WO2004049002A1 - 放射線撮像装置 - Google Patents

放射線撮像装置 Download PDF

Info

Publication number
WO2004049002A1
WO2004049002A1 PCT/JP2003/015107 JP0315107W WO2004049002A1 WO 2004049002 A1 WO2004049002 A1 WO 2004049002A1 JP 0315107 W JP0315107 W JP 0315107W WO 2004049002 A1 WO2004049002 A1 WO 2004049002A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
substrate
light
radiation
section
Prior art date
Application number
PCT/JP2003/015107
Other languages
English (en)
French (fr)
Inventor
Harumichi Mori
Kazuki Fujita
Ryuji Kyushima
Masahiko Honda
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP03811934.3A priority Critical patent/EP1566662B1/en
Priority to AU2003302454A priority patent/AU2003302454A1/en
Priority to US10/536,280 priority patent/US7432509B2/en
Publication of WO2004049002A1 publication Critical patent/WO2004049002A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/2019Shielding against direct hits

Definitions

  • the present invention relates to a radiation imaging apparatus.
  • FOP a scintillator provided on one surface of the FOP
  • a semiconductor image sensor provided facing the other surface of the FOP
  • an output of the semiconductor image sensor There is known an amplifier having an amplifying section (amplifying element) and a frame provided so as to surround the semiconductor image sensor and the amplifying section (for example, see Patent Document 1).
  • a photodetector array in which photodetectors for performing photoelectric conversion are arranged one-dimensionally or two-dimensionally; and a scintillator directly formed on a light incident surface of the photodetector.
  • Radiation imaging devices are also known (for example, see Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-200873
  • Patent Document 2 International Publication WO98836290 Pamphlet
  • the light-sensitive part and the amplifier are arranged closer to each other, and scattered radiation is applied to the amplifier. Is likely to be incident.
  • the amplifier is formed on the Si substrate, the scattered radiation has lower energy than the X-rays incident on the imaging device, so the absorption in Si is large and the damage to the amplifier is also large.
  • An object of the present invention is to provide a radiation imaging apparatus capable of suppressing incidence of radiation on an amplification unit and preventing deterioration of characteristics of the amplification unit. .
  • the radiation imaging apparatus includes a substrate on which a light-sensitive portion that photoelectrically converts incident light and an amplification portion that amplifies an output from the light-sensitive portion are formed on the-side. And a scintillator that is arranged to cover a region on one surface of the substrate where the light-sensitive portion and the amplification portion are formed, and that converts radiation into visible light.
  • the area where the amplifying section is formed is also covered by the scintillator, so that the scattered radiation generated by the scintillator or the like reaches the amplifying section. In the meantime, it will be absorbed by the scintillator and weakened. As a result, it is possible to suppress the scattered radiation generated by the scintillator or the like from being incident on the amplification unit, and to prevent the characteristics of the amplification unit from deteriorating. [0101] Further, in the present invention, the use of the scintillator originally provided in the device suppresses the incidence of scattered radiation to the amplification unit. Therefore, it is not necessary to newly use a radiation shielding member or the like for the purpose of suppressing the incidence of the scattered radiation, and the configuration of the apparatus and the manufacturing process are not complicated.
  • a shift register section for sending out the output from the photosensitive section to the amplification section is further formed on one side of the substrate, and the scintillator is provided on one side of the substrate. It is preferable that the shift register portion be disposed so as to further cover the region where the shift register portion is formed. In this case, since the area where the shift register section is formed is also covered with the scintillator, the incidence of scattered radiation generated by the scintillator or the like on the shift register section is also suppressed. As a result, it is possible to prevent the characteristics of the shift register unit from deteriorating.
  • the scintillator is preferably formed directly on one surface of the substrate. Further, the light sensitive section preferably includes a plurality of photoelectric conversion elements arranged two-dimensionally.
  • FIG. 1 is a schematic diagram for explaining a cross-sectional configuration of the radiation imaging apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram for explaining a cross-sectional configuration of the radiation imaging apparatus according to the present embodiment.
  • FIG. 3 is a plan view showing the radiation imaging apparatus according to the present embodiment.
  • FIGS. 1 and 2 show a cross-sectional configuration of the radiation imaging apparatus according to the present embodiment.
  • FIG. 3 is a schematic diagram for explaining, and FIG. 3 is a plan view showing the radiation imaging apparatus according to the present embodiment. In FIG. 3, illustration of the bonding wires is omitted.
  • the radiation imaging apparatus 1 of the present embodiment includes a solid-state imaging device 11, a scintillator 21, a mount substrate 31, a frame 41, and the like, as shown in FIGS.
  • the solid-state imaging device 11 is a MOS image sensor, and includes a photosensitive section 13, a shift register section 14, and an amplification section 15 formed on one side of the Si substrate 12. are doing. As described above, the photosensitive section 13, the shift register section 14, and the width section 15 are formed on the same substrate (Si substrate 12). The Si substrate 12 (the solid-state imaging device 11) is fixed on the mount substrate 31.
  • the photosensitive section 13 includes a plurality of photodiodes 16 as photoelectric conversion elements for performing photoelectric conversion, and these photodiodes 16 are two-dimensionally arranged.
  • the solid-state imaging device 11 also includes a plurality of MOS FETs (field effect transistors) (not shown) for controlling the readout of the charges generated in the respective photodiodes 16 in response to the incidence of light. Have.
  • MOS FETs field effect transistors
  • the shift register unit 14 controls the driving of the MOS FET so that the charges generated by each photodiode 16 are sequentially read and output to the corresponding amplifying unit 15.
  • the shift register section 14 is electrically connected to a corresponding MOSFET through a wiring (not shown) formed on the Si substrate 12.
  • the amplifying unit 15 can be electrically connected to the corresponding photodiode 16 through a wiring (not shown) formed on the Si substrate 12, and Amplify and output the output.
  • the amplification unit 15 is, for example, It includes an amplifier (charge amplifier) that amplifies the output (current output) from the photodiode 16, a capacitor connected in parallel to this amplifier, and a switch element connected in parallel to the amplifier and the capacitor.
  • a plurality of bonding pad portions 17 are formed on the Si substrate 12 so as to be electrically connected to the respective amplification portions 15. These bonding pad portions 17 are electrically connected to bonding pad portions 32 formed on the mount substrate 31 by bonding wires 51. As a result, the output from the amplification unit 15 is sent to the outside of the imaging device 1 through the mount substrate 31.
  • the Si substrate 12 has a plurality of bonding pad portions 18 formed electrically connected to the respective shift register portions 14 (particularly, see FIG. 3). These bonding pad portions 18 are electrically connected to bonding pad portions 33 formed on the mounting substrate 31 by bonding wires (not shown). As a result, a signal from outside the imaging device 1 is sent to the shift register unit 14 through the mount substrate 31.
  • the scintillator 21 converts incident radiation (for example, X-rays) into visible light and has a columnar structure. As shown in FIG. 3, the scintillator 21 covers the area on one surface of the Si substrate 12 where the photosensitive section 13, shift register section 14 and amplification section 15 are formed. It is formed directly on the area. As a result, the scintillator 21 is arranged in contact with the area on one surface of the Si substrate 12 where the light-sensitive section 13, shift register section 14, and amplifier section 15 are formed. Note that the region where the bonding pad portions 17 and 18 are formed on one surface of the Si substrate 12 is not covered with the scintillator 21 and is exposed.
  • incident radiation for example, X-rays
  • the scintillator 21 Various materials can be used for the scintillator 21, but T1 (thallium) -doped CsI or the like having good light emission efficiency is preferable.
  • T1 (thallium) -doped CsI or the like having good light emission efficiency is preferable.
  • the protective film is made of a material that transmits radiation and blocks water vapor, for example, polyparaxylylene resin (manufactured by Three Bond, trade name Parylene), especially polyparachloroxylylene (manufactured by the company, trade name Parylene C). preferable.
  • the thickness of the scintillator 21 is about 300 m.
  • the scintillator 21 can be formed by growing columnar crystals of Csi by an evaporation method.
  • the protective film can be formed by a CVD method. The method of forming the scintillator 21 and the protective film is disclosed in detail in Patent Document 2 (International Publication WO98Z36290 pamphlet) and the like by the present applicant. Is omitted.
  • the frame body 41 is provided on the mount substrate 31 so as to surround the solid-state imaging device 11.
  • a rectangular opening 42 is formed in the frame 41 at a position corresponding to the photosensitive section 13, and the radiation enters the scintillator 21 through the opening 42.
  • a space S is formed between the frame body 41, the Si substrate 12 and the mount substrate 31.
  • the shift register section 14 and the amplification section 15 of the solid-state imaging device 11, the bonding pad sections 17 and 32, the bonding wires 51, and the like are located.
  • the bonding wires 51 are disposed in the space S defined by the frame body 41, the Si substrate 12 and the mounting substrate 31, the bonding wires 51 are provided in the frame. It is protected from physical stress from outside without being held down by the body 41.
  • the frame 41 is provided with a shielding material 43 made of a radiation shielding material (for example, lead) on the opposite side of the width portion 15 side. Radiation is adequately shielded.
  • the thickness of the shielding member 43 is about 2.5 mm.
  • the scintillator 21 also covers the area where the amplifying part 15 of the Si substrate 12 is formed, the scintillator Scattered radiation generated by 2 1 or frame 4 1 By the time it reaches 15, it is absorbed by the scintillator 21 and weakened. As a result, the scattered radiation generated in the scintillator 21 or the frame body 41 is suppressed from being incident on the amplifying unit 15, and the characteristics of the amplifying unit 15 can be prevented from deteriorating.
  • the amplifying unit 15 in the Si substrate 12 is formed by the step of forming the scintillator 21 on the imaging surface side of the solid-state imaging device 11.
  • the scintillator 21 can also be formed in the region where is formed.
  • the scintillator 21 also covers the area of the Si substrate 12 where the shift register section 14 is formed, so that the scintillator 21 or The scattered radiation generated by the frame body 41 is also prevented from entering the shift register section 14, so that the characteristics of the shift register section 14 can be prevented from deteriorating.
  • the present invention is not limited to the above-described embodiment.
  • a CCD image sensor may be used as the solid-state imaging device 11 instead of the MOS image sensor.
  • the scintillator 21 is formed directly on the Si substrate 12, but the present invention is not limited to this.
  • a scintillator substrate having a scintillator formed on a radiating and transmitting substrate a light-sensitive section 13, a shift register section 14, and an amplification section 15 on one side of a Si substrate 12 were formed.
  • the scintillator substrate may be arranged so that the region and the scintillator are in contact with each other.
  • a protective film is formed on the scintillator, the area where the photosensitive section 13, shift register section 14, and amplifying section 15 are formed is referred to as the area where the photosensitive section 13, shift register section 14, and amplifier section 15 are formed. It comes into contact with the protective film.
  • the radiation imaging apparatus of the present invention can be used particularly for a large-area radiation imaging system used in medical and industrial X-ray imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

放射線撮像装置1は、固体撮像素子11、シンチレータ21等を備える。固体撮像素子11は、Si基板12の一方面側に形成された、光感応部13及び増幅部15を有する。光感応部13は、光電変換を行う光電変換素子としてのフォトダイオード16を複数含んでおり、これらのフォトダイオード16は二次元状に配列されている。増幅部15は、フォトダイオード16からの出力を増幅し、出力する。シンチレータ21は、Si基板12の一方面における光感応部13及び増幅部15が形成された領域を覆うように、当該領域上に直接形成されている。

Description

明細書
放射線撮像装置
技術分野
【0 0 0 1】 本発明は、 放射線撮像装置に関する。
背景技術
【0 0 0 2】 この種の放射線撮像装置として、 ファイバオプティカルプレート
(以下、 F O Pと称する) と、 この F O Pの一方の表面に設けられたシンチレ一 タと、 F O Pの他方の表面に対向して設けられた半導体イメージセンサと、 半導 体イメージセンサの出力を増幅する増幅部 (増幅素子) と、 半導体イメージセン サ及び増幅部を囲むように設けられた枠体と、 を備えたものが知られている (例 えば、 特許文献 1参照。)。
【0 0 0 3】 また、 光電変換を行う光検出器が 1次元又は 2次元に配列された 光検出器アレイと、 光検出器の光入射面上に直接形成されたシンチレータと、 を 備えた放射線撮像装置も知られている (例えば、 特許文献 2参照。)。
【0 0 0 4】 【特許文献 1】 特開 2 0 0 0— 2 8 7 3 5号公報
【0 0 0 5】 【特許文献 2】 国際公開 WO 9 8ノ3 6 2 9 0号パンフ レツ卜
発明の開示
【0 0 0 6】 上記特許文献 1に開示されたような撮像装置では、 F O P自体の 大面積化が不可能であるために、 撮像面積の大面積化は困難であった。 このため 、 上記特許文献 2に開示されているように、 F O Pを用いることなく、 光検出器 の光入射面上にシンチレータを直接形成する手法が考えられる。 また、 光検出器 の光入射面上にシンチレータを直接形成するのではなく、 支持体上にシンチレ一 タを形成し、 光検出器の光入射面とシンチレータとを密着させる手法も考えられ る。
【0 0 0 7】 し力 しながら、 F O Pを用いない構成とした場合、 増幅部の特性 が劣化するという新たな問題点が発生するようになった。 発明者等の調査研究の 結果、 放射線 (例えば、 X線) がシンチレータまたは枠体に入射すると、 コンプ トン効果により、 散乱放射線が発生していることが判明した。 シンチレータまた は枠体にて散乱放射線が発生していても、 F O Pが存在する場合には、 散乱放射 線は F O Pに含まれる鉛により遮蔽される。 ところが、 F O Pが存在しない場合 には、 発生した散乱放射線は遮蔽されることなく、 増幅部に入射することとなる 。 したがって、 増幅部の特性劣化の要因は、 散乱放射線の入射によるものと考え られる。 特に、 半導体イメージセンサや光検出器アレイといった光感応部と増幅 部とを同一の半導体基板上に形成した場合、 光感応部と増幅部とが近づいて配置 されることとなり、 増幅部に散乱放射線が入射しやすくなる。 また、 増幅部を S i基板に形成した場合、 散乱放射線は撮像装置に入射する X線よりも低エネルギ 一であるために、 S iでの吸収が大きく、 増幅部に与えるダメージも大きくなる
【0 0 0 8】 本発明は、 増幅部への放射線の入射を抑制して、 当該増幅部の特 性が劣化するのを防止することが可能な放射線撮像装置を提供することを目的と する。
【0 0 0 9】 本発明に係る放射線撮像装置は、 入射した光を光電変換する光感 応部と当該光感応部からの出力を増幅する増幅部とがー方面側に形成された基板 と、 基板の一方面における光感応部及び増幅部が形成された領域を覆うように配 置され、 放射線を可視光に変換するシンチレータと、 を有することを特徴として いる。
【0 0 1 0】 本発明に係る放射線撮像装置では、 シンチレータにより増幅部が 形成されている領域も覆われてレ、るので、 シンチレータ等で発生した散乱放射線 は、 増幅部に到達するまでの間に、 シンチレータに吸収されて弱められることと なる。 この結果、 シンチレータ等で発生した散乱放射線が増幅部に入射するのが 抑制され、 増幅部の特性が劣化するのを防止することができる。 【0 0 1 1】 また、 本発明においては、 装置が本来備えているシンチレータを 用いることにより、 増幅部への散乱放射線の入射を抑制している。 このため、 散 乱放射線の入射を抑制する目的で新たに放射線遮蔽部材等を用いる必要がなく、 装置の構成や製造工程等が複雑化するようなことはない。
【0 0 1 2】 また、 基板の一方面側には、 光感応部からの出力を増幅部に向け て送り出すためのシフトレジスタ部が更に形成されており、 シンチレータは、 基 板の一方面におけるシフトレジスタ部が形成された領域を更に覆うように配置さ れていることが好ましい。 この場合、 シフトレジスタ部が形成された領域もシン チレータによ'り覆われているので、 シンチレータ等で発生した散乱放射線がシフ トレジスタ部に入射するのも抑制されることとなる。 この結果、 シフトレジスタ 部の特性が劣化するのも防止することができる。
【0 0 1 3】 また、 シンチレータは、 基板の一方面上に直接形成されているこ とが好ましい。 また、 光感応部は、 2次元状に配列された複数の光電変換素子を 含んでいることが好ましい。
図面の簡単な説明
【0 0 1 4】 図 1は、 本実施形態に係る放射線撮像装置の断面構成を説明す るための概略図である。
【0 0 1 5】 図 2は、 本実施形態に係る放射線撮像装置の断面構成を説明す るための概略図である。
【0 0 1 6】 図 3は、 本実施形態に係る放射,锒撮像装置を示す平面図である 発明を実施するための最良の形態
【0 0 1 7】 本発明の実施形態に係る放射線撮像装置について図面を参照して 説明する。 なお、 説明において、 同一要素又は同一機能を有する要素には、 同一 符号を用いることとし、 重複する説明は省略する。
【0 0 1 8】 図 1及び図 2は、 本実施形態に係る放射線撮像装置の断面構成を 説明するための概略図であり、 図 3は、 本実施形態に係る放射線撮像装置を示す 平面図である。 なお、 図 3では、 ボンディングワイヤの図示を省略している。
【001 9】 本実施形態の放射線撮像装置 1は、 図 1〜図 3に示されるように 、 固体撮像素子 1 1、 シンチレータ 21、 マウント基板 31、 枠体 41等を備え ている。
【0020】 固体撮像素子 1 1は、 MOS型イメージセンサであって、 S i基 板 1 2の一方面側に形成された、 光感応部 1 3、 シフトレジスタ部 14及び増幅 部 1 5を有している。 このように、 光感応部 1 3、 シフトレジスタ部 14及び增 幅部 15は、 同一基板 (S i基板 1 2) に形成されている。 S i基板 1 2 (固体 撮像素子 1 1) は、 マウント基板 31上に固定されている。
【0021】 光感応部 13は、 光電変換を行う光電変換素子としてのフォトダ ィオード 16を複数含んでおり、 これらのフォトダイオード 16は 2次元状に配 列されている。 また、 固体撮像素子 1 1は、 光の入射に応答してそれぞれのフォ トダイオード 16で発生した電荷の読み出しを制御するための複数の MO S FE T (電界効果トランジスタ) (図示せず) も有している。 本実施形態においては、
S i基板 12の面積は 16900 mm2 (= 1 3 Ommx 13 Omm) 程度であり 、 光感応部 1 3の面積は 15625 mm2 (= 125 mmx 125 mm) 程度であ る。
[0022] シフトレジスタ部 14は、 それぞれのフォトダイオード 16で発 生した電荷を順次読み出して対応する増幅部 1 5に向けて出力するように、 上記 MO S FETの駆動制御を行う。 シフトレジスタ部 14は、 S i基板 1 2に形成 された配線 (図示せず) を通して、 対応する MOSFETに電気的に接続されて いる。
【0023】 増幅部 1 5は、 S i基板 12に形成された配線 (図示せず) を通 して、 対応するフォトダイオード 16と電気的に接続可能とされており、 当該フ オトダイオード 16からの出力を増幅し、 出力する。 増幅部 1 5は、 例えば、 フ オトダイオード 1 6からの出力 (電流出力) を増幅するアンプ (チャージアンプ ) と、 このアンプに並列に接続された容量素子と、 アンプ及ぴ容量素子に並列に 接続されたスィツチ素子等を含む。
【0 0 2 4】 S i基板 1 2には、 それぞれの増幅部 1 5と電気的に接続されて 形成されたボンディングパッド部 1 7が複数形成されている。 これらのボンディ ングパッド部 1 7は、 ボンディングワイヤ 5 1により、 マウント基板 3 1に形成 されたボンディングパッド部 3 2に電気的に接続されている。 これにより、 増幅 部 1 5からの出力は、 マウント基板 3 1を通して撮像装置 1の外部に送られるこ ととなる。 また、 S i基板 1 2には、 それぞれのシフトレジスタ部 1 4と電気的 に接続されて形成されたボンディングパッド部 1 8が複数形成されている (特に 、 図 3参照)。 これらのボンディングパッド部 1 8は、 ボンディングワイヤ (図示 せず) により、 マウント基板 3 1に形成されたボンディングパッド部 3 3に電気 的に接続されている。 これにより、 撮像装置 1の外部からの信号は、 マウント基 板 3 1を通してシフトレジスタ部 1 4に送られることとなる。
【0 0 2 5】 シンチレータ 2 1は、 入射した放射線 (例えば、 X線) を可視光 に変換するもので、 柱状構造を呈している。 シンチレータ 2 1は、 図 3にも示さ れるように、 S i基板 1 2の一方面における光感応部 1 3、 シフトレジスタ部 1 4及び増幅部 1 5が形成された領域を覆うように、 当該領域上に直接形成されて いる。 これにより、 シンチレータ 2 1は、 S i基板 1 2の一方面における光感応 部 1 3、 シフトレジスタ部 1 4及び増幅部 1 5が形成された領域に接触して配置 されることとなる。 なお、 S i基板 1 2の一方面におけるボンディングパッド部 1 7 , 1 8が形成された領域は、 シンチレータ 2 1にて覆われておらず、 露出し ている。
[ 0 0 2 6 ] シンチレータ 2 1には、 各種の材料を用いることができるが、 発 光効率が良い T 1 (タリウム) ドープの C s I等が好ましい。 シンチレータ 2 1 の上には、 シンチレータ 2 1の柱状構造を覆ってその間隙まで入り込み、 シンチ レータ 2 1を密閉する保護膜 (図示せず) が形成されている。 保護膜は、 放射線 を透過し、 水蒸気を遮断する材料、 例えばポリパラキシリ レン樹脂 (スリーボン ド社製、商品名パリレン)、特にポリパラクロロキシリレン (同社製、 商品名パリ レン C) を用いることが好ましい。 本実施形態においては、 シンチレータ 2 1の 厚みは、 3 0 0 m程度である。
【0 0 2 7】 シンチレータ 2 1は、 蒸着法により、 C s iの柱状結晶を成長さ せることで形成することができる。 また、 保護膜は、 C V D法により形成するこ とができる。 なお、 シンチレータ 2 1及び保護膜の形成方法については、 本願出 願人による上記特許文献 2 (国際公開 WO 9 8 Z 3 6 2 9 0号パンフレッ ト) 等 において詳細に開示されており、 ここでの説明を省略する。
【0 0 2 8】 枠体 4 1は、 固体撮像素子 1 1を囲むようにマウント基板 3 1上 に固定されて、 設けられている。 枠体 4 1には、 光感応部 1 3に対応する位置に 、 矩形形状の開口 4 2が形成されており、 放射線がこの開口 4 2を通ってシンチ レータ 2 1に入射することとなる。 枠体 4 1と、 S i基板 1 2及びマウント基板 3 1との間には空間 Sが形成されている。 空間 S内には、 固体撮像素子 1 1のシ フトレジスタ部 1 4及び増幅部 1 5、 ボンディングパッド部 1 7, 3 2、 ボンデ イングワイヤ 5 1等が位置する。 このように、 ボンディングワイヤ 5 1は、 枠体 4 1と、 S i基板 1 2及びマウント基板 3 1とで画成される空間 S内に配設され ているので、 当該ボンディングワイヤ 5 1は枠体 4 1によって押さえつけられる ことなく、 外部からの物理的応力から保護される。 また、 枠体 4 1には、 その增 幅部 1 5側とは反対側に放射線遮蔽性の材料 (例えば、 鉛等) からなる遮蔽材 4 3が設けられており、 この遮蔽材 4 3にて放射線を十分に遮蔽している。 本実施 形態おいては、 遮蔽材 4 3の厚みは 2 . 5 mm程度である。
【0 0 2 9】 以上のように、 本実施形態の放射線撮像装置 1においては、 シン チレータ 2 1により S i基板 1 2における増幅部 1 5が形成された領域も覆われ ているので、 シンチレータ 2 1または枠体 4 1で発生した散乱放射線は、 増幅部 1 5に到達するまでの間に、 シンチレータ 2 1に吸収されて弱められることとな る。 この結果、 シンチレータ 2 1または枠体 4 1で発生した散乱放射線が増幅部 1 5に入射するのが抑制され、 増幅部 1 5の特性が劣化するのを防止することが できる。
【0 0 3 0】 また、 本実施形態の放射線撮像装置 1においては、 固体撮像素子 1 1の撮像面側にシンチレータ 2 1を形成する工程により、 S i基板 1 2におけ る増幅部 1 5が形成された領域にもシンチレータ 2 1を形成することができる。 このように、 本来備えているシンチレータ 2 1を用いることにより、 増幅部 1 5 への散乱放射線の入射を抑制しているので、 散乱放射線の入射を抑制する目的で 新たに放射線遮蔽部材等を設ける必要がなく、 放射線撮像装置 1の構成や製造ェ 程等が複雑化するようなことはない。
【0 0 3 1】 また、 本実施形態の放射線撮像装置 1においては、 シンチレータ 2 1により S i基板 1 2におけるシフトレジスタ部 1 4が形成された領域も覆わ れているので、 シンチレータ 2 1または枠体 4 1で発生した散乱放射線がシフト レジスタ部 1 4に入射するのも抑制されることとなり、 シフトレジスタ部 1 4の 特性が劣化するのも防止することができる。
【0 0 3 2】 本発明は、 前述した実施形態に限定されるものではない。 例えば 、 本実施形態においては、 固体撮像素子 1 1として、 MO S型イメージセンサの 代わりに、 C C Dイメージセンサを用いてもよい。
【0 0 3 3】 また、 本実施形態においては、 シンチレータ 2 1を S i基板 1 2 上に直接形成するようにしているが、 これに限られるものではない。 例えば、 放 射,锒透過性基板上にシンチレータを形成したシンチレータ基板を用い、 S i基板 1 2の一方面における光感応部 1 3、 シフトレジスタ部 1 4及び増幅部 1 5が形 成された領域とシンチレータとが接触するように、 シンチレータ基板を配置した 構成としてもよい。 なお、 シンチレータの上に保護膜が形成されている場合には 、 上記光感応部 1 3、 シフトレジスタ部 1 4及び増幅部 1 5が形成された領域と 保護膜とが接触するようになる。
産業上の利用可能性
【0 0 3 4】 本発明の放射線撮像装置は、 特に医療、 工業用の X線撮影で用い られる大面積の放射線ィメ一ジングシステムに利用できる。

Claims

請求の範囲
1 . 入射した光を光電変換する光感応部と当該光感応部からの出力を増幅 する増幅部とがー方面側に形成された基板と、
前記基板の前記一方面における前記光感応部及び前記増幅部が形成された領域 を覆うように配置され、 放射線を可視光に変換するシンチレータと、 を有するこ とを特徴とする放射線撮像装置。
2 . 前記基板の前記一方面側には、 前記光感応部からの出力を前記増幅部 に向けて送り出すためのシフトレジスタ部が更に形成されており、
前記シンチレータは、 前記基板の前記一方面における前記シフトレジスタ部が 形成された領域を更に覆うように配置されていることを特徴とする請求の範囲第 1項に記載の放射線撮像装置。
3 . 前記シンチレータは、 前記基板の前記一方面上に直接形成されている ことを特徴とする請求の範囲第 1項に記載の放射線撮像装置。
4 . 前記光感応部は、 2次元状に配列された複数の光電変換素子を含んで いることを特徴とする請求の範囲第 1項に記載の放射線撮像装置。
PCT/JP2003/015107 2002-11-26 2003-11-26 放射線撮像装置 WO2004049002A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03811934.3A EP1566662B1 (en) 2002-11-26 2003-11-26 Radiation imaging system
AU2003302454A AU2003302454A1 (en) 2002-11-26 2003-11-26 Radiation imaging system
US10/536,280 US7432509B2 (en) 2002-11-26 2003-11-26 Radiographic imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-342555 2002-11-26
JP2002342555A JP4191459B2 (ja) 2002-11-26 2002-11-26 放射線撮像装置

Publications (1)

Publication Number Publication Date
WO2004049002A1 true WO2004049002A1 (ja) 2004-06-10

Family

ID=32375892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015107 WO2004049002A1 (ja) 2002-11-26 2003-11-26 放射線撮像装置

Country Status (6)

Country Link
US (1) US7432509B2 (ja)
EP (1) EP1566662B1 (ja)
JP (1) JP4191459B2 (ja)
CN (1) CN1318859C (ja)
AU (1) AU2003302454A1 (ja)
WO (1) WO2004049002A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058168A (ja) * 2004-08-20 2006-03-02 Hamamatsu Photonics Kk 放射線撮像素子および放射線撮像方法
DE102004060932B4 (de) * 2004-12-17 2009-06-10 Siemens Ag Verfahren zur Herstellung eines Strahlungsdetektors
US7871303B2 (en) * 2007-03-09 2011-01-18 Honeywell International Inc. System for filling and venting of run-in gas into vacuum tubes
JP4719201B2 (ja) * 2007-09-25 2011-07-06 浜松ホトニクス株式会社 固体撮像装置
US20100108893A1 (en) * 2008-11-04 2010-05-06 Array Optronix, Inc. Devices and Methods for Ultra Thin Photodiode Arrays on Bonded Supports
KR102005367B1 (ko) 2012-09-11 2019-10-02 삼성디스플레이 주식회사 신틸레이터, 그 제조 방법 및 신틸레이터를 포함하는 엑스레이 검출장치
RU2532645C1 (ru) * 2013-04-29 2014-11-10 Общество с ограниченной ответственностью "Научно-технический центр "МТ" (ООО "НТЦ-МТ") Способ формирования структурированного сцинтиллятора на поверхности пикселированного фотоприемника (варианты) и сцинтилляционный детектор, полученнный данным способом (варианты)
JP5970641B2 (ja) * 2014-12-09 2016-08-17 雫石 誠 撮像装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188148A (ja) * 1992-01-13 1993-07-30 Hamamatsu Photonics Kk 放射線検出素子
JPH09297181A (ja) * 1996-05-07 1997-11-18 Canon Inc 放射線撮像装置
US6075248A (en) * 1998-10-22 2000-06-13 Direct Radiography Corp. Direct radiographic imaging panel with shielding electrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003745A1 (en) * 1989-09-06 1991-03-21 University Of Michigan Multi-element-amorphous-silicon-detector-array for real-time imaging and dosimetry of megavoltage photons and diagnostic x-rays
AU5878798A (en) 1997-02-14 1998-09-08 Hamamatsu Photonics K.K. Radiation detection device and method of producing the same
US5912942A (en) * 1997-06-06 1999-06-15 Schick Technologies, Inc. X-ray detection system using active pixel sensors
JPH11307756A (ja) 1998-02-20 1999-11-05 Canon Inc 光電変換装置および放射線読取装置
JP4005704B2 (ja) 1998-07-14 2007-11-14 浜松ホトニクス株式会社 X線パネルセンサ
US6292529B1 (en) * 1999-12-15 2001-09-18 Analogic Corporation Two-dimensional X-ray detector array for CT applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188148A (ja) * 1992-01-13 1993-07-30 Hamamatsu Photonics Kk 放射線検出素子
JPH09297181A (ja) * 1996-05-07 1997-11-18 Canon Inc 放射線撮像装置
US6075248A (en) * 1998-10-22 2000-06-13 Direct Radiography Corp. Direct radiographic imaging panel with shielding electrode

Also Published As

Publication number Publication date
CN1318859C (zh) 2007-05-30
JP4191459B2 (ja) 2008-12-03
CN1717595A (zh) 2006-01-04
EP1566662B1 (en) 2016-10-05
US20060169908A1 (en) 2006-08-03
EP1566662A1 (en) 2005-08-24
JP2004177216A (ja) 2004-06-24
AU2003302454A1 (en) 2004-06-18
US7432509B2 (en) 2008-10-07
EP1566662A4 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP4884964B2 (ja) 放射線撮像装置
WO2001088569A1 (fr) Detecteur de rayonnement et fabrication de ce detecteur
JP2004327825A (ja) 放射線撮影装置
WO2004049002A1 (ja) 放射線撮像装置
JP4352964B2 (ja) 二次元像検出器
US7151263B2 (en) Radiation detector and method of manufacture thereof
JP4087597B2 (ja) X線像撮像装置の製造方法
JP2004177217A (ja) 放射線撮像装置
US7372037B2 (en) Solid-state imaging device and radiotion imaging system
JP2002350551A (ja) 放射線撮像装置及びそれを用いた放射線撮像システム
EP1566840B1 (en) Solid-state imaging device and radiation imaging system
JP2003163343A5 (ja)
JP4234305B2 (ja) 放射線検出器
JP4440979B2 (ja) X線像撮像装置
JP4234303B2 (ja) 放射線検出器
US7521683B2 (en) X-ray detector
JP2004279319A (ja) 放射線検出装置及び放射線撮像システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A43023

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2003811934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003811934

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003811934

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006169908

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10536280

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10536280

Country of ref document: US