JPH0785022B2 - 容量性センサの温度依存ドリフトおよび温度非依存ドリフト並びに感度補償回路配置 - Google Patents

容量性センサの温度依存ドリフトおよび温度非依存ドリフト並びに感度補償回路配置

Info

Publication number
JPH0785022B2
JPH0785022B2 JP62150332A JP15033287A JPH0785022B2 JP H0785022 B2 JPH0785022 B2 JP H0785022B2 JP 62150332 A JP62150332 A JP 62150332A JP 15033287 A JP15033287 A JP 15033287A JP H0785022 B2 JPH0785022 B2 JP H0785022B2
Authority
JP
Japan
Prior art keywords
input terminal
temperature
resistor
output
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62150332A
Other languages
English (en)
Other versions
JPS6340812A (ja
Inventor
ユールゲン・コルドツ
Original Assignee
アンヴェク メス―ウント リーガルテクニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンヴェク メス―ウント リーガルテクニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー filed Critical アンヴェク メス―ウント リーガルテクニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー
Publication of JPS6340812A publication Critical patent/JPS6340812A/ja
Publication of JPH0785022B2 publication Critical patent/JPH0785022B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/032Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure affecting incoming signal, e.g. by averaging; gating undesired signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means

Description

【発明の詳細な説明】 本発明は容量に比例する持続幅を有し交互に現れるパル
スを発生する少なくとも1個の発振器に接続されて2個
の測定コンデンサと、個別のコンデンサからのパルスか
ら、その持続幅よりも短い持続幅の基準パルスを発生す
る回路と、個別のコンデンサに関連するパルス幅復調器
とを具え、このパルス幅復調器によって、前記基準パル
スの持続幅に依存する第1周期tref中第1基準信号をア
ップスロープ積分し、基準パルスの終了後の第2周期中
第2基準信号をダウンスロープ積分するようにして、供
給されたパルスからコンデンサの容量を関連する逆数値
に相当する直流信号を形成し、ほかにパルス幅復調器の
2つの出力信号間に差分を形成する出力減算部材を具え
る容量性センサの温度依存ドリフトおよび温度非依存ド
リフト並びに感度補償回路配置に関するものである。
この種容量性センサの評価回路はドイツ国特許P 352841
6.1号公報に記載されている。側ちこの種の評価回路
は、例えば容量性差圧測定装置を用い、差圧センサに含
まれる2つの測定コンデンサの温度に依存する容量変化
を評価することによって差圧を測定するために用いる。
しかし、この評価回路によれば、温度変化に依存し、零
点および感度がセンサに依存してドリフトするようにな
る。
原理的には、センサの容量C1およびC2を積分器により交
流電圧に変換し、その振幅が1/C1および1/C2に夫々比例
するようにして容量性差圧センサの零点および感度を補
償することはDE−OS3340834号公報から既知である。こ
の既知の回路配置ではセンサの温度に依存する感度は、
これら交流電圧と他の積分器からの基準交流電圧とを加
算し、積分器を駆動する発振器にこの加算信号を帰還す
ることによって補償している。又、零点は積分器の電圧
を加減算することによって補正し得るようにしている。
しかしこの既知の回路配置は、センサの情報が電気信号
の振幅に依存する場合にのみ動作する。従ってセンサの
情報が本発明の評価回路の場合のようにパルス幅又は周
波数で符号化される場合には、関連えする回路の動作が
完全に相違するため、かかる補償方法は適用できない。
本発明の目的は、容量性差圧センサにより供給されるパ
ルス幅変調され、且つ適切に変換された信号を直流電圧
に変換してセンサによるドリフトを補償し得るようにし
たドリフトおよび感度補償回路配置を提供せんとすにあ
る。
本発明は容量に比例する持続幅を有し交互に現れるパル
スを発生する少なくとも1個の発振器に接続された2個
の測定コンデンサと、個別のコンデンサからのパルスか
ら、その持続幅より短い持続幅の基準パルスを発生する
回路と、別個のコンデンサに関連するパルス幅復調器と
を具え、このパルス幅復調器によって、前記基準パルス
の持続幅に依存する第1周期tref中第1基準信号をアッ
プスロープ積分し、基準パルスの終了後の第2周期中第
2基準信号をダウンスロープ積分するようにして、供給
されたパルスからコンデンサの容量を関連する逆数値に
相当する直流信号を形成し、ほかにパルス幅復調器の2
つの出力信号間に差分を形成する出力減算部材を具える
容量性センサの温度依存ドリフトおよび温度非依存ドリ
フト並びに感度補償回路配置において、パルス幅復調器
の一方の出力端子を加算/減算部材の別個の入力端子に
接続し、加算/減算部材の出力端子によって第1基準信
号が供給されるコントローラに入力直流信号を供給し、
加算/減算部材の他の入力端子および出力減算部材の他
の入力端子に接続されたコントローラの出力端子の直流
信号を再調整して加算/減算部材の出力端子のコントロ
ーラ入力直流信号が基準信号に等しくなるようにしたこ
とを特徴とする。
この種回路配置によって、パルス幅変調されたセンサの
信号を直流電圧信号に変換してセンサの温度に依存する
誤差を補償し得ると共に差圧に依存する出力信号を直線
性とすることができる。
本発明の好適な例ではパルス幅復調器の入力回路には別
個の電気的可制御スイッチを設け、これらスイッチによ
って、発振器の出力パルスのパルス期間に従って毎回パ
ルス幅復調器の充電コンデンサにコントローラの出力直
流電圧を供給してこの充電コンデンサを周期tref中充電
し、且つ周期trefの終了後充電コンデンサに零電位を供
給してこのコンデンサを放し得るようにする。
又、コントローラの出力端子とスイッチとの間の接続路
にリセット接点が零電位点に接続された他の電気的可制
御スイッチを設け、これによってその適切な切換によ
り、発振器からのパルス信号を用い、関連する充電コン
デンサの充電期間および放電期間を決め得るようにす
る。これがため、原理的には電気的可制御スイッチその
他のスイッチを電子スイッチとして構成することができ
る。
トリミング(微調整)のためにコントローラを滅勢し得
るようにするために、コントローラをスイッチに接続
し、このスイッチを経てコントローラをスイッチオンお
よびオフし、従って、コントローラの出力電圧Uoを一定
値に保持し得るようにする。これがため、2種類の温度
に対し、関連するパルス幅復調器の出力電圧をセンサの
無負荷状態および負荷状態で測定することができ、従っ
てこれら出力電圧のセンサによる温度依存性を考慮する
ことができる。
又、本発明の好適な例では、パルス幅復調器は、充電コ
ンデンサを有し、3個の順次に接続されたフィルタ素子
より成る低域通過フィルタと、高入力抵抗を有し、非反
転型演算増幅器より成る未結合増幅器とを具えるように
し、従って高オーミック入力抵抗によって充電コンデン
サを未結合増幅器を経て放電し得ないようにする。
更に、加算/演算部材は、非反転入力端子および第1抵
抗を経て零電位点に接続された反転入力端子を有する演
算増幅器と、第2抵抗および第3抵抗とを具え、これら
抵抗の相互接続端によって加算/減算部材の一方の入力
端子を構成し、これら抵抗の他側端の一方を演算増幅器
の非反転入力端子に接続し、他方を反転入力端子に接続
し、ほかに第4抵抗および第5抵抗を具え、その相互接
続端によって加算/減算部材の他方の入力端子を構成
し、これら抵抗の他側端の一方を演算増幅器の非反転入
力端子に接続し、他方を反転入力端子に接続し、演算増
幅器の出力端子によって加算/減算部材の出力端子を構
成し、演算増幅器は、その非反転入力端子を抵抗を経て
零電位点に接続し、反転入力端子を抵抗を経てその出力
端子に接続し得るようにする。従って、抵抗比を適切に
選定することによって係数を加算/減算部材で調整し得
るようにし、これにより温度に依存しない零点シフトを
補正し、不所望なドリフトを補償するための温度に依存
する零点シフトを生ぜしめ、最終的に温度に依存する感
度を所望の如く補正し得るようにする。
本発明の更に他の好適な例では出力減算部材は、反転入
力端子および非反転入力端子を有する演算増幅器と、第
1抵抗および第2抵抗とを具え、これら抵抗の相互接続
端を演算増幅器の非反転入力端子に接続し、第1抵抗の
他側端によって出力減算部材の第1入力端子を構成し、
第2抵抗の他側端によって他の入力端子を構成し、ほか
に第3抵抗および第4抵抗を具え、これら抵抗の相互接
続端を演算増幅器の反転入力端子に接続し、第3抵抗の
他側端によって出力減算部材の第2入力端子を構成し、
第4抵抗の他側端によっても出力減算部材の他の入力端
子を構成し、第2抵抗および第4抵抗の他側端によって
も他の入力端子を交互に構成し、且つこの他側端を零電
位点に接続し、演算増幅器はその非反転入力端子を抵抗
を経て零電位点に接続し、反転入力端子を抵抗を経てそ
の出力端子に接続し得るようにする。
本発明の他の好適な例ではコントローラには比較器とし
て作動する演算増幅器を設け、その非反転入力端子をコ
ントローラの入力定直流電圧を発生する基準電圧発生器
の出力端子に接続し、反転入力端子を、入力抵抗を経て
コントローラの他の入力直流電圧を供給する加算/減算
部材の出力端子に接続すると共にコンデンサを経てコン
トローラの出力端子を構成する出力端子に接続するよう
にする。
又、コントローラの入力定直流電圧を発生する基準電圧
発生器を、並列接続のツェナーダイオードおよびコンデ
ンサにより構成し、その一端を零電位点に接続し、他端
により基準電圧発生器の出力端子を構成し、これによっ
て、抵抗を経て供給される供給電圧から予定の定直流電
圧を取出し得るようにする。しかし、コントローラの入
力定直流電圧を発生する回路は、構成が簡単であるた
め、変動供給電圧から基準定直流電圧を取出す必要があ
る場合には所定の目的に対し集積化された電圧コントロ
ーラによって置換することができる。
図面につき本発明を説明する。
第1図に示す容量性センサの評価回路は第1および第2
単安定マルチバイブレータ1,2より成る発振器を具え
る。このマルチバイブレータ1,2をリングとして接続す
る。即ち一方のマルチバイブレータの出力側を他方のマ
ルチバイブレータの反転入力側に接続する。測定コンデ
ンサイ3,4をマルチバイブレータ1,2に夫々接続して単安
定マルチバイブレータ1,2により持続幅が測定コンデン
サ3,4の容量に比例するパルスを発生させるようにす
る。又、単安定マルチバイブレータ1,2の出力側を第2
図につき後述するパルス幅復調器11および12に接続し、
これら復調器によってマルチバイブレータにより供給さ
れるパルスからその持続幅の逆数に等しい値の直流電圧
を発生し得るようにする。
又、第1および第2単安定マルチバイブレータ1,2の出
力側には、NORゲート5の2個の入力端子を夫々整流ダ
イオード6,7および微分部材8,9を経て接続する。NORゲ
ート5の出力端子を第3単安定マルチバイブレータ10の
反転入力端子に接続する。
単安定マルチバイブレータ10をスイッチオンする時間周
期を単安定マルチバイブレータ1,2のスイッチオン時間
周期より短くして、マルチバイブレータ10をNORゲート
5を経て単安定マルチバイブレータ1および2に対し2
倍の周波数でサンプルする(τ1およびτrefが第
1,第2および第3マルチバイブレータ1,2,10の出力信号
を示す第3図のパルス波形参照)。
信号τおよびτの幅を、センサによりピックアップ
される物理量の目安とする。補助信号τrefはパルス幅
復調器11,12(第2図)により関連する直流電圧を発生
させるために必要である。
容量性差圧センサの変換回路によってパルス幅変調され
た夫々C1およびC2に比例するセンサの信号を、夫々1/C1
および1/C2に比例する直流電圧に変換する。この際、補
償を行わない場合にはその評価式は次に示すようにな
る。
Ua1/C1−1/C2 この出力信号は、温度非依存性零点シフトおよび温度依
存性零点シフトを有する。又、感度も温度依存性とな
る。これらの影響を除去するために次に示す信号をも評
価する。
Us1/C1+1/C2 この信号はセンサの差圧動作には依存しないで温度に強
く依存するようになる。温度依存性零点シフトを補正す
るためには温度信号Usを一定の係数Kaにより重み付け
し、次いで信号Uaから減算する。この係数Kaは、出力信
号Uaのドリフトおよび温度信号Usのドリフトが互いに打
消されるように選定する。温度非依存性零点シフトは一
定な信号を減算することにより補正する。温度依存性感
度は、関連する係数により重み付けされた温度依存性信
号Usにより信号Uaを除算することによって補正する。例
えば信号Uaの温度の影響が一定の差圧で増大する場合に
は重み付けされた温度依存性信号Usも増大する。しか
し、これら両信号の商は一定に保持されたままである。
本発明回路配置の基本構成および作動を第2図のブロッ
ク回路図および第3図のパルス波形図につき以下説明す
る。第1図に示す容量性差圧センサにより供給される信
号τおよびτを方形波信号とする。これらパルスの
幅はセンサのコンデンサC1およびC2に夫々比例される。
又、第一図に示す回路によってパルス幅trefが一定のパ
ルス信号trefが発生させる。
又、本発明回路配置には2個のパルス幅復調器11,12を
設け、これら復調器によって、出力減算部材13で減算さ
れた直流電圧を上記パルス信号から取出すようにする。
パルス幅復調器11,12は夫々、電気的可制御スイッチ14,
15、低域通過フィルタ30,31、未結合増幅器32,33によっ
て構成する。これら両パルス幅復調器11,12の構成は同
一とする。スイッチ14,15の2個の入力接点を相互接続
して他の電気的可制御スイッチ28に接続し、その休止接
点を零電位点に接続し、スイッチオン接点をコントロー
ラ16の出力端子27に接続する。コントローラ16の作動は
以下に詳細に説明する。
信号τ1は夫々センサの容量C1およびC2に相当する
パルス幅変調された信号を示す。周期t1中、高レベルの
信号がスイッチ14に存在する。これがため、周期tref
コントローラ16の出力電圧U0はスイッチ28およびスイッ
チ14を経て低域通過フィルタ30に到達する。周期tref
終了後スイッチ28は切換わり、零電位を低域通過フィル
タ30の入力側に供給する。周期t1の終了後、スイッチ14
は開放し、従って電荷を低域通過フィルタ30に存在する
充電コンデンサ17に供給し得ず、しかもこれから取出し
得なくなる。これがため、周期t1中、充電コンデンサ17
は周期trefで充電し、残りの周期で放電する。従ってコ
ンデンサ17の両端間の平均直流電圧は次式で示すように
なる。
U1=(tref/t1)・U0 t1=K′・C1 ここにK′=前の電子装置の変換係数 C1=センサの容量 これがため、次式が得られる。
U1=(tref・1/(K′・C1)・U0 ……(1) 低域通過フィルタ30の後段に設けられた未結合増幅器32
の入力オーミック抵抗を極めて高くして低域通過フィル
タ30の充電抵抗17が未結合増幅器32を経て放電され得な
いようにする。
スイッチ15、充電コンデンサ18を有する低域通過フィル
タ31、および未結合増幅器33より成る他のパルス幅復調
器12の作動はパルス幅復調器11の作動と同一とする。従
って未結合増幅器33の出力側に得られる関連の直流電圧
ほ次式で示すようになる。
U2=(tref・/1(K′・C2)・U0 ……(2) 未結合増幅器32,33の出力端子によって形成されるパル
ス幅復調器11,12の出力端子を出力減算部材13の各入力
端子24,25に夫々接続する。又、パルス幅復調器11,12の
両出力端子を加算/減算部材19の各入力端子20,21に夫
々接続する。出力減算部材13の第3入力端子26および加
算/減算部材19の第3入力端子22をコントローラ16の出
力端子27に接続する。
原理的には、かかる既知の加算/減算部材19の出力端子
23の直流電圧は次式で表わすことができる。
Ur=K3・U0±K4・U1±K5・U2 ……(3) ここにK3,K4およびK5は加算/減算部材19の抵抗によっ
て形成される係数とする。この点を実際の回路配置によ
り以下に詳細に説明する。
加算/減算部材19の出力端子23に発生する電圧Urをコン
トローラ16に供給し、これによりこの電圧Urと、基準電
圧発生器45により発生する定基準電圧Urefとを比較す
る。コントローラ16の出力側には直流電圧U0が発生す
る。このコントローラ16によって直流電圧U0を再調整し
て UR=Urefとなるようにする。これがため、上式(1),
(2)および(3)を用いて次式を得ることができる。
Uref=K3U0±K4・tref・1/(K′・C1)・U0 ±K5・tref・1/(K′・C2)U0 ……(4) および ここにK=tref・/K′ 出力減算部材13も係数を調整自在とすることにより加算
減算部材とすることができる。これがため、出力減算部
材13の出力端子51の出力信号Ua従って回路配置全体の出
力信号は次式で表わすことができる。
Ua=±K0U0+K1U1−K2U2 上式(1),(2)(4)および(5)を用いて次式を
得ることができる。
Ua〜ΔP Uref=基準電圧 K=センサの容量に対する固定変換率 K0−K5=電子的に調整可能な係数 ΔP=センサの差圧 これら係数は、加算減算部材13,19の抵抗比によって得
ることができる。係数K0によって温度比依存性零点シフ
トを補正する。先ず最初、上式の項K1K/C1−K2K/C2はセ
ンサに作用する差圧に比例する。又、一般に、この項に
よって、係数K1=K2の際、温度依存性零点シフトを発生
する。
しかし、係数K1およびK2に僅かに変化させることによ
り、追加の温度ドリフトを発生し、これによって不所望
なドリフトを打消して総合的な補償が得られるようにす
る。又、分母の項、±K4K/C1±K5K/C2も、係数K4=K5
する場合には僅かではあるが温度に依存するようにな
る。この温度依存性は係数K3に対し係数K4およびK5を変
化させて調整することができる。これがため、式(6)
の分子の感度の温度ドリフトを補正することができる。
例えば、式(6)の“分子信号”が温度変化により増大
すると、式(6)の“分母信号”が同程度に再調整され
る。これがため、商、従って出力信号Uaは一定に保持さ
れたままである。
コントローラ16はスイッチ29を具え、これによりコント
ローラ16のスイッチオンおよびオフを行い得るようにす
る。コントローラ16をスイッチ29により滅勢して回路配
置をトリミング(微調整)し得るようにすると、コント
ローラの出力端子27の直流電圧U0は一定に保持されたま
まとなる。従って2種類の異なる温度に対しセンサの無
負荷状態および負荷状態で電圧U1,U2を測定することが
できる。これがため、電圧U1およびU2のセンサに課せら
れた温度に依存する変化を記録することはできる。係数
K0−K5は、数学的な演算によって決めることができる。
これら係数は出力減算部材13および加算/減算部材19の
抵抗の値を適宜定めることによって得られ、これにより
温度に関し、出力信号Uaを補償することができる。
本発明回路配置は、温度補償のほかに、出力信号Uaを直
線化することができる。出力減算部材13の出力信号Ua
通常僅かではあるが非直線性成分を具える。即ちこの出
力信号はセンサに作用する差圧に対し強くではないが比
例して変化する。温度に依存する変化を補正するために
用いる加算/減算部材19の出力信号Urは2個の係数K4
よびK5が等しい場合差圧とは無関係となる。出力信号Ur
の非直線性は係数K4およびK5を僅かに相違するように調
整することによって減少させることができる。これがた
め、加算/減算部材19の出力信号Ur、従ってコントロー
ラ16の出力側の信号U0にこの僅かな差圧の依存性を課す
ようにする。例えば、出力減算部材13の出力信号Uaが差
圧に対し比例しないで増大する場合には、コントローラ
の出力端子27の信号U0を係数K4およびK5により調整して
この信号が差圧の増大に伴って比例的に減少し得るよう
にする。しかし、出力減算部材13の出力信号Uaがコント
ローラの出力端子27の信号U0に直接依存するため、出力
減算部材13の入力端子26および加算/減算部材19の入力
端子22にこの信号をフィードバックすることにより超過
比例的増大を補正することができる。
第2図にブロック図で示す回路配置の特定の群細な回路
の1例を第4図に示す。前述したようにパルス幅復調器
11,12を、電気的可制御スイッチ14,15と、低域通過フィ
ルタ30,31と、高オーミック未結合増幅器32,33とを夫々
直列接続して構成する。スイッチ14,15の入力端子を相
互接続して電気的可制御スイッチ28の出力接点に接続す
る。このスイッチ28は、基準信号τrefおよび により夫々交互に作動する2個の個別のスイッチより成
り、第1図に示す3極スイッチ28と全く同様に作動し得
るようにする。これらの信号τrefおよび は、前述したようにセンサの容量変化から時間変調信号
τおよびτを取出す第1図に示す回路から取出す。
これら時間変調センサ信号τおよびτをスイッチ14
および15に夫々供給し、これにより、スイッチ14,15が
閉成する時間周期を、センサ信号の持続幅の関数として
前述したように決めるようにする。
低域通過フィルタ30,31は既知のように順次接続された
3個のフィルタ部材34,35,36および37,38,39によって夫
々構成する。これらフィルタ部材の各々は、長手方向支
路内の1個の抵抗と、縦方向支路内に設けられ、片側が
零電位点に接続された1個のコンデンサとで構成する。
未結合増幅器32,33は非反転入力端子が低域通過フィル
タ30,31の出力側に接続された演算増幅器40,41により構
成する。演算増幅器40,41の出力端子をその反転入力端
子に帰還接続する。又、演算増幅器40,41を既知のよう
に適切な供給電圧源に接続する。本例では演算増幅器4
0,41の出力端子で構成された未結合増幅器32,33の出力
端子を加算/減算部材19の入力端子20,22に夫々接続す
る。加算/減算部材19は演算増幅器42に接続され抵抗回
路網AR1−AR12によって構成する。この演算増幅器42の
非反転入力端子は、抵抗55を経て零電位点に接続し、且
つ直列接続の2個の抵抗AR1,AR2を経て入力端子20に接
続すると共に直列接続の2個の抵抗AR3,AR4を経て入力
端子22に接続する。演算増幅器42の反転入力端子は、直
列接続の抵抗AR7,AR8を経て入力端子20に接続すると共
に直列接続の抵抗AR9およびAR10を経て入力端子22に接
続する。更に演算増幅器42の反転入力端子を直列接続の
抵抗AR11およびAR12を経て零電位点に接続する。
又、演算増幅器42の非反転入力端子は、直列接続の抵抗
AR5,AR6を経、且つ加算/減算部材19の入力端子21を経
て、本例では演算増幅器44により形成されるコントロー
ラ16の出力端子27に接続する。
更にパルス幅復調器11,12の出力端子、即ち演算増幅器4
0,41の出力端子を出力減算部材13の入力端子24,25に夫
々接続する。この出力減算部材13は抵抗回路網AR13−AR
20および演算増幅器43により構成する。この演算増幅器
43の非反転入力端子を抵抗56を経て零電位点に接続する
と共に直列接続の抵抗AR13およびAR14を経て出力減算部
材13の入力端子24に接続し、演算増幅器42の反転入力端
子を直列抵抗の抵抗AR19およびAR20を経て入力端子25に
接続する。又、演算増幅器43の非反転入力端子を直列接
続の抵抗AR15およびAR16並びに交差スイッチ52を経て出
力減算部材13の他方の入力端子26に接続する。同様に、
演算増幅器43の反転入力端子を直列接続の抵抗AR17およ
びAR18並びに交差スイッチ52を経て出力減算部材13の他
方の入力端子26に接続する。この交差スイッチ52によっ
て、他方の直列接続の抵抗AR17およびAR18を出力減算部
材13の入力端子26に接続する際に直列接続の抵抗AR15お
よびAR16を零電位点に接続するか、或いは直列接続の抵
抗AR15およびAR16を出力減算部材13の入力端子26に接続
する際直列接続の抵抗AR17およびAR18を零電位点に接続
する。これがため、両直列接続抵抗は入力端子26を構成
し得ると共に互いに他方の直列接続抵抗が零電位点に接
続されるようになる。
演算増幅器43の出力端子を抵抗53を経て反転入力端子に
帰還接続する。又、演算増幅器43の出力端子によって回
路配置全体の出力端子51を構成する。
本例では演算増幅器42の出力端子で構成される加算/減
算部材19の出力端子23は、抵抗54を経て演算増幅器42の
反転入力端子に帰還接続すると共に抵抗46を経てコント
ローラ16を構成する演算増幅器44の反転入力端子に接続
する。この演算増幅器44は2種類の入力電圧を比較する
比較器として作動する。演算増幅器44の反転入力端子
は、コンデンサ47を経て、コントローラの出力端子27を
構成する演算増幅器44の出力端子に接続する。演算増幅
器44の非反転入力端子は固基準電圧を発生する基準電圧
発生器45の出力端子に接続する。コントローラの出力端
子27即ち演算増幅器44の出力端子を、出力減算部材13の
入力端子26および加算/減算部材19の入力端子21並びに
スイッチ28のスイッチオン接点に接続する。スイッチ28
は、そのリセット接点を零電位点に接続し、出力接点を
前述したようにスイッチ14,15の第1接点に接続する。
コントローラの定入力電圧を発生する基準電圧発生器45
にはツェナーダイオード48およびコンデンサ49を設け、
これらダイオードおよびコンデンサの各々の一端を零電
位点に接続し、他端を演算増幅器44の非反転入力端子に
接続する。直流電圧を、抵抗50を経てコンデンサン49お
よびツェナーダイオード48の接続点のダイオード陰極側
に供給するため、演算増幅器44の非反転入力端子には定
基準電圧が供給されるようになる。
係数K3,K4およびK5は抵抗AR1−AR12により調整する。係
数K4およびK5は、その符号が正の場合抵抗AR7−AR10が
省略され、符号が負の場合抵抗AR1−AR4が省略される。
これがため、出力減算部材13の出力端子51に温度補償さ
れた出力電圧Uaが得られるようになる。
上述した本発明回路配置によってパルス幅変調されたセ
ンサ信号を直流電圧信号に変換でき、従ってセンサの温
度に依存する誤差を補償し、且つ差圧に依存する出力信
号、即ち出力電圧Uaを直線性とすることができる。
【図面の簡単な説明】
第1図は容量性差圧センサの変換回路を示す基本回路
図、 第2図はドリフト補償を行う本発明回路配置を示すブロ
ック図、 第3図は時間変調された入力信号と発振器から取出した
制御信号との関係を示すパルス波形図、 第4図は第2図に示す回路配置の詳細な接続を示す回路
図である。 1,2,10……単安定マルチバイブレータ 3,4……測定コンデンサ、5……NORゲート 6,7……整流ダイオード、8,9……微分部材 11,12……パルス幅復調器 13……出力減算部材 14,15……電気的可制御スイッチ 16……コントローラ、17,18……充電コンデンサ 19……加算/減算部材 20,21,22,24,25,26……入力端子 23,27,51……出力端子 28……他の電気的可制御スイッチ 29……スイッチ 30,31……低域通過フィルタ 32,33……未結合増幅器 34,35,36,37,38,39……フィルタ素子 40,41,42,43,44……演算増幅器 45……基準電圧発生器 46,50,53,54,55……抵抗 47,49……コンデンサ 48……ツェナーダイオード 51……出力端子、52……スイッチ
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01L 13/06 C G01D 5/24 K

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】容量に比例する持続幅を有し交互に現れる
    パルスを発生する少なくとも1個の発振器に接続された
    2個の測定コンデンサと、個別のコンデンサからのパル
    スから、その持続幅よりも短い持続幅の基準パルスを発
    生する回路と、個別のコンデンサに関連するパルス幅復
    調器とを具え、このパルス幅復調器によって、前記基準
    パルスの持続幅に依存する第1周期tref中第1基準信号
    をアップスロープ積分し、基準パルスの終了後の第2周
    期中第2基準信号をダウンスロープ積分するようにし
    て、供給されたパルスからコンデンサの容量を関連する
    逆数値に相当する直流信号を形成し、ほかにパルス幅復
    調器の2つの出力信号間に差分を形成する出力減算部材
    を具える容量性センサの温度非依存ドリフトおよび温度
    依存ドリフト並びに感度補償回路配置において、パルス
    幅復調器(11,12)の一方の出力端子を加算/減算部材
    (19)の個別の入力端子(20,21)に接続し、加算/減
    算部材の出力端子(23)によって第1基準信号が供給さ
    れるコントローラに入力直流信号(Ur)を供給し、加算
    /減算部材(19)の他の入力端子(22)および出力減算
    部材(13)の他の入力端子(26)に接続されたコントロ
    ーラ出力端子(27)の直流信号(U0)を再調整して加算
    /減算部材(19)の出力端子(23)のコントローラの入
    力直流信号(Ur)が基準信号(Uref)に等しくなるよう
    にしたことを特徴とする容量性センサの温度依存ドリフ
    トおよび温度非依存ドリフト並びに感度補償回路配置。
  2. 【請求項2】パルス幅復調器(11,12)の入力回路には
    個別の電気的可制御スイッチ(14,15)を設け、これら
    スイッチ(τ1)のパルス期間(t1,t2)に従って
    毎回パルス幅復調器(11,12)の充電コンデンサ(17,1
    8)にコントローラの出力直流電圧(U0)を供給してこ
    の充電コンデンサを周期tref中充電し、且つ周期tref
    終了後充電コンデンサに零電位を供給してこのコンデン
    サを放電するようにしたことを特徴とする特許請求の範
    囲第1項記載の容量性センサの温度依存ドリフトおよび
    温度非依存ドリフト並びに感度補償回路配置。
  3. 【請求項3】コントローラの出力端子(27)とスイッチ
    (14,15)との間の接続路にリセット接点が零電位点に
    接続された他の電気的可制御スイッチ(28)を設け、こ
    れによってその適切な切換により、発振器からのパルス
    信号(τref)を用い、関連する充電コンデンサ(17,1
    8)の充電期間trefおよび放電期間を決め得るようにし
    たことを特徴とする特許請求の範囲第2項記載の容量性
    センサの温度依存ドリフトおよび温度非依存ドリフト並
    びに感度補償回路配置。
  4. 【請求項4】コントローラ(16)をスイッチ(29)に接
    続し、このスイッチを経てコントローラ(16)をスイッ
    チオンおよびオフするようにしたことを特徴とする特許
    請求の範囲第2項又は第3項記載の容量性センサの温度
    依存ドリフトおよび温度非依存ドリフト並びに感度補償
    回路配置。
  5. 【請求項5】パルス幅復調器(11,12)は、充電コンデ
    ンサ(17,18)を有し、3個の順次に接続されたフイル
    タ素子(34,35,36;37,38,39)より成る低域通過フイル
    タ(31,31)と、高入力抵抗を有し、非反転型演算増幅
    器(40,41)より成る未結合増幅器(32,33)とを具える
    ことを特徴とする特許請求の範囲第1項ないし第4項の
    何れかの項に記載の容量性センサの温度依存ドリフトお
    よび温度非依存ドリフト並びに感度補償回路配置。
  6. 【請求項6】加算/減算部材(19)は、非反転入力端子
    および第1抵抗(AR11,AR12)を経て零電位点に接続さ
    れた反転入力端子を有する演算増幅器(42)と、第2抵
    抗および第3抵抗(AR1,AR2;AR7,AR8)とを具え、これ
    ら抵抗の相互接続端によって加算/減算部材(19)の一
    方の入力端子(20)を構成し、これら抵抗の他側端の一
    方を演算増幅器(42)の非反転入力端子に接続し、他方
    を反転入力端子に接続し、ほかに第4抵抗および第5抵
    抗(AR3,AR4;AR9,AR10)を具え、その相互接続端によっ
    て加算/減算部材(19)の他方の入力端子(21)を構成
    し、これら抵抗の他側端の一方を演算増幅器(42)の非
    反転入力端子に接続し、他方を反転入力端子に接続し、
    演算増幅器(42)の出力端子によって加算/減算部材の
    出力(23)を構成し、塩酸増幅器(42)は、その非反転
    入力端子を抵抗(55)を経て零電位点に接続し、反転入
    力端子を抵抗(54)を経てその出力端子(23)に接続す
    るようにしたことを特徴とする特許請求の範囲第1項な
    いし第5項の何れかの項に記載の容量性センサの温度非
    依存ドリフトおよび温度依存ドリフト並びに感度補償回
    路配置。
  7. 【請求項7】出力減算部材(13)は、反転入力端子およ
    び非反転入力端子を有する演算増幅器(43)と、第1抵
    抗および第2抵抗(AR13,AR14;AR15,AR16)とを具え、
    これら抵抗の相互接続端を演算増幅器(43)の非反転入
    力端子に接続し、第1抵抗(AR13,AR14)の他側端によ
    って出力減算部材(13)の第1入力端子(24)を構成
    し、第2抵抗(AR15,AR16)の他側端によって他の入力
    端子(26)を構成し、ほかに第3抵抗および第4抵抗
    (AR19,AR20;AR17,AR18)を具え、これら抵抗の相互接
    続端を演算増幅器(43)の反転入力端子に接続し、第3
    抵抗(AR19,AR20)の他側端によって出力減算部材(1
    3)の第2入力端子(25)を構成し、第4抵抗(AR17,AR
    18)の他側端によっても出力減算部材(13)の他の入力
    端子(26)を構成し、第2抵抗および第4抵抗(AR15,A
    R16;AR17,AR18)の他側端によっても他の入力端子(2
    6)を交互に構成し、且つこの他側端を零電位点に接続
    し、演算増幅器(43)はその非反転入力端子を抵抗(5
    6)を経て零電位点に接続し、反転入力端子を抵抗(5
    3)を経てその出力端子に接続するようにしたことを特
    徴とする特許請求の範囲第1項ないし第6項の何れかの
    項に記載の容量性センサの温度依存ドリフトおよび温度
    非依存ドリフト並びに感度補償回路配置。
  8. 【請求項8】コントローラ(16)には比較器として作動
    する演算増幅器(44)を設け、その非反転入力端子をコ
    ントローラの入力定直流電圧(Uref)を発生する基準電
    圧発生器(45)の出力端子に接続し、反転入力端子を、
    入力抵抗(46)を経てコントローラの他の入力直流電圧
    (Ur)を供給する加算/減算部材(19)の出力端子(2
    3)に接続すると共にコンデンサ(47)を経てコントロ
    ーラの出力端子(27)を構成する出力端子に接続するよ
    うにしたことを特徴とする特許請求の範囲第1項ないし
    第7項の何れかの項に記載の容量性センサの温度依存ド
    リフトおよび温度非依存ドリフト並びに感度補償回路配
    置。
  9. 【請求項9】コントローラの入力定直流電圧(Uref)を
    発生する基準電圧発生器(45)を、並列接続のツェナー
    ダイオード(48)およびコンデンサ(49)により構成
    し、その一端を零電位点に接続し、他端により基準電圧
    発生器の出力端子を構成し、これによって、抵抗(50)
    を経て供給される供給電圧から予定の定直流電圧
    (Uref)を取出し得るようにしたことを特徴とする特許
    請求の範囲第8項記載の容量性センサの温度依存ドリフ
    トおよび温度非依存ドリフト並びに感度補償回路配置。
JP62150332A 1986-06-18 1987-06-18 容量性センサの温度依存ドリフトおよび温度非依存ドリフト並びに感度補償回路配置 Expired - Lifetime JPH0785022B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863620399 DE3620399A1 (de) 1986-06-18 1986-06-18 Schaltungsanordnung zur kompensation von temperatur- und nichttemperaturbedingtem driften eines kapazitiven sensors
DE3620399.8 1986-06-18

Publications (2)

Publication Number Publication Date
JPS6340812A JPS6340812A (ja) 1988-02-22
JPH0785022B2 true JPH0785022B2 (ja) 1995-09-13

Family

ID=6303205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150332A Expired - Lifetime JPH0785022B2 (ja) 1986-06-18 1987-06-18 容量性センサの温度依存ドリフトおよび温度非依存ドリフト並びに感度補償回路配置

Country Status (4)

Country Link
US (1) US4793187A (ja)
EP (1) EP0250028B1 (ja)
JP (1) JPH0785022B2 (ja)
DE (2) DE3620399A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3919191C2 (de) * 1989-06-13 1999-12-09 Mannesmann Vdo Ag Auswerteschaltung
US5274334A (en) * 1989-12-18 1993-12-28 Honeywell Inc. Calibrated physical parameter value measurement system
US5291534A (en) * 1991-06-22 1994-03-01 Toyoda Koki Kabushiki Kaisha Capacitive sensing device
US5902933A (en) * 1993-02-22 1999-05-11 Omron Corporation Pressure sensor and its application
US6026970A (en) * 1999-03-11 2000-02-22 Par Systems, Inc. Telescoping tube assembly
CN100593767C (zh) 2006-06-30 2010-03-10 深圳市大族激光科技股份有限公司 电容传感器的控制方法
US9390061B1 (en) 2012-11-16 2016-07-12 The United States Of America As Represented By The Secretary Of The Navy Environmentally compensated capacitive sensor
EP2757352B1 (fr) * 2013-01-17 2015-11-18 EM Microelectronic-Marin SA Système de contrôle et méthode de gestion de capteur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD119863B1 (de) * 1975-06-25 1986-04-23 Karl Marx Stadt Tech Hochschul Schaltungsanordnung zur kapazitiven messwertgewinnung
JPS57171212A (en) * 1981-04-14 1982-10-21 Yokogawa Hokushin Electric Corp Capacity type converter
JPS59133421A (ja) * 1983-01-20 1984-07-31 Yokogawa Hokushin Electric Corp 容量式変換器
JPS59197818A (ja) * 1983-04-25 1984-11-09 Yokogawa Hokushin Electric Corp 物理量変換装置
DE3330841A1 (de) * 1983-08-26 1985-03-14 Siemens AG, 1000 Berlin und 8000 München Auswerteschaltungen fuer passive messgroessenaufnehmer
JPS61251714A (ja) * 1985-04-30 1986-11-08 Yokogawa Electric Corp 容量式変位変換器
DE3516162A1 (de) * 1985-05-06 1985-10-31 Haberland, Rüdiger, Prof. Dr.-Ing., 6750 Kaiserslautern Auswerteelektronik fuer differentialkondensatoren zur verwendung in sensoren
DE3528416C2 (de) * 1985-08-08 1996-04-18 Envec Mess Und Regeltechn Gmbh Auswerteschaltung für einen kapazitiven Sensor

Also Published As

Publication number Publication date
DE3774492D1 (de) 1991-12-19
EP0250028A2 (de) 1987-12-23
JPS6340812A (ja) 1988-02-22
DE3620399A1 (de) 1987-12-23
EP0250028A3 (en) 1989-05-31
EP0250028B1 (de) 1991-11-13
US4793187A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
TWI399019B (zh) 具有可切換的評估器之直流-直流轉換器
GB1575167A (en) Capacitance-to-voltage transformation circuit
EP0872713A3 (en) Sensor with improved capacitive to voltage converter integrated circuit
JP2820530B2 (ja) センサ信号を処理するための装置
KR910012689A (ko) 조정된 물리매개 변수값 측정 시스템
JPH0785022B2 (ja) 容量性センサの温度依存ドリフトおよび温度非依存ドリフト並びに感度補償回路配置
JPS63503085A (ja) 力学的変形の測定回路装置
JPS6116399A (ja) 状態検出装置
US4006430A (en) Circuit arrangement for converting a bridge unbalance into a frequency variation
US5406137A (en) Circuit arrangement for evaluating the signal of a capacitive measuring sensor
CA2046269C (en) Arrangement for processing sensor signals
JP3580817B2 (ja) 測定増幅器
US5585559A (en) Environment measuring apparatus
JPH05500716A (ja) 電圧―デジタル変換器
JP3678845B2 (ja) 湿度センサユニット
US5383367A (en) Dynamic temperature compensation for a pressure cell
DE59713057D1 (de) Schaltungsanordnung zur Messung der Temperatur eines temperaturabhängigen Widerstandes
SU1629879A1 (ru) Преобразователь параметров параллельных R @ С @ цепей в напр жение
JPS60203864A (ja) 検出装置
George et al. Switched Capacitor Signal Conditioning for Push-Pull Type Capacitive Sensors
JP2671343B2 (ja) 容量測定装置
JPH053989Y2 (ja)
SU437981A1 (ru) Преобразователь активного сопротивлени в посто нный ток
FI67967B (fi) Referensspaenningskaella
JP2597205B2 (ja) 温度検出回路