JPH0896633A - Nb▲3▼Sn超電導線の製造方法 - Google Patents

Nb▲3▼Sn超電導線の製造方法

Info

Publication number
JPH0896633A
JPH0896633A JP6234665A JP23466594A JPH0896633A JP H0896633 A JPH0896633 A JP H0896633A JP 6234665 A JP6234665 A JP 6234665A JP 23466594 A JP23466594 A JP 23466594A JP H0896633 A JPH0896633 A JP H0896633A
Authority
JP
Japan
Prior art keywords
wire
composite
pure
layer
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6234665A
Other languages
English (en)
Other versions
JP3124448B2 (ja
Inventor
Takeshi Endo
壮 遠藤
Itaru Inoue
至 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP06234665A priority Critical patent/JP3124448B2/ja
Priority to DE19612274A priority patent/DE19612274B4/de
Publication of JPH0896633A publication Critical patent/JPH0896633A/ja
Application granted granted Critical
Publication of JP3124448B2 publication Critical patent/JP3124448B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【構成】 Cu−Sn合金マトリックス2とNb芯材1
とが複合し、外周に断面面積占積比が0.03〜0.1
である純Cu層3が配された1次複合ビレット4に延伸
加工を施して複合素線を製造し、更にこの複合素線を用
いて組み立てた2次複合ビレットに延伸加工を施して所
定の複合線材を製造し、この複合線材に所定の拡散熱処
理を施すNb3 Sn超電導線の製造方法。 【効果】 優れた加工性が実現する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は化合物超電導線特にNb
3 Sn超電導線の製造方法に関する。
【0002】
【従来の技術】従来、Nb3 Sn超電導線に代表される
Nb3 Sn、Nb3 Al、V3 Ga等のA3 B型化合物
超電導体(A15型化合物超電導体とも称される)は金
属間化合物であり加工が極めて困難であるため、超電導
線材を製造するには、上記A3B型化合物超電導体を構
成する高融点金属Aと低融点金属Bとからなる複合ビレ
ットに延伸加工を施して複合線材とし、次いで、前記高
融点金属Aの内部に前記低融点金属Bを拡散、反応させ
る拡散熱処理により上記A3 B型化合物超電導体を反応
生成させる製造方法が採用されている。
【0003】Nb3 Sn超電導線の製造方法としてブロ
ンズ法が知られている。以下にブロンズ法によるNb3
Sn超電導線の製造方法について説明する。まずマトリ
ックスとしてCu−Sn合金(以下ブロンズと称する)
製の棒に穴をあけ、その中にNb芯材を挿入して複合ビ
レットを形成し、次いで押出加工、伸線加工等の延伸加
工を経て複合線材が製造される。或いは前記複合ビレッ
トを1次複合ビレットとして、この1次複合ビレットを
ブロンズ管や純Cu管等の最外シース内に充填して2次
複合ビレット(最終複合ビレット)を形成し、次いで延
伸加工を施し複合線材とする。なおこの複合線材を素線
とし、更に高次の複合ビレットを形成することもある。
素線の形状としては、複合ビレットの組み立てにおいて
充填率を高めるために断面6角形であることが望まし
い。この場合、伸線加工にて所定の径の複合素線を製造
した後、引き抜き加工やロール加工等にて断面を円から
略6角形に変形させる。
【0004】さて上記複合線材は、マトリックス金属中
にNbフィラメントが埋め込まれた構造になっており、
この複合線材に550℃〜700℃程度に加熱する拡散
熱処理を施せばブロンズ中のSnがNbフィラメントの
内部に拡散、反応し、Nb3Snが生成する。こうして
Nbフィラメントが超電導フィラメントであるNb3
nフィラメントになり、多芯超電導線が得られるのであ
る。また前記複合線材の外周にSnを被覆してから、拡
散熱処理を施す、所謂、外部拡散法と呼ばれる方法もあ
る。
【0005】ところで超電導線の安定性を高める安定化
金属は、超電導線の中心部分や最外部分に配置されるの
が通常である。また製造方法としては、上記最終複合ビ
レットを組み立てる際、最外シースに純Cu管を用いれ
ば、それが最外部分に配置された安定化金属になる。或
いは例えば複合ビレットの中央に純Cu棒等を配置すれ
ば、それが超電導線の中心部分に配置された安定化金属
となる。なお、前記純Cu管或いは純Cu棒とブロンズ
との界面にNbバリア材やTaバリア材を配置すること
で、ブロンズ中のSnが安定化金属中に拡散することを
防止する方法が一般に採用されている。
【0006】中心部分に安定化金属を配置した超電導線
は、例えば超電導マグネット用に使用される超電導線に
よく用いられる。これは超電導線同士の端部を超電導接
続する必要性から、Nb3 Snフィラメントを露出させ
る必要があり、最外に安定化金属が配された超電導線の
場合、前記Nbバリア材やTaバリア材の存在が、Nb
3 Snフィラメントを露出させる作業上、邪魔になるか
らである。
【0007】
【発明が解決しようとする課題】超電導線の製造に用い
られるブロンズ中のCu−Sn化合物(α相中に散在す
るα+δ相)は延性が殆どなく、冷間加工において割れ
やクラックを生じやすい。もちろんSn濃度の低いブロ
ンズを用いれば加工性の低下はある程度さけられるが、
一方では超電導体であるNb3 Snの生成に必要なSn
の供給が不足するため高い特性の超電導線が得られなく
なる。
【0008】近年ではSnが14wt%以上含有される
ブロンズが用いられることが多く、このようなSn濃度
が高いブロンズを用いると、前記Cu−Sn化合物が多
く含まれるので加工性が悪く、伸線加工等において断線
等が発生しやすい、という問題があった。そこで加工性
の向上が求められていた。
【0009】
【課題を解決するための手段】本発明はかかる状況に鑑
み、鋭意研究を行った結果なされたもので、その目的
は、Sn濃度が高いブロンズを用いても優れた加工性を
実現できるNb3 Sn超電導線の製造方法を提供するこ
とにある。
【0010】即ち、Cu−Sn合金マトリックス中に1
本または複数本のNb芯材が配置されてなり、外周に断
面面積占積比が0.03〜0.1である純Cu層が形成
された複合ビレットに延伸加工を施して所定の複合線材
を製造した後、前記複合線材に拡散熱処理を施してNb
3 Snを生成させることを特徴とするNb3 Sn超電導
線の製造方法である。
【0011】またCu−Sn合金マトリックス中に1本
または複数本のNb芯材が配置されてなり、外周に断面
面積占積比が0.03〜0.1である純Cu層が形成さ
れた1次複合ビレットに、押出加工と伸線加工を施すと
共に前記伸線加工において当該純Cu層を除去して所定
の複合素線を製造し、前記複合素線を複数本集合してな
した2次複合ビレットに延伸加工を施して所定の複合線
材を製造した後、前記複合線材に拡散熱処理を施してN
3 Snを生成させることを特徴とするNb3Sn超電
導線の製造方法を提供する。
【0012】
【作用】本願発明では、当該複合ビレットの外周に加工
性の良い純Cu層を設けているので、伸線加工において
被加工物である線材の表面に割れ、クラック等が生じに
くい。このため線材自体の破断の発生が抑制でき、加工
性よく複合線材若しくは複合素線が製造できる。前述の
加工性の向上はSn濃度の低いブロンズを用いた場合に
も効果が発現するが、特にSn10wt%以上を含有す
るブロンズを用いた場合にその効果が著しい。
【0013】また前記純Cu層は、当該複合ビレットの
断面積に対する断面面積占積比が0.03〜0.1であ
ることが望ましい。0.03未満では伸線加工において
加工性の悪いブロンズが露出する場合がある。一方0.
1を越えると、その効果が飽和する上に、必要以上に複
合ビレットの径を大きくするため、押出機の制約等、設
備上の観点から好ましくない。また請求項1記載の発明
においては、当該純Cu層を伸線加工等において除去す
ることは必須ではないが、残存する純Cu層は製造され
た超電導線のNb3 Snフィラメントの占積率を低下さ
せる原因になるので、好ましくは当該純Cu層は伸線加
工等において除去することが望ましい。
【0014】請求項2記載の発明では伸線加工の途中に
おいて純Cu層を除去している。当該純Cu層を残した
素線を最外シースに充填して2次複合ビレットを組み立
てると、前記2次複合ビレット中のNb芯材の占積率が
低下するので望ましくない。また拡散熱処理において、
ブロンズ中のSnはNb芯材中に拡散すると同時に純C
u層にも拡散するので、Nb3 Snを生成させるための
Snの供給が低下してしまう。更にこの純Cu層は完全
に除去することが望ましい。一部残存していると、伸線
加工等において不均一な応力が素線に掛かる恐れがあ
り、割れやクラック発生の原因になることがあるからで
ある。
【0015】ところで伸線加工によって純Cu層を除去
するに際し、一回の伸線加工によって前記純Cu層を完
全に除去してもよいが、複数回の伸線加工によって徐々
に除去してもよい。この場合、最終の伸線加工まで純C
u層を残存させておくことが加工性の観点で望ましい。
つまりあまり早い段階で純Cu層を除去すると、次工程
以降の伸線加工で加工性が悪くなることがあるからであ
る。また伸線加工の途中において前記純Cu層を除去す
る方法としては、従来公知の皮剥き伸線加工等が適用で
きる。
【0016】
【実施例】
本発明例1 次に図1を参照しながら本発明を詳細に説明する。S
n:14wt%、Ti:0.2wt%、残部実質的にC
uからなるブロンズ丸棒(長さ600mm、径は230
mm)に径25mmの貫通穴を概ね等間隔に19箇所設
けて、次いで切削して表1に示す外径のブロンズ管を作
製した。上記貫通穴に径24.5mmのNb棒を挿入し
てから外径210mmで、内径が表1に示す値の無酸素
銅管に上記ブロンズ管を挿入し、両端に図示しない無酸
素銅円板を溶接し、内部を真空排気した後、密封した。
更に熱間静水圧処理を施してから外径を200mmに切
削加工した。こうして得られた図1に示す1次複合ビレ
ット4において、上記Nb棒がNb芯材1に、上記ブロ
ンズ管がCu−Sn合金マトリックス2に、上記無酸素
銅管が純Cu層3に相当する。また純Cu層3の内径と
1次複合ビレット4の断面積に対する断面面積占積比を
表1に記しておく。この1次複合ビレット4に650℃
で径40mmに押出加工し、次に伸線加工を繰り返して
径2.0mmの複合素線を得た。この際、純Cu層3は
皮剥き伸線加工によって完全に除去した。このようにし
て製造された複合素線を更に伸線加工によって対辺距離
1.7mmの6角形状に成形し6角素線を製造した。こ
の6角素線を用いて更に高次の複合ビレット(2次複合
ビレット)を組み立て、延伸加工等を経て超電導線を製
造した。
【0017】上述の2次複合ビレットを組み立てる前
に、複合素線の製造における加工性の評価として、伸線
加工中における外観目視観察と、製造した複合素線の渦
電流探傷検査とにより素線表面の割れの有無を調査し
た。表面の割れが著しい複合素線は不良品として分類す
る。不良品でない複合素線の製造歩留りとして、当初の
複合ビレット4の組み立てに用いたNbの量を基準に計
算した。更に得られた複合素線の収穫量(重さ)を測定
した。以上の結果を表1に示す。
【0018】比較例1および従来例1 また従来例として、本発明例1と同様のブロンズ丸棒に
径25mmの貫通穴を概ね等間隔に19箇所設けて、次
いで切削して作製した外径210mmのブロンズ管を用
いて、外周に無酸素銅管を被せなかった以外は本発明例
1と同様にして複合素線を作製し、更にこうして得られ
た複合素線を用い、本発明例1と同様に更に高次の複合
ビレット(2次複合ビレット)を組み立て、延伸加工等
を経て超電導線を製造した。また比較例は純Cu層の断
面面積占積比が表1に記す値である以外は本発明例1と
同様である。これら従来例および比較例の素線表面の割
れの有無、製造歩留り、得られた複合素線の収穫量を表
1に併記する。
【0019】表1から明らかなように、本発明例No
1、2は従来例No3に比べ表面の割れが少なくまた複
合素線の製造歩留りも高い等、加工性が良好であること
が判る。また純Cu層の断面面積占積比が0.0268
である比較例No4は加工性および製造歩留りに劣るも
のであった。一方純Cu層の断面面積占積比が0.11
83である比較例No5は加工性は良好であるものの、
製造歩留りが低くなった。以上より、本発明例における
複合素線は従来例や比較例に比べ加工性、製造歩留りが
良好であるので、本発明によれば超電導線の製造コスト
を低減させることが可能になる。
【0020】
【表1】 (注)○:割れが認められず ×割れ多数が認められる
【0021】本発明例2 図2を参照しながら説明する。長さ600mm、内径1
80mmで外径は表2に示す値のブロンズ管6(Sn:
14wt%、Ti:0.2wt%、残部実質的にCuか
らなる)に表2に示す内径で外径が220mmの無酸素
銅管7を被せた。次に、上記した従来例No3の複合素
線(2.0mmの丸線)に更に伸線加工を施して対辺距
離1.7mmの6角素線5を製造した。そして6角素線
5を図示するようにブロンズ管6の中に充填した。ここ
でブロンズ管6の中央部分には厚さ1.0mmのNb箔
を巻き付けた径90mmの無酸素銅棒(図示しない)を
配置した。また簡明を期するために6角素線5は実際よ
り大きめに描いてある。次いで両端に図示しない無酸素
銅円板を溶接して内部を真空排気した後密封してから熱
間静水圧処理を施し、更に外径を200mmに切削加工
した。こうして得られた2次複合ビレットの外周には上
記無酸素銅管に相当する純Cu層が存在しているが、そ
の純Cu層の内径と、この純Cu層の2次複合ビレット
の断面積に対する断面面積占積比とを表2に記してお
く。次にこの2次複合ビレットを650℃で押出加工し
て径40mmにし、更に伸線加工を繰り返して最終的に
0.8mmの複合線材を得た。伸線加工の途中において
革剥き伸線加工により上記純Cu層を完全に除去した。
伸線加工中における外観目視と複合素線の渦電流探傷検
査による素線表面の割れの調査結果、2次複合ビレット
の組み立て段階でのNbの量を基準にして計算した製造
歩留り、得られた超電導線の収穫量(重さ)を表2に示
す。
【0022】従来例2および比較例2 また従来例として本発明例2における無酸素銅管7を被
せたブロンズ管6に替わり、長さ600mm、内径18
0mm、外径220mmのブロンズ管(Sn:14wt
%、Ti:0.2wt%、残部実質的にCuからなる)
を用いた以外は本発明例2と同様にして2次複合ビレッ
トを作製し、そして以下、本発明例と同様に複合線材を
作製した。また比較例は純Cu層の断面面積占積比が表
2に記す値である以外は本発明例2と同様である。これ
ら従来例および比較例の表面の割れの調査結果、製造歩
留り、超電導線の収穫量を表2に併記する。
【0023】表2から明らかなように、本発明例No
6、7は従来例No8に比べ表面の割れが少なくまた製
造歩留りが高い等、加工性が良好であることが判る。ま
た純Cu層の断面面積占積比が0.0258である比較
例No9は素線表面の割れが多く加工性および製造歩留
りに劣るものであった。一方純Cu層の断面面積占積比
が0.1089である比較例No10は加工性は良好で
あるものの、製造歩留りが低くなった。
【0024】
【表2】 (注)○:割れが認められず ×割れ多数が認められる
【0025】
【発明の効果】以上詳述したように、本発明のNb3
n超電導線の製造方法は、加工性に優れ、高い歩留りを
実現する等、Nb3 Sn超電導線の高品質化を促すと共
に生産性を向上させるもので産業上著しい貢献を奏する
ものである。
【図面の簡単な説明】
【図1】本発明の実施例に係る1次複合ビレットを示す
説明図である。
【図2】本発明の実施例に係る2次複合ビレットの組み
立て状況を示す説明図である。
【符号の説明】
1 Nb芯材 2 Cu−Sn合金マトリックス 3 純Cu層 4 1次複合ビレット 5 6角素線 6 ブロンズ管 7 無酸素銅管

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 Cu−Sn合金マトリックス中に1本ま
    たは複数本のNb芯材が配置されてなり、外周に断面面
    積占積比が0.03〜0.1である純Cu層が形成され
    た複合ビレットに延伸加工を施して所定の複合線材を製
    造した後、前記複合線材に拡散熱処理を施してNb3
    nを生成させることを特徴とするNb 3 Sn超電導線の
    製造方法。
  2. 【請求項2】 Cu−Sn合金マトリックス中に1本ま
    たは複数本のNb芯材が配置されてなり、外周に断面面
    積占積比が0.03〜0.1である純Cu層が形成され
    た1次複合ビレットに、押出加工と伸線加工を施すと共
    に前記伸線加工において当該純Cu層を除去して所定の
    複合素線を製造し、前記複合素線を複数本集合してなし
    た2次複合ビレットに延伸加工を施して所定の複合線材
    を製造した後、前記複合線材に拡散熱処理を施してNb
    3 Snを生成させることを特徴とするNb3 Sn超電導
    線の製造方法。
JP06234665A 1994-09-29 1994-09-29 Nb▲3▼Sn超電導線の製造方法 Expired - Fee Related JP3124448B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06234665A JP3124448B2 (ja) 1994-09-29 1994-09-29 Nb▲3▼Sn超電導線の製造方法
DE19612274A DE19612274B4 (de) 1994-09-29 1996-03-28 Verfahren zur Herstellung eines supraleitfähigen Drahtes mit Nb3Sn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP06234665A JP3124448B2 (ja) 1994-09-29 1994-09-29 Nb▲3▼Sn超電導線の製造方法
DE19612274A DE19612274B4 (de) 1994-09-29 1996-03-28 Verfahren zur Herstellung eines supraleitfähigen Drahtes mit Nb3Sn

Publications (2)

Publication Number Publication Date
JPH0896633A true JPH0896633A (ja) 1996-04-12
JP3124448B2 JP3124448B2 (ja) 2001-01-15

Family

ID=26024214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06234665A Expired - Fee Related JP3124448B2 (ja) 1994-09-29 1994-09-29 Nb▲3▼Sn超電導線の製造方法

Country Status (2)

Country Link
JP (1) JP3124448B2 (ja)
DE (1) DE19612274B4 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223803A (zh) * 2018-11-24 2019-09-10 西部超导材料科技股份有限公司 一种Nb3Sn超导线材用多芯复合锭的制备方法
CN110556214A (zh) * 2018-06-04 2019-12-10 西部超导材料科技股份有限公司 一种Nb3Sn股线预热处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078501B2 (ja) * 2014-07-18 2017-02-08 ジャパンスーパーコンダクタテクノロジー株式会社 Nb3Sn超電導線材製造用前駆体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148129A (en) * 1976-11-01 1979-04-10 Airco, Inc. Aluminum-stabilized multifilamentary superconductor and method of its manufacture
DE2835974B2 (de) * 1977-09-12 1981-07-09 Airco, Inc., Montvale, N.J. Verfahren zur Herstellung eines zusammengesetzten vieladrigen Supraleiters
US4414428A (en) * 1979-05-29 1983-11-08 Teledyne Industries, Inc. Expanded metal containing wires and filaments
US4533703A (en) * 1983-10-13 1985-08-06 Ford Motor Company Flexible basecoat/two component clearcoat coating composition
US5174830A (en) * 1989-06-08 1992-12-29 Composite Materials Technology, Inc. Superconductor and process for manufacture
DE4208678C2 (de) * 1992-03-18 2003-04-30 Vacuumschmelze Gmbh Verfahren zur Herstellung eines A¶3¶B-Supraleiters nach der Bronzetechnik

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556214A (zh) * 2018-06-04 2019-12-10 西部超导材料科技股份有限公司 一种Nb3Sn股线预热处理方法
CN110223803A (zh) * 2018-11-24 2019-09-10 西部超导材料科技股份有限公司 一种Nb3Sn超导线材用多芯复合锭的制备方法

Also Published As

Publication number Publication date
DE19612274A1 (de) 1997-10-02
DE19612274B4 (de) 2004-07-08
JP3124448B2 (ja) 2001-01-15

Similar Documents

Publication Publication Date Title
JP3124448B2 (ja) Nb▲3▼Sn超電導線の製造方法
JP3063025B2 (ja) Nb3Sn超電導線およびその製造方法
JP3510351B2 (ja) A3 b型化合物超電導線の製造方法
JPH04277409A (ja) 化合物超電導線およびその製造方法
JPH065130A (ja) 複合多芯NbTi超電導線
JP3454550B2 (ja) Nb3 Sn超電導線の製造方法
JP2993986B2 (ja) アルミニウム安定化超電導線の製造方法
JPH0313686B2 (ja)
JPH0381915A (ja) 複合超電導体の製造方法
JPH09171727A (ja) 金属系超電導線の製造方法
JPS6358715A (ja) Nb↓3Sn多心超電導線の製造方法
JPH08339728A (ja) Nb▲3▼Sn系超電導線材の製造方法
JPH08167336A (ja) Nb3 Sn超電導線の製造方法
JPH07282650A (ja) 化合物超電導導体
JPH0512939A (ja) アルミニウム複合超電導線の製造方法
JPH09120722A (ja) 金属系超電導線材の製造方法
JPH04329221A (ja) 超電導線の製造方法
JPS62240751A (ja) 内部拡散法によるNb↓3Sn超電導線の製造方法
JPH09204825A (ja) Nb3 Al系化合物超電導体、及びNb3 Al系化合物超電導線材
JPH0240809A (ja) Nb↓3Sn多心超電導線の製造方法
JPH01304617A (ja) 高残留抵抗比を有するNb↓3Sn多心超電導線の製造方法
JPH08138469A (ja) 超電導素材の製造方法及びNb−Al系超電導線
JPS6358714A (ja) Nb↓3Sn多心超電導線の製造方法
JPH076641A (ja) 超電導線の製造方法
JPH03280307A (ja) 多芯超電導線の製造方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees