JPH09270254A - 亜鉛アルカリ電池 - Google Patents

亜鉛アルカリ電池

Info

Publication number
JPH09270254A
JPH09270254A JP7994796A JP7994796A JPH09270254A JP H09270254 A JPH09270254 A JP H09270254A JP 7994796 A JP7994796 A JP 7994796A JP 7994796 A JP7994796 A JP 7994796A JP H09270254 A JPH09270254 A JP H09270254A
Authority
JP
Japan
Prior art keywords
zinc alloy
indium
zinc
alloy powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7994796A
Other languages
English (en)
Inventor
Seiichi Hikata
誠一 日方
Kiyoto Yoda
清人 依田
Naganori Kashiwazaki
永記 柏崎
Teiji Okayama
定司 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7994796A priority Critical patent/JPH09270254A/ja
Publication of JPH09270254A publication Critical patent/JPH09270254A/ja
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

(57)【要約】 【課題】無汞化且つ鉛無添加の亜鉛合金粉末を用いた低
公害且つ安全で高性能な亜鉛アルカリ電池を提供するこ
と。 【解決手段】インジウム0.01〜0.1重量%、ガリ
ウム0.001〜0.05重量%,ビスマス0.001
〜0.01重量%,マグネシウム0.001〜0.05
重量%及びアルカリ金属(Li,Na,K)からなる群
より選ばれた少なくとも1種類以上を合計0.001〜
0.05重量%含有する無汞化且つ鉛無添加の亜鉛合金
粉末を負極活物質とし、さらに亜鉛合金粉末の防食剤と
してインジウム化合物を亜鉛合金粉末に対してインジウ
ム換算で0.005〜0.5重量%添加したゲル状負極
を有する亜鉛アルカリ電池は、無汞化且つ鉛無添加であ
るが、無汞化・鉛添加亜鉛合金粉末を使用した場合より
もガス発生が少なく安全で高性能である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は亜鉛アルカリ電池に
係わり、詳しくは無汞化且つ鉛無添加の亜鉛合金粉末を
用いた低公害且つ安全で高性能な亜鉛アルカリ電池に関
する。
【0002】
【従来の技術】従来、亜鉛アルカリ電池の負極活物質と
しては、亜鉛の腐食によるガス発生の抑制及び電気特性
の向上を目的として、汞化亜鉛合金粉末が用いられてい
たが、近年、使用済み電池による環境汚染が問題視され
るようになってきたことから低公害化が社会的な要望と
なり、亜鉛合金粉末を無汞化(無水銀)にするための亜
鉛合金組成や防食剤(インヒビター)等の研究が進めら
れ、実用上問題のない無水銀アルカリ電池用ゲル状負極
が開発されるに至った。
【0003】
【発明が解決しようとする課題】しかしながら、無水銀
アルカリ電池で実用化されている無汞化亜鉛合金粉末中
には、水素ガス発生を抑制するために水銀と同様に有害
物質である鉛を数百ppm添加していることから、鉛無
添加の亜鉛合金粉末を用いた無水銀アルカリ電池への要
望が高まっている。
【0004】ところで、現在までに鉛を添加していない
亜鉛アルカリ電池用亜鉛合金に関して、特開昭63−1
33450号公報、特開平2−194103号公報等数
多くあり、その中にはある程度の耐食性を期待できるも
のもあるが、十分とは言えない。また、発生したガスを
逃がす構造を有する電池には使用可能であるかもしれな
いが、円筒型アルカリマンガン乾電池等、密閉構造を有
する電池には亜鉛合金組成を改善しただけでは、未放電
時のガス発生は抑制できても一部放電した後のガス発生
までは抑制できず、実用可能なゲル状負極とはなり得な
い。このような状況から、よりガス発生の少ない亜鉛合
金組成の開発並びに密閉構造を有するアルカリ電池にも
適用可能なゲル状負極の開発が急務となっていた。
【0005】本発明は、上記状況に鑑みてなされたもの
で、その目的は無汞化且つ鉛無添加の亜鉛合金粉末を用
いた低公害且つ安全で高性能な亜鉛アルカリ電池を提供
することにある。
【0006】
【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1の亜鉛アルカリ電池は、インジウ
ム0.01〜0.1重量%、ガリウム0.001〜0.
05重量%,ビスマス0.001〜0.01重量%,マ
グネシウム0.001〜0.05重量%及びアルカリ金
属(Li,Na,K)からなる群より選ばれた少なくと
も1種類以上を合計0.001〜0.05重量%含有す
る無汞化且つ鉛無添加の亜鉛合金粉末を負極活物質と
し、さらに亜鉛合金粉末の防食剤としてインジウム化合
物を亜鉛合金粉末に対してインジウム換算で0.005
〜0.5重量%添加したゲル状負極を有することを特徴
とする。
【0007】本発明の亜鉛アルカリ電池で用いる亜鉛合
金は、鉛の代替元素として、インジウム,ガリウム,ビ
スマス,マグネシウム及びリアルカリ金属(Li,N
a,K)を添加することにより、無汞化・鉛添加・亜鉛
合金よりも未放電時の耐食性を高めることができる。こ
の場合の各添加元素の作用機構の詳細は十分明らかにな
ってはいないが、各元素を単独で添加した場合には水素
ガス発生を実用可能なレベルに抑制できないことを確認
していることから、複数元素添加の相乗効果によって亜
鉛合金表面の水素過電圧が高められたり、表面が平滑化
されて表面積が減少することにより、耐食性が向上する
ものと考えられる。
【0008】なお、ここで鉛無添加と表現しているの
は、現在の一般的な亜鉛精練技術では、純亜鉛と言われ
るものでも鉛が30ppm程度不純物として混入するこ
とは避けられず、30ppm以下とするのは技術的には
可能であるが、コスト的に不利であると考えられるから
である。
【0009】また、本発明の亜鉛アルカリ電池で用いる
亜鉛合金粉末は、鉛添加亜鉛合金粉末よりもガス発生量
が少なく、発生したガスを逃がす構造を有する電池には
そのまま使用できるが、密閉構造を有する円筒型アルカ
リマンガン電池等では、本発明のような亜鉛合金組成の
改善だけでは、漏液を引き起こさない実用可能なレベル
のガス発生には抑制できない。
【0010】そこで、防食剤(インヒビター)としてイ
ンジウム化合物を添加することにより、密閉構造を有す
る電池でも実用可能なゲル状負極を得ることができる。
インジウム化合物は、そのガス発生抑制機構の詳細は明
らかではないが、特に電池を一部放電した場合に多大な
効果がある。
【0011】
【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)まず、ゲル化剤としてのポリアクリル酸
0.4重量部に試薬特級相当以上の酸化インジウム(I
2 3 )を0.039重量部(In換算として亜鉛合
金粉末に対して0,05重量%)加え、ポットミルで1
0分間均一に混合した後、これをIn:0.05重量
%、Ga:0.005重量%、Bi:0.005重量
%、Mg:0.005重量%及びK:0.01重量%を
含む粒径100〜300μmの亜鉛合金粉末65重量部
に加え、汎用混合機で5分間撹拌し、均一に混合した。
次いで、酸化亜鉛を3.5重量%溶解した35重量%濃
度の苛性カリ水溶液35重量部に、前記亜鉛合金粉末の
混合物を4分間かけて徐々に添加するとともに、150
mmHg以下の減圧状態で撹拌・混合し、さらに、10
mmHg以下の減圧状態にして5分間撹拌して、均一な
ゲル状負極を製造した。
【0012】得られたゲル状負極を用いて図1に示すJ
IS規格LR6形(単3形)亜鉛アルカリ電池を組み立
てた。この図において、1は正極端子を兼ねる有底円筒
型の金属缶であり、この金属缶1内には円筒状に加圧成
形した正極合剤2が充填されている。正極合剤2は、二
酸化マンガン粉末とカーボン粉末を混合し、これを金属
缶1内に収納し所定の圧力で中空円筒状に加圧成形した
ものである。また、正極合剤2の中空部には、アセター
ル化ポリビニルアルコール繊維の不織布からなる有底円
筒状のセパレータ3を介して前記方法で製造したゲル状
負極4が充填されている。ゲル状負極4内には真鍮製の
負極集電棒5が、その上端部をゲル状負極4より突出す
るように挿着されている。負極集電棒5の突出部外周面
及び金属缶1の上部内周面には二重環状のポリアミド樹
脂からなる絶縁ガスケット6が配設されている。また、
絶縁ガスケット6の二重環状部の間にはリング状の金属
板7が配設され、かつ金属板7には負極端子を兼ねる帽
子形の金属封口板8が集電棒5の頭部に当接するように
配設されている。そして、金属缶1の開口縁を内方に屈
曲させることにより絶縁ガスケット6及び金属封口板8
で金属缶1内を密封口している。
【0013】(実施例2〜13)亜鉛粉の合金組成が表
1に示す通りであること以外、実施例1と同様にしてJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。
【0014】(実施例14〜15)酸化インジウムの添
加量が表1に示す通りであること以外、実施例1と同様
にしてJIS規格LR6形(単3形)アルカリ電池を組
み立てた。
【0015】(比較例1〜15)亜鉛粉の合金組成が表
1に示す通りであること以外、実施例1と同様にしてJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。
【0016】(比較例16〜17)酸化インジウムの添
加量が表1に示す通りであること以外、実施例1と同様
にしてJIS規格LR6形(単3形)アルカリ電池を組
み立てた。
【0017】以上のようにして組み立てた各LR6形ア
ルカリ電池について、未放電及び一部放電(2Ω30m
in放電)後の電池を60℃で40日間貯蔵した後、水
中で分解して電池内部のガスを捕集した結果(n=10
個の平均値)、2Ω連続放電接続時間(0.9Vまで、
n=6個の平均値)を調べた。これら電池の試験結果を
表1に示す。
【0018】
【表1】
【0019】表1より明らかなように、比較例4,7,
10及び13によると、インジウム,ガリウム,ビスマ
ス,マグネシウムを単独で添加しても、未放電・一部放
電ともに60℃40日貯蔵で漏液してしまい、ガス発生
抑制に効果がないことが分かるが、実施例1〜15のよ
うに複数元素系になると相乗効果によって、比較例1の
鉛を含有した亜鉛合金よりもガス発生が抑制される。
【0020】実施例1〜3及び比較例2,3によると、
亜鉛合金中の添加元素としてのインジウムは鉛無添加の
場合、非常にガス発生抑制に効果があり、インジウムを
添加しない(比較例2)と、ガリウム,ビスマス,マグ
ネシウム等を添加しても実用可能なレベルにはならな
い。また、インジウムを0.1重量%より多く添加して
も(比較例3)際立った効果はなく、コストの面から考
えるとインジウムは0.1重量%以下がよい。
【0021】実施例1,4,5及び比較例5,6による
と、ガリウムはガス発生抑制効果は大きい。しかしなが
ら、表1には示していないが、添加量が多くなると1.
2kΩ連続放電での単寿命の発生率が26%(n=50
個中)と高くなる等、軽負荷放電特性に悪影響を及ぼす
ようであるので、ガス発生抑制と軽負荷放電特性のバラ
ンスを考えると、0.001〜0.05重量%の範囲で
添加することが望ましい。
【0022】実施例1,6,7及び比較例8,9による
と、ビスマスを添加することによるガス発生抑制効果は
明らかであるが、添加量が多すぎる(比較例9)と2Ω
連続放電等の重負荷放電特性が悪くなるので、ビスマス
の添加量は0.01重量%以下が望ましい。
【0023】実施例1,8,9及び比較例11,12に
よると、マグネシウムを添加すると、ガス発生抑制効果
は明らかであるが、0.05重量%より多く添加しても
(比較例12)際立った効果はなく、マグネシウムの添
加量は0.05重量%以下でよい。
【0024】実施例1,10〜13及び比較例14,1
5によると、リチウム,ナトリウム,カリウム等を添加
すると、未放電でのガス発生抑制効果が大きいことがわ
かるが、0.05重量%より多く添加しても(比較例1
5)際立った効果はなく、添加量は0.05重量%以下
でよい。
【0025】実施例1,14,15及び比較例16,1
7によると、酸化インジウムの添加は、一部放電後のガ
ス発生を、密閉構造を有するアルカリ電池で実用可能な
レベルに抑制するために必要であることは明白である。
しかし、インジウム換算で0.5重量%より多く添加し
ても際立った効果はなく、コストの面から考えると、イ
ンジウム換算で0.5重量%以下の添加量でよい。
【0026】なお、本実施例には記載していないが、酸
化インジウムの代わりに水酸化インジウム,硝酸インジ
ウム,塩化インジウム,硫酸インジウム等のインジウム
化合物を添加しても本実施例と同様に良好な効果が得ら
れた。
【0027】
【発明の効果】以上説明したように、本発明の亜鉛合金
粉末と防食剤を使用したゲル状負極を有する亜鉛アルカ
リ電池は、無汞化且つ鉛無添加という電池のさらなる低
公害化を達成し、しかも無汞化・鉛添加亜鉛合金粉末を
使用した場合よりもガス発生が少なく安全で高性能であ
るという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例である亜鉛アルカリ電池(J
IS規格LR6形;単3形)の断面図。
【符号の説明】
1…金属缶、2…正極合剤、3…セパレータ、4…ゲル
状負極、5…負極集電棒、6…絶縁ガスケット、7…金
属板、8…金属封口板。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡山 定司 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 インジウム0.01〜0.1重量%、ガ
    リウム0.001〜0.05重量%,ビスマス0.00
    1〜0.01重量%,マグネシウム0.001〜0.0
    5重量%及びアルカリ金属(Li,Na,K)からなる
    群より選ばれた少なくとも1種類以上を合計0.001
    〜0.05重量%含有する無汞化且つ鉛無添加の亜鉛合
    金粉末を負極活物質とし、さらに亜鉛合金粉末の防食剤
    としてインジウム化合物を亜鉛合金粉末に対してインジ
    ウム換算で0.005〜0.5重量%添加したゲル状負
    極を有することを特徴とする亜鉛アルカリ電池。
JP7994796A 1996-04-02 1996-04-02 亜鉛アルカリ電池 Pending JPH09270254A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7994796A JPH09270254A (ja) 1996-04-02 1996-04-02 亜鉛アルカリ電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7994796A JPH09270254A (ja) 1996-04-02 1996-04-02 亜鉛アルカリ電池

Publications (1)

Publication Number Publication Date
JPH09270254A true JPH09270254A (ja) 1997-10-14

Family

ID=13704507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7994796A Pending JPH09270254A (ja) 1996-04-02 1996-04-02 亜鉛アルカリ電池

Country Status (1)

Country Link
JP (1) JPH09270254A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054070A1 (en) * 1999-05-21 2000-11-22 Mitsui Mining & Smelting Co., Ltd Zinc alloy powder and alkaline battery using the same
JP2001052688A (ja) * 1999-08-11 2001-02-23 Toshiba Battery Co Ltd アルカリ電池
WO2006047917A1 (en) * 2004-11-05 2006-05-11 Chung Pak Battery Works Ltd. Negative electrode of dry battery, manufacture method of the same, and zinc-manganese dry battery using the same
WO2006053465A1 (en) * 2004-11-16 2006-05-26 Chung Pak Battery Works Ltd. Zinc particles for zinc-manganese dry battery and manufacture method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054070A1 (en) * 1999-05-21 2000-11-22 Mitsui Mining & Smelting Co., Ltd Zinc alloy powder and alkaline battery using the same
JP2001052688A (ja) * 1999-08-11 2001-02-23 Toshiba Battery Co Ltd アルカリ電池
WO2006047917A1 (en) * 2004-11-05 2006-05-11 Chung Pak Battery Works Ltd. Negative electrode of dry battery, manufacture method of the same, and zinc-manganese dry battery using the same
WO2006053465A1 (en) * 2004-11-16 2006-05-26 Chung Pak Battery Works Ltd. Zinc particles for zinc-manganese dry battery and manufacture method of the same

Similar Documents

Publication Publication Date Title
EP0510239A1 (en) Zinc-alkaline batteries
JP3317526B2 (ja) アルカリ電池
JP3215447B2 (ja) 亜鉛アルカリ電池
JPH0955207A (ja) 亜鉛アルカリ電池
JPH09270254A (ja) 亜鉛アルカリ電池
JPH065284A (ja) 亜鉛アルカリ電池
JPH06223829A (ja) 亜鉛アルカリ電池
JP3940692B2 (ja) アルミニウム電池用負極材料及びアルミニウム一次電池
JPH07105941A (ja) 亜鉛アルカリ電池
JPH10172555A (ja) 亜鉛アルカリ電池
JPH06223828A (ja) 亜鉛アルカリ電池
JPH09265978A (ja) 亜鉛アルカリ電池
JPH0955206A (ja) 亜鉛アルカリ電池
JPH0119622B2 (ja)
JPH0822822A (ja) 亜鉛アルカリ電池
JPH06338319A (ja) 亜鉛アルカリ電池
JPH06338314A (ja) 亜鉛アルカリ電池
JPH08203520A (ja) 亜鉛アルカリ電池
JPH08203519A (ja) 亜鉛アルカリ電池
JPH08203518A (ja) 亜鉛アルカリ電池
JPH09265977A (ja) 亜鉛アルカリ電池
JPH0955208A (ja) 亜鉛アルカリ電池
JPH065285A (ja) 亜鉛アルカリ電池
JPH0822823A (ja) 亜鉛アルカリ電池
JPH0562683A (ja) アルカリ電池