JPH09130444A - 信号処理装置 - Google Patents
信号処理装置Info
- Publication number
- JPH09130444A JPH09130444A JP8084602A JP8460296A JPH09130444A JP H09130444 A JPH09130444 A JP H09130444A JP 8084602 A JP8084602 A JP 8084602A JP 8460296 A JP8460296 A JP 8460296A JP H09130444 A JPH09130444 A JP H09130444A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- controlled oscillator
- signal
- numerically controlled
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005070 sampling Methods 0.000 claims abstract description 39
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000008929 regeneration Effects 0.000 claims abstract description 9
- 238000011069 regeneration method Methods 0.000 claims abstract description 9
- 230000001360 synchronised effect Effects 0.000 claims description 47
- 238000011084 recovery Methods 0.000 claims description 38
- 239000004065 semiconductor Substances 0.000 claims description 9
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 abstract description 8
- 230000003044 adaptive effect Effects 0.000 abstract description 6
- 230000005236 sound signal Effects 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 26
- 238000004891 communication Methods 0.000 description 13
- 241001442055 Vipera berus Species 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0135—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
- H04L7/002—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
- H04L7/0029—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of received data signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0248—Filters characterised by a particular frequency response or filtering method
- H03H17/0254—Matched filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0054—Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0064—Concatenated codes
- H04L1/0065—Serial concatenated codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0067—Rate matching
- H04L1/0068—Rate matching by puncturing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03273—Arrangements for operating in conjunction with other apparatus with carrier recovery circuitry
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
- H04L27/3845—Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
- H04L27/3854—Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
- H04L27/3872—Compensation for phase rotation in the demodulated signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/238—Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
- H04N21/2383—Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/438—Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
- H04N21/4382—Demodulation or channel decoding, e.g. QPSK demodulation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H2017/0072—Theoretical filter design
- H03H2017/0081—Theoretical filter design of FIR filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2218/00—Indexing scheme relating to details of digital filters
- H03H2218/02—Coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0024—Carrier regulation at the receiver end
- H04L2027/0026—Correction of carrier offset
- H04L2027/0028—Correction of carrier offset at passband only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0053—Closed loops
- H04L2027/0057—Closed loops quadrature phase
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0063—Elements of loops
- H04L2027/0067—Phase error detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0063—Elements of loops
- H04L2027/0069—Loop filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
- H04L7/0334—Processing of samples having at least three levels, e.g. soft decisions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
- H04L7/0334—Processing of samples having at least three levels, e.g. soft decisions
- H04L7/0335—Gardner detector
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Communication Control (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Radar Systems Or Details Thereof (AREA)
- Stereo-Broadcasting Methods (AREA)
Abstract
(57)【要約】 (修正有)
【課題】ビデオおよび音声信号等を高ビットレートで受
取り復号し、また、変調器の周波数に応じて復調周波数
のためのロックを経済的で確実に行う。 【解決手段】CMOS積分信号処理システムであって、
チップ上の数値制御発振器210が当初信号の公称ボー
・レートに等しい周期Tで動作し、サンプリング・レー
トでサンプルを受け取る同期補間回路221a,bを制
御するタイミング再生回路をシステムは含む。再生回路
内ではループ・フィルタ259,254,256が同期
補間回路及び数値制御発振器に接続され、この構成によ
り種々のシンボル・レートを扱うことが可能である。ま
たシステムは第2のチップ上の数値制御発振器と、第2
の数値制御発振器に応答し、サンプリングされた信号の
同位相成分及び直角位相成分を受け入れるディジタルデ
ローテーション回路を有するキャリア再生回路を含み、
適応位相誤差推定回路がフィード・バックループ内に接
続される。
取り復号し、また、変調器の周波数に応じて復調周波数
のためのロックを経済的で確実に行う。 【解決手段】CMOS積分信号処理システムであって、
チップ上の数値制御発振器210が当初信号の公称ボー
・レートに等しい周期Tで動作し、サンプリング・レー
トでサンプルを受け取る同期補間回路221a,bを制
御するタイミング再生回路をシステムは含む。再生回路
内ではループ・フィルタ259,254,256が同期
補間回路及び数値制御発振器に接続され、この構成によ
り種々のシンボル・レートを扱うことが可能である。ま
たシステムは第2のチップ上の数値制御発振器と、第2
の数値制御発振器に応答し、サンプリングされた信号の
同位相成分及び直角位相成分を受け入れるディジタルデ
ローテーション回路を有するキャリア再生回路を含み、
適応位相誤差推定回路がフィード・バックループ内に接
続される。
Description
【0001】本発明は通信チャンネルから受け取った信
号の処理に関し、特に本発明はテレビジョン信号の伝送
において使用するのに適当な、信号を復調するための集
積信号処理システムに関する。今日、信号処理技術の進
歩によって一つのチャンネル内で達成し得るビットレー
トが増大した結果として、本来アナログの信号をコード
化して伝送することが非常に多くなっている。同時に新
規なデータ圧縮技術によって、アナログ情報を許容可能
な範囲で代表するのに必要とされる帯域幅が減少するこ
とになった。
号の処理に関し、特に本発明はテレビジョン信号の伝送
において使用するのに適当な、信号を復調するための集
積信号処理システムに関する。今日、信号処理技術の進
歩によって一つのチャンネル内で達成し得るビットレー
トが増大した結果として、本来アナログの信号をコード
化して伝送することが非常に多くなっている。同時に新
規なデータ圧縮技術によって、アナログ情報を許容可能
な範囲で代表するのに必要とされる帯域幅が減少するこ
とになった。
【0002】ディジタル通信においては種々の変調技術
が用いられてきている。例えば、直交振幅変調(QA
M)はディジタル無線通信に従事する人々によって歓迎
された比較的洗練された技術である。この方法は二つの
別個なシンボルストリームに関係しており、各ストリー
ムは二つのキャリアの一つを直交位相で変調する。伝送
されたQAM信号は次式により表すことができる。
が用いられてきている。例えば、直交振幅変調(QA
M)はディジタル無線通信に従事する人々によって歓迎
された比較的洗練された技術である。この方法は二つの
別個なシンボルストリームに関係しており、各ストリー
ムは二つのキャリアの一つを直交位相で変調する。伝送
されたQAM信号は次式により表すことができる。
【0003】
【数1】
【0004】但し、amは伝送されたシンボルの有限シ
ーケンス、g(t)は実数値送信フィルタ、Tはシンボ
ル周期である。当業者にとって明かな如く、これは二つ
の実数値ベースバンドパルス振幅変調(PAM)信号を
キャリア信号cos(ωct)及びsin(ωct)によ
ってそれぞれ変調することに等価である。この明細書で
用いられたように、上記の式の第1の項は「同位相」成
分と呼ばれ、第2の項は「直交位相」成分と呼ばれる。
ーケンス、g(t)は実数値送信フィルタ、Tはシンボ
ル周期である。当業者にとって明かな如く、これは二つ
の実数値ベースバンドパルス振幅変調(PAM)信号を
キャリア信号cos(ωct)及びsin(ωct)によ
ってそれぞれ変調することに等価である。この明細書で
用いられたように、上記の式の第1の項は「同位相」成
分と呼ばれ、第2の項は「直交位相」成分と呼ばれる。
【0005】システムは64−QAM及び256−QA
Mのような多レベルフォーマットにおいて5−7ビット
/秒−Hzの間で高スペクトル効率を達成する。QAM
は特に、高い信号対雑音比を有する応用分野で特に有用
である。しかしながら、両側波帯変調が要求され、これ
は、単一又は残留変調の構成において、同一のシンボル
レートに対するチャンネル帯域幅を増加させることを必
要とする。更に、チャンネル内の線形歪を相殺するため
にクロス接続されたチャンネル等化器が一般的に必要に
なり、これによりシステムの全体的な複雑さが増大す
る。
Mのような多レベルフォーマットにおいて5−7ビット
/秒−Hzの間で高スペクトル効率を達成する。QAM
は特に、高い信号対雑音比を有する応用分野で特に有用
である。しかしながら、両側波帯変調が要求され、これ
は、単一又は残留変調の構成において、同一のシンボル
レートに対するチャンネル帯域幅を増加させることを必
要とする。更に、チャンネル内の線形歪を相殺するため
にクロス接続されたチャンネル等化器が一般的に必要に
なり、これによりシステムの全体的な複雑さが増大す
る。
【0006】QAMの変形が直交位相偏位変調(QPS
K)であり、4つのシンボルからなる信号符号点配置が
伝送され、その各々が異なる位相と一定の振幅を有す
る。この変調体系は、次式によって表される直角成分の
合計として実現される。
K)であり、4つのシンボルからなる信号符号点配置が
伝送され、その各々が異なる位相と一定の振幅を有す
る。この変調体系は、次式によって表される直角成分の
合計として実現される。
【0007】
【数2】
【0008】但し、θmは{0、π/2、π、3π/
2}の何れでも良い。直交位相情報を保存するためには
両方の側波帯を伝送することが必要である。QPSK変
調体系は直接ディジタル衛星放送の為の国際標準として
ITU−Tによって採用されている。ヨーロッパにおい
ては、16−QAM及び64−QAMがディジタルケー
ブル放送の為のディジタルビデオ放送(DVB)標準で
用いられている。QAM及びQPSKは両方とも同様の
コーディング体系を有しており図1においてMPEGト
ランスポート層パケットを参照して記述されている。こ
こでは、QPSK及びQAMはDVB−S標準(ヨーロ
ッパ電気通信標準PrETS300 421)及びDV
B−C標準(ヨーロッパ電気通信標準300 429)
に従って実現されている。MPEGは周知の標準であ
り、そこではデータは各々が188バイトを含む複数の
パケットにグループ化されている。この数は非同期転送
モード(ATM)伝送や他の周知の電気通信標準との互
換性を保つように選択されている。コーディング処理の
様々な局面はそれぞれのDVB標準に規定されており、
それらにはランダム化及び同期のための同期反転、リー
ドソロモン符号化、フォーネイ・インターリーブ、畳み
込み符号化、DVB−Sの場合におけるバイト/mtu
ppleマッピング、DVB−Cの場合における差分マ
ッピングが含まれる。
2}の何れでも良い。直交位相情報を保存するためには
両方の側波帯を伝送することが必要である。QPSK変
調体系は直接ディジタル衛星放送の為の国際標準として
ITU−Tによって採用されている。ヨーロッパにおい
ては、16−QAM及び64−QAMがディジタルケー
ブル放送の為のディジタルビデオ放送(DVB)標準で
用いられている。QAM及びQPSKは両方とも同様の
コーディング体系を有しており図1においてMPEGト
ランスポート層パケットを参照して記述されている。こ
こでは、QPSK及びQAMはDVB−S標準(ヨーロ
ッパ電気通信標準PrETS300 421)及びDV
B−C標準(ヨーロッパ電気通信標準300 429)
に従って実現されている。MPEGは周知の標準であ
り、そこではデータは各々が188バイトを含む複数の
パケットにグループ化されている。この数は非同期転送
モード(ATM)伝送や他の周知の電気通信標準との互
換性を保つように選択されている。コーディング処理の
様々な局面はそれぞれのDVB標準に規定されており、
それらにはランダム化及び同期のための同期反転、リー
ドソロモン符号化、フォーネイ・インターリーブ、畳み
込み符号化、DVB−Sの場合におけるバイト/mtu
ppleマッピング、DVB−Cの場合における差分マ
ッピングが含まれる。
【0009】この技術は現在、ディジタル技術を用いた
ケーブル及び直接衛星テレビジョン等の応用分野におい
てビデオ及び音声データをより効率的に伝送するための
努力が成されている。
ケーブル及び直接衛星テレビジョン等の応用分野におい
てビデオ及び音声データをより効率的に伝送するための
努力が成されている。
【発明が解決しようとする課題】本発明の第1の目的は
制限されたチャンネルにおけるデータの通信のための改
良された信号処理システムを提供することである。本発
明の他の目的はビデオ及び音声信号等を高ビットレート
で受取り復号する改良された経済的な装置を提供するこ
とである。
制限されたチャンネルにおけるデータの通信のための改
良された信号処理システムを提供することである。本発
明の他の目的はビデオ及び音声信号等を高ビットレート
で受取り復号する改良された経済的な装置を提供するこ
とである。
【0010】本発明の更に他の目的は通信システムにお
ける変調器の周波数に応じて復調周波数のためのロック
を経済的かつ確実に提供する改良された装置を提供する
ことである。本発明の更に他の目的は通信システムにお
ける伝送データの速度に応じてデータサンプリング周波
数を経済的かつ確実にロックさせる改良された装置を提
供することである。
ける変調器の周波数に応じて復調周波数のためのロック
を経済的かつ確実に提供する改良された装置を提供する
ことである。本発明の更に他の目的は通信システムにお
ける伝送データの速度に応じてデータサンプリング周波
数を経済的かつ確実にロックさせる改良された装置を提
供することである。
【0011】本発明のこれらの目的及び他の目的は一つ
のサンプリングレートで動作するサンプリング回路によ
ってサンプリングされた信号を処理する信号処理装置に
よって達成される。装置はサンプリングレートで動作す
るクロックと、最初に信号の公称ボー・レートに等しい
周期Tで動作する第1の数値制御発振器と、サンプリン
グ・レートでサンプルを受け取る補間回路、好ましくは
同期補間回路と、同期補間回路に接続されたループ・フ
ィルタとから成る。ループ・フィルタは周期T及びサン
プルされた信号のシンボル・レートの間の差異に応じた
出力を有する。第1の数値制御発振器はループ・フィル
タに応じて動作し、連続したサンプルの間の補間距離を
表す出力信号を発生する。同期補間回路は受け取ったサ
ンプルを補間距離に従って補間し、補間されたサンプル
を表す出力信号を発生する。
のサンプリングレートで動作するサンプリング回路によ
ってサンプリングされた信号を処理する信号処理装置に
よって達成される。装置はサンプリングレートで動作す
るクロックと、最初に信号の公称ボー・レートに等しい
周期Tで動作する第1の数値制御発振器と、サンプリン
グ・レートでサンプルを受け取る補間回路、好ましくは
同期補間回路と、同期補間回路に接続されたループ・フ
ィルタとから成る。ループ・フィルタは周期T及びサン
プルされた信号のシンボル・レートの間の差異に応じた
出力を有する。第1の数値制御発振器はループ・フィル
タに応じて動作し、連続したサンプルの間の補間距離を
表す出力信号を発生する。同期補間回路は受け取ったサ
ンプルを補間距離に従って補間し、補間されたサンプル
を表す出力信号を発生する。
【0012】発明の一局面においては入力信号は変調さ
れており、装置は更にI、Q復号器を含む。第1及び第
2のアナログディジタル変換器が復号器の同位相出力及
び直交位相出力にそれぞれ接続されており、同期補間回
路は同位相及び直交位相信号を受け入れる。発明の他の
局面においてはループ・フィルタが補間サンプルの同位
相成分を受け入れ、誤差信号は以下の式に従って計算さ
れる。
れており、装置は更にI、Q復号器を含む。第1及び第
2のアナログディジタル変換器が復号器の同位相出力及
び直交位相出力にそれぞれ接続されており、同期補間回
路は同位相及び直交位相信号を受け入れる。発明の他の
局面においてはループ・フィルタが補間サンプルの同位
相成分を受け入れ、誤差信号は以下の式に従って計算さ
れる。
【0013】
【数3】
【0014】ここで、Iは同位相成分、Tはシンボル周
期、rは交番するサンプルの間の間隔である。発明のま
た他の局面においてはループ・フィルタが補間サンプル
の同位相成分及び直交位相成分を受け入れ、誤差信号は
以下の式に従って計算される。
期、rは交番するサンプルの間の間隔である。発明のま
た他の局面においてはループ・フィルタが補間サンプル
の同位相成分及び直交位相成分を受け入れ、誤差信号は
以下の式に従って計算される。
【0015】
【数4】
【0016】ここでIは同位相成分、Qは直交位相成
分、Tはシンボル周期、rは交番するサンプルの間の間
隔である。発明の更に他の局面においては第1の数値制
御発振器、同期補間回路及びループ・フィルタは集積さ
れた半導体回路、好ましくはCMOS回路から成る。装
置はその入力が同期補間回路に接続され、その出力がル
ープ・フィルタに接続された整合フィルタを含んでい
る。好ましくは整合フィルタは平方根累乗コサインフィ
ルタである。
分、Tはシンボル周期、rは交番するサンプルの間の間
隔である。発明の更に他の局面においては第1の数値制
御発振器、同期補間回路及びループ・フィルタは集積さ
れた半導体回路、好ましくはCMOS回路から成る。装
置はその入力が同期補間回路に接続され、その出力がル
ープ・フィルタに接続された整合フィルタを含んでい
る。好ましくは整合フィルタは平方根累乗コサインフィ
ルタである。
【0017】第1数値制御発振器の出力は状態Ωがシン
ボル周期の区間を越えた場合に常に生成される第1の出
力信号から成り、同期補間回路は第1の出力信号に従っ
て出力を生成する。第1の数値制御発振器の出力は以下
の式に応じた値Δを表す第2の出力信号を含む。
ボル周期の区間を越えた場合に常に生成される第1の出
力信号から成り、同期補間回路は第1の出力信号に従っ
て出力を生成する。第1の数値制御発振器の出力は以下
の式に応じた値Δを表す第2の出力信号を含む。
【0018】
【数5】
【0019】ここで、システムクロックはクロック・レ
ートであり、ボー・レートは公称ボー・レートであり、
Ωは第1の数値制御発振器の経過した動作周期の数を表
す状態であり、同期補間回路は第2の出力信号を受け取
った時に補間サンプルを発生する。発明の一局面によれ
ば、同期補間回路はサンプルの同位相成分を受け取る第
1の同期補間回路と、サンプルの直交位相成分を受け取
る第2の同期補間回路から成るユニットである。好まし
くは、同期補間回路は係数のバンクを有する有限インパ
ルスレスポンス・(FIR)フィルタから成る。
ートであり、ボー・レートは公称ボー・レートであり、
Ωは第1の数値制御発振器の経過した動作周期の数を表
す状態であり、同期補間回路は第2の出力信号を受け取
った時に補間サンプルを発生する。発明の一局面によれ
ば、同期補間回路はサンプルの同位相成分を受け取る第
1の同期補間回路と、サンプルの直交位相成分を受け取
る第2の同期補間回路から成るユニットである。好まし
くは、同期補間回路は係数のバンクを有する有限インパ
ルスレスポンス・(FIR)フィルタから成る。
【0020】発明のまた他の局面においては係数のバン
クは複数のバンクから成り、同期補間回路には複数の係
数を含むアドレッシング可能なメモリが設けられてい
る。発明の他の局面においては同期補間回路は要求され
た同期補間点に先行し、また後続する複数の同期補間を
行い、装置は更に複数の同期補間に対して線形補間を行
う線形補間回路を有する。
クは複数のバンクから成り、同期補間回路には複数の係
数を含むアドレッシング可能なメモリが設けられてい
る。発明の他の局面においては同期補間回路は要求され
た同期補間点に先行し、また後続する複数の同期補間を
行い、装置は更に複数の同期補間に対して線形補間を行
う線形補間回路を有する。
【0021】本発明によって、第2の数値制御発振器を
含む復号器を制御する半導体集積キャリア再生回路と、
第2の数値制御発振器に応答し、サンプリングされた信
号の同位相成分及び直交位相成分を受け入れるディジタ
ル・デローテーション(derotation)回路と
から成る変調信号処理のための回路が提供される。キャ
リア再生回路は更にデローテーション回路の出力に接続
された位相誤差推定回路と、位相誤差推定回路の出力に
接続されたループ・フィルタとから成り、第2の数値制
御発振器はループ・フィルタに応答する。
含む復号器を制御する半導体集積キャリア再生回路と、
第2の数値制御発振器に応答し、サンプリングされた信
号の同位相成分及び直交位相成分を受け入れるディジタ
ル・デローテーション(derotation)回路と
から成る変調信号処理のための回路が提供される。キャ
リア再生回路は更にデローテーション回路の出力に接続
された位相誤差推定回路と、位相誤差推定回路の出力に
接続されたループ・フィルタとから成り、第2の数値制
御発振器はループ・フィルタに応答する。
【0022】発明の更に他の局面においては回路は適応
的に位相誤差を推定し、最小自乗法アルゴリズムを実行
する。回路はデローテートされた同位相値及びデローテ
ートされた直交位相値をそれぞれ受け入れる第1及び第
2のスライサと、デローテートされた同位相値とスライ
スされた同位相値との間の第1の差異及びデローテート
された直交位相値とスライスされた直交位相値との間の
第2の差異をそれぞれ検出する第1及び第2の減算器
と、第1及び第2の差異を受け入れ、位相誤差推定値を
出力するアンギュレータ(angulator)とから
構成される。
的に位相誤差を推定し、最小自乗法アルゴリズムを実行
する。回路はデローテートされた同位相値及びデローテ
ートされた直交位相値をそれぞれ受け入れる第1及び第
2のスライサと、デローテートされた同位相値とスライ
スされた同位相値との間の第1の差異及びデローテート
された直交位相値とスライスされた直交位相値との間の
第2の差異をそれぞれ検出する第1及び第2の減算器
と、第1及び第2の差異を受け入れ、位相誤差推定値を
出力するアンギュレータ(angulator)とから
構成される。
【0023】好ましくは、集積回路はCMOS回路であ
る。本発明は、変調キャリア周波数で変調信号を処理す
る処理装置を提供し、該装置は復号器と、サンプリング
・レートで復号器の出力において動作するサンプリング
回路と、変調キャリア周波数に応じて復号器を制御する
キャリア再生回路とから成っている。キャリア再生回路
は第2の数値制御発振器と、位相誤差推定回路と、第2
の数値制御発振器に応じて動作し、サンプリングされた
信号の同位相成分及び直交位相成分を受け入れるディジ
タル・デローテーション回路と、デローテーション回路
の出力に接続されたループ・フィルタとから成り、第2
の数値制御発振器はループ・フィルタに応答する。サン
プリング回路及びキャリア再生回路は半導体集積回路、
好ましくはCMOS回路に集積されている。
る。本発明は、変調キャリア周波数で変調信号を処理す
る処理装置を提供し、該装置は復号器と、サンプリング
・レートで復号器の出力において動作するサンプリング
回路と、変調キャリア周波数に応じて復号器を制御する
キャリア再生回路とから成っている。キャリア再生回路
は第2の数値制御発振器と、位相誤差推定回路と、第2
の数値制御発振器に応じて動作し、サンプリングされた
信号の同位相成分及び直交位相成分を受け入れるディジ
タル・デローテーション回路と、デローテーション回路
の出力に接続されたループ・フィルタとから成り、第2
の数値制御発振器はループ・フィルタに応答する。サン
プリング回路及びキャリア再生回路は半導体集積回路、
好ましくはCMOS回路に集積されている。
【0024】発明の一局面においてはキャリア再生回路
が最小自乗法アルゴリズムに従って位相誤差を適応的に
推定する。該回路はデローテートされた同位相値及びデ
ローテートされた直交位相値をそれぞれ受け入れる第1
及び第2のスライサと、デローテートされた同位相値と
スライスされた同位相値との間の第1の差異及びデロー
テートされた直交位相値及びスライスされた直交位相値
の間の第2の差異をそれぞれ決定する第1及び第2の減
算器と、第1及び第2の差異を受け入れ、位相誤差推定
値を出力するアンギュレータとから成っている。
が最小自乗法アルゴリズムに従って位相誤差を適応的に
推定する。該回路はデローテートされた同位相値及びデ
ローテートされた直交位相値をそれぞれ受け入れる第1
及び第2のスライサと、デローテートされた同位相値と
スライスされた同位相値との間の第1の差異及びデロー
テートされた直交位相値及びスライスされた直交位相値
の間の第2の差異をそれぞれ決定する第1及び第2の減
算器と、第1及び第2の差異を受け入れ、位相誤差推定
値を出力するアンギュレータとから成っている。
【0025】本発明によって、一サンプリング・レート
で動作するサンプリング回路によってサンプリングされ
る変調信号を処理するが提供される信号処理装置が提供
される。信号は公称ボー・レートを有している。装置は
サンプリング・レートで動作するクロックと、最初に公
称ボー・レートに等しい周期Tで動作する第1の数値制
御発振器と、サンプリング・レートでサンプルを受け取
る同期補間回路とから成る。同期補間回路及び第1の数
値制御発振器に接続された第1のループ・フィルタは周
期Tと伝送されたサンプリングされた信号のシンボル・
レートとの間の誤差に応じた出力を有しており、第1の
数値制御発振器が第1のループ・フィルタに応じて動作
して連続したサンプルの間の補間距離を表す出力信号を
生成し、同期補間回路が受け取ったサンプルを補間距離
に応じて補間し、補間サンプルを表す出力信号を生成す
る。キャリア再生回路は第2の数値制御発振器と、位相
誤差推定回路と、第2の数値制御発振器に応答し、サン
プリングされた信号の同位相成分及び直交位相成分を受
け入れるディジタルデローテション回路と、デローテー
ション回路の出力に接続された第2のループ・フィルタ
とから成り、第2の数値制御発振器は第2のループ・フ
ィルタに応答する。第1及び第2の数値制御発振器、同
期補間回路、第1及び第2のループ・フィルタ、ディジ
タル・デローテーション回路は半導体集積回路に集積さ
れている。
で動作するサンプリング回路によってサンプリングされ
る変調信号を処理するが提供される信号処理装置が提供
される。信号は公称ボー・レートを有している。装置は
サンプリング・レートで動作するクロックと、最初に公
称ボー・レートに等しい周期Tで動作する第1の数値制
御発振器と、サンプリング・レートでサンプルを受け取
る同期補間回路とから成る。同期補間回路及び第1の数
値制御発振器に接続された第1のループ・フィルタは周
期Tと伝送されたサンプリングされた信号のシンボル・
レートとの間の誤差に応じた出力を有しており、第1の
数値制御発振器が第1のループ・フィルタに応じて動作
して連続したサンプルの間の補間距離を表す出力信号を
生成し、同期補間回路が受け取ったサンプルを補間距離
に応じて補間し、補間サンプルを表す出力信号を生成す
る。キャリア再生回路は第2の数値制御発振器と、位相
誤差推定回路と、第2の数値制御発振器に応答し、サン
プリングされた信号の同位相成分及び直交位相成分を受
け入れるディジタルデローテション回路と、デローテー
ション回路の出力に接続された第2のループ・フィルタ
とから成り、第2の数値制御発振器は第2のループ・フ
ィルタに応答する。第1及び第2の数値制御発振器、同
期補間回路、第1及び第2のループ・フィルタ、ディジ
タル・デローテーション回路は半導体集積回路に集積さ
れている。
【0026】発明の一つの形においてはアナログディジ
タル変換器ユニットが入力信号をサンプリング・レート
でサンプリングし、同期補間回路に接続された出力を有
している。アナログディジタル変換器ユニットは半導体
集積回路に集積されている。発明の更に他の局面におい
ては入力信号は変調されており、装置は更にI、Q復号
器と、復号器の同位相出力及び直交位相出力にそれぞれ
接続された第1及び第2のアナログディジタル変換器か
ら成るサンプリング回路とから成り、同期補間回路はサ
ンプリング回路の同位相及び直交位相出力を受け入れ
る。本発明のこれらの目的及び他の目的のより良い理解
のために、一例として、発明の詳細な説明を参照して説
明するが、添付の図面とともに参照されたい。
タル変換器ユニットが入力信号をサンプリング・レート
でサンプリングし、同期補間回路に接続された出力を有
している。アナログディジタル変換器ユニットは半導体
集積回路に集積されている。発明の更に他の局面におい
ては入力信号は変調されており、装置は更にI、Q復号
器と、復号器の同位相出力及び直交位相出力にそれぞれ
接続された第1及び第2のアナログディジタル変換器か
ら成るサンプリング回路とから成り、同期補間回路はサ
ンプリング回路の同位相及び直交位相出力を受け入れ
る。本発明のこれらの目的及び他の目的のより良い理解
のために、一例として、発明の詳細な説明を参照して説
明するが、添付の図面とともに参照されたい。
【0027】ディジタル受信機50の構成は図2及び図
3に示されている。特定のディジタル受信機を参照しな
がら本発明を説明するけれども、当業者には本発明が復
調周波数を変調周波数に正確にロックする必要のある種
々の変調及び復調の形で実行され得ることが理解される
筈である。同様に、ここに教示された内容は、アナログ
信号からディジタル信号への注意深く同期された変換が
要求される多くのシステムに応用可能である。
3に示されている。特定のディジタル受信機を参照しな
がら本発明を説明するけれども、当業者には本発明が復
調周波数を変調周波数に正確にロックする必要のある種
々の変調及び復調の形で実行され得ることが理解される
筈である。同様に、ここに教示された内容は、アナログ
信号からディジタル信号への注意深く同期された変換が
要求される多くのシステムに応用可能である。
【0028】図2はディジタル受信機50を含む通信シ
ステムのブロック図を図示している。変調器20が通信
チャンネル22を通して信号を変調して送信し、その信
号は最初に受信機フロントエンド23によって受け入れ
られ、I、Q復号器21において復調される。復調信号
はアナログディジタル変換器ADC60においてサンプ
リングされる。タイミング再生はタイミング再生回路6
2によって行われる。キャリアの再生はキャリア再生回
路64において行われる。受信機は典型的には自動利得
制御(AGC)回路66を含んでいる。サンプリングさ
れたデータは整合フィルタ68を通して処理され、次に
以下に説明するようにスライサ69及びエラー訂正回路
72に提供される。
ステムのブロック図を図示している。変調器20が通信
チャンネル22を通して信号を変調して送信し、その信
号は最初に受信機フロントエンド23によって受け入れ
られ、I、Q復号器21において復調される。復調信号
はアナログディジタル変換器ADC60においてサンプ
リングされる。タイミング再生はタイミング再生回路6
2によって行われる。キャリアの再生はキャリア再生回
路64において行われる。受信機は典型的には自動利得
制御(AGC)回路66を含んでいる。サンプリングさ
れたデータは整合フィルタ68を通して処理され、次に
以下に説明するようにスライサ69及びエラー訂正回路
72に提供される。
【0029】受信機フロントエンド23において、高周
波増幅器52が通信チャンネル22に接続されている。
チャンネルは典型的には衛星ダウンリンク、テレビジョ
ンケーブル等の制限チャンネルであるが、いかなる通信
チャンネルであっても良い。高周波増幅器52の出力は
第1の復号器24によって第1の中間周波数に復調さ
れ、帯域フィルタ25を通して伝送される。第1の復号
器24は既知のものであり、その周波数はディジタルア
ナログ変換器DAC37を通して動作するマイクロプロ
セッサインターフェース29を介してプログラムされる
電圧制御発振器33により制御される。中間周波数(I
F)増幅器からの信号出力31はI、Q復号器21(図
2)においてそれに含まれる復号器サブユニット1、2
を用いて複素ベースバンド表現に復調され、低域フィル
タ3、4を通して伝送されて、それぞれ同位相及び直交
位相成分である出力信号Iデータ及びQデータが生成さ
れる。これらの信号は高速アナログディジタル変換器ユ
ニットADC60を用いてディジタル表現に変換され
る。
波増幅器52が通信チャンネル22に接続されている。
チャンネルは典型的には衛星ダウンリンク、テレビジョ
ンケーブル等の制限チャンネルであるが、いかなる通信
チャンネルであっても良い。高周波増幅器52の出力は
第1の復号器24によって第1の中間周波数に復調さ
れ、帯域フィルタ25を通して伝送される。第1の復号
器24は既知のものであり、その周波数はディジタルア
ナログ変換器DAC37を通して動作するマイクロプロ
セッサインターフェース29を介してプログラムされる
電圧制御発振器33により制御される。中間周波数(I
F)増幅器からの信号出力31はI、Q復号器21(図
2)においてそれに含まれる復号器サブユニット1、2
を用いて複素ベースバンド表現に復調され、低域フィル
タ3、4を通して伝送されて、それぞれ同位相及び直交
位相成分である出力信号Iデータ及びQデータが生成さ
れる。これらの信号は高速アナログディジタル変換器ユ
ニットADC60を用いてディジタル表現に変換され
る。
【0030】チャンネル22から受け取った信号は図4
に示された如く変調されており、同位相成分Iデータ及
び直交位相成分Qデータから成るパルスは平方根累乗フ
ィルタ5及び6によりそれぞれフィルタリングされ、乗
算器7、8においてキャリア周波数ωcで直交するキャ
リアに変調され、加算器9において加算される。典型的
には隣接する通過帯域内の信号が所望の信号10と共に
伝送される。典型的な応用例においては、整形されたパ
ルスの余剰の帯域幅はナイキスト最小値を35%超過す
る。随意的には、変調器は中間周波数(IF)段(図示
せず)を含んでも良い。33nsのシンボル周期Tの
間、ナイキスト周波数はおよそ15MHzであり、通過
帯域においてそれはおよそ30MHzに同等である。こ
のような信号に対して、40.5MHzで3dbのロー
ルオフの性能が要求される。隣接チャンネル、チャンネ
ル歪、ノイズの全てが受信機及び復号器の設計において
考慮されねばならない。復調の詳細な部分は通信チャン
ネルに依存する。
に示された如く変調されており、同位相成分Iデータ及
び直交位相成分Qデータから成るパルスは平方根累乗フ
ィルタ5及び6によりそれぞれフィルタリングされ、乗
算器7、8においてキャリア周波数ωcで直交するキャ
リアに変調され、加算器9において加算される。典型的
には隣接する通過帯域内の信号が所望の信号10と共に
伝送される。典型的な応用例においては、整形されたパ
ルスの余剰の帯域幅はナイキスト最小値を35%超過す
る。随意的には、変調器は中間周波数(IF)段(図示
せず)を含んでも良い。33nsのシンボル周期Tの
間、ナイキスト周波数はおよそ15MHzであり、通過
帯域においてそれはおよそ30MHzに同等である。こ
のような信号に対して、40.5MHzで3dbのロー
ルオフの性能が要求される。隣接チャンネル、チャンネ
ル歪、ノイズの全てが受信機及び復号器の設計において
考慮されねばならない。復調の詳細な部分は通信チャン
ネルに依存する。
【0031】再び図2を参照すれば、高速アナログディ
ジタル変換器ADC60はタイミング再生回路62にお
いて用いられる出力を与え、後者はADC60による正
確なサンプリングを確実にする。元のデータを首尾よく
再生するために、受信機は少なくとも 少なくとも以下
のタスクを実行することが要求される: (a)復調周波数の変調周波数へのロック、(b)デー
タサンプリング周波数の伝送されたシンボル・レートへ
のロック、(c)最良の信号対雑音比を得るためのチュ
ーナーの利得の調整、(d)シンボル間干渉(ISI)
を最小にするための完全なパルス整形、(e)チャンネ
ル外ノイズを排除するためのナイキストフィルタ動作の
実行キャリア再生回路64が正確な周波数及び位相が再
生されるようにI、Q復号器21を制御する。AGC回
路66が高周波増幅器52へのフィードバックを行う。
AGC回路66及びキャリア再生回路64の両方がAD
C60の出力に接続されている。ADC60からの主デ
ィジタル・データストリームが伝送フィルタ(図示せ
ず)の特性に正確に整合する整合フィルタ68によって
フィルタリングされる。スライサ69がフィルタ出力6
8からのデータを抽出し、最も近い合法的な符号点配置
点を決定し、適切なフォーマットの表現をエラー訂正回
路72に供給する。エラー訂正の明細はDVBの仕様書
に明記されており、本発明の範囲外であるためここでは
更に議論しない。
ジタル変換器ADC60はタイミング再生回路62にお
いて用いられる出力を与え、後者はADC60による正
確なサンプリングを確実にする。元のデータを首尾よく
再生するために、受信機は少なくとも 少なくとも以下
のタスクを実行することが要求される: (a)復調周波数の変調周波数へのロック、(b)デー
タサンプリング周波数の伝送されたシンボル・レートへ
のロック、(c)最良の信号対雑音比を得るためのチュ
ーナーの利得の調整、(d)シンボル間干渉(ISI)
を最小にするための完全なパルス整形、(e)チャンネ
ル外ノイズを排除するためのナイキストフィルタ動作の
実行キャリア再生回路64が正確な周波数及び位相が再
生されるようにI、Q復号器21を制御する。AGC回
路66が高周波増幅器52へのフィードバックを行う。
AGC回路66及びキャリア再生回路64の両方がAD
C60の出力に接続されている。ADC60からの主デ
ィジタル・データストリームが伝送フィルタ(図示せ
ず)の特性に正確に整合する整合フィルタ68によって
フィルタリングされる。スライサ69がフィルタ出力6
8からのデータを抽出し、最も近い合法的な符号点配置
点を決定し、適切なフォーマットの表現をエラー訂正回
路72に供給する。エラー訂正の明細はDVBの仕様書
に明記されており、本発明の範囲外であるためここでは
更に議論しない。
【0032】好ましい実施例の更に詳細な説明に入る前
に、キャリア再生及びタイミング再生の問題に対する従
来のアプローチを示す図6−9を比較することにより本
発明がより明確に理解されるものと信じる。チューナー
においてはチップ外のI、Q直交位相復号器10が用い
られている。復号器クロックを伝送された信号の周波数
及び位相にロックさせるために外部の電圧制御発振器4
2がキャリア再生回路ブロック44により制御されてい
る。典型的には電圧制御発振器42は数MHzの範囲に
わたって調節可能である。伝送された回路のサンプリン
グは典型的には水晶発振器である外部の電圧制御発振器
46によって伝送されたシンボル・レート及び位相にロ
ックされる。発振器46はタイミング再生回路48によ
って制御されるけれども、一般的に数百KHzの範囲に
限定される。種々の衛星トランスポンダ及びケーブルテ
レビジョンシステムが異なるシンボル・レートを用いて
いるため、種々の送信装置に適合するために複数の電圧
制御発振器(図示せず)が要求される可能性が有る。或
いは、装置は特定の送信システムにのみ限定して適用さ
れることになる。復調されたデータはアナログディジタ
ル変換器45、47においてシステムクロックレートT
/2でサンプリングされる。30Mボーのシンボル・レ
ートでは、従ってシステムクロックは60MHzで動作
する。T/2サンプリングはガードナータイミング再生
ループのために必要とされる。しかしながらタイミング
再生ループ外の他の回路はその実動化を簡略にし回路面
積を減少させるために、一般的に低いレートTのクロッ
クが供給される。整合フィルタ54、56でフィルタリ
ングされた後に、I、Q出力58、59は特定の応用例
における要求に従い、スライサ及びエラー訂正回路(図
示せず)に送出される。
に、キャリア再生及びタイミング再生の問題に対する従
来のアプローチを示す図6−9を比較することにより本
発明がより明確に理解されるものと信じる。チューナー
においてはチップ外のI、Q直交位相復号器10が用い
られている。復号器クロックを伝送された信号の周波数
及び位相にロックさせるために外部の電圧制御発振器4
2がキャリア再生回路ブロック44により制御されてい
る。典型的には電圧制御発振器42は数MHzの範囲に
わたって調節可能である。伝送された回路のサンプリン
グは典型的には水晶発振器である外部の電圧制御発振器
46によって伝送されたシンボル・レート及び位相にロ
ックされる。発振器46はタイミング再生回路48によ
って制御されるけれども、一般的に数百KHzの範囲に
限定される。種々の衛星トランスポンダ及びケーブルテ
レビジョンシステムが異なるシンボル・レートを用いて
いるため、種々の送信装置に適合するために複数の電圧
制御発振器(図示せず)が要求される可能性が有る。或
いは、装置は特定の送信システムにのみ限定して適用さ
れることになる。復調されたデータはアナログディジタ
ル変換器45、47においてシステムクロックレートT
/2でサンプリングされる。30Mボーのシンボル・レ
ートでは、従ってシステムクロックは60MHzで動作
する。T/2サンプリングはガードナータイミング再生
ループのために必要とされる。しかしながらタイミング
再生ループ外の他の回路はその実動化を簡略にし回路面
積を減少させるために、一般的に低いレートTのクロッ
クが供給される。整合フィルタ54、56でフィルタリ
ングされた後に、I、Q出力58、59は特定の応用例
における要求に従い、スライサ及びエラー訂正回路(図
示せず)に送出される。
【0033】整合フィルタ54、56は典型的にはDV
B仕様に準拠するために余剰帯域幅α=0.35の平方
根累乗コサイン整合フィルタである。これらのフィルタ
は、信号を送信前の特性に再生するために入力信号の送
信において用いられた送信フィルタ(図示せず)に整合
する。キャリア再生回路44は図7において参照番号6
1で一般的に表された従来のコスタス・ループとして提
供されている。チャンネル変化の後には、位相が獲得可
能になる前に検出されねばならない大きな周波数誤差が
存在するかも知れない。初期周波数誤差を検出するため
には誤差信号67が周波数誤差に比例するような種類の
周波数ロックループ、或いは周波数掃引装置を用いるこ
とも可能である。
B仕様に準拠するために余剰帯域幅α=0.35の平方
根累乗コサイン整合フィルタである。これらのフィルタ
は、信号を送信前の特性に再生するために入力信号の送
信において用いられた送信フィルタ(図示せず)に整合
する。キャリア再生回路44は図7において参照番号6
1で一般的に表された従来のコスタス・ループとして提
供されている。チャンネル変化の後には、位相が獲得可
能になる前に検出されねばならない大きな周波数誤差が
存在するかも知れない。初期周波数誤差を検出するため
には誤差信号67が周波数誤差に比例するような種類の
周波数ロックループ、或いは周波数掃引装置を用いるこ
とも可能である。
【0034】タイミング再生回路48は図8により詳細
に示されている。従来のガードナーアルゴリズムが用い
られており、後者によってA/D変換器45、47、及
びユニット55、57によるT/2サンプリングのため
のタイミングサンプル点が得られる。偶数番号サンプル
データサンプルとして用いられる一方、奇数番号サンプ
ルはゼロクロスに対応する。以下の式に従って誤差が計
算される。
に示されている。従来のガードナーアルゴリズムが用い
られており、後者によってA/D変換器45、47、及
びユニット55、57によるT/2サンプリングのため
のタイミングサンプル点が得られる。偶数番号サンプル
データサンプルとして用いられる一方、奇数番号サンプ
ルはゼロクロスに対応する。以下の式に従って誤差が計
算される。
【0035】
【数6】
【0036】ここで、Iは同位相出力、Qは直交位相出
力、Tはシンボル周期、rは偶数サンプルのサンプル時
間である。ガードナーアルゴリズムはA BPSK/Q
PSK for SampledReceivers,
Gardner,Floyd M.,IEEE Tra
ns.Comms,COM−34,May 1986,
423−9頁に大変詳細に説明されている。定性的に述
べれば、誤差信号は奇数番号T/2サンプルをサンプル
の間の中間点にロックし、奇数番号サンプル点を近傍の
最適サンプル点にロックするためにタイミングサンプル
点が移動しなければならない方向を表している。実際の
システムにおいてはデータはランダム化されているた
め、充分な数のゼロクロスが存在する。
力、Tはシンボル周期、rは偶数サンプルのサンプル時
間である。ガードナーアルゴリズムはA BPSK/Q
PSK for SampledReceivers,
Gardner,Floyd M.,IEEE Tra
ns.Comms,COM−34,May 1986,
423−9頁に大変詳細に説明されている。定性的に述
べれば、誤差信号は奇数番号T/2サンプルをサンプル
の間の中間点にロックし、奇数番号サンプル点を近傍の
最適サンプル点にロックするためにタイミングサンプル
点が移動しなければならない方向を表している。実際の
システムにおいてはデータはランダム化されているた
め、充分な数のゼロクロスが存在する。
【0037】このアルゴリズムに従って、減算器38、
39において後続した偶数番号サンプルと先行する偶数
番号サンプルの間の差異が計算される。この差異に乗算
器41、43においてその間の奇数番号サンプルが乗算
される。サンプル点が早すぎる場合について図9を参照
して説明する。下降エッジ70の場合、中間の奇数番号
点71は正の値を有している。後続点73が先行点74
よりゼロラインに近いため、偶数番号点73、74の間
の差異は負である。こうして、得られる積は負の値を有
する。立ち上がりエッジ80については、奇数番号中間
点78は負の値を有する。後続する偶数番号点82、8
4の間の差異は正である。こうして積は同様に負の値と
なる。
39において後続した偶数番号サンプルと先行する偶数
番号サンプルの間の差異が計算される。この差異に乗算
器41、43においてその間の奇数番号サンプルが乗算
される。サンプル点が早すぎる場合について図9を参照
して説明する。下降エッジ70の場合、中間の奇数番号
点71は正の値を有している。後続点73が先行点74
よりゼロラインに近いため、偶数番号点73、74の間
の差異は負である。こうして、得られる積は負の値を有
する。立ち上がりエッジ80については、奇数番号中間
点78は負の値を有する。後続する偶数番号点82、8
4の間の差異は正である。こうして積は同様に負の値と
なる。
【0038】同様の分析の結果、遅いサンプリングの場
合にはガードナーアルゴリズムは立ち上がりエッジ及び
下降エッジの両方について正の値を有することが明らか
になる。簡単のために、この内容については繰り返して
記述しない。誤差値がサンプル点をを正確に整列させる
ためにそれがどの方向に移動されねばならないかを示し
ている。
合にはガードナーアルゴリズムは立ち上がりエッジ及び
下降エッジの両方について正の値を有することが明らか
になる。簡単のために、この内容については繰り返して
記述しない。誤差値がサンプル点をを正確に整列させる
ためにそれがどの方向に移動されねばならないかを示し
ている。
【0039】サンプル点が正確なときにはガードナーア
ルゴリズムによって報告される誤差値はノイズ及びシン
ボル間干渉(ISI)の効果を除いてゼロである。しか
しながら、ノイズの効果はゼロ平均を有する。処理の
後、偶数番号サンプルはスライスされ、エラー訂正回路
に供給される再構成されたデータが与えられる。奇数番
号サンプルはデローテーションの前に廃棄される。勿
論、タイミング再生回路を適切に変更することによって
奇数番号サンプルをスライスし、偶数番号サンプルを廃
棄するようにすることも同じく可能である。同様に、T
の他の分割点でサンプリングを行うようにすることもで
きる。ゼロクロス点における奇数番号サンプルのロック
がデータに対して最適のサンプリング点が得られたこと
を保証するものでは無いけれども、この構成は実際に良
く機能している。正確性の確率が最大である点により近
くロックする他の構成を用いることも可能であるけれど
も、それらは一般的に、実働化が複雑になる。
ルゴリズムによって報告される誤差値はノイズ及びシン
ボル間干渉(ISI)の効果を除いてゼロである。しか
しながら、ノイズの効果はゼロ平均を有する。処理の
後、偶数番号サンプルはスライスされ、エラー訂正回路
に供給される再構成されたデータが与えられる。奇数番
号サンプルはデローテーションの前に廃棄される。勿
論、タイミング再生回路を適切に変更することによって
奇数番号サンプルをスライスし、偶数番号サンプルを廃
棄するようにすることも同じく可能である。同様に、T
の他の分割点でサンプリングを行うようにすることもで
きる。ゼロクロス点における奇数番号サンプルのロック
がデータに対して最適のサンプリング点が得られたこと
を保証するものでは無いけれども、この構成は実際に良
く機能している。正確性の確率が最大である点により近
くロックする他の構成を用いることも可能であるけれど
も、それらは一般的に、実働化が複雑になる。
【0040】誤差の推定は交互のサンプルにのみ生成さ
れるため、タイミング再生回路48のロジックは周期T
で動作する。しかしながら、シフトレジスタ63、6
5、75、77(図8)において偶数番号サンプルが次
の偶数番号位置に伝幡されるためには二つのT/2周期
が必要とされる。このため、サンプルはT/2で計時さ
れる。
れるため、タイミング再生回路48のロジックは周期T
で動作する。しかしながら、シフトレジスタ63、6
5、75、77(図8)において偶数番号サンプルが次
の偶数番号位置に伝幡されるためには二つのT/2周期
が必要とされる。このため、サンプルはT/2で計時さ
れる。
【0041】本発明の好ましい実施例を最初に図10を
参照して説明する。該実施例はキャリア及びタイミング
ループが完全にディジタル領域内で提供され、CMOS
チップ上に集積されている点で上述の従来の回路以上の
利点を有する。その結果、外部システム要素の費用が低
減する。本構成の更に他の利点は復号器が多数の異なる
シンボル・レートで動作可能であり、または可変シンボ
ル・レートの技術とともに動作可能であることである。
上述の如く、従来技術による解決法はシンボル・レート
に対応するために可変の水晶制御発振器を必要としてい
た。
参照して説明する。該実施例はキャリア及びタイミング
ループが完全にディジタル領域内で提供され、CMOS
チップ上に集積されている点で上述の従来の回路以上の
利点を有する。その結果、外部システム要素の費用が低
減する。本構成の更に他の利点は復号器が多数の異なる
シンボル・レートで動作可能であり、または可変シンボ
ル・レートの技術とともに動作可能であることである。
上述の如く、従来技術による解決法はシンボル・レート
に対応するために可変の水晶制御発振器を必要としてい
た。
【0042】従来技術によるチップ外のI、Qベースバ
ンド復号器140が使用されている。適当なI、Q直交
位相ベースバンド復号器はGEC Plessey S
L1710 I、Q復号器である。外部のサンプルタイ
ミング再生ループはロジックにクロックを提供する固定
の周波数システムクロック120により置き換えられて
いる。これは少なくともデータナイキスト周波数に等し
くなければならず、さもなければ、データナイキスト周
波数が満たされることを保証するものでなければならな
い。チップ上の補間回路ユニット130は、タイミング
再生ループ125の制御に従って、同期したT/2間隔
のサンプル値を発生する。各システムクロックの瞬間に
補間回路ユニット130によってT/2サンプルの1又
はゼロ個のいずれかが生成される。サンプルが生成され
た時には、以降のハードウエアモジュールは「妥当」制
御ストローブ170(図11)の表明によってそのこと
が報知される。
ンド復号器140が使用されている。適当なI、Q直交
位相ベースバンド復号器はGEC Plessey S
L1710 I、Q復号器である。外部のサンプルタイ
ミング再生ループはロジックにクロックを提供する固定
の周波数システムクロック120により置き換えられて
いる。これは少なくともデータナイキスト周波数に等し
くなければならず、さもなければ、データナイキスト周
波数が満たされることを保証するものでなければならな
い。チップ上の補間回路ユニット130は、タイミング
再生ループ125の制御に従って、同期したT/2間隔
のサンプル値を発生する。各システムクロックの瞬間に
補間回路ユニット130によってT/2サンプルの1又
はゼロ個のいずれかが生成される。サンプルが生成され
た時には、以降のハードウエアモジュールは「妥当」制
御ストローブ170(図11)の表明によってそのこと
が報知される。
【0043】図6に図示された外部電圧制御発振器46
を含む外部キャリア再生ループは、固定周波数の外部水
晶発振器145によって置換されている。発振器145
はチップ上のディジタル・デローテータ150及びチッ
プ上のキャリア再生ループ155と協働する。デローテ
ータ150及びキャリア再生ループ155の両方はT間
隔のサンプルとともに動作する。I及びQ出力152、
154はDVB仕様に応じてスライサ及びエラー訂正回
路に供給される。 タイミング再生 発明によるタイミング再生回路は図11及び図12に非
常に詳細に示されている。直交位相復調データはシステ
ムクロックレートでサンプリングされ、後者は上で説明
した如く少なくとも入力データのナイキスト周波数に等
しくなければ成らない。図12に図示された如く、参照
番号210で一般的に示されたチップ上の数値制御発振
器がシンボル時間のカウントを続ける。数値制御発振器
210の状態Ωが経過したシンボル周期の数の固定点カ
ウントを表す。各システムクロックの瞬間に状態Ωが制
御信号262を用いて公称値から調整された(公称ボー
・レート/システムクロックレート)に等しいレジスタ
260内の値だけインクリメントされる。レジスタ26
0内の値の逆が逆発生器240において取られる。逆は
乗算器241において値 [(2Ω)モジュロ(mod)
1]/2が乗算され、飽和ブロック242において1よ
り小さい値に制限される。ここで図11及び図13を参
照すれば、図11に示された回路の動作を表す一例が示
されており、そこでは(公称ボー・レート/システムク
ロックレート)=0.4である。状態Ωが図13内の上
方に向いた矢印の下の行によって示されるT/2マーク
を通過する度に、数値制御発振器210が信号215、
及び連続するサンプルの間の補間距離を表す以下の式に
よって表されるΔ217を出力する。
を含む外部キャリア再生ループは、固定周波数の外部水
晶発振器145によって置換されている。発振器145
はチップ上のディジタル・デローテータ150及びチッ
プ上のキャリア再生ループ155と協働する。デローテ
ータ150及びキャリア再生ループ155の両方はT間
隔のサンプルとともに動作する。I及びQ出力152、
154はDVB仕様に応じてスライサ及びエラー訂正回
路に供給される。 タイミング再生 発明によるタイミング再生回路は図11及び図12に非
常に詳細に示されている。直交位相復調データはシステ
ムクロックレートでサンプリングされ、後者は上で説明
した如く少なくとも入力データのナイキスト周波数に等
しくなければ成らない。図12に図示された如く、参照
番号210で一般的に示されたチップ上の数値制御発振
器がシンボル時間のカウントを続ける。数値制御発振器
210の状態Ωが経過したシンボル周期の数の固定点カ
ウントを表す。各システムクロックの瞬間に状態Ωが制
御信号262を用いて公称値から調整された(公称ボー
・レート/システムクロックレート)に等しいレジスタ
260内の値だけインクリメントされる。レジスタ26
0内の値の逆が逆発生器240において取られる。逆は
乗算器241において値 [(2Ω)モジュロ(mod)
1]/2が乗算され、飽和ブロック242において1よ
り小さい値に制限される。ここで図11及び図13を参
照すれば、図11に示された回路の動作を表す一例が示
されており、そこでは(公称ボー・レート/システムク
ロックレート)=0.4である。状態Ωが図13内の上
方に向いた矢印の下の行によって示されるT/2マーク
を通過する度に、数値制御発振器210が信号215、
及び連続するサンプルの間の補間距離を表す以下の式に
よって表されるΔ217を出力する。
【0044】
【数7】
【0045】信号215、及びΔ217は同位相及び直
交位相成分の各々のための個々の同期補間回路221
a、221bから成る同期補間装置222により受け取
られる。補間回路ユニット222が次に補間距離に基づ
くサンプル値を生成する。Δは0以上であり1より小の
値を有しているけれども固定点の数として表される。1
以上の値は1よりすぐに小なる値に飽和される。制御信
号が正の時にはΔは時おり1より大として評価される。
交位相成分の各々のための個々の同期補間回路221
a、221bから成る同期補間装置222により受け取
られる。補間回路ユニット222が次に補間距離に基づ
くサンプル値を生成する。Δは0以上であり1より小の
値を有しているけれども固定点の数として表される。1
以上の値は1よりすぐに小なる値に飽和される。制御信
号が正の時にはΔは時おり1より大として評価される。
【0046】このような条件において、値は1の直下の
値に制限される。同期補間装置222はΔが1であるか
又は0であるかに応じて進んだサンプル又は遅れたサン
プルを夫々生成するように命令される。補間回路によっ
てカバーされるサンプル時間の広がりは−システムクロ
ック周期である。数値制御発振器210は上述のガード
ナーアルゴリズムに基づいたタイミングループ内で動作
する。ミューラーアンドミューラーアルゴリズム等の他
のタイミング再生アルゴリズムもまた使用することがで
る。2次のループ・フィルタ259が使用されている。
比例積分(PI)制御装置211が回路に含まれてい
る。その比例及び積分ゲイン定数は要求されたダンピン
グファクタ及び自然周波数を与えるような値に選ばれて
いる。好ましくは、ロック時間を最小にし、チャンネル
獲得を確実にするために比較的高い自然周波数が初期の
チャンネル獲得に用いられる。その後、係数はループ帯
域幅を減少させるために変更され、それによって回路の
ノイズ及び変動に対する感受性が低下される。この「ギ
ヤシフト」動作によって全体的なシステムビットエラー
レートが改善される。
値に制限される。同期補間装置222はΔが1であるか
又は0であるかに応じて進んだサンプル又は遅れたサン
プルを夫々生成するように命令される。補間回路によっ
てカバーされるサンプル時間の広がりは−システムクロ
ック周期である。数値制御発振器210は上述のガード
ナーアルゴリズムに基づいたタイミングループ内で動作
する。ミューラーアンドミューラーアルゴリズム等の他
のタイミング再生アルゴリズムもまた使用することがで
る。2次のループ・フィルタ259が使用されている。
比例積分(PI)制御装置211が回路に含まれてい
る。その比例及び積分ゲイン定数は要求されたダンピン
グファクタ及び自然周波数を与えるような値に選ばれて
いる。好ましくは、ロック時間を最小にし、チャンネル
獲得を確実にするために比較的高い自然周波数が初期の
チャンネル獲得に用いられる。その後、係数はループ帯
域幅を減少させるために変更され、それによって回路の
ノイズ及び変動に対する感受性が低下される。この「ギ
ヤシフト」動作によって全体的なシステムビットエラー
レートが改善される。
【0047】ガードナーアルゴリズムはデータがISI
が比無であることを仮定しているため整合フィルタ25
4、256、好ましくは平方根累乗コサイン整合フィル
タが含まれている。それらはT/2サンプリングデータ
のために設計されたハードウエア結線された係数を有し
ているため補間回路ユニット222の前におくことはで
きない。上述の如く、ガードナーアルゴリズムはタイミ
ングサンプル点をT/2サンプルを用いてロックする。
ループは好ましくは奇数サンプルが入力データのゼロク
ロス点にあり、偶数サンプルがデータサンプルとして用
いられるようなサンプル点を獲得する。
が比無であることを仮定しているため整合フィルタ25
4、256、好ましくは平方根累乗コサイン整合フィル
タが含まれている。それらはT/2サンプリングデータ
のために設計されたハードウエア結線された係数を有し
ているため補間回路ユニット222の前におくことはで
きない。上述の如く、ガードナーアルゴリズムはタイミ
ングサンプル点をT/2サンプルを用いてロックする。
ループは好ましくは奇数サンプルが入力データのゼロク
ロス点にあり、偶数サンプルがデータサンプルとして用
いられるようなサンプル点を獲得する。
【0048】以下の式に従って同期補間装置222に対
するシステムクロックレートサンプルの提示と補間サン
プルの出現の間に遅延が設けられている。
するシステムクロックレートサンプルの提示と補間サン
プルの出現の間に遅延が設けられている。
【0049】
【数8】
【0050】ここで、σは(システムクロック周期/
N)、Nは同期補間点の数、k(整数)は補間距離、Δ
N、Dはハードウエアに内在する一定の遅延である。
N)、Nは同期補間点の数、k(整数)は補間距離、Δ
N、Dはハードウエアに内在する一定の遅延である。
【0051】同期補間装置222はシステムクロック・
レートにロックされた有限インパルスレスポンス・フィ
ルタに基づいており、係数がNセットのバンクから選ば
れ、係数の各組が異なる遅延を補間する。数値制御発振
器210から出力された補間距離が、Δが0から1に変
化する際に与えられたサンプルを生成するのにどの係数
のバンクを用いるのかを決定する。これは、図5を参照
することで理解可能であり、図において楕円の表時が補
間の可能性を表している。同期補間は、ナイキストサン
プリングされた信号は周波数領域内の低域フィルタリン
グ動作を実行するのと同等に同期パルスを用いて再構成
可能であることを示すサンプリング理論に基づいてい
る。出力は以下の式により与えられる。
レートにロックされた有限インパルスレスポンス・フィ
ルタに基づいており、係数がNセットのバンクから選ば
れ、係数の各組が異なる遅延を補間する。数値制御発振
器210から出力された補間距離が、Δが0から1に変
化する際に与えられたサンプルを生成するのにどの係数
のバンクを用いるのかを決定する。これは、図5を参照
することで理解可能であり、図において楕円の表時が補
間の可能性を表している。同期補間は、ナイキストサン
プリングされた信号は周波数領域内の低域フィルタリン
グ動作を実行するのと同等に同期パルスを用いて再構成
可能であることを示すサンプリング理論に基づいてい
る。出力は以下の式により与えられる。
【0052】
【数9】
【0053】図15a−15cを参照すれば、再構成さ
れた波形580は曲線582、584、586により代
表的に表されている全ての成分の合計であることが分か
る。図15bに示された如く、各サンプル点において一
つの非ゼロ成分のみが存在する。実動化を可能にするた
めに、即ち、システムを原因を示すようにするために、
同期パルスの後端は切り揃えなければならない。これは
無視して良い程度の誤差を導入する。既知のサンプルの
間の点において信号の値を補間するために、その点での
各既知のサンプルによる貢献度を合計することが必要で
ある。貢献度はサンプルの振幅及び同期パルスの形状に
基づいて計算される。FIRフィルタ250(図16)
が計算及び貢献度を合計するのに用いられる。フィルタ
250の係数はシステムクロックレートの同期パルスに
基づいて計算される。
れた波形580は曲線582、584、586により代
表的に表されている全ての成分の合計であることが分か
る。図15bに示された如く、各サンプル点において一
つの非ゼロ成分のみが存在する。実動化を可能にするた
めに、即ち、システムを原因を示すようにするために、
同期パルスの後端は切り揃えなければならない。これは
無視して良い程度の誤差を導入する。既知のサンプルの
間の点において信号の値を補間するために、その点での
各既知のサンプルによる貢献度を合計することが必要で
ある。貢献度はサンプルの振幅及び同期パルスの形状に
基づいて計算される。FIRフィルタ250(図16)
が計算及び貢献度を合計するのに用いられる。フィルタ
250の係数はシステムクロックレートの同期パルスに
基づいて計算される。
【0054】図16に示された如く有限インパルス応答
フィルタ(FIRフィルタ)250はその各々が小さな
リード・オンリーメモリ(ROM)251を有する複数
の乗算器252を有している。乗算器252は並列に動
作する。簡潔のために、左端の乗算器252のためのR
OM251が示されているけれども、各乗算器は動作的
にROMと連結していることが理解される筈である。種
々の形のメモリを代わりに使用することが可能である。
例えば、有る応用例においては、受信機はマイクロプロ
セッサ(図示せず)による制御によって動作させること
が好ましく、メモリROM251はプログラム可能な値
を有するRAMとして実現可能である。サンプリング受
信機のためのマイクロプロセッサインターフェースは公
知であり、ここでは更に議論しない。各遅延位相のため
の係数は各ROM251内に格納されており、アドレス
指定ロジック249によって数値制御発振器210によ
って提供される補間距離に従ってROM251内で適切
な係数が選択される。ROM251のアドレス指定の構
成は従来のものである。フィルタ250は複数のタップ
位置258を有するシフトレジスタ257を含んでい
る。
フィルタ(FIRフィルタ)250はその各々が小さな
リード・オンリーメモリ(ROM)251を有する複数
の乗算器252を有している。乗算器252は並列に動
作する。簡潔のために、左端の乗算器252のためのR
OM251が示されているけれども、各乗算器は動作的
にROMと連結していることが理解される筈である。種
々の形のメモリを代わりに使用することが可能である。
例えば、有る応用例においては、受信機はマイクロプロ
セッサ(図示せず)による制御によって動作させること
が好ましく、メモリROM251はプログラム可能な値
を有するRAMとして実現可能である。サンプリング受
信機のためのマイクロプロセッサインターフェースは公
知であり、ここでは更に議論しない。各遅延位相のため
の係数は各ROM251内に格納されており、アドレス
指定ロジック249によって数値制御発振器210によ
って提供される補間距離に従ってROM251内で適切
な係数が選択される。ROM251のアドレス指定の構
成は従来のものである。フィルタ250は複数のタップ
位置258を有するシフトレジスタ257を含んでい
る。
【0055】ROM251に格納された係数はシステム
クロックレートの同期パルスに基づいている。ゼロ遅延
係数がゼロに中心を合わせた同期パルスを有し、Δが0
である時に最後の信号の到着を模する。最大遅延係数が
(N−1)/Nシステムクロック周期に中心を合わせた
同期パルスに対応し、Δが(N−1)/Nより大である
ときにはいつも使用される。
クロックレートの同期パルスに基づいている。ゼロ遅延
係数がゼロに中心を合わせた同期パルスを有し、Δが0
である時に最後の信号の到着を模する。最大遅延係数が
(N−1)/Nシステムクロック周期に中心を合わせた
同期パルスに対応し、Δが(N−1)/Nより大である
ときにはいつも使用される。
【0056】累乗(raised)コサイン同期パルス係数
は、好ましくはα=0.35で、以下の式を用いて生成
される。
は、好ましくはα=0.35で、以下の式を用いて生成
される。
【0057】
【数10】
【0058】但し、
【0059】
【数11】
【0060】また、Cは係数番号 (例えば−2、−
1、0、1、2)、nは補間距離 0...N−1、6
タップ、8位相補間回路のためのタップ値は以下の表に
より与えられる。行8は利用されていない。
1、0、1、2)、nは補間距離 0...N−1、6
タップ、8位相補間回路のためのタップ値は以下の表に
より与えられる。行8は利用されていない。
【0061】
【表1】
【0062】乗算器252によって生成されたデータは
加算器ユニット253において加算されて、補間データ
として出力される。同期補間装置222の動作は更に図
5、14a、14b及び15a−15cを参照して理解
することができ、図において二つの例示的な遅延が適用
されている。これらの例においては補間回路が6−タッ
プのフィルタ及び8相を有することが仮定されている。
実際上は、タップの数及び位相は、応用の態様及び要求
される解像度に応じて選択される。図14aにおいて、
バンク0のための係数が示されている。中心タップ係数
のみが非ゼロである。このようにして出力データは、位
置255におけるアナログディジタル値の内容に、それ
に関連するROM(図示せず)内に記憶された値が乗算
された値にのみ基づくことになる。図14bにおいて
は、より長時間の遅延に関係しており、バンク0−8の
内のバンク7が選択され、係数は図示された如くであ
る。例えばセンタータップの係数は値が0.974であ
る。補間は受け取ったデータの既知の同期パルス形状を
利用する。
加算器ユニット253において加算されて、補間データ
として出力される。同期補間装置222の動作は更に図
5、14a、14b及び15a−15cを参照して理解
することができ、図において二つの例示的な遅延が適用
されている。これらの例においては補間回路が6−タッ
プのフィルタ及び8相を有することが仮定されている。
実際上は、タップの数及び位相は、応用の態様及び要求
される解像度に応じて選択される。図14aにおいて、
バンク0のための係数が示されている。中心タップ係数
のみが非ゼロである。このようにして出力データは、位
置255におけるアナログディジタル値の内容に、それ
に関連するROM(図示せず)内に記憶された値が乗算
された値にのみ基づくことになる。図14bにおいて
は、より長時間の遅延に関係しており、バンク0−8の
内のバンク7が選択され、係数は図示された如くであ
る。例えばセンタータップの係数は値が0.974であ
る。補間は受け取ったデータの既知の同期パルス形状を
利用する。
【0063】好ましくは数値制御発振器、同期補間回
路、ループ・フィルタは集積半導体回路から成り、CM
OS回路で良い。ユニット内での補間の精度は、線形補
間ユニット267を図示している図17に示された如
く、線形補間のレベルを含めることにより随意的に向上
させることができる。この部分は同期補間の値に対して
線形補間を実行する。図5に示された如く、要求された
補間 点261が、先行する同期補間点265及び後続
する同期補間点263により挟まれる。点261の値を
決定するための線形補間は点265、263に基づいて
実行される。図17において、σは(システムクロック
周期/N)、Nは同期補間点の数、K(整数)は補間距
離、ΔN、Dはハードウエアに内在する一定の遅延、f
(小数)は補間距離、ΔNである。
路、ループ・フィルタは集積半導体回路から成り、CM
OS回路で良い。ユニット内での補間の精度は、線形補
間ユニット267を図示している図17に示された如
く、線形補間のレベルを含めることにより随意的に向上
させることができる。この部分は同期補間の値に対して
線形補間を実行する。図5に示された如く、要求された
補間 点261が、先行する同期補間点265及び後続
する同期補間点263により挟まれる。点261の値を
決定するための線形補間は点265、263に基づいて
実行される。図17において、σは(システムクロック
周期/N)、Nは同期補間点の数、K(整数)は補間距
離、ΔN、Dはハードウエアに内在する一定の遅延、f
(小数)は補間距離、ΔNである。
【0064】各システムクロックサンプルは補間点k、
k+1において同期補間ユニット266、268におい
て同期補間される。補間の結果には1−f、及びfが乗
算器269、264において夫々乗算され、その結果が
加算器270において合成され、補間サンプル値が出力
される。図11及び図18を参照すれば、整合フィルタ
254、256は有限インパルス応答フィルタとして提
供されており、妥当信号、即ち補間回路ユニット222
により生成されるストローブ170により可能化され
る。一例としてフィルタ290が図18に図示されてい
る。シフトレジスタ280の動作は妥当信号170によ
り可能化される。妥当な入力サンプルの各々について一
つの出力サンプルが生成される。FIR係数C0、..
Cnが過剰帯域幅α=0.35を仮定してT/2FIR平
方根累乗コサインフィルタに対して計算される。フィル
タハードウエア内においては実際にはシステムクロック
120(図10)の早いレートでクロックが供給される
けれども、妥当ストローブ信号170の使用により、T
/2のシステムクロックによるクロッッキングがエミュ
レートされる。 キャリア再生 初めに、キャリア再生ループを、コスタス(Costa
s)アルゴリズム位相誤差推定部315、2次のループ
・フィルタ320、数値制御発振器 310、ディジタ
ルデローテーション回路317を図示した図19及び図
20を参照して説明する。この回路は外部の変調及び復
調チェイン内の全ての周波数誤差及び位相変動に追従す
る。好ましくは、追加の適応ループ回路319が最小自
乗法(LMS)アルゴリズムに従って動作して、ハム及
びジッターを原因とする復調位相ノイズ誤差を推定す
る。
k+1において同期補間ユニット266、268におい
て同期補間される。補間の結果には1−f、及びfが乗
算器269、264において夫々乗算され、その結果が
加算器270において合成され、補間サンプル値が出力
される。図11及び図18を参照すれば、整合フィルタ
254、256は有限インパルス応答フィルタとして提
供されており、妥当信号、即ち補間回路ユニット222
により生成されるストローブ170により可能化され
る。一例としてフィルタ290が図18に図示されてい
る。シフトレジスタ280の動作は妥当信号170によ
り可能化される。妥当な入力サンプルの各々について一
つの出力サンプルが生成される。FIR係数C0、..
Cnが過剰帯域幅α=0.35を仮定してT/2FIR平
方根累乗コサインフィルタに対して計算される。フィル
タハードウエア内においては実際にはシステムクロック
120(図10)の早いレートでクロックが供給される
けれども、妥当ストローブ信号170の使用により、T
/2のシステムクロックによるクロッッキングがエミュ
レートされる。 キャリア再生 初めに、キャリア再生ループを、コスタス(Costa
s)アルゴリズム位相誤差推定部315、2次のループ
・フィルタ320、数値制御発振器 310、ディジタ
ルデローテーション回路317を図示した図19及び図
20を参照して説明する。この回路は外部の変調及び復
調チェイン内の全ての周波数誤差及び位相変動に追従す
る。好ましくは、追加の適応ループ回路319が最小自
乗法(LMS)アルゴリズムに従って動作して、ハム及
びジッターを原因とする復調位相ノイズ誤差を推定す
る。
【0065】sinθ及びcosθによってデローテー
ション回路317が制御される。それらはROM(図示
せず)に格納された参照表を用いて生成される。三角関
数参照表の構成は周知である。デローテーターは入力デ
ータをθだけ回転する。(I、Q)が振幅(I2+Q2)
のベクトルを表し、係数tan-1(I/Q)=φである
とする。こうしてI=sinφ、Q=cosφとなり、
デローテートされたI=I’= sin(φ+θ)、
Q’= cos(φ+θ)であることが必要である。 I’=sinφcosθ−cosφsinθ=Icos
θ−Qsinθ Q’=Qcosθ+Isinθ となる。
ション回路317が制御される。それらはROM(図示
せず)に格納された参照表を用いて生成される。三角関
数参照表の構成は周知である。デローテーターは入力デ
ータをθだけ回転する。(I、Q)が振幅(I2+Q2)
のベクトルを表し、係数tan-1(I/Q)=φである
とする。こうしてI=sinφ、Q=cosφとなり、
デローテートされたI=I’= sin(φ+θ)、
Q’= cos(φ+θ)であることが必要である。 I’=sinφcosθ−cosφsinθ=Icos
θ−Qsinθ Q’=Qcosθ+Isinθ となる。
【0066】これはデローテーション回路317に示さ
れた乗算器及び加算器のネットワークにおいて提供され
る。コスタス位相誤差推定部315がループを完結す
る。デローテータ317は位相推定部315と協働して
位相ノイズ及びジッターを補正するために使用される。
このジッターは位相誤差のLMS適応推定によって追跡
される。図20を参照すれば、小数部分を有する固定小
数点の数として表されたデローテートされたI及びQ
値、はスライサ332、334においてそれぞれ最も近
い合法的な符号点配置の値にスライスされる。QPSK
についてはこれは+1または−1になる。デローテート
された値とスライスされた値との間の差異は減算器33
6、338において得られ、誤差を形成する。I及びQ
誤差値は角度誤差推定θ誤差に変換される。QPSK変
調の場合、θ誤差はアンギュレータ331に含まれるス
イッチングネットワークによって以下の表2に従って得
られる。アンギュレータ331の出力は位相ジッター誤
差又はハム誤差θ推定の適応LMS推定である。出願人
による同時係属出願であり、ここに引用するシリアル番
号08/481、107号に記述された位相誤差推定回
路を用いることも可能であり、また他の種々の位相誤差
推定回路、例えばコスタスアルゴリズムを実施化した回
路等も同様に使用可能である。
れた乗算器及び加算器のネットワークにおいて提供され
る。コスタス位相誤差推定部315がループを完結す
る。デローテータ317は位相推定部315と協働して
位相ノイズ及びジッターを補正するために使用される。
このジッターは位相誤差のLMS適応推定によって追跡
される。図20を参照すれば、小数部分を有する固定小
数点の数として表されたデローテートされたI及びQ
値、はスライサ332、334においてそれぞれ最も近
い合法的な符号点配置の値にスライスされる。QPSK
についてはこれは+1または−1になる。デローテート
された値とスライスされた値との間の差異は減算器33
6、338において得られ、誤差を形成する。I及びQ
誤差値は角度誤差推定θ誤差に変換される。QPSK変
調の場合、θ誤差はアンギュレータ331に含まれるス
イッチングネットワークによって以下の表2に従って得
られる。アンギュレータ331の出力は位相ジッター誤
差又はハム誤差θ推定の適応LMS推定である。出願人
による同時係属出願であり、ここに引用するシリアル番
号08/481、107号に記述された位相誤差推定回
路を用いることも可能であり、また他の種々の位相誤差
推定回路、例えばコスタスアルゴリズムを実施化した回
路等も同様に使用可能である。
【0067】LMSアルゴリズム及びその符号変更版は
既知のものであり、ここでは更に説明しない。例えば、
Digital Communications、Se
cond Edition、by Edward A.
Lee and David G.Messersc
hmitt、Kluwer Academic Pub
lishersの第11章に記述されている。
既知のものであり、ここでは更に説明しない。例えば、
Digital Communications、Se
cond Edition、by Edward A.
Lee and David G.Messersc
hmitt、Kluwer Academic Pub
lishersの第11章に記述されている。
【0068】適応アルゴリズムは標準LMSアルゴリズ
ムに対して、θ推定にリークが付与されている点で変更
されている。通常リークはゼロであるが、N番目のサイ
クル毎に−(符号(θ推定))となる。これによってθ
誤差が動作の限界を越えて増大することが防止される。
コスタス・ループは軸上の符号点配置点、即ち(1、
0)、(0、1)、(−1、0)、(0、−1)にロッ
クする。このようにして誤差は、この例において、図2
4に示された如く、θ誤差≒sin−1(I誤差)とし
て推定され、θ誤差=I誤差に近似される。同様に他の
符号点配置点についてはθ誤差は以下の表に示された如
く、+又は−I誤差又はQ誤差となる。θ誤差の幾何学
的表現は図24に示されている。
ムに対して、θ推定にリークが付与されている点で変更
されている。通常リークはゼロであるが、N番目のサイ
クル毎に−(符号(θ推定))となる。これによってθ
誤差が動作の限界を越えて増大することが防止される。
コスタス・ループは軸上の符号点配置点、即ち(1、
0)、(0、1)、(−1、0)、(0、−1)にロッ
クする。このようにして誤差は、この例において、図2
4に示された如く、θ誤差≒sin−1(I誤差)とし
て推定され、θ誤差=I誤差に近似される。同様に他の
符号点配置点についてはθ誤差は以下の表に示された如
く、+又は−I誤差又はQ誤差となる。θ誤差の幾何学
的表現は図24に示されている。
【0069】
【表2】
【0070】QAM変調体系に対する誤差の計算はもっ
と複雑である。上述のタイミング再生制御ループの場合
の如く、捕捉時間を最小にするために2次のループ32
0内の比例及び積分利得定数PI制御装置321が広帯
域幅の値で動作を開始し、一度ロックが達成された後に
はシステムビットエラーレートを最適化するために低帯
域幅ループセットの値にシフトする。選択値は特定の応
用例における要求に従って容易に選択される。
と複雑である。上述のタイミング再生制御ループの場合
の如く、捕捉時間を最小にするために2次のループ32
0内の比例及び積分利得定数PI制御装置321が広帯
域幅の値で動作を開始し、一度ロックが達成された後に
はシステムビットエラーレートを最適化するために低帯
域幅ループセットの値にシフトする。選択値は特定の応
用例における要求に従って容易に選択される。
【0071】チャンネル変更の後は位相を捕捉する前に
決定されねばならない周波数誤差が非常に大になり得
る。初期の周波数誤差を捕捉するために、周波数−ロッ
ク−ループ(即ち、誤差信号が周波数誤差に比例する
か)又は周波数掃引捕捉装置を用いることが好ましい。
ロッッキングを行う回路は図21を参照して説明されて
おり、この回路は周波数及び位相ロックループ回路32
1に関している。仮に比例積分ループ320が中間周波
数信号から受け取った周波数にロックできない場合に
は、図21の回路は個別の間隔で数値制御発振器310
をして−つの周波数から他の周波数に跳躍させ、入力信
号のキャリアをサーチする。図21において参照番号4
58で示したPI制御装置321の出力の最高位ビット
は状態マシン461から取り込まれた跳躍入力450と
合成され、跳躍加算器414に提供される。加算器41
4は数値制御発振器310によって受け取られる周波数
オフセット信号452を出力する。 第2の実施例 復調の際に同位相成分及び直交位相成分の両方を生成し
ない種々の形の変調が本技術分野で既知となっており、
例えば、残留側波帯(VSB)変調はパルス状のベース
バンド信号を振幅変調することにより達成され、帯域幅
を確保するために、振幅変調(AM)された信号の冗長
な側波帯をが抑圧される。通常、下側波帯が抑圧され
る。ディジタル形式のVSBにおいては、ディジタルパ
ルス振幅変調(PAM)信号が用いられている。図22
を参照して以下に説明する本発明の他の実施例はVSB
並びに他の変調体系のの受信信号に適当である。第1の
実施例と同様に、アナログディジタル変換器560の出
力は整合フィルタ552及びタイミング再生回路525
が後に設けられた同期補間ユニット522に供給されて
いる。これらの構成部品の詳細は第1の実施例の場合と
同一であり、ここで繰り返す必要は無い。デローテーシ
ョン回路550及びキャリア再生回路555は第1の実
施例と同一の構成を有している。しかしながら、デロー
テータ回路550は直交位相入力を必要とし、アナログ
ディジタル変換器560によって出力されるサンプリン
グされた復調信号においてこれが欠けているためこれを
生成しなければならない。タイミング再生回路525を
同位相成分についてのみガードナーアルゴリズムに従っ
て動作させることが可能であり、その場合には上記の誤
差信号は以下の如くなる。
決定されねばならない周波数誤差が非常に大になり得
る。初期の周波数誤差を捕捉するために、周波数−ロッ
ク−ループ(即ち、誤差信号が周波数誤差に比例する
か)又は周波数掃引捕捉装置を用いることが好ましい。
ロッッキングを行う回路は図21を参照して説明されて
おり、この回路は周波数及び位相ロックループ回路32
1に関している。仮に比例積分ループ320が中間周波
数信号から受け取った周波数にロックできない場合に
は、図21の回路は個別の間隔で数値制御発振器310
をして−つの周波数から他の周波数に跳躍させ、入力信
号のキャリアをサーチする。図21において参照番号4
58で示したPI制御装置321の出力の最高位ビット
は状態マシン461から取り込まれた跳躍入力450と
合成され、跳躍加算器414に提供される。加算器41
4は数値制御発振器310によって受け取られる周波数
オフセット信号452を出力する。 第2の実施例 復調の際に同位相成分及び直交位相成分の両方を生成し
ない種々の形の変調が本技術分野で既知となっており、
例えば、残留側波帯(VSB)変調はパルス状のベース
バンド信号を振幅変調することにより達成され、帯域幅
を確保するために、振幅変調(AM)された信号の冗長
な側波帯をが抑圧される。通常、下側波帯が抑圧され
る。ディジタル形式のVSBにおいては、ディジタルパ
ルス振幅変調(PAM)信号が用いられている。図22
を参照して以下に説明する本発明の他の実施例はVSB
並びに他の変調体系のの受信信号に適当である。第1の
実施例と同様に、アナログディジタル変換器560の出
力は整合フィルタ552及びタイミング再生回路525
が後に設けられた同期補間ユニット522に供給されて
いる。これらの構成部品の詳細は第1の実施例の場合と
同一であり、ここで繰り返す必要は無い。デローテーシ
ョン回路550及びキャリア再生回路555は第1の実
施例と同一の構成を有している。しかしながら、デロー
テータ回路550は直交位相入力を必要とし、アナログ
ディジタル変換器560によって出力されるサンプリン
グされた復調信号においてこれが欠けているためこれを
生成しなければならない。タイミング再生回路525を
同位相成分についてのみガードナーアルゴリズムに従っ
て動作させることが可能であり、その場合には上記の誤
差信号は以下の如くなる。
【0072】
【数12】
【0073】但し、Iは同一位相出力、Tはシンボル周
期、rは偶数サンプルのサンプル時間である。Q入力は
図23に示されたヒルベルト・フィルタにより形成され
る。ヒルベルト・フィルタはインパルス応答性を有し、
以下の式で与えられる伝達関数を有している。
期、rは偶数サンプルのサンプル時間である。Q入力は
図23に示されたヒルベルト・フィルタにより形成され
る。ヒルベルト・フィルタはインパルス応答性を有し、
以下の式で与えられる伝達関数を有している。
【0074】
【数13】
【0075】ヒルベルト・フィルタ11タップのFIR
フイルタであり、FIRフィルタ290(図18)とほ
ぼ同一の方法で設けられている。フィルタはフィルタの
長さに従って直列で動作する複数のセルとして構成され
ている。一つのセル782が図23に図示されており、
他のセルも構造的には同一であることが容易に理解され
る。ハードウエアを少なくするために、乗算器786は
各係数及びデータシフトレジスタ783におけるタップ
の間で共有されている。
フイルタであり、FIRフィルタ290(図18)とほ
ぼ同一の方法で設けられている。フィルタはフィルタの
長さに従って直列で動作する複数のセルとして構成され
ている。一つのセル782が図23に図示されており、
他のセルも構造的には同一であることが容易に理解され
る。ハードウエアを少なくするために、乗算器786は
各係数及びデータシフトレジスタ783におけるタップ
の間で共有されている。
【0076】セル782の乗算器−累算器ユニット70
5について説明する。データシフトレジスタ783はレ
ジスタ711、712、713、714から成り、例え
ば133nsである周期Tによりクロックが供給されて
いる。従って、シフトレジスタ710−713からの出
力は各133nsにのみ変化する。セル782は合計4
個の乗算器についてレジスタ710−713の各々に乗
算器を関係付けることにより提供することもできる。し
かしながら、乗算器786は33ns、T/4の間にの
み動作可能であるため、セルは4つのデータレジスタ7
11−714の間のスイッチ710によって切り替えら
れる一つの乗算器786を有するように設計されてい
る。4つの係数レジスタ720−723が乗算器786
に係数を供給するために設けられている。勿論、係数レ
ジスタ720−723もまた図23においてスイッチ7
24によって示される如く切り替えられることが要求さ
れる。このフィルタの構成においては、セルの出力が次
式に従って生成されることが要求される。
5について説明する。データシフトレジスタ783はレ
ジスタ711、712、713、714から成り、例え
ば133nsである周期Tによりクロックが供給されて
いる。従って、シフトレジスタ710−713からの出
力は各133nsにのみ変化する。セル782は合計4
個の乗算器についてレジスタ710−713の各々に乗
算器を関係付けることにより提供することもできる。し
かしながら、乗算器786は33ns、T/4の間にの
み動作可能であるため、セルは4つのデータレジスタ7
11−714の間のスイッチ710によって切り替えら
れる一つの乗算器786を有するように設計されてい
る。4つの係数レジスタ720−723が乗算器786
に係数を供給するために設けられている。勿論、係数レ
ジスタ720−723もまた図23においてスイッチ7
24によって示される如く切り替えられることが要求さ
れる。このフィルタの構成においては、セルの出力が次
式に従って生成されることが要求される。
【0077】
【数14】
【0078】但し、CCoutはセル出力、Dnはn番目の
データシフトレジスタの内容、Cnはn番目の係数レジ
スタの内容である。CCoutは加算器726を用いて累
積される。ユニット705の各出力CCoutはラッチさ
れ、加算器木727によって加算される。乗算器は各セ
ルの最大の面積を必要とするため、大きなチップチップ
面積がこうして消費される。 第3の実施例 ここで、図25を参照して発明の第3の実施例が開示さ
れている。その構成は第1の実施例に同様である。第1
の実施例に関連して説明した図10を参照すれば明かな
如く、整合フィルタ254、256の後にデローテータ
150が配置されている。この構成は、デローテータ内
に周期Tのクロック供給が可能な比較的低価格のハード
ウエアを用い得ることが利点である。しかしながら、整
合フィルタ254、256に供給される信号が符号点配
置の回転及び周波数誤差によって影響されるため、フィ
ルタリングされた出力は完全に信号源パルスを復元した
ものにはならない。図25において、デローテータ65
2は補間回路622と、整合フィルタ754、756の
間に配置されている。ここで、デローテータ652はT
/2でクロックが供給される必要があるけれども、整合
フィルタ754、756により生成される信号は原信号
をより正確に復元したものになる。
データシフトレジスタの内容、Cnはn番目の係数レジ
スタの内容である。CCoutは加算器726を用いて累
積される。ユニット705の各出力CCoutはラッチさ
れ、加算器木727によって加算される。乗算器は各セ
ルの最大の面積を必要とするため、大きなチップチップ
面積がこうして消費される。 第3の実施例 ここで、図25を参照して発明の第3の実施例が開示さ
れている。その構成は第1の実施例に同様である。第1
の実施例に関連して説明した図10を参照すれば明かな
如く、整合フィルタ254、256の後にデローテータ
150が配置されている。この構成は、デローテータ内
に周期Tのクロック供給が可能な比較的低価格のハード
ウエアを用い得ることが利点である。しかしながら、整
合フィルタ254、256に供給される信号が符号点配
置の回転及び周波数誤差によって影響されるため、フィ
ルタリングされた出力は完全に信号源パルスを復元した
ものにはならない。図25において、デローテータ65
2は補間回路622と、整合フィルタ754、756の
間に配置されている。ここで、デローテータ652はT
/2でクロックが供給される必要があるけれども、整合
フィルタ754、756により生成される信号は原信号
をより正確に復元したものになる。
【0079】ここに開示した構成を参照しつつ本発明を
説明してきたけれども、本発明は上述した詳細に限定さ
れるものではなく、本出願は以下のクレイムの範囲に入
るいかなる変更や変形をも包含することを意図してい
る。
説明してきたけれども、本発明は上述した詳細に限定さ
れるものではなく、本出願は以下のクレイムの範囲に入
るいかなる変更や変形をも包含することを意図してい
る。
【図1】 QAM及びQPSKコーディング及び変調を
図示するブロック図である。
図示するブロック図である。
【図2】 通信システムにおける変調及び復調を示すブ
ロック図である。
ロック図である。
【図3】 図2に図示されたチューナー及びI、Q復号
器のより詳細なブロック図である。
器のより詳細なブロック図である。
【図4】 図2に示された変調器回路の一部分を図示す
る線図である。
る線図である。
【図5】 既知のサンプルの間に配置された補間サンプ
ルを示す図である。
ルを示す図である。
【図6】 従来技術による受信機におけるキャリア再生
回路及びタイミング再生回路のブロック図である。
回路及びタイミング再生回路のブロック図である。
【図7】 図6に示されたキャリア再生回路のより詳細
なブロック図である。
なブロック図である。
【図8】 図6に示されたタイミング再生回路のより詳
細なブロック図である。
細なブロック図である。
【図9】 ガードナーアルゴリズムの動作を図示した線
図である。
図である。
【図10】 本発明によるキャリア再生回路及びタイミ
ング再生回路のブロック図である。
ング再生回路のブロック図である。
【図11】 図10に示されたタイミング再生回路をよ
り詳細に、部分的に概略的に示すブロック図である。
り詳細に、部分的に概略的に示すブロック図である。
【図12】 図11に示されたタイミング再生回路にお
ける数値制御発振器を図示する略図である。
ける数値制御発振器を図示する略図である。
【図13】 図11の回路の動作を図示する線図であ
る。
る。
【図14】 図11−13に図示された回路の動作を理
解するのに役立つ異なる遅延値を有する同期パルスの図
である。
解するのに役立つ異なる遅延値を有する同期パルスの図
である。
【図15】 同期補間の処理を示す図である。
【図16】 図10に示された回路の同期補間ユニット
において用いられるフィルタの略図である。
において用いられるフィルタの略図である。
【図17】 図10の回路において用いることが可能な
線形補間ユニットの略図である。
線形補間ユニットの略図である。
【図18】 図10の回路において用いられた整合フィ
ルタの略図である。
ルタの略図である。
【図19】 本発明によるキャリア再生回路のブロック
図である。
図である。
【図20】 図19に図示されたキャリア再生回路にお
いて用いられた適応位相トラッキング回路のブロック図
である。
いて用いられた適応位相トラッキング回路のブロック図
である。
【図21】 図19に図示された回路において用いられ
たホッピング加算器の電気的略図である。
たホッピング加算器の電気的略図である。
【図22】 本発明の他の実施例によるキャリア再生回
路及びタイミング再生回路を図示するブロック図であ
る。
路及びタイミング再生回路を図示するブロック図であ
る。
【図23】 図22に示された回路において用いられた
ヒルベルト・フィルタのより詳細な線図である。
ヒルベルト・フィルタのより詳細な線図である。
【図24】 符号点配置回転誤差を図示する線図であ
る。
る。
【図25】 本発明の第2の他の実施例を図示するブロ
ック図である。
ック図である。
20 変調器 21 IQ復調器 44 キャリア再生回路 48 タイミング再生回路 50 受信機 60 アナログディジタル変換器 68 整合フィルタ 69 スライサ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 リチャード ジェイ. ガンマック イギリス国 エイボン ビーエス2 8ピ ーエヌ ブリストル セントジェイムズ グロースターストリート 22
Claims (4)
- 【請求項1】 一サンプリング・レートで動作するサン
プリング回路によってサンプリングされる信号であっ
て、受け取ったシンボル・レートを有する信号を処理す
る信号処理装置であって、 前記サンプリング・レートで動作するクロックと、 当初前記サンプリング・レートで分周された公称ボー・
レートに等しい周期Tで動作する第1の数値制御発振器
と、 前記サンプリング・レートでサンプルを受け取る同期補
間回路と、 前記同期補間回路及び前記第1の数値制御発振器に接続
されて前記周期T及び前記サンプリングされた信号の前
記受け取ったシンボルレートの間の差異に応じた出力を
有するループ・フィルタとから成り、 前記第1の数値制御発振器は前記ループ・フィルタに応
答して後続するサンプルの間の補間距離を表す出力信号
を生成し、前記補間回路は前記補間距離に従って前記受
け取ったサンプルを補間し、前記補間サンプルを表す出
力信号を生成することを特徴とする信号処理装置。 - 【請求項2】 復号器を制御する動作を成す半導体集積
キャリア再生回路から成る変調信号を処理するための回
路であって、 第2の数値制御発振器と、 前記第2の数値制御発振器に応答し、サンプリングされ
た信号の同位相成分及び直交位相成分を受け入れるディ
ジタルデローテーション回路と、 前記デローテーション回路の出力に接続された位相誤差
推定回路と、 前記位相誤差推定回路の出力に接続されたループ・フィ
ルタとから成り、前記第2の数値制御発振器は前記ルー
プ・フィルタに応答することを特徴とする処理回路。 - 【請求項3】 変調キャリア周波数を有する変調信号を
処理するための信号処理装置であって、 復号器と、 一サンプリング・レートで前記復号器の出力に対して動
作するサンプリング回路と、 前記変調キャリア周波数に従って前記復号器を制御する
ように動作するキャリア再生回路とから成り、該キャリ
ア再生回路は第2の数値制御発振器と、 前記第2の数値制御発振器に応答し、サンプリングされ
た信号の同位相成分及び直交位相成分を受け入れるディ
ジタルデローテーション回路と、 前記デローテーション回路の出力に接続された位相誤差
推定回路と、 前記位相誤差推定回路の出力に接続されたループ・フィ
ルタとから成り、前記第2の数値制御発振器は前記ルー
プ・フィルタに応答し、前記サンプリング回路及び前記
キャリア再生回路は半導体集積回路内に集積されている
ことを特徴とする信号処理装置。 - 【請求項4】 一サンプリング・レートで動作するサン
プリング回路によってサンプリングされる変調信号であ
って、受け取ったシンボル・レートを有する変調信号を
処理するための信号処理装置であって、 前記サンプリング・レートで動作するクロックと、 当初前記サンプリング・レートで分周された公称ボー・
レートに等しい周期Tで動作する第1の数値制御発振器
と、 前記サンプリング・レートでサンプルを受け取る同期補
間回路と、 前記同期補間回路及び前記第1の数値制御発振器に接続
され、前記周期T及び前記サンプリングされた信号の伝
送されたシンボル・レートとの間の差異に応答した出力
を有する第1のループ・フィルタであり、前記第1の数
値制御発振器は前記第1のループ・フィルタに応答して
後続するサンプルの間の補間距離を表す出力信号を発生
し、前記同期補間回路は前記受け取ったサンプルを前記
補間距離に従って補間して前記補間サンプルを表す出力
信号を生成する第1のループ・フィルタと、 キャリア再生回路と、を含み、該キャリア再生回路は、 第2の数値制御発振器と、 前記第2の数値制御発振器に応答し、サンプリングされ
た信号の同位相成分及び直交位相成分を受け入れるディ
ジタルデローテーション回路と、 前記デローテーション回路の出力に接続された位相誤差
推定回路と、 前記位相誤差推定回路の出力に接続されたループ・フィ
ルタとから構成されており、前記第2の数値制御発振器
は前記ループ・フィルタに応答し、 前記第1及び第2の数値制御発振器、前記同期補間回
路、前記第1及び第2のループフィルタ及び前記ディジ
タルデローテーション回路は半導体集積回路内に集積さ
れていることを特徴とする信号処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9511551.5A GB9511551D0 (en) | 1995-06-07 | 1995-06-07 | Signal processing system |
GB9511551.5 | 1995-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09130444A true JPH09130444A (ja) | 1997-05-16 |
Family
ID=10775686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8084602A Pending JPH09130444A (ja) | 1995-06-07 | 1996-03-13 | 信号処理装置 |
Country Status (15)
Country | Link |
---|---|
US (2) | US5724396A (ja) |
EP (2) | EP0877516B1 (ja) |
JP (1) | JPH09130444A (ja) |
KR (1) | KR100300539B1 (ja) |
CN (1) | CN1079620C (ja) |
AT (2) | ATE184146T1 (ja) |
AU (1) | AU710586B2 (ja) |
CA (1) | CA2170344C (ja) |
DE (2) | DE69613007T2 (ja) |
DK (1) | DK0748118T3 (ja) |
ES (1) | ES2112222T3 (ja) |
GB (1) | GB9511551D0 (ja) |
IL (1) | IL117743A0 (ja) |
MY (1) | MY132131A (ja) |
SG (1) | SG85071A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101028736B1 (ko) * | 2010-02-10 | 2011-04-14 | 엘아이지넥스원 주식회사 | 신호 처리 장치 및 그 방법 |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6803970B1 (en) | 1994-03-24 | 2004-10-12 | Samsung Electronics Co., Ltd. | Digital television receiver with match filter responsive to field synchronization code |
US6512555B1 (en) * | 1994-05-04 | 2003-01-28 | Samsung Electronics Co., Ltd. | Radio receiver for vestigal-sideband amplitude-modulation digital television signals |
KR0178750B1 (ko) * | 1996-02-13 | 1999-05-15 | 김광호 | 전-디지탈 심볼타이밍 복구장치 |
US6067329A (en) * | 1996-05-31 | 2000-05-23 | Matsushita Electric Industrial Co., Ltd. | VSB demodulator |
US5878088A (en) * | 1997-04-10 | 1999-03-02 | Thomson Consumer Electronics, Inc. | Digital variable symbol timing recovery system for QAM |
KR100195756B1 (ko) * | 1996-09-30 | 1999-06-15 | 전주범 | 가변 레이트 복조기의 심볼 타이밍 복원 회로 |
KR100260421B1 (ko) * | 1996-11-07 | 2000-07-01 | 윤종용 | 최종 중간 주파수 신호 포락선의 필드 동기화 코드에 응답하는정합필터를 구비한 디지털 수신기 |
US6212246B1 (en) * | 1996-11-21 | 2001-04-03 | Dsp Group, Inc. | Symbol-quality evaluation in a digital communications receiver |
US6154497A (en) * | 1996-12-19 | 2000-11-28 | Texas Instruments Incorporated | Method and system for analog to digital conversion |
US5870442A (en) * | 1996-12-31 | 1999-02-09 | Lucent Technologies Inc. | Timing recovery arrangement |
US5978823A (en) * | 1997-01-27 | 1999-11-02 | Hitachi America, Ltd. | Methods and apparatus for implementing and controlling a digital modulator |
US5870443A (en) * | 1997-03-19 | 1999-02-09 | Hughes Electronics Corporation | Symbol timing recovery and tracking method for burst-mode digital communications |
US6421396B1 (en) * | 1997-04-16 | 2002-07-16 | Broadcom Corporation | Variable rate modulator |
US5914991A (en) * | 1997-06-30 | 1999-06-22 | Siemens Medical Systems, Inc. | Syncronizing a data acquisition device with a host |
US5991348A (en) * | 1997-08-12 | 1999-11-23 | 3Com Corporation | Method and apparatus for regenerating symbol timing from a probing signal in a system having non-linear network and codec distortion |
US6144712A (en) * | 1997-10-09 | 2000-11-07 | Broadcom Corporation | Variable rate modulator |
US6356598B1 (en) * | 1998-08-26 | 2002-03-12 | Thomson Licensing S.A. | Demodulator for an HDTV receiver |
US5886752A (en) * | 1997-12-22 | 1999-03-23 | Rockwell International | Spurious free wideband phase and frequency modulator using a direct digital synthesis alias frequency band |
US6128357A (en) * | 1997-12-24 | 2000-10-03 | Mitsubishi Electric Information Technology Center America, Inc (Ita) | Data receiver having variable rate symbol timing recovery with non-synchronized sampling |
US6714608B1 (en) * | 1998-01-27 | 2004-03-30 | Broadcom Corporation | Multi-mode variable rate digital satellite receiver |
US6233368B1 (en) * | 1998-03-18 | 2001-05-15 | Agilent Technologies, Inc. | CMOS digital optical navigation chip |
US6496229B1 (en) * | 1998-04-02 | 2002-12-17 | Samsung Electronics Co., Ltd. | TV receiver using read-only memory shared during VSB and QAM reception for synchrodyning I-F signal to baseband |
US6304621B1 (en) * | 1998-05-13 | 2001-10-16 | Broadcom Corporation | Multi-mode variable rate digital cable receiver |
US6694128B1 (en) | 1998-08-18 | 2004-02-17 | Parkervision, Inc. | Frequency synthesizer using universal frequency translation technology |
US6061551A (en) | 1998-10-21 | 2000-05-09 | Parkervision, Inc. | Method and system for down-converting electromagnetic signals |
US6091940A (en) | 1998-10-21 | 2000-07-18 | Parkervision, Inc. | Method and system for frequency up-conversion |
US7515896B1 (en) | 1998-10-21 | 2009-04-07 | Parkervision, Inc. | Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships |
US6081228A (en) * | 1998-09-15 | 2000-06-27 | Sirf Technology, Inc. | Receiver phase-noise mitigation |
US6370371B1 (en) | 1998-10-21 | 2002-04-09 | Parkervision, Inc. | Applications of universal frequency translation |
US6560301B1 (en) | 1998-10-21 | 2003-05-06 | Parkervision, Inc. | Integrated frequency translation and selectivity with a variety of filter embodiments |
US7039372B1 (en) | 1998-10-21 | 2006-05-02 | Parkervision, Inc. | Method and system for frequency up-conversion with modulation embodiments |
US6049706A (en) | 1998-10-21 | 2000-04-11 | Parkervision, Inc. | Integrated frequency translation and selectivity |
US6061555A (en) | 1998-10-21 | 2000-05-09 | Parkervision, Inc. | Method and system for ensuring reception of a communications signal |
US6542722B1 (en) | 1998-10-21 | 2003-04-01 | Parkervision, Inc. | Method and system for frequency up-conversion with variety of transmitter configurations |
US7236754B2 (en) | 1999-08-23 | 2007-06-26 | Parkervision, Inc. | Method and system for frequency up-conversion |
US6813485B2 (en) | 1998-10-21 | 2004-11-02 | Parkervision, Inc. | Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same |
US6775334B1 (en) * | 1998-11-03 | 2004-08-10 | Broadcom Corporation | Equalization and decision-directed loops with trellis demodulation in high definition TV |
US6704549B1 (en) | 1999-03-03 | 2004-03-09 | Parkvision, Inc. | Multi-mode, multi-band communication system |
US6704558B1 (en) | 1999-01-22 | 2004-03-09 | Parkervision, Inc. | Image-reject down-converter and embodiments thereof, such as the family radio service |
US6879817B1 (en) | 1999-04-16 | 2005-04-12 | Parkervision, Inc. | DC offset, re-radiation, and I/Q solutions using universal frequency translation technology |
US6853690B1 (en) | 1999-04-16 | 2005-02-08 | Parkervision, Inc. | Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments |
US7110444B1 (en) | 1999-08-04 | 2006-09-19 | Parkervision, Inc. | Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations |
US7693230B2 (en) | 1999-04-16 | 2010-04-06 | Parkervision, Inc. | Apparatus and method of differential IQ frequency up-conversion |
US7065162B1 (en) | 1999-04-16 | 2006-06-20 | Parkervision, Inc. | Method and system for down-converting an electromagnetic signal, and transforms for same |
DE19933542A1 (de) | 1999-07-16 | 2001-01-25 | Siemens Ag | Verfahren und Vorrichtung zur Synchronisation von Mobilfunkempfängern in einem Mobilfunksystem |
US8295406B1 (en) | 1999-08-04 | 2012-10-23 | Parkervision, Inc. | Universal platform module for a plurality of communication protocols |
US6522785B1 (en) | 1999-09-24 | 2003-02-18 | Sony Corporation | Classified adaptive error recovery method and apparatus |
DE19953350A1 (de) | 1999-11-05 | 2001-05-23 | Infineon Technologies Ag | Vorrichtung zur Feinsynchronisation von Codesignalen |
DE19953486C2 (de) * | 1999-11-06 | 2003-08-14 | Siemens Ag | Verfahren zur Synchronisation einer Signalübertragung in Aufwärtsrichtung in einem Funk-Kommunikationssystem |
US6282231B1 (en) | 1999-12-14 | 2001-08-28 | Sirf Technology, Inc. | Strong signal cancellation to enhance processing of weak spread spectrum signal |
US7010286B2 (en) | 2000-04-14 | 2006-03-07 | Parkervision, Inc. | Apparatus, system, and method for down-converting and up-converting electromagnetic signals |
EP1295390B1 (en) * | 2000-06-23 | 2007-02-14 | STMicroelectronics Asia Pacific Pte Ltd. | Universal sampling rate converter for digital audio frequencies |
EP1249115A1 (en) * | 2000-07-25 | 2002-10-16 | Koninklijke Philips Electronics N.V. | Decision directed frequency offset estimation |
US6724439B1 (en) * | 2000-08-04 | 2004-04-20 | Zenith Electronics Corporation | Low cost VSB encoder and RF modulator for supplying a substantially 6 MHZ VSB signal to digital television receiver |
US7454453B2 (en) | 2000-11-14 | 2008-11-18 | Parkervision, Inc. | Methods, systems, and computer program products for parallel correlation and applications thereof |
FR2817091B1 (fr) * | 2000-11-22 | 2003-03-21 | St Microelectronics Sa | Codeur a turbocodes a synchronisation facilitee |
KR100705158B1 (ko) * | 2000-12-08 | 2007-04-09 | 엘지전자 주식회사 | 복소수 기저대역 정합필터를 갖는 vsb 수신기 |
US6970529B2 (en) * | 2001-01-16 | 2005-11-29 | International Business Machines Corporation | Unified digital architecture |
DE10103479A1 (de) * | 2001-01-26 | 2002-08-08 | Infineon Technologies Ag | Signalempfangs- und -verarbeitungsverfahren für schnurlose Kommunikationssysteme |
US6879623B2 (en) * | 2001-03-28 | 2005-04-12 | Motorola, Inc. | Method and apparatus for timing recovery in a communication device |
US7440511B2 (en) * | 2001-04-25 | 2008-10-21 | Texas Instruments Incorporated | Transmit filter |
US7245671B1 (en) | 2001-04-27 | 2007-07-17 | The Directv Group, Inc. | Preprocessing signal layers in a layered modulation digital signal system to use legacy receivers |
US7778365B2 (en) * | 2001-04-27 | 2010-08-17 | The Directv Group, Inc. | Satellite TWTA on-line non-linearity measurement |
US7471735B2 (en) | 2001-04-27 | 2008-12-30 | The Directv Group, Inc. | Maximizing power and spectral efficiencies for layered and conventional modulations |
US7822154B2 (en) | 2001-04-27 | 2010-10-26 | The Directv Group, Inc. | Signal, interference and noise power measurement |
US7502430B2 (en) | 2001-04-27 | 2009-03-10 | The Directv Group, Inc. | Coherent averaging for measuring traveling wave tube amplifier nonlinearity |
US7184473B2 (en) * | 2001-04-27 | 2007-02-27 | The Directv Group, Inc. | Equalizers for layered modulated and other signals |
US7209524B2 (en) | 2001-04-27 | 2007-04-24 | The Directv Group, Inc. | Layered modulation for digital signals |
US7184489B2 (en) * | 2001-04-27 | 2007-02-27 | The Directv Group, Inc. | Optimization technique for layered modulation |
US7423987B2 (en) | 2001-04-27 | 2008-09-09 | The Directv Group, Inc. | Feeder link configurations to support layered modulation for digital signals |
US8005035B2 (en) | 2001-04-27 | 2011-08-23 | The Directv Group, Inc. | Online output multiplexer filter measurement |
US7151807B2 (en) | 2001-04-27 | 2006-12-19 | The Directv Group, Inc. | Fast acquisition of timing and carrier frequency from received signal |
US7173981B1 (en) | 2001-04-27 | 2007-02-06 | The Directv Group, Inc. | Dual layer signal processing in a layered modulation digital signal system |
US7583728B2 (en) | 2002-10-25 | 2009-09-01 | The Directv Group, Inc. | Equalizers for layered modulated and other signals |
US7639759B2 (en) * | 2001-04-27 | 2009-12-29 | The Directv Group, Inc. | Carrier to noise ratio estimations from a received signal |
US7483505B2 (en) | 2001-04-27 | 2009-01-27 | The Directv Group, Inc. | Unblind equalizer architecture for digital communication systems |
US6931089B2 (en) * | 2001-08-21 | 2005-08-16 | Intersil Corporation | Phase-locked loop with analog phase rotator |
US7245658B2 (en) * | 2001-09-05 | 2007-07-17 | Mediatek, Inc. | Read channel apparatus for an optical storage system |
US6600438B2 (en) * | 2001-10-18 | 2003-07-29 | Agilent Technologies, Inc. | Broadband IF conversion using two ADCs |
US7072427B2 (en) | 2001-11-09 | 2006-07-04 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in a communication system |
US8000428B2 (en) * | 2001-11-27 | 2011-08-16 | Texas Instruments Incorporated | All-digital frequency synthesis with DCO gain calculation |
US6727772B2 (en) * | 2002-05-01 | 2004-04-27 | Intel Corporation | Method and system for synchronizing a quadrature amplitude modulation demodulator |
US6986080B2 (en) * | 2002-05-21 | 2006-01-10 | Zenith Electronics Corporation | Timing error detector for digital signal receiver |
EP1540909A4 (en) | 2002-07-01 | 2007-10-17 | Directv Group Inc | IMPROVING HIERARCHICAL 8PSK PERFORMANCE |
US7738587B2 (en) | 2002-07-03 | 2010-06-15 | The Directv Group, Inc. | Method and apparatus for layered modulation |
US7460584B2 (en) | 2002-07-18 | 2008-12-02 | Parkervision, Inc. | Networking methods and systems |
US7379883B2 (en) | 2002-07-18 | 2008-05-27 | Parkervision, Inc. | Networking methods and systems |
US7206335B2 (en) * | 2002-10-02 | 2007-04-17 | Interdigital Technology Corporation | Optimum interpolator method and apparatus for digital timing adjustment |
US7230480B2 (en) * | 2002-10-25 | 2007-06-12 | The Directv Group, Inc. | Estimating the operating point on a non-linear traveling wave tube amplifier |
ATE491296T1 (de) * | 2002-10-25 | 2010-12-15 | Directv Group Inc | Verfahren und vorrichtung zum anpassen von trägerleistungsanforderungen gemäss verfügbarkeit in geschichteten modulationssystemen |
US7474710B2 (en) | 2002-10-25 | 2009-01-06 | The Directv Group, Inc. | Amplitude and phase matching for layered modulation reception |
US7529312B2 (en) | 2002-10-25 | 2009-05-05 | The Directv Group, Inc. | Layered modulation for terrestrial ATSC applications |
EP1563620B1 (en) | 2002-10-25 | 2012-12-05 | The Directv Group, Inc. | Lower complexity layered modulation signal processor |
US7463676B2 (en) | 2002-10-25 | 2008-12-09 | The Directv Group, Inc. | On-line phase noise measurement for layered modulation |
US6903665B2 (en) * | 2002-10-30 | 2005-06-07 | Spacebridge Semiconductor Corporation | Method and apparatus for error control coding in communication systems using an outer interleaver |
US7180963B2 (en) * | 2002-11-25 | 2007-02-20 | Ali Corporation | Digital receiver capable of processing modulated signals at various data rates |
CN100365616C (zh) * | 2002-12-20 | 2008-01-30 | 上海乐金广电电子有限公司 | 信号处理装置 |
DE10300938B4 (de) * | 2003-01-13 | 2005-12-15 | Infineon Technologies Ag | Wandlerschaltung für eine Limiter-Empfängerstruktur und Verfahren zur Signalwandlung in einer Limiter-Empfängerstruktur |
US6968296B2 (en) * | 2003-04-04 | 2005-11-22 | Radiodetection Limited | Cable detector with decimating filter and filtering method |
US20050069052A1 (en) * | 2003-09-30 | 2005-03-31 | David Carbonari | Ultra-wideband receiver |
DE10347259B4 (de) * | 2003-10-08 | 2013-10-31 | Entropic Communications, Inc. | Verfahren zum Synchronisieren einer Schaltungsanordnung beim Empfang eines modulierten Signals |
US7502429B2 (en) | 2003-10-10 | 2009-03-10 | The Directv Group, Inc. | Equalization for traveling wave tube amplifier nonlinearity measurements |
US20080212708A1 (en) * | 2004-02-19 | 2008-09-04 | Thomson Licensing | Method and Apparatus for Carrier Recovery in a Communications System |
US20050183897A1 (en) * | 2004-02-24 | 2005-08-25 | Lear Corporation | Two-shot co-injected automotive interior trim assembly and method |
US7428282B2 (en) * | 2004-04-15 | 2008-09-23 | Texas Instruments Incorporated | Timing recovery of PAM signals using baud rate interpolation |
US7486747B1 (en) * | 2004-07-09 | 2009-02-03 | L-3 Communications Corporation | Digital timing recovery operable at very low or less than zero dB Eb/No |
KR100660839B1 (ko) * | 2004-10-07 | 2006-12-26 | 삼성전자주식회사 | Atsc 수신기에서의 결합된 심볼 타이밍 및 캐리어위상 복원 회로 |
JP4583196B2 (ja) | 2005-02-04 | 2010-11-17 | 富士通セミコンダクター株式会社 | 通信装置 |
US7720179B2 (en) * | 2005-05-27 | 2010-05-18 | Marvell World Trade Ltd. | Method for timing detection |
US20070061390A1 (en) * | 2005-09-09 | 2007-03-15 | Leo Bredehoft | Interpolator using splines generated from an integrator stack seeded at input sample points |
US7529320B2 (en) * | 2005-09-16 | 2009-05-05 | Agere Systems Inc. | Format efficient timing acquisition for magnetic recording read channels |
US8660171B1 (en) * | 2007-08-15 | 2014-02-25 | Marvell International Ltd. | Method and apparatus for timing jitter measurement |
US9419677B2 (en) * | 2008-12-19 | 2016-08-16 | Intel Corporation | Removal of modulated tonal interference |
US8312327B2 (en) * | 2009-04-24 | 2012-11-13 | Advantest Corporation | Correcting apparatus, PDF measurement apparatus, jitter measurement apparatus, jitter separation apparatus, electric device, correcting method, program, and recording medium |
TW201121322A (en) * | 2009-12-08 | 2011-06-16 | Sunplus Technology Co Ltd | Blind scan system and method in a DVB-S system |
US8295714B2 (en) * | 2009-12-18 | 2012-10-23 | Alcatel Lucent | Receiver algorithms for coherent detection of polarization-multiplexed optical signals |
US8571423B2 (en) * | 2009-12-18 | 2013-10-29 | Alcatel Lucent | Receiver algorithms for coherent detection of polarization-multiplexed optical signals |
US8526831B2 (en) * | 2009-12-18 | 2013-09-03 | Alcatel Lucent | Receiver algorithms for coherent detection of polarization-multiplexed optical signals |
US8280330B2 (en) * | 2009-12-30 | 2012-10-02 | Quintic Holdings | Crystal-less clock generation for radio frequency receivers |
CN101854497B (zh) * | 2010-05-07 | 2013-04-03 | 深圳国微技术有限公司 | 数字电视接收机及其定时恢复方法 |
KR101423111B1 (ko) * | 2010-08-10 | 2014-07-30 | 창원대학교 산학협력단 | 밴드 패스 샘플링 수신기 |
US8873182B2 (en) * | 2012-03-09 | 2014-10-28 | Lsi Corporation | Multi-path data processing system |
DE112012006735B4 (de) * | 2012-07-25 | 2019-03-28 | Hytera Communications Corp., Ltd. | Synchronisationsverfahren und Vorrichtung zur Übertragung und zum Empfang der Symbole für volldigitalen Empfänger |
GB2551292A (en) | 2015-04-08 | 2017-12-13 | Halliburton Energy Services Inc | Phase compensated fixed-point numerically controlled oscillator for downhole logging |
US9590803B2 (en) * | 2015-05-22 | 2017-03-07 | Seagate Technology Llc | Timing error processor that uses the derivative of an interpolator function |
US10598704B2 (en) * | 2015-07-17 | 2020-03-24 | University Of Tennessee Research Foundation | Universal grid analyzer |
JP6950594B2 (ja) * | 2018-03-09 | 2021-10-13 | 富士通株式会社 | 信号処理回路及び光受信装置 |
TWI717659B (zh) * | 2018-11-20 | 2021-02-01 | 新唐科技股份有限公司 | 訊號處理系統及其方法 |
CN110011677B (zh) * | 2019-03-29 | 2021-03-23 | 中国电子科技集团公司第五十四研究所 | 基于内插结构的eLoran接收机数字滤波方法 |
CN114338468B (zh) * | 2021-12-27 | 2023-04-28 | 电子科技大学 | 一种在串扰影响下的时钟抖动测量方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4079329A (en) * | 1976-11-11 | 1978-03-14 | Harris Corporation | Signal demodulator including data normalization |
JPH0624399B2 (ja) * | 1988-03-22 | 1994-03-30 | 富士通株式会社 | 受信信号処理方式 |
GB2242800B (en) * | 1990-04-03 | 1993-11-24 | Sony Corp | Digital phase detector arrangements |
US5087975A (en) * | 1990-11-09 | 1992-02-11 | Zenith Electronics Corporation | VSB HDTV transmission system with reduced NTSC co-channel interference |
US5168356A (en) * | 1991-02-27 | 1992-12-01 | General Electric Company | Apparatus for segmenting encoded video signal for transmission |
US5122875A (en) * | 1991-02-27 | 1992-06-16 | General Electric Company | An HDTV compression system |
US5175617A (en) * | 1991-12-04 | 1992-12-29 | Vision Applications, Inc. | Telephone line picture transmission |
US5377232A (en) * | 1992-01-09 | 1994-12-27 | Cellnet Data Systems, Inc. | Frequency synchronized bidirectional radio system |
US5287182A (en) * | 1992-07-02 | 1994-02-15 | At&T Bell Laboratories | Timing recovery for variable bit-rate video on asynchronous transfer mode (ATM) networks |
US5357544A (en) * | 1992-07-21 | 1994-10-18 | Texas Instruments, Incorporated | Devices, systems, and methods for composite signal decoding |
US5309484A (en) * | 1992-09-01 | 1994-05-03 | Motorola, Inc. | Method and apparatus for asynchronous timing recovery using interpolation filter |
US5294894A (en) * | 1992-10-02 | 1994-03-15 | Compaq Computer Corporation | Method of and apparatus for startup of a digital computer system clock |
US5550869A (en) * | 1992-12-30 | 1996-08-27 | Comstream Corporation | Demodulator for consumer uses |
GB9301704D0 (en) * | 1993-01-28 | 1993-03-17 | Signal Processors Ltd | New digital modem design techniques |
US5386239A (en) * | 1993-05-03 | 1995-01-31 | Thomson Consumer Electronics, Inc. | Multiple QAM digital television signal decoder |
US5486864A (en) * | 1993-05-13 | 1996-01-23 | Rca Thomson Licensing Corporation | Differential time code method and apparatus as for a compressed video signal |
US5304953A (en) * | 1993-06-01 | 1994-04-19 | Motorola, Inc. | Lock recovery circuit for a phase locked loop |
US5497152A (en) * | 1993-09-13 | 1996-03-05 | Analog Devices, Inc. | Digital-to-digital conversion using non-uniform sample rates |
JPH07212421A (ja) * | 1994-01-19 | 1995-08-11 | Toshiba Corp | Afc回路 |
DE4417723A1 (de) * | 1994-05-20 | 1995-11-23 | Ant Nachrichtentech | Einrichtung zum Verarbeiten eines modulierten reellwertigen analogen Fernsehsignals |
US5506636A (en) * | 1994-06-28 | 1996-04-09 | Samsung Electronics Co., Ltd. | HDTV signal receiver with imaginary-sample-presence detector for QAM/VSB mode selection |
US5579345A (en) * | 1994-10-13 | 1996-11-26 | Westinghouse Electric Corporation | Carrier tracking loop for QPSK demodulator |
-
1995
- 1995-06-07 GB GBGB9511551.5A patent/GB9511551D0/en active Pending
- 1995-06-07 US US08/480,976 patent/US5724396A/en not_active Expired - Lifetime
- 1995-06-07 US US08/471,874 patent/US5793818A/en not_active Expired - Lifetime
-
1996
- 1996-02-26 CA CA002170344A patent/CA2170344C/en not_active Expired - Lifetime
- 1996-03-12 SG SG9606697A patent/SG85071A1/en unknown
- 1996-03-13 JP JP8084602A patent/JPH09130444A/ja active Pending
- 1996-03-15 AU AU48119/96A patent/AU710586B2/en not_active Ceased
- 1996-03-19 AT AT96301867T patent/ATE184146T1/de not_active IP Right Cessation
- 1996-03-19 DE DE69613007T patent/DE69613007T2/de not_active Expired - Lifetime
- 1996-03-19 DK DK96301867T patent/DK0748118T3/da active
- 1996-03-19 EP EP98202129A patent/EP0877516B1/en not_active Expired - Lifetime
- 1996-03-19 EP EP96301867A patent/EP0748118B1/en not_active Expired - Lifetime
- 1996-03-19 ES ES96301867T patent/ES2112222T3/es not_active Expired - Lifetime
- 1996-03-19 DE DE69604020T patent/DE69604020T2/de not_active Expired - Lifetime
- 1996-03-19 AT AT98202129T patent/ATE201544T1/de not_active IP Right Cessation
- 1996-03-20 MY MYPI96001022A patent/MY132131A/en unknown
- 1996-03-23 KR KR1019960008056A patent/KR100300539B1/ko not_active IP Right Cessation
- 1996-03-27 CN CN96104599A patent/CN1079620C/zh not_active Expired - Lifetime
- 1996-03-31 IL IL11774396A patent/IL117743A0/xx unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101028736B1 (ko) * | 2010-02-10 | 2011-04-14 | 엘아이지넥스원 주식회사 | 신호 처리 장치 및 그 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP0748118A2 (en) | 1996-12-11 |
ES2112222T1 (es) | 1998-04-01 |
DE69604020T2 (de) | 2000-03-23 |
ES2112222T3 (es) | 1999-11-01 |
IL117743A0 (en) | 1996-07-23 |
CN1079620C (zh) | 2002-02-20 |
SG85071A1 (en) | 2001-12-19 |
AU4811996A (en) | 1996-12-19 |
ATE201544T1 (de) | 2001-06-15 |
KR970004876A (ko) | 1997-01-29 |
DK0748118T3 (da) | 2000-05-01 |
US5724396A (en) | 1998-03-03 |
EP0748118A3 (en) | 1998-09-16 |
EP0877516B1 (en) | 2001-05-23 |
EP0748118B1 (en) | 1999-09-01 |
MY132131A (en) | 2007-09-28 |
ATE184146T1 (de) | 1999-09-15 |
DE69604020D1 (de) | 1999-10-07 |
DE69613007D1 (de) | 2001-06-28 |
CA2170344A1 (en) | 1996-12-08 |
AU710586B2 (en) | 1999-09-23 |
KR100300539B1 (ko) | 2001-10-22 |
CA2170344C (en) | 2001-09-25 |
EP0877516A1 (en) | 1998-11-11 |
CN1143296A (zh) | 1997-02-19 |
DE69613007T2 (de) | 2001-09-27 |
US5793818A (en) | 1998-08-11 |
GB9511551D0 (en) | 1995-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09130444A (ja) | 信号処理装置 | |
US5799037A (en) | Receiver capable of demodulating multiple digital modulation formats | |
US6985549B1 (en) | Blind cost criterion timing recovery | |
US5872815A (en) | Apparatus for generating timing signals for a digital television signal receiver | |
JP4974247B2 (ja) | ディジタル信号処理装置におけるタイミング再生装置 | |
US6606010B1 (en) | Quadrature vestigial sideband digital communications method | |
JP4518355B2 (ja) | Hdtv受像機の復調器のための位相誤差算定方法 | |
CN101005480A (zh) | 解调电路和解调方法 | |
JP4373676B2 (ja) | 復調器 | |
EP0573696B1 (en) | Timing recovery method and system | |
JP3517056B2 (ja) | Vsb変調信号におけるサンプリングタイミング位相誤差検出器 | |
US7660377B2 (en) | Device for estimating a timing correction loop error for a digital demodulator | |
WO1999044342A1 (fr) | Demodulateur de recepteur | |
JPH09247570A (ja) | 信号受信システム | |
AU730924B2 (en) | Signal processing system | |
KR100587279B1 (ko) | 디지털 방송 수신기의 타이밍 보정장치 및 방법 | |
CA2330645A1 (en) | An apparatus and method for demodulating signals | |
JP3278669B2 (ja) | 受信機の復調装置 | |
JPH09247571A (ja) | 信号受信機 | |
TW302585B (ja) | ||
Aspel | Adaptive multilevel quadrature amplitude radio implementation in programmable logic | |
JP4378851B2 (ja) | キャリア同期方法及び回路、並びに信号処理装置 | |
Bramwell | The use of digital signal processing in satellite communication | |
JP4438187B2 (ja) | キャリア同期方法及び回路、並びに信号処理装置 | |
JP4483063B2 (ja) | キャリア同期方法及び回路、並びに信号処理装置 |