
いる為、張り合わせ工程が簡略で張り合わせ後の間接光
への配慮の為の工程が不要である。
【0081】よって、高画質で大面積な放射線撮像装置
を容易な工程を用いて歩留まりよく提供することができ
る。
【0082】また、上記実施形態においては、従来例に
前述したように、前記透光性基板には、第一の電極層、
絶縁層、光電変換半導体層、第1導電型のキャリアの注
入を阻止する半導体層、及び第二の電極層を積層した前
記光電変換素子と、前記光電変換半導体層に入射した信
号光により発生した第1導電型のキャリアを前記光電変
換半導体層に留まらせ、前記第1導電型と異なる第2導
電型のキャリアを前記第二の電極層に導く方向に前記光
電変換素子に電界を与える光電変換手段と、前記光電変
換素子に電界を与えて、前記第1導電型のキャリアを前
記光電変換半導体層から前記第二の電極層に導く方向に
前記光電変換素子に電界を与えるリフレッシュ手段と、
前記光電変換手段による光電変換動作中に前記光電変換
半導体層に蓄積された前記第1導電型のキャリアもしく
は前記第二の電極層に導かれた前記第2導電型のキャリ
アを検出する為の信号検出部と、を有することを特徴と
する放射線撮像装置とした。
【0083】
【発明の効果】以上説明したように、本出願に係わる発
明によれば、蛍光体で変換発光した可視光が画素内の窓
等の素子及び配線が未形成な部分の窓部を経て透光性基
板内に入射し、透光性基板内で透過・散乱を繰り返し光
電変換素子へ入射する間接光を透光性基板の裏面及び端
面を覆う光吸収材料によって吸収させ間接光を減少させ
ることより光学的な不均一のレベルシフトやクロストー
ク等の光学的ノイズを減少させ、放射線撮像装置の画像
品位を向上すると同時に、蛍光体層入射面も光吸収材料
で覆われているため、放射線撮像装置自体に外光遮断機
能を有することにより、遮光カセットのような外光遮光
部材の簡素化、部材レス化ができる。
【0084】よって、高画質で軽量・小型・低コストの
放射線撮像装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる第1の実施形態における全体平
面図である。
【図2】図1の図示A−Bの模式的断面図である。
【図3】本発明に係わる第2の実施形態における全体平
面図である。
【図4】図3の図示A−Bの模式的断面図である。
【図5】(a)〜(c)は、従来の光電変換素子の構成
図である。
【図6】TFTの層構成図である。
【図7】ゲート絶縁膜の厚さに対するTFTの歩留まり
を示すグラフである。
【図8】以前我々が提案した光電変換装置における全体
回路図である。
【図9】(a)は、以前我々が提案した光電変換装置に
おける各構成素子の平面図であり、(b)は、図9
(a)の図示A−Bの断面図である。
【図10】図8の動作を示すタイミングチャートであ
る。
【図11】2000×2000個の画素を配置させた、
放射線撮像装置を示す全体平面図である。
【図12】2000×2000個の画素を配置させた他
の例の放射線撮像装置を示す全体平面図である。
【図13】図11の図示A−Bの模式的断面図である。
【符号の説明】
1 透光性基板 100 放射線撮像基板 300 接着剤 500 基台 PXL 画素 SIN パッシベーション CSI 蛍光体 X,X1,X2 X線 Ld 直接光 Lm1〜Lm3 間接光 NON 素子及び配線の未形成部 COT1 光吸収層 COT2 IC封止 SR1−1〜SR1−20 シフトレジスタ IC−1〜IC−20 検出用集積回路
───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 千織 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 林 眞一 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 冨名腰 章 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 森下 正和 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 多胡 晃 神奈川県川崎市中原区今井上町53番地 キ ヤノン株式会社小杉事業所内 (72)発明者 田村 敏和 神奈川県川崎市中原区今井上町53番地 キ ヤノン株式会社小杉事業所内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 複数の光電変換素子が形成された透光性
    基板と前記透光性基板上に形成された蛍光体層とを有す
    る放射線撮像基板からなる放射線撮像装置において、 前記放射線撮像基板は、少なくとも前記蛍光体層の放射
    線入射面と、前記透光性基板の前記光電変換素子が形成
    されている面とは反対側の面、及び前記透光性基板の少
    なくとも1つの端面が光吸収材料で覆われていることを
    特徴とする放射線撮像装置。
  2. 【請求項2】 前記蛍光体層の放射線入射面及び前記透
    光性基板の端面及び前記光電変換素子が形成されている
    面とは反対側の面を覆う前記光吸収材料が、同一材料か
    らなることを特徴とする請求項1記載の放射線撮像装
    置。
  3. 【請求項3】 前記放射線撮像基板を前記光吸収材料で
    覆われた前記透光性基板の端面を互いに対向するよう同
    一平面上に複数枚貼り合わせて形成されたことを特徴と
    する請求項1又は2記載の放射線撮像装置。
  4. 【請求項4】 前記透光性基板には、 第一の電極層、絶縁層、光電変換半導体層、第1導電型
    のキャリアの注入を阻止する半導体層、及び第二の電極
    層を積層した前記光電変換素子と、 前記光電変換半導体層に入射した信号光により発生した
    第1導電型のキャリアを前記光電変換半導体層に留まら
    せ、前記第1導電型と異なる第2導電型のキャリアを前
    記第二の電極層に導く方向に前記光電変換素子に電界を
    与える光電変換手段と、 前記光電変換素子に電界を与えて、前記第1導電型のキ
    ャリアを前記光電変換半導体層から前記第二の電極層に
    導く方向に前記光電変換素子に電界を与えるリフレッシ
    ュ手段と、 前記光電変換手段による光電変換動作中に前記光電変換
    半導体層に蓄積された前記第1導電型のキャリアもしく
    は前記第二の電極層に導かれた前記第2導電型のキャリ
    アを検出する為の信号検出部と、 を有することを特徴とする請求項1〜3のいずれかに記
    載の放射線撮像装置。
JP8112326A 1996-05-07 1996-05-07 放射線撮像装置 Pending JPH09297181A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8112326A JPH09297181A (ja) 1996-05-07 1996-05-07 放射線撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8112326A JPH09297181A (ja) 1996-05-07 1996-05-07 放射線撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003323222A Division JP2004045420A (ja) 2003-09-16 2003-09-16 放射線撮像装置およびその製造方法

Publications (1)

Publication Number Publication Date
JPH09297181A true JPH09297181A (ja) 1997-11-18

Family

ID=14583885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8112326A Pending JPH09297181A (ja) 1996-05-07 1996-05-07 放射線撮像装置

Country Status (1)

Country Link
JP (1) JPH09297181A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077640A (ja) * 1998-06-19 2000-03-14 Canon Inc 画像読み取り装置および放射線撮像装置
EP1003226A2 (en) * 1998-11-19 2000-05-24 General Electric Company Methods and apparatus for depositing scintillator material on radiation imager
JPWO2002023220A1 (ja) * 2000-09-11 2004-01-22 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサおよびそれらの製造方法
WO2004049002A1 (ja) * 2002-11-26 2004-06-10 Hamamatsu Photonics K.K. 放射線撮像装置
JP2005214800A (ja) * 2004-01-29 2005-08-11 Hamamatsu Photonics Kk 放射線イメージセンサ
JP2006078472A (ja) * 2004-08-10 2006-03-23 Canon Inc 放射線検出装置、シンチレータパネル及びこれらの製造方法
JP2007300141A (ja) * 2007-08-08 2007-11-15 Semiconductor Energy Lab Co Ltd イメージセンサ
JP2008531985A (ja) * 2005-02-10 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 衝撃吸収機能を有する携帯型x線検出プレート
WO2008108186A1 (ja) * 2007-03-08 2008-09-12 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置
JP2010256373A (ja) * 2004-08-10 2010-11-11 Canon Inc 放射線検出装置及び放射線検出システム
WO2011152195A1 (ja) 2010-06-04 2011-12-08 浜松ホトニクス株式会社 シンチレータパネル及び放射線イメージセンサ
JP2012168170A (ja) * 2011-01-25 2012-09-06 Dainippon Printing Co Ltd ガス増幅を用いた放射線検出器
JP2013171021A (ja) * 2012-02-23 2013-09-02 Ge Medical Systems Global Technology Co Llc 検出器モジュール、遮光部材および放射線検出装置並びに放射線断層撮影装置
JP2013195128A (ja) * 2012-03-16 2013-09-30 Dainippon Printing Co Ltd ガス増幅を用いた放射線検出器
JP2017015740A (ja) * 2016-10-26 2017-01-19 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP2018105892A (ja) * 2018-04-09 2018-07-05 大日本印刷株式会社 ガス増幅を用いた放射線検出器

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077640A (ja) * 1998-06-19 2000-03-14 Canon Inc 画像読み取り装置および放射線撮像装置
EP1003226A2 (en) * 1998-11-19 2000-05-24 General Electric Company Methods and apparatus for depositing scintillator material on radiation imager
EP1003226A3 (en) * 1998-11-19 2000-06-07 General Electric Company Methods and apparatus for depositing scintillator material on radiation imager
JPWO2002023220A1 (ja) * 2000-09-11 2004-01-22 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサおよびそれらの製造方法
JP5031172B2 (ja) * 2000-09-11 2012-09-19 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサおよびそれらの製造方法
USRE42281E1 (en) 2000-09-11 2011-04-12 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor and methods of producing them
US7432509B2 (en) 2002-11-26 2008-10-07 Hamamatsu Photonics K.K. Radiographic imaging system
WO2004049002A1 (ja) * 2002-11-26 2004-06-10 Hamamatsu Photonics K.K. 放射線撮像装置
CN1318859C (zh) * 2002-11-26 2007-05-30 浜松光子学株式会社 放射线摄像装置
JP2005214800A (ja) * 2004-01-29 2005-08-11 Hamamatsu Photonics Kk 放射線イメージセンサ
JP4563042B2 (ja) * 2004-01-29 2010-10-13 浜松ホトニクス株式会社 放射線イメージセンサ
JP2010256373A (ja) * 2004-08-10 2010-11-11 Canon Inc 放射線検出装置及び放射線検出システム
JP2006078472A (ja) * 2004-08-10 2006-03-23 Canon Inc 放射線検出装置、シンチレータパネル及びこれらの製造方法
JP4594188B2 (ja) * 2004-08-10 2010-12-08 キヤノン株式会社 放射線検出装置及び放射線検出システム
JP4671449B2 (ja) * 2004-08-10 2011-04-20 キヤノン株式会社 放射線検出装置及び放射線検出システム
JP2008531985A (ja) * 2005-02-10 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 衝撃吸収機能を有する携帯型x線検出プレート
WO2008108186A1 (ja) * 2007-03-08 2008-09-12 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置
JPWO2008108186A1 (ja) * 2007-03-08 2010-06-10 コニカミノルタエムジー株式会社 放射線画像撮影装置
JP2013040953A (ja) * 2007-03-08 2013-02-28 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置
JP2007300141A (ja) * 2007-08-08 2007-11-15 Semiconductor Energy Lab Co Ltd イメージセンサ
WO2011152195A1 (ja) 2010-06-04 2011-12-08 浜松ホトニクス株式会社 シンチレータパネル及び放射線イメージセンサ
US9136029B2 (en) 2010-06-04 2015-09-15 Hamamatsu Photonics K.K. Scintillator panel, and radiographic image sensor
JP2012168170A (ja) * 2011-01-25 2012-09-06 Dainippon Printing Co Ltd ガス増幅を用いた放射線検出器
JP2016026304A (ja) * 2011-01-25 2016-02-12 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP2016224074A (ja) * 2011-01-25 2016-12-28 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP2018040815A (ja) * 2011-01-25 2018-03-15 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP2013171021A (ja) * 2012-02-23 2013-09-02 Ge Medical Systems Global Technology Co Llc 検出器モジュール、遮光部材および放射線検出装置並びに放射線断層撮影装置
JP2013195128A (ja) * 2012-03-16 2013-09-30 Dainippon Printing Co Ltd ガス増幅を用いた放射線検出器
JP2017015740A (ja) * 2016-10-26 2017-01-19 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP2018105892A (ja) * 2018-04-09 2018-07-05 大日本印刷株式会社 ガス増幅を用いた放射線検出器

Similar Documents

Publication Publication Date Title
US6707066B2 (en) Radiation image pick-up device
US5801385A (en) X-ray image pickup device
JP3066944B2 (ja) 光電変換装置、その駆動方法及びそれを有するシステム
JP3636579B2 (ja) 光電変換装置、光電変換装置の駆動方法及びその光電変換装置を有するシステム
JP3235717B2 (ja) 光電変換装置及びx線撮像装置
JP3183390B2 (ja) 光電変換装置及びそれを用いた撮像装置
EP0722188B1 (en) Image capture panel using a solid state device
US20150003584A1 (en) X-ray imager with cmos sensor embedded in tft flat panel
JPH10189932A (ja) 光電変換装置
JP3416351B2 (ja) 光電変換装置及びその駆動方法、それを用いたx線撮像装置及びその駆動方法
JPH09297181A (ja) 放射線撮像装置
JPH09288184A (ja) 光電変換装置
JP2004096079A (ja) 光電変換装置、画像読取装置および光電変換装置の製造方法
JP3685446B2 (ja) 光電変換装置
US6354595B1 (en) Method for tight sealing of a radiation detector and detector obtained by this method
US6080997A (en) Electromagnetic-wave detector
JP3544075B2 (ja) 光電変換装置の製造方法
JP2003075593A (ja) 放射線シンチレータならびに画像検出器およびその製造方法
JP3560298B2 (ja) 光電変換装置とその駆動方法及びそれを有するシステム
JP4314255B2 (ja) 変換装置およびx線検出システム
JP2004045420A (ja) 放射線撮像装置およびその製造方法
JP3372783B2 (ja) 光電変換装置及びその駆動方法及びそれを有するシステム
JP3793139B2 (ja) X線撮像装置
JP2001326787A (ja) 光電変換装置、それを用いた撮像装置及び製造方法
JPH0945952A (ja) X線検出器及び二次元x線センサー・マトリックス・アレイ

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040322