JPH0730308B2 - 撥水撥油剤 - Google Patents

撥水撥油剤

Info

Publication number
JPH0730308B2
JPH0730308B2 JP15412586A JP15412586A JPH0730308B2 JP H0730308 B2 JPH0730308 B2 JP H0730308B2 JP 15412586 A JP15412586 A JP 15412586A JP 15412586 A JP15412586 A JP 15412586A JP H0730308 B2 JPH0730308 B2 JP H0730308B2
Authority
JP
Japan
Prior art keywords
reference example
group
water
yield
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15412586A
Other languages
English (en)
Other versions
JPS62109884A (ja
Inventor
清英 松井
一彦 石原
利衣子 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Publication of JPS62109884A publication Critical patent/JPS62109884A/ja
Publication of JPH0730308B2 publication Critical patent/JPH0730308B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス等の表面をその光透過性を損うことなく
撥水、撥油性処理しうる撥水撥油剤に関する。
〔従来の技術〕
含フッ素重合体は、炭化水素系重合体に比較して耐食性
及び耐薬品性に優れ、さらに撥水、撥油性を有するた
め、これらの特性を利用した撥水撥油材料への応用がな
されている。
〔発明が解決しようとする問題点〕
しかしながら、ポリテトラフルオロエチレンやポリフッ
化ビニリデンのように主鎖にフッ素原子が導入されてい
る重合体は通常の有機溶媒には不溶であるため、例えば
ガラスや金属などの基材上にコーティングする際には加
熱溶融した後に圧着する操作が必要となり、複雑な形状
を有する基材上にはコーティングすることができない。
また、含フッ素アクリル酸エステルあるいは含フッ素メ
タクリル酸エステルの重合体は、酢酸エチル等の有機溶
媒に可溶で、この重合体溶液をコーティングすることに
より各種材料の撥水撥油処理に利用されているが、これ
らの重合体は加水分解性を有するエステル結合が存在す
るため、長期間にわたる使用に際しては撥水性や光透過
性などの特性低下が避けられない。
本発明者らは上記の問題点を解決するため鋭意研究した
結果、本発明のフルオロアルキル置換スチレン重合体が
高い撥水性、撥油性及び光透過性性と共に優れたコーテ
ィング性及び安定性を有し、優れた撥水撥油剤となりう
ることをことを見出し、本発明を完成するに至った。
〔問題点を解決するための手段〕
本発明は、一般式 (式中、R1は水素原子または低級アルキル基を表わし、
R2は水素原子または低級ポリフルオロアルキル基を表わ
し、R3はポリフルオロアルキル基を表わし、Xは−O−
又は を表わし、Y1〜Y5は各々水素原子又はハロゲン原子を表
わし、n、mは各々0又は1を表わす。但し、R4、R5
各々低級アルキル基である。)で示される繰返し単位を
全繰返し単位中、10モル%以上含有する分子量1万以上
のフルオロアルキル置換スチレン重合体よりなる撥水撥
油剤に関する。とくに、共重合体を用いる場合には、一
般式(I)で表わされる繰返し単位以外の繰返し単位と
して、一般式 〔式中、R6は水素原子または低級アルキル基を表わし、
Zは無置換もしくは低級アルキル基、低級ハロアルキル
基、低級アルキルオキシ基もしくはハロゲン原子で置換
されているフェニル基、水素原子、低級アルキル基、ア
ルキルオキシ基、シアノ基、−COOR7で示される基また
で示される基(但し、R7、R8は水素原子、炭素数1から
15のアルキル基、フェニル基またはシクロアルキル基を
示し、R9は水素原子または低級アルキル基を表わす。)
を表わす。〕で示される繰返し単位を含有するフルオロ
アルキル置換スチレン共重合体が撥水撥油剤として優れ
た性能を発揮する上で好ましい。
R2で示される低級ポリフルオロアルキル基としては、ジ
フルオロメチル基、ペルフルオロメチル基、2から4個
のフッ素原子で置換されたエチル基、ペルフルオロエチ
ル基、2から6個のフッ素原子で置換されたプロピル
基、ペルフルオロプロピル基、2から8個のフッ素原子
で置換されたブチル基、ペルフルオロブチル基などを挙
げることができるが、特にペルフルオロメチル基、ペル
フルオロエチル基が好適な反応性、撥水、撥油性を与え
る意味で好ましい。R3で示されるポリフルオロアルキル
基としてはアルキル鎖中にエーテル結合を有してもよ
く、ペルフルオロメチル基、ペルフルオロエチル基、ペ
ルフルオロプロピル基、ペルフルオロベチル基、ペルフ
ルオロペンチル基、ペルフルオロヘキシル基、ペルフル
オロヘプチル基、ペルフルオロオクチル基、ペルフルオ
ロノニル基、ペルフルオロデシル基、ジフルオロメチル
基、2から4個のフッ素原子で置換されたエチル基、2
から6個のフッ素原子で置換されたプロピル基、2から
8個のフッ素原子で置換されたブチル基、3−オキサ−
2−トリフルオロメチル−2,4,4,5,5,6,6,6−オクタフ
ルオロヘキシル基などを例示することができる。特にペ
ルフルオロアルキル基あるいは2,2,3,3,4,45,5,5−ノナ
フルオロペンチル基等のアルキル末端が完全にフッ素化
されたアルキル基が高い撥水、撥油性を発現する点で好
ましい。
本発明に用いるフルオロアルキル置換スチレン重合体
は、一般式 (式中、R1、R2、R3、X、Y1〜Y5及びn、mは前記と同
一。)で表わされる単量体を通常のラジカル重合法によ
り重合することにより容易に製造することができる。重
合反応に用いる方法としては、バルク重合、溶液重合、
乳化重合などの公知の方法を用いることができる。ラジ
カル重合反応は単に熱、紫外線の照射またはラジカル開
始剤の添加により速やかに開始される。反応に好適に用
いられるラジカル開始剤としてはジラウロイルペルオキ
シド、ベンゾイルペルオキシド(BPO)などの有機過酸
化物あるいはα,α′−アゾビスイソブチロニトリル
(AIBN)のようなアゾ化合物などを例示することができ
る。重合反応に利用できる有機溶媒は、生成する重合体
が可溶であることが高分子量体を得る上で好ましく、例
えばベンゼン、トルエン、クロロベンゼン、テトラヒド
ロフラン(THF)、四塩化炭素、クロロホルム、メチル
エチルケトン、フルオロベンゼン、ヘキサフルオロベン
ゼン等を用いることができるが、これらに限定されるも
のではない。反応は通常40℃から100℃の範囲で行う。
一般式(III)で示されるフルオロアルキル置換スチレ
ン誘導体は、例えばクロロメチルスチレン、クロロスチ
レン、フルオロアセトフェノン、ヒドロキシアセトフェ
ノン、ペンタフルオロスチレン等より、容易に製造しう
る化合物である(参考例参照)。
さらに本発明に用いるフルオロアルキル置換スチレン重
合体として共重合体を用いる場合は、一般式(III)で
表わされる単量体と、一般式(IV) (式中、R6及びZは前記と同一。)で表わされる単量体
の一種類または数種類とを混合し、ラジカル重合するこ
とにより共重合体を得ることができる。共重合体するこ
とのできる一般式(IV)で示される単量体としてはスチ
レン、p−メチルスチレン、p−クロロスチレン、p−
クロロメチルスチレン、ペンタフルオロスチレン、p−
アミノスチレンなどのスチレン誘導体、メチルアクリレ
ート、エチルアクリレート、2−ヒドロキシエチルアク
リレート、ブチルアクリレート、2,3−ジヒドロキシプ
ロピルアクリレート、ポリフルオロアルキルアクリレー
ト、p−フルオロフェニルアクリレート、m−トリフル
オロメチルフェニルアクリレートなどのアクリル酸エス
テル類、メチルメタクリレート、エチルメタクリレー
ト、プロピルメタクリレート、2−ヒドロキシエチルメ
タクリレート、グリシジルメタクリレート、ブチルメタ
クリレート、シクロヘキシルメタクリレート、ベンジル
メタクリレート、ポリフルオロアルキルメタリレートな
どのメタクリル酸エステル類、アクリロニトリル、アク
リルアミド、メタクリルアミド、アクロレイン、アクリ
ル酸、メタクリル酸などを用いることができる。重合反
応は溶媒中で行うのが好ましく、溶媒としては単量体及
び重合開始剤を均一に溶解するものであれば制限なく用
いることができる。特に、テトラヒドロフラン(TH
F)、ベンゼン、クロロベンゼンがラジカル連鎖移動に
よる停止反応を引き起こし難く、高分子量体を得られる
点で好ましく用いることができる。
また、本発明のフルオロアルキル置換スチレン重合体の
うち、Xが−O−で表わされるものは、一般式 (式中、Y6はハロゲン原子を表わし、R1、Y1〜Y4及びn
は前記と同一である。)で表わされる単量体からなる単
独重合体あるいは、上記一般式(V)と一般式(IV)で
表わされる単量体の一種もしくは複数種の共重合反応で
得られる重合体に一般式 (R2およびR3は前記と同一。)で示される含フッ素アル
コールを塩基の存在下反応させることにより得ることが
できる。反応は溶媒中で行うことが望ましく、用いるこ
とのできる溶媒としては、テトラヒドロフラン、1,4−
ビス(トルフルオロメチル)ベンゼン等を例示すること
ができる。また反応に用いる塩基としては、水酸化ナト
リウム、水酸化カリウム、水素化ナトリウム、水素化カ
リウム等のアルカリ金属化合物、ナトリウム、カリウ
ム,リチウムなどのアルカリ金属及びジアザビシクロ
〔3.4.0〕ノネン−5(DBN)、1,5−ジアザビシクロ
〔5.4.0〕ウンデセン−5(DBU)等のアミン類を例示す
ることができる。
また、含フッ素アルコールとしては、2,2,2−トリフル
オロエタノール2,2,3,3,3−ペンタフルオロ−1−プロ
パノール、2,2,3,3,4,4,4−ヘプタフルオロ−1−ブタ
ノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタデカ
フルオロ−1−オクタノール、2,2,2−トリフルオロ−
1−(トリフルオロメチル)エタノール、2,2−ジフル
オロエタノール、2,2,3,3,4,4−ヘキサフルオロ−1−
ブタノール、2,2,3,3−テトラフルオロ−1−プロパノ
ール、2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタ
ノール、3,3,4,4,4−ペンタフルオロ−1−ブタノー
ル、4,4,4−トリフルオロ−1−ブタノール、1,1,1,3,
3,3−ヘキサフルオロ−2−プロパノール、4,4,5,5,6,
6,7,7,8,8,9,9,10,10,10−ヘプタデカフルオロ−1−デ
カノール、1,1,1,6,6,7,7,7−アクタフルオロ−2−ヘ
プタノール、3−オキサ−2−トリフルオロメチル−2,
4,4,5,5,6,6,6−オクタフルオロヘキサノール、3,3,4,
4,5,5,6,6,6−ノナフルオロヘキサノールなどを例示す
ることができる。
本発明におけるフルオロアルキル置換スチレン重合体の
分子量は撥水撥油剤として用いる上で、1万以上である
ことが好ましい。
本発明の撥水撥油剤は、上記一般式(I)で示される繰
返し単位を全繰返し単位中、10モル%以上含有するフル
オロアルキル置換スチレン重合体よりなるものであり、
使用にあたっては乳濁液、溶剤溶液、エアゾールなど任
意の形態に調製しうる。例えば、乳化剤と共に水その他
の媒体に混合、分散することにより乳濁液を得ることが
でき、また、溶剤溶液型のものは、重合体を、アセト
ン、トルエン、メチルエチルケトン、ジエチルエーテ
ル、ジオキサン、テトラヒドロフラン、メチルクロロホ
ルム、トリクロロエチレン、テトラクロロエチレン、及
びテトラクロロジフルオロエタン、トリクロロトリフル
オロエタンの如き塩弗化飽和炭化水素類などの適当な有
機溶剤の1種または2種以上の混合物中に溶解させても
調製しうる。また、エアゾール型のものは、前記の如く
溶液型の溶剤溶液を調製し、更にこれにジクロロジフル
オロメタン、モノフルオロトリクロロメタン、ジクロロ
テトラフルオロエタン等の噴射剤を添加して適当な容器
に充填すれば良い。
本発明の撥水撥油剤は、被処理物品の種類や前記調製形
態(溶剤溶液型、エアゾール型など)などに応じて、任
意の方法で被処理物品に適用される。例えば、水性乳濁
液や溶剤溶液型のものである場合には、浸漬塗布等のよ
うな被覆加工の既知の方法により、被処理物の表面に付
着させ乾燥する方法が採用され得る。又、必要ならば適
当な架橋剤と共に、キュアリングを行なっても良い。な
お、エアゾール型の撥水撥油剤では、これを単に、被処
理物に噴射吹き付けするだけで良く、直ちに乾燥して充
分な撥水撥油性を発揮しうる。更に本発明の撥水撥油剤
は、フルオロアルキル置換スチレン重合体に、他の重合
体ブレンダーを混合しても良く、他の撥水撥油剤や撥油
剤或いは防虫剤、難燃剤、帯電防止剤、安定剤、防シワ
剤など適宜添加剤を添加して併用することも勿論可能で
ある。
本発明の撥水撥油剤で処理され得る物品は、特に限定す
ることなく種々の例をあげることが出来る。例えば、繊
維、織物、ガラス、紙、木、皮革、毛皮、石綿、レン
ガ、セメント、金属及び酸化物、窯業製品、プラスチッ
ク、塗面およびプラスターなどがある。繊維、織物とし
ては、綿、麻、羊毛、絹などの動植物性天然繊維、ポリ
アミド、ポリエステル、ポリビニルアルコール、ポリア
クリロニトリル、ポリ塩化ビニル、ポリプロピレンの如
き種々の合成繊維、レーヨン、アセテートの如き半合成
繊維、ガラス繊維、アスベスト繊維の如き無機繊維、或
いはこれらの混合繊維及びその織物があげられる。
以下、本発明を参考例、実施例、試験例によりさらに詳
細に説明する。なお、撥水性及び撥油性の評価は、各々
水及び各種の表面張力を有する有機液体との接触角を協
和科学製のコンタクトアングルゴニオメータを用いて測
定することにより行なった。いずれも、接触角が大きい
もの程、撥水性及び撥油性が大きいことを示している。
また一部についてはさらに、JIS L・1092−70及び3M
法に基づいて撥水性及び撥油性を評価した。
参考例 1 2,2,2−トリフルオロエタノール9g及び硫酸水素テトラ
n−ブチルアンモニウム(TBAS)20.37g及びトルエン30
0mlを三ッ口フラスコに仕込みアルゴン気流下で撹拌し
た。次に50wt%の水酸化ナトリウム水溶液17.5mlを入れ
15分間撹拌した後、p−クロロメチルスチレン9.15gを
加え、室温にて一晩撹拌した。反応混合物に希塩酸を加
え中和し、次に有機層を分液ロートに取り充分に水洗し
た。その後、無水硫酸マグネシウムにより乾燥し、減圧
下トルエンを留去した。残留物をn−ヘキサンを溶出液
としてシリカゲルカラムに通し精製し、n−ヘキサンを
留去することにより収量5.8g、収率27%でp−(2,2,2
−トリフルオロエチルオキシメチル)スチレン(p−TF
ES)を得た。
元素分析値(%); 実測値:C:61.5,H:5.2 計算値:C:61.1,H:5.1 IR(cm-1);2800〜3000,1610,1510(芳香環),1630(CH
2=CH),1210,1150(C−F),1100〜1180(−O−). NMR(ppm);3.6〜4.0(−CH2−,2H,),4.6(−CH2O−,2
H),5.1〜5.8(CH2=,2H),6.5〜6.8(−CH=,1H). 参考例 2〜9(フルオロアルキル置換スチレン誘導体
の合成結果) 含フッ素アルコール及びハロアルキルスチレン及び溶媒
の種類を替えた以外は参考例1と同様の方法によりフル
オロアルキル置換スチレン誘導体を合成した。結果を表
1に示す。
参考例 10 ヘキサメチルホスホルアミド(HMPA)50ml中に50%水素
化ナトリウム(油性)2.6gを加え、アルゴン気流下に撹
拌した。これを10℃以下に冷却し2,2,2−トルフルオロ
エタノール10.0gを加え30分撹拌する。次にp−フルオ
ロアセトフェニン6.06mlを加え、10℃以下2.5時間、さ
らに室温にて15時間撹拌を続けた。反応混合物を水中に
投じ、有機層をエーテルで抽出した。これを硫酸マグネ
シウムで乾燥し、減圧下でエーテルを留去する。粗生成
物を、クロロホルム/酢酸エチル(10/1)混合液を溶出
液としたシリカゲルカラムにより精製した。溶出液を減
圧留去し、収量8.54g、収率77.6%にてp−(2,2,2−ト
リフルオロエトキシ)アセトフェノン(p−TFEA)を得
た。
元素分析値(%); 理論値:C:55.1,H:4.2 実測値:C:55.1,H:4.1 IR(cm-1);3000〜2800,1610,(芳香環),1690(C=
O),1280,1240(CF3). NMR(ppm);2.56(3H),4.19〜4.63(2H),6.80〜7.07
(2H),7.75〜8.06(2H). 参考例 11 含フッ素アルコールを2,2,3,3,4,4,4−ヘプタフルオロ
−1−ブタノールに替えた以外は参考例10と同様の方法
によりp−(2,2,3,3,4,4,4−ヘプタフルオロブタキ
シ)アセトフェノン(p−HFBA)を収率50%で得た。
元素分析値(%); 理論値:C:45.3,H:2.9 実測値:C:45.2,H:2.7 NMR(ppm);2.53(3H),4.33〜4.72(2H),6.83〜7.11
(2H),7.8〜8.07(2H). 参考例 12 含フッ素アルコールを3,3,4,4,5,5,6,6,6−ノナフルオ
ロ−1−ヘキサノールに替えた以外は参考例10と同様の
方法によりp−(3,3,4,4,5,5,6,6,6−ノナフルオロヘ
キサオキシ)アセトフェノン(p−NFHA)を収率57%で
得た。
元素分析値(%); 理論値:C:44.0,H:2.9 実測値:C:43.7,H:2.7 NMR(ppm);2.52(3H),2.3〜3.0(2H),4.1〜4.4(2
H),6.7〜7.0(2H),7.9〜8.1(2H). 参考例 13 50%水素化ナトリウム(油性)1.26gに、HMPA30mlに溶
解したn−ヒドロキシアセトフェノン4.76gをアルゴン
気流下にて滴下した。これを20分撹拌した後、トリフル
オロメタンスルホン酸2,2,3,3,4,4,4−ヘプタフルオロ
ブチル(TFHB)12.8gを溶解したHMPA10mlを滴下した。
これを140℃にて20時間撹拌し、反応混合液を氷水中に
注ぎエーテルで有機層を抽出した。減圧下でエーテルを
留去した後、粗生成物をクロロホルム/酢酸エチル(20
/1)混合液を溶出液としたシリカゲルカラムにより精製
し、収量8.0g、収率71.8%でp−HFPAを得た。
元素分析値(%); 理論値:C:45.3,H:2.9 実測値:C:45.5,H:2.8 IR(cm-1);3000〜2800,1610,(芳香環),1690(C=
O),1280〜1160(C−F). NMR(ppm);2.54(3H),4.33〜4.71(2H),6.78〜7.09
(2H),7.78〜8.04(2H). 参考例 14 TFHBをトリフルオロメタンスルホン酸2,2,3,3,4,4,5,5,
6,6,7,7,8,8,8−ペンタデカフルオロオクチルに替えた
以外は参考例13と同様の方法でp−(2,2,3,3,4,4,5,5,
6,6,7,7,8,8,8−ペンタデカフルオロオクチルオキシ)
アセトフェノン(p−PFOA)を収率94%で得た。
元素分析値(%); 理論値:C:37.1,H:1.8 実測値:C:37.2,H:2.0 NMR(ppm):2.52(3H),4.33〜4.73(2H),6.9〜7.1(2
H),7.87〜8.1(2H). 参考例 15 参考例10で得たp−TFEA8.54gを溶解したエーテル40ml
をリチウムアルミニウムハイドライド0.52gを含むエー
テル40ml中にアルゴン気流下にて滴下した。室温にて1
時間撹拌した後、5.8mlの水を加え、さらに3Nの塩酸78m
lを加えた。有機層をエーテルにて抽出し、減圧下にて
エーテルを留去し、粗生成物をクロロホルム/酢酸エチ
ル(10/1)混合液を溶出液としたシリカゲルカラムにて
精製し、収量8.0g、収率92%でp−(2,2,2−トリフル
オロエトキシ)フェニルメチルカルビノール(p−TFE
C)を得た。
元素分析値(%); 理論値:C:54.5,H:5.0 実測値:C:54.8,H:5.2 IR(cm-1);3700〜3100(OH),1610,1510,(芳香環),1
070(C−O),1280,1240(CF3). NMR(ppm);1.42〜1.49(3H),1.93(1H,OH),4.12〜4.
46(2H),4.67〜4.97(1H),6.77〜6.99(2H),7.17〜
7.41(2H). 参考例 16 p−TFHAを参考例11および参考例13で得たp−HFBAに替
えた以外は参考例15と同様の方法でp−(2,2,3,3,4,4,
4−ヘプタフルオロブトキシ)フェニルメチルカルビノ
ール(p−HFBC)を収率75%得た。
IR(cm-1);3700〜3100(OH),1620,1520,(芳香環),1
300〜1160(C−F). NMR(ppm);1.27〜1.53(3H),2.37(1H),4.17〜4.6
(2H),4.6〜4.92(1H),6.7〜6.97(2H),7.1〜7.37
(2H). 参考例 17 p−TFEAを参考例14で得たp−PFOAに替えた以外は参考
例15と同様の方法でp−(2,2,3,3,4,4,5,5,6,6,7,7,8,
8,8−ペンタデカフルオロオクチルオキシ)フェニルメ
チルカルビノール(p−PFOC)を収率72%で得た。
NMR(ppm);1.37〜1.57(3H),1.92(1H),4.23〜4.63
(2H),4.63〜4.98(1H),6.8〜7.05(2H),7.2〜7.47
(2H). 参考例 18 p−TFEAを参考例12で得たp−NFHAに替えた以外は参考
例15と同様の方法でp−(3,3,4,4,5,5,6,6,6−ノナフ
ルオロヘキシルオキシ)フェニルメチルカルビノール
(p−NFHC)を収率96%で得た。
NMR(ppm);1.30〜1.55(3H),2.20(1H),2.2〜2.9(2
H),3.8〜4.2(2H),4.52〜4.85(1H),6.75〜7.0(2
H),7.13〜7.41(2H). 参考例 19 トリブロモホスフィン5.7gに84%臭化水素水を1滴加
え、アルゴン気流下にてこれに参考例14で得たp−TFEC
11gを滴下し、10℃にて1時間撹拌した。次に室温にて1
5時間撹拌を続けた後、反応混合物に氷水20mlを加え、
有機層をエーテルで抽出した。エーテルを減圧留去した
後、これにキノリン12.4ml及び少量のp−tert−ブチル
カテコールを加え、120℃で2mmHgにて蒸留した。蒸留物
に希塩酸を加えた後、有機層をエーテルで抽出した。エ
ーテルを減圧留去し、粗生成物をn−ヘキサン/エーテ
ル(2/1)混合液を溶出液としたシリカゲルカラムによ
り精製し、収量3.68g、収率52%でp−(2,2,2−トリフ
ルオロエトキシ)スチレン(TFES)を得た。
元素分析値(%); 計算値:C:59.4,H:4.5 実測値:C:59.1,H:4.4 IR(cm-1);3000〜2800,1610,(芳香環),1615,(CH2
CH),1280,1240(CF3). NMR(ppm);4.12〜4.47(2H),5.03〜5.73(2H),6.43
〜6.77(1H),6.77〜7.00(2H),7.17〜7.45(2H). 参考例 20 p−TFECを参考例16で得たp−HFBCに替えた以外は参考
例19と同様の方法によりp−(2,2,3,3,4,4,4−ヘプタ
フルオロブトキシ)スチレン(HFBS)を収率36%で得
た。
元素分析値(%); 理論値:C:47.7,H:3.0 実測値:C:47.6,H:3.1 NMR(ppm);4.2〜4.6(2H),5.03〜5.27(1H),5.47〜
5.75(1H),6.47〜6.8(1H),6.8〜6.98(2H),7.7〜7.
47(2H). 参考例 21 p−TFECを参考例17で得たp−PFOCに替えた以外は参考
例19と同様の方法にてp−(2,2,3,3,4,4,5,5,6,6,7,7,
8,8,8−ペンタデカフルオロオクチルオキシ)スチレン
(PFOS)を収率26%で得た。
元素分析値(%); 理論値:C:38.3,H:1.8 実測値:C:38.2,H:1.9 NMR(ppm);4.23〜4.65(2H),5.03〜5.29(1H),5.45
〜5.77(1H),6.45〜6.77(1H),6.77〜7.03(2H),7.2
3〜7.47(2H). 参考例 22 p−TFECを参考例18で得たp−NFHCに替えた以外は参考
例19と同様の方法にてp−(3,3,4,4,5,5,6,6,6−ノナ
フルオロヘキシルオキシ)スチレン(NFHS)を収率30%
で得た。
元素分析値(%); 理論値:C:45.9,H:3.0 実測値:C:45.7,H:2.9 NMR(ppm);2.2〜3.0(2H),4.0〜4.3(2H),4.95〜5.2
(1H),5.4〜5.7(1H),6.4〜6.7(1H),6.7〜6.9(2
H),7.2〜7.45(2H). 参考例 23 アルゴン気流下、マグネシウム0.495gにテトラヒドロフ
ラン(THF)を5ml加えた中に、少量の臭化エチルを加え
反応を開始させた。そこへp−クエロロスチレン2.82g
のTHF15ml溶液をゆっくりと滴下した。滴下終了後、80
℃で1時間撹拌し、10gのジメチル(3,3,4,4,5,5,6,6,
7,7,8,8,9,9,10,10,10−ヘプタデカフルオロデシル)ク
ロロシランを滴下した。加熱還流を約30分間行なった
後、反応液を冷却し、その後水にあけエーテル抽出し
た。エーテル層を水洗後、無水硫酸マグネシウムで乾燥
し、減圧下に溶媒を留去した。粗生成物は蒸留ののち
(沸点144〜146℃/1mmHg)さらにシリカゲルカラムクロ
マトにより精製し、4−〔ジメチル(3,3,4,4,5,5,6,6,
7,7,8,8,9,9,10,10,10−ヘプタデカフルオロデシル)シ
リル〕スチレン(SiFS)を4.8g得た。
収率40.5% 元素分析値(%); 実測値:C:39.4,H:2.9 理論値:C:39.5,H:2.8 NMR(ppm);0.51〜0.80(2H),1.3〜1.97(2H),4.79〜
5.0(1H),5.25〜5.34(1H),6.15〜6.53(1H),7.05
(4H). 参考例 24 THF80ml中に60%水素化ナトリウム(油性)0.78gを加え
アルゴン気流下に撹拌した。これに2,2,3,3,4,4,4−ヘ
プタデカフルオロ−1−ブタノール7.8gを加え、室温に
て15分撹拌した。次にペンタフルオロスチレン2.91gを
加え室温にて1晩反応した後、反応混合物を大量の水中
に投じた。有機層をエーテルにて抽出し、これを希塩酸
及び水で十分に洗浄後、硫酸マグネシウムで乾燥した。
エーテルを減圧留去した後、減圧下にて蒸留することに
より収量3.79g、収率67.5%で4−(2,2,3,3,4,4,4−ヘ
プタフルオロブトキシ)−2,3,5,6−テトラフルオロス
チレン(HFBS)を得た。
沸点;91〜93℃/6.5mmHg. NMR(ppm);4.46〜4.83(−OCH2−,2H)5.57〜6.2(=C
H2,2H)6.47〜6.87(−CH=,1H). 質量分析;374(M+)205(M+−CF2CF2CF3),191(M+−CH
2CF2CF2CF3). 参考例 25〜27 含フッ素アルコールの種類を替えた以外は参考例24と同
様の方法を用いてフルオロアルキル置換スチレン誘導体
を得た。なお、参考例25および参考例26の化合物はシリ
カゲルカラムにより精製を行なった。結果を表2に示
す。
参考例 28 参考例1で得たp−TFES1.08g及びα,α′−アゾビス
イソブチロニトリルAIBN)4.11mgを重合用アンプルに仕
込み常法により脱気後高真空下(10-5mmHg以下)にて封
管した。これを60℃にて1.5時間振りまぜながら重合反
応を行ない、反応混合物を大量のメタノール中に注ぎ重
合体を沈澱させた。これを濾別し乾燥し白色固体を83mg
(収率7.7%)回収した。元素分析、IR測定よりポリ
(p−TFES)であることを確認した。GPCにより測定し
た重量平均分子量はポリスチレン換算で2.9×105、DSC
により測定したガラス転移温度(Tg)は30℃であった。
元素分析値(%); 実測値:C:61.1,H:5.1 理論値:C:61.1,H:5.1 IR(cm-1);2800〜3000(−CH2−),1610,1500,(芳香
環),1210,1150(C−F),1100〜1180(−O−). 参考例 29〜35 フルオロアルキル置換スチレン誘導体の種類を替えた以
外は参考例28と同様の方法で該誘導体の重合体を得た。
結果を表3に示す。
参考例 36 参考例19で得たTFES607mgを重合用アンプルに取り、重
合開始剤としてAIBN2.46mg及び溶媒としてTHF2.4mlを加
え、常法に従い脱気後、高真空下(10-5mmHg以下)で封
管した。これを60℃にて24時間振り混ぜ重合反応を行っ
た。反応混合物を大量のメタノール中に投じることによ
り重合体を沈殿させ、これを濾別後真空乾燥した。収量
134mg、収率22%。
元素分析値(%); 理論値:C:59.4,H:4.5 実測値:C:58.9,H:4.4 分子量;3.7×104(ポリスチレン換算) 参考例 37〜39 フルオロアルキル置換スチレン誘導体の種類を替え、参
考例36と同様の方法にて単独重合体を得た。結果を表4
に示す。
参考例 40 参考例23で得たSiFS1.521gを重合用アンプルに取り、重
合開始剤として、AIBN2.06mg及び溶媒として、1,4−ビ
ス(トリフルオロメチル)ベンゼン1mlを加え常法に従
い脱気後、高真空下(10-5mmHg以下)で封管した。これ
を60℃にて29.2時間振り混ぜ重合反応を行なった。反応
混合物を大量のメタノール中に投じることにより、重合
体を沈澱させこれを濾別後真空乾燥した。収量489mg
収率32% 元素分析値(%); 実測値:C:39.3,H:2.7 理論値:C:39.5,H:2.8 参考例 41 参考例24で得られたHFBS1.13gを重合用アンプルに仕込
み重合開始剤としてAIBN2.47mg及び溶媒としてTHF1.9ml
を加えた。これを常法により脱気後高真空下(10-5mmHg
以下)にて封管し、これを60℃にて25時間振り混ぜるこ
とにより重合反応を行なった。反応混合物を大量のメタ
ノール中に投じることにより重合体を沈澱させた。これ
を濾別し、十分にメタノールで洗浄後、真空乾燥するこ
とにより収量0.69g、収率61.4%HFBS単独重合体を得
た。
元素分析値(%); 理論値:C:38.5,H:1.4 実測値:C:38.5,H:1.3 分子量;9.7×104(ポリスチレン換算) ガラス転移点(℃);46. IR(cm-1);3000〜2800,1510,(ベンゼン環),1300−11
00(C−F). 参考例 42〜44 フルオロアルキル置換スチレン誘導体及び用いる溶媒の
種類を替えた以外は参考例41と同様の方法を用いてフル
オロアルキル置換スチレン重合体を得た。結果を表5に
示す。
実施例 45 THF5mlに60%水素化ナトリウム(油性)60mg及び2,2,3,
3,4,,4,4−ヘプタフルオロ−1−ブタノール600mgを加
え、アルゴン気流下室温にて20分間撹拌した。これに19
4mgのポリペンタフルオロスチレンを溶解したTHF10mlを
加え、室温にて40時間反応させた。反応混合物を大量の
メタノールに投じ、重合体を沈澱させた。これを濾別
し、さらに1,4−ビス(トリフルオロメチル)ベンゼン
に溶解、これを1N塩酸で洗浄した後十分に水で洗浄を繰
り返した。この溶液を大量のメタノール中に投じること
により重合体を精製した。沈澱を濾別し、真空乾燥する
ことにより収量180mg、収率48%でポリ〔4−(2,2,3,
3,4,4,4−ヘプタフルオロブトキシ)−2,3,5,6−テトラ
フルオロスチレン〕を得た。19F−NMRより原料のポリペ
ンタフルオロスチレンのパラ位フッ素原子に基づく吸収
が完全に消失し、また新たに2,2,3,3,4,4,4−ヘプタフ
ルオロブトキシ基に基づく吸収が観察されたことにより
所定の構造を確認した。
元素分析値(%); 理論値:C:38.5,H:1.34 実測値:C:38.1,H:1.34 参考例 46 p−TFESとスチレン(St)とのモル比が20/80になるよ
うに参考例1で得られたp−TFES324mg及びSt625mgをガ
ラス製重合アンプルに仕込み、これに溶媒としてTHF6.5
ml、重合開始剤としてα,α′−アゾビスイソブチルニ
トリル(AIBN)6.2mgを加え常法により脱気後高真空下
に封管した。これを60℃にて21時間振りまぜることによ
り共重合反応を行なった。反応混合物を大量のメタノー
ル中に注ぎ重合体を沈殿させ収量188mg、収率19.8%で
重合体を得た。元素分析の結果、共重合体中のp−TFES
モル組成は22.8%であり、分子量は2.7×104であった。
またガラス転移温度(Tg)は83℃であることがDSC測定
によりわかった。
参考例 47〜58 フルオロアルキル置換スチレン誘導体とスチレンとの共
重合反応を参考例46と同様の方法を用いて行った。結果
を表6に示す。
参考例 59 参考例6で得たm−(2,2,2−トリフルオロエチルオキ
シメチル)スチレン(m−TFES)とメチルメタクリレー
ト(MMA)のモル比が10/90になるようにm−TEFS247mg
及びMMA238mgをガラス製重合アンプルに仕込みこれに溶
媒としてベンゼン3.7ml、重合開始剤としてAIBN3.2mgを
加え常法により脱気後、高真空下に封管した。これを60
℃にて12時間振りまぜることにより共重合反応を行っ
た。反応混合物を大量のエタノール中に注ぎ重合体を沈
殿させ、収量121mg、収率24.9%で重合体を得た。元素
分析の結果、共重合体中のm−TFESのモル組成は6.8%
であり分子量は3.6×104であった。
参考例 60 参考例5で得たp−(1,1,1,3,3,3−ヘキサフルオロイ
ソプロピルオキシメチル)スチレン(p−HFPS)とブチ
ルアクリレート(BA)のモル比がp−HEPS/BA=30/70に
なるようにp−HFPS204mg及びBA215mgをガラス製重合ア
ンプルに仕込み溶媒としてTHF4.0ml、重合開始剤として
AIBN2.8mgを加え常法により脱気後、高真空下に封管し
た。これを60℃にて4時間振りまぜることにより共重合
反応を行なった。反応混合物を大量のメタノール中に注
ぎ重合体を沈殿させ、収量97mg、収率23.2%で重合体を
得た。元素分析の結果、p−HFPSのモル組成は27.1%で
あり、分子量は4.3×104であった。
参考例 61 参考例7で得たm−(2,2,3,3,3−ペンタフルオロプロ
ピルオキシメチル)−α−メチルスチレン(m−PFPM
S)とアクリロニトリル(AN)の仕込みモル比がm−PFP
MS/AN=30/70になるようにm−PFPMS84mg及びAN37mgを
ガラス製重合アンプルに仕込み溶媒としてN,N−ジメチ
ルホルムアミド1ml、重合開始剤としてAIBN0.13mgを加
え常法により脱気後、高真空下に封管した。これを60℃
にて、10時間振りまぜることにより共重合反応を行なっ
た。反応混合物を大量のメタノール中に注ぎ重合体を沈
殿させ、収量41mg、収率33.9%で重合体を得た。元素分
析の結果、共重合体中のm−PFPMSモル組成は、23.7%
であり、分子量は7.7×104であった。
参考例 62 参考例19で得たTFESおよびスチレン(St)の仕込みモル
組成比がTFES/St=0.8/0.2になるように各々1.05gおよ
び0.14gを重合用アンプルに仕込み、これにAIBN5.34mg
およびTHF5.3mlを加え、常法に従い脱気後、高真空下に
封管した。これを60℃にて22時間振りまぜることにより
共重合反応を行ない、反応混合物を大量のメタノール中
に投じ、重合体を沈殿させた。これを濾別し真空乾燥す
ることにより収量62mg、収率5.2%でTFES−St共重合体
を得た。元素分析値より共重合体中のTFESモル分率は0.
80であった。
元素分析値(%);C;63.2,H;5.0 IR(cm-1);1600(芳香環),1280,1240(CF3). 分子量;5.1×104(ポリスチレン換算) 参考例 63〜70 参考例19〜22で得たフルオロアルキル置換スチレン誘導
体及びStとの仕込みモル組成比を種々に変化させて共重
合体を合成した。結果を表7に示す。
参考例 71 参考例23で得られたHFBSとスチレン(St)のモル比がHF
BS/St=0.70/0.30となるように各々HFBS1.05g、St0.13g
をガラス製重合用アンプルに仕込み、さらにAIBN3.29mg
およびTHF2.8mlを加え常法に従い脱気後、高真空下に封
管した。これを60℃にて23時間振り混ぜることにより共
重合反応を行なった。反応終了後、混合物を大量のメタ
ノール中に投じることにより重合体を沈澱させた。これ
を濾別し、十分にメタノールで洗浄後真空乾燥すること
により収量0.78g、収率66.8%にてHFBS−St共重合体を
得た。共重合体のHFBSモル分率は元素分析値より0.72で
あった。また分子量は3.2×104(ポリスチレン換算)で
あった。
元素分析値(%);C:43.8,H:2.2 IR(cm-1);3000〜2800,1650,1510,(ベンゼン環),130
0〜1100(C−F). 参考例 72〜77 フルオロアルキル置換スチレン誘導体の種類及びスチレ
ンとの仕込みモル組成を種々に変化させ、参考例71と同
様の方法でフルオロアルキル置換スチレン誘導体−スチ
レン共重合体を得た。
結果を表8に示す。
参考例 78 参考例23で得たHFBSとアクリロニトリル(AN)を仕込み
モル組成比がHFBS/AN=0.50/0.50となるように各々HFBS
0.75g、AN0.10gを重合用アンプルに仕込み、さらにAIBN
3.29mg及びTHF3.2mlを加えた。これを常法に従い脱気後
高真空下にて封管した。これを60℃にて33.5時間振り混
ぜることにより共重合反応を行なった。反応終了後、反
応混合物を大量のメタノール中に投じることにより重合
物を沈澱させた。これを濾別し、十分にメタノールで洗
浄後真空乾燥することにより収量19mg、収率2.2%にてH
FBS−AN共重合体を得た。共重合体中のHFBSモル分率は
元素分析より0.87%であった。
元素分析値(%);C:39.13,H:1.49,N:0.59. IR(cm-1);3000〜2800,1650,1500,(ベンゼン環),220
0(C≡N)1300〜1100(C−F). 参考例 79 参考例23で得たHFBSとメチルメタクリレート(MMA)を
仕込みモル組成比がHFBS/MMA=0.50/0.50となるように
各々HFBS0.75g、MMA0.20gを重合用アンプルに仕込み、
さらにAIBN3.29mg及びTHF3.0mlを加えた。これを常法に
従い脱気後高真空下にて封管した。これを60℃にて33.5
時間振り混ぜることにより共重合反応を行なった。反応
終了後、反応混合物を大量のメタノール中に投じること
により重合物を沈澱させた。これを濾別し、十分にメタ
ノールで洗浄後、真空乾燥することにより収量39mg、収
率4.1%にてHFBS−MMA共重合体を得た。共重合体中のHF
BSモル分率は元素分析より0.61であった。
元素分析値(%);C:41.8,H:2.5, IR(cm-1);3000〜2800,1650,1500,(ベンゼン環),174
0(C=O)1300〜1100(C−F). 参考例 80 p−クロロメチルスチレン(p−CMS)、スチレン(S
t)をモル比が50/50、及び全単量体濃度が3mol/にな
るように、それぞれ27.5g、18.5gをガラス製重合アンプ
ルに仕込み、また希釈剤としてトルエン74ml及び重合開
始剤としてAIBN0.16gをさらに該アンプル内に入れ、常
法に従い十分に脱気後高真空下(10-5mmHg以下)に封管
した。これを60℃にて20時間振りまぜ重合反応を行なっ
た。反応混合物を大量のヘキサン中に投じ重合体を沈殿
させた。これを濾別後、トルエンに溶解し再びヘキサン
中に沈澱し、p−CMS−St共重合体を精製した。収量10.
8g(収率23.5%)。
元素分析値(%)は、C:77.8,H:6.9,Cl:15.4でありCl含
量から求めた重合体のモル組成比はp−CMS/St=57.8/4
2.2であった。またGPCにて測定したポリスチレン換算の
重量平均分子量(Mw)はMw=1.49×105であった。
IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),12
50,750(CH2Cl). 参考例 81 2,2,2−トリフルオロエタノール2.7gをベンゼン20mlに
溶解し、これに30%水酸化ナトリウム水溶液3ml及び臭
化テトラn−ブチルアンモニウム2.4gを加え撹拌した。
この溶液に参考例27で得たp−CMS−St共重合体0.5gを
加え、光遮断下、室温にて3日間撹拌を続けた。反応混
合物を水で洗浄後、多量のメタノール中に投じることに
より重合体を沈澱させた。これを濾別、乾燥してフルオ
ロアルキル置換スチレン重合体を得た。収量0.39g(収
率77.6%)。元素分析値より求めたトリフルオロエトキ
シ基導入率は98%であった。
元素分析値(%);C:69.2,H:5.6 Cl:0.2 IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),11
50〜1200(CF2CF3). Mw:1.68×105. ガラス転移点(Tg):56℃(DSCにて測定) 参考例 82 2,2,2−トリフルオロエタノールを2,2,3,3,4,4,4−ヘプ
タフルオロブチルアルコールに替えた以外は参考例80と
同様の方法でフルオロアルキル置換スチレン共重合体を
得た。
NMRより求めたヘプタフルオロブトキシ基の導入率は95
%であった。
元素分析値(%);C:59.1,H:4.5 Cl:1.2 IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),11
50〜1200(CF2CF3). Mw:2.23×105. Tg:49℃(DSCにて測定) 参考例 83 反応時間を1日にした以外は参考例82と同様の方法でフ
ルオロアルキル感スチレン共重合体を得た。
NMRより求めたヘプタルオロブトキシ基の導入率は43.7
%であった。
元素分析値(%);C:67.2,H:5.4 C1:7.2 IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),11
50〜1200(CF2CF3). 1250,750(CH2Cl). Mw:1.71×105. 参考例 84 m−クロロメチルスチレン(m−CMS)、p−メチルス
チレン(p−MSt)のモル比が50/50、及び全単量体濃度
が2mol/になるようにそれぞれ7.6g、5.9gをガラス製
重合アンプルに仕込み、また希釈剤としてベンゼン37ml
及び重合開始剤としてAIBN0.034gを該アンプル内に入
れ、常法に従い十分に脱気後高真空下に封管した。これ
を60℃にて10時間振りまぜ重合反応を行なった。反応混
合物を大量のジエチルエーテル中に投じ重合体を沈澱さ
せた。これを濾別、乾燥することにより収量3.9g(収率
28.9%)でm−CMS−p−MSt共重合体を得た。
元素分析値(%)はC:77.6,H:6.7 C1:15.5でありC1含量から求めた重合体のモル組成比は
m−CMS/p−MSt=61.0/39.0であった。またMwは8.30×1
04であった、 IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),12
50,750(CH2Cl). 参考例 85 2,2,3,3,3−ペンタフルオロプロパノール4.1gをトルエ
ン15mlに溶解し、これに30%水酸化カリウム水溶液2.7m
l及び硫酸テトラn−ブチルアンモニウム2.1gを加え撹
拌した。この溶液に参考例84で得たm−CMS−p−MSt共
重合体0.4gを溶解したベンゼン10mlを加え、60℃にて1
日撹拌を続けた。
反応混合物を十分に水洗した後、ジエチルエーテル中に
沈澱させた。これを濾別、乾燥してフルオロアルキル置
換スチレン重合体を得た。NMRより求めたペンタフルオ
ロプロピル基の導入率は100%であった。
元素分析値(%);C:33.9,H:4.9 C1:0 IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),11
50〜1200(CF2CF3). Mw:1.12×105,Tg:51℃ 参考例 86 2,2,3,3,3−ペンタフルオロプロパノールを1,1,1,3,3,3
−ヘキサフルオロ−2−プロパノールに替えた以外は参
考例85と同様の方法でフルオロアルキル置換スチレン共
重合体を得た。
NMRより求めたヘキサフルオロ−2−プロピルオキシ基
の導入率は53.1%であった。
元素分析値(%);:54.4,H:5.7 C1:8.2 IR(cm-1);2850〜2950(CH2),1600(ベンゼン環),11
50(CP3),1250,750(CH2Cl). Mw:9.73×104,Tg:81℃ 参考例 87 p−ブロモメチルスチレン(p−BMS)、n−オクチル
ビニルエーテル(OVE)をモル比が70/30、及び全単量体
濃度が3mol/になるようにそれぞれ20.7g及び7.7gをガ
ラス製重合アンプルに仕込み、さらにトルエン22ml及び
AIBN0.04gを加え高真空下にて封管した。これを60℃に
て7時間振りまぜ重合反応を行なった反応混合物をジエ
チルエーテル中に投じ重合体を沈澱させた。これを濾
別、乾燥することにより収量4.35g(収率15.3%)でp
−BMS−OVE共重合体を得た。元素分析値(%)はC:59.
8,H:6.5,Br:27.8であり、Br含量から求めた重合体のモ
ル組成比はp−BMS/OVE=65.3/34.7であった。
またMw=7.21×104であった。
IR(cm-1);2850〜3000(CH2CH3),1600(ベンゼン
環),1200(CH2Br). 参考例 88 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタロデカフルオ
ロ−1−オクタノール8.0gをトルエン20mlに溶解し、こ
れに30%水酸化ナトリウム水溶液3ml及びよう化テトラ
−n−ブチルアンモニウム3.0gを加え撹拌した。この溶
液に参考例87で得た。p−BMS−OVE共重合体0.3gを加え
80℃にて1人撹拌を続けた。反応混合物を水洗した後、
ジエチルエーテル中に投じ重合体を沈澱させた。これを
濾別、乾燥することによりフルオロアルキル置換スチレ
ン共重合体を得た。NMRより求めたペンタデカフルオロ
オクチルオキシ基の導入率は99%であった。
元素分析値(%);C:44.2,H:3.4 Br:0 IR(cm-1):2850〜2950(CH2CH3),1600(ベンゼン
環),1150〜1200(CF2CF3). Mw:1.24×105,Tg:−20℃ 参考例 89 p−(2−クロロエチル)スチレン(p−CES)、p−
エチルスチレン(ESt)をモル比が70/30及び全単量体濃
度が2mol/になるようにそれぞれ10.0g、3.2gをガラス
製重合アンプルに仕込み、さらにトルエン36.8ml及びAI
BN0.04gを加え真空下にて封管した。これを60℃にて5
時間振りまぜ重合反応を行なった。反応混合物をn−ヘ
キサン/ジエチルエーテル(3:1)混合液に投じ重合体
を沈澱させた。これを濾別、乾燥することにより収量4.
11g(収率31.1%)でp−CES−ESt共重合体を得た。元
素分析値(%)はC:73.8,H:8.7,C1:9.8であり、C1含量
から求めた重合体モル組成比はp−CES/ESt=64.1/35.9
であった。またMw=1.21×105であった。
IR(cm-1);2800〜3000(CH2CH3),1600(ベンゼン
環),1200(CH2C1). 参考例 90 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタデカフルオロ
−1−オクタノール7.1gを充分に脱水したTHF18mlに溶
解し、これにナトリウム0.4gを加えた。気体が発生し、
ナトリウムが完全に溶解するまでゆっくりと撹拌した。
この溶液に参考例89で得たp−CES−ESt共重合体3.5gを
THF10mlに溶解した溶液を加え、室温にて2日間撹拌を
続けた。反応混合物を大量の水中に投じ得られた沈澱を
濾別、再びTHFに溶解した。これをメタノール中に投じ
重合体を精製した。NMRより求めたペンタデカフルオロ
オクチルオキシ基の導入率は100%であった。
元素分析値(%);C:43.6,H:3.5 C1:0 IR(cm-1);2850〜2900(CH2CH3),1605(ベンゼン
環),1150〜1200(CF2CF3). Mw:1.31×105,Tg:4℃ 参考例 91 THF15mlに60%水素化ナトリウム(油性)183mgおよび2,
2,3,3,3−ペンタフルオロ−1−プロパノール1.35gを溶
解し、アルゴン気流下で20分間撹拌した。これにペンタ
フルオロスチレン−スチレン共重合体(ペンタフルオロ
スチレンモル分率0.463)994mgを含むTHF30mlを加え2
日間室温で撹拌した。反応混合物を大量のメタノール中
に投じ重合体を沈澱させた。これを濾別し、真空乾燥す
ることにより、収量604mgで4−(2,2,3,3,3−ペンタフ
ルオロプロピルオキシ)−2,3,5,6−テトラフルオロス
チレン−スチレン共重合体を得た。
元素分析値(%) 理論値:C;54.7,H;2.9 実測値:C;54.7,H;2.9 参考例 92 参考例4で得たフルオロアルキル置換スチレン誘導体
(DFOS)とN−メチロールアクリルアミドの仕込みモル
組成比が0.95:0.05になるように各々1.96gおよび0.02g
を重合用アンプルに仕込み、これにBPO10mgとフロン113
(5ml)及びエタノール(1ml)を加え、常法に従い脱気
後、高真空下に封管した。これを60℃にて20時間振り混
ぜることにより共重合反応を行ない、反応混合物を大量
のメタノール中に投じ、重合体を沈殿させた。これを濾
別し真空乾燥することにより収率58%で共重合体を得
た。元素分析値より共重合体中のDFOSモル分率は0.96で
あった。
元素分析値(%): C;39.63 H;2.21 N;0.11 IR(cm-1):1730(C=O),1280,1240,(CF3),1150
(−O−). 分子量:3.2×104(ポリスチレン換算) 参考例 93 参考例4で得たフルオロアルキル置換スチレン誘導体
(DFOS)とN−(1,1−ジメチル−3−オキソブチル)
アクリルアミドの仕込みモル比が0.95:0.05となるよう
に各々1.96gおよび0.034gを重合用アンプルに取り、重
合開始剤として、BPO10mg及び溶媒として、フロン113
(5ml)とエタノール(1ml)を加え常法に従い脱気後、
高真空下(10-5mmHg以下)で封管した。これを60℃にて
20時間振り混ぜ重合反応を行なった。反応混合物を大量
のメタノール中に投じることにより、共重合体を沈殿さ
せこれを濾別後真空乾燥した。収量820mg、収率41%。
元素分析値(%): C;39.98 H;2.28 N;0.11 これより、共重合体中のDFOSモル分率は0.96であること
が確認された。
分子量:2.8×104(ポリスチレン換算) 参考例 94 p−ヨードフェニルメチルカルビノール9.92g(40mmo
l)と銅粉末10.16g(160mmol)を三ッ口フラスコに入
れ、これをアルゴン置換した。これにジメチルスルホキ
シド60mlを加え、125℃にて40分間撹拌後、21.8g(40mm
ol)の1−ヨードヘプタデカフルオロオクタン(IHdF
O)を加え、さらに12時間加熱撹拌した。反応液を冷却
し、銅粉末を濾別した後、濾液をエーテルにて抽出し
た。エーテルを減圧留去することにより粗組成物15.0g
(収率69%)を得た。これをn−ヘキサン/トルエン混
合液(10/1)で再結晶し、p−ヘプタデカフルオロオク
チルフェニルメチルカルビノール(HdFC)の白色結晶を
得た。
元素分析値(%); 理論値:C:35.6,H:1.7 実測値:C:35.6,H:1.5 NMR(ppm);1.51(3H),2.0(1H),4.91(1H),7.5(4
H). 参考例 95 IHdFOの替りに1−ヨードヘニコサフルオロデカンを用
い、溶媒としてN−メチルピロリドンを用いた以外は、
参考例94と同様の方法でp−ヘニコサフルオロデシルフ
ェニルメチルカルビノール(HdFC)を収率30.7%で得
た。
NMR(ppm);1.50(3H),2.00(1H),4.93(1H),7.53
(4H). 参考例 96 参考例94で得たHdFC28g(53.6mmol)と硫酸水素カリウ
ム5.6g及び少量の4−tert−ブチルカテコールをフラス
コに入れ、200℃に加熱した。反応器内の圧力を25mmHg
とすることによりp−ヘプタデカフルオロオクチルスチ
レン(HdFOS)を蒸留により単離した。粗生成物をn−
ヘキサンを溶出液としたシリカゲルカラムにより精製
し、収量18.7g、収率69.2%でHdFOSを得た。
元素分析値(%); 理論値:C:36.8,H:1.4 実測値:C:36.7,H:1.3 NMR(ppm);5.30(1H),5.76(1H),6.73(1H),7.45
(4H). IR(cm-1);3150〜2950,1610(芳香環),1600(CH=C
H2)、1350〜1060(C−F). 参考例 97 参考例95で得たHFDCを用いた以外は参考例96と同様の方
法でp−ヘニコサフルオロデシルスチレン(HFDS)を収
率65%で得た。
元素分析値(%); 理論値:C:34.8,H:1.1 実測値:C:34.4,H:1.1 NMR(ppm);5.34(1H),5.81(1H),6.69(1H),7.47
(4H). 参考例 98 参考例96で得たHdFOS2.09gをガラス製重合管に仕込み重
合開始剤としてAIBN3.29mgを加え常法により脱気後真空
下に封管した。これを60℃にて1時間振り混ぜることに
より重合反応を行なった。反応混合物を大量のメタノー
ル中に投じることにより重合体を沈殿させた。沈殿物を
濾別することにより収量0.35g、収率16.6%でHdFOS単独
重合体を得た。
元素分析値(%); 理論値:C:36.8,H:1.4 実測値:C:36.6,H:1.3 IR(cm-1);3100,1610(芳香環),1350〜1060(C−
F). ガラス転移点;−57℃(DSCにて測定) 参考例 99 参考例97で得たHFDS1.24gを重合管に仕込み、これにAIB
N1.65mg及び溶媒として1.4−ビス(トリフルオロメチ
ル)ベンゼン2.8mlを加え常法に従い真空下に封管し
た。これを60℃にて69時間振り混ぜることにより重合反
応を行なった。反応混合物を大量のメタノール中に投じ
重合体を沈殿させた。沈殿物を濾別することにより収量
0.92g、収率75.2%でHFDS単独重合体を得た。
元素分析値(%); 理論値:C:34.8,H:1.1 実測値:C:34.9,H:1.0 IR(cm-1);3100,1600(芳香環),1300〜1100(C−
F). 参考例 100 参考例96で得たHdFOSとスチレン(St)とのモル比がHdF
OS/St=20/80となるようにHdFOS0.63g及びSt0.5gを重合
管に仕込み、これにAIBN4.9mg及びTHF4.8mlを加え、常
法に従い脱気後、高真空下に封管した。これを60℃にて
10時間振り混ぜることにより共重合反応を行なった。反
応混合物を大量のメタノール中に投じることにより重合
体を沈殿させた。沈殿物を濾別することによりHdFOS−S
t共重合体を収量0.22g、収率19.9%で得た。元素分析値
より共重合体中のHdFOSモル分率は0.367であった。
元素分析値(%);C:51.3,H:3.0 参考例101〜106 参考例96で得たHdFOS及び参考例97で得たHFDSを用い、S
tとの仕込み組成比を種々に変化させた以外は参考例100
と同様の方法によりHdFOS−St共重合体及びHFDS−St共
重合体を得た。結果を表9に示す。
実施例 1〜8(撥水、撥油性の評価) 参考例28〜35で得られた重合体をTHFに溶解し、0.5wt%
の撥水撥油剤溶液を調製した。この溶液をガラス板上に
流延し、40℃にて24時間保ちTHFを留去した後、2日間
真空乾燥した。得られたガラス板表面の液滴の接触角を
コンタクトアングルゴニオメーター(協和科学製)にて
測定した。結果を表10に示す。さらに比較例1として撥
水撥油材料として公知のポリジメチルシロキサン表面の
液滴接触角を表10に示した〔ジャーナル オブ アプラ
イド ポリマー サイエンス(J.Appl.Polym.Sci.)第1
3巻第1741頁(1969)及びジャーナル オブ ポリマー
サイエンス(J.Polym.Sci.Polym.Symp.)第66巻第313
頁参照)。
実施例 9〜13 参考例35〜39で得られた重合体について、実施例1〜8
と同様の操作により撥水撥油剤溶液を調製した。その後
同様に水及びn−オクタン接触角を測定した。結果を表
11に示す。なお、比較のために、ポリスチレン及びポリ
ジメチルシロキサンの表面の液滴接触角を測定した結果
を比較例2及び比較例3として表11に示す。
実施例 14〜22 参考例46〜61で得られた重合体より、撥水撥油剤溶液を
実施例1〜8と同様の方法により調製し、撥水撥油性の
評価を行なった。結果を表12に示す。比較例2〜3を併
せて示す。
実施例 23〜34 参考例41〜45及び参考例71〜77で得られた重合体より、
同様に撥水撥油剤溶液を調製した。また、この溶液を実
施例1〜8と同様にコーティングし、表面の液滴接触角
を同様の方法を用いて水、ヨウ化メチレン、トリクロロ
エタン、n−オクタンについて測定し、撥水撥油性を評
価した。結果を各々表13及び表14に示す。
実施例 35〜43 実施例1〜8に従い、参考例62〜70で得られたフルオロ
アルキル置換スチレン誘導体とスチレンとの共重合体よ
り撥水撥油剤溶液を調製した。これらの撥水撥油性を、
実施例1〜8と同様の方法により純水およびn−オクタ
ン接触角を測定することにより評価した。結果を表15に
示す。
実施例 44〜50 参考例81〜90で得られた重合体をTHFに溶解し、0.5wt%
の撥水撥油剤溶液を調製した。この溶液をガラス板上に
流延した。40℃にて24時間保ちTHFを留去した後、2日
間真空乾燥した。得られたガラス板表面の水及びヨウ化
メチレンの接触角をコンタクトアングルゴニオメーター
(協和科学製)にて測定した。結果を表16に示す。な
お、比較のために、ポリスチレン及びポリメチルメタク
リレートの表面の液滴接触角を測定した結果についてそ
れぞれ比較例5及び比較例6として表16に示す。
実施例 51〜59〔撥水・撥油性の評価〕 参考例98〜106で得られた重合体をTHFに溶解し、0.5wt
%の撥水撥油剤溶液を調製した。この溶液をガラス板上
に流延し、コーティングした。この表面の液滴接触角を
実施例44〜50と同様の方法で測定した。結果を表17に示
す。
実施例 60(撥水撥油剤スプレー溶液の調製) フルオロアルキル置換スチレン重合体をフロン113とア
セトンとの混合溶剤に溶解し、次いで噴射剤としてフロ
ン12を仕込みスプレー溶液を調製した。各成分の割合は
以下の通りである。
重合体 0.5重量% フロン113 60.0 〃 アセトン 9.5 〃 フロン12 30.0 〃 試験例 1 実施例51で調製したスプレー溶液を30cm角の木綿および
ポリエステル布地のうちの20cm×20cmに均一に塗布し
た。塗布量はポリマー換算で30mgおよび50mgになるよう
にスプレー溶液の量で調整した。完全に乾燥後、以下の
方法により撥水性及び撥油性の試験を行なつた。
(1)撥水性試験 JIS L1092−70に従い、撥水性試験装置の下部に45゜の
角度で処理布をセットし、上部の水だめからノズルを通
して250mlの水を流下させた。流下後の布の濡れの状態
により以下のように判定した。
評 価 状 態 100 表面に付着湿潤のないもの 90 〃 わずかに付着湿潤を示すもの 80 〃 水滴状に湿潤を示すもの 70 〃 かなりの部分的湿潤を示すもの 50 〃 全体に湿潤を示すもの 0 〃 が完全に湿潤を示すもの (2)撥油性試験(3M法) ヌジョールとn−ヘプタンを下記の割合で混合した溶液
を処理布に滴下し、3分後の液滴の浸透状態によって判
定する。
評 価 ヌジョール n−ヘプタン(vol%) 150 0 100 140 10 90 130 20 80 120 30 70 110 40 60 100 50 50 90 60 40 80 70 30 70 80 20 60 90 10 50 100 0 各々の試験結果を表18及び表19に示す。
試験例 2(光透過性の評価) 実施例1、2、3、4及び5で調製した撥水撥油剤溶液
を石英板に流延し、実施例1〜8と同様の方法で表面に
撥水撥油剤をコーティングした。この石英板の光透過率
を分光計(島津製作所製UV−240)にて測定した。結果
を第1図に示す。
但し、光透過性の測定の際には、参照側に重合体をコー
ティングしない上記の同一形状の石英板を用いた。
実施例 3(光透過性の評価) (i)実施例14、19、20及び21で得た撥水撥油剤の0.5w
t%THF溶液を石英板上に流延し表面に撥水撥油剤をコー
ティングした。この石英板の光透過率を分光計(島津製
作所製UV240)にて測定した。結果を表2図に示す。実
施例19で得た共重合体のものについては第3図にも示
す。
(ii)また、実施例19で得た撥水撥油剤を上記(i)と
同様にコーティングした石英板を10wt%水酸化ナトリウ
ム水溶液中に60℃、7日間浸漬することによりアルカ処
理した際の光透過性を第3図に示す。
(iii)さらに比較例7として従来ガラス撥水撥油剤と
して公知の3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ヘ
プタデカフルオロデシルアクリレートを76モル%含有す
るスチレン共重合体(HdFDA−St)を0.5wt%THF溶液か
ら上記(i)と同様の方法にて、表面に、コーティング
した石英板の光透過性及び該重合体を上記(ii)と同様
にアルカリ処理した際の光透過性を第3図に示す。但
し、光透過性の測定の際には、参照側に重合体をコーテ
ィングしない上記と同一形状の石英板を用いた。
〔発明の効果〕
本発明のフルオロアルキル置換スチレン重合体よりなる
撥水撥油剤は、高い撥水、撥油性を有し、かつ光透過性
が極めて大きい。また、ガラス表面繊維等に該重合体溶
液を塗布することにより容易に薄膜コーティングするこ
とができ、極めて簡便に撥水撥油処理を施すことがで
き、防汚効果及び反射防止効果を発現することができ
る。
さらに既知の含フッ素アクリル酸エステル、あるいは含
フッ素メタクリル酸エステルに比較して化学的に安定で
あるため、例えば表面を本発明の撥水撥油剤により処理
したガラス表面を長時間アルカリ溶液に接触させた場合
でさえもガラス表面が浸食されることなく撥水撥油性、
防汚性及び光透過性を維持することができる。
【図面の簡単な説明】
第1図は本発明の実施例1、2、3、4及び5で得た撥
水撥油剤でコーティングした石英板の光透過性を示す。 1.・・・実施例1でコーティングした石英板 2.・・・実施例2 〃 3.・・・実施例3 〃 4.・・・実施例4 〃 5.・・・実施例5 〃 第2図は実施例14、19、20及び21で得た撥水撥油剤でコ
ーティングした石英板の光透過性を示す。 第3図は実施例19で得た撥水撥油剤で処理したもの、並
びにそれをアルカリ処理したもの及びHdFDA−St共重合
体よりなる撥水撥油剤で処理したもの並びにそれをアル
カリ処理したものの光透過性を示す。 1.・・実施例14でコーティングした石英板 2.・・実施例19 〃 3.・・実施例20 〃 4.・・実施例21 〃 5.・・実施例19でコーティングした石英板をアルカリ処
理したもの 6.・・HdFDA−St共重合体でコーティングした石英板 7.・・HdFDA−St共重合体でコーティングした石英板を
アルカリ処理したもの

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】一般式 (式中、R1は水素原子または低級アルキル基を表わし、
    R2は水素原子または低級ポリフルオロアルキル基を表わ
    し、R3はポリフルオロアルキル基を表わし、Xは−O−
    又は を表わし、Y1〜Y5は各々水素原子又はハロゲン原子を表
    わし、n、mは各々0又は1を表わす。但し、R4、R5
    各々低級アルキル基である。)で示される繰返し単位を
    全繰返し単位中、10モル%以上含有するフルオロアルキ
    ル置換スチレン重合体よりなる撥水撥油剤。
  2. 【請求項2】一般式(I)で示される繰返し単位以外の
    繰返し単位として、一般式 〔式中、R6は水素原子または低級アルキル基を表わし、
    Zは無置換もしくは低級アルキル基、低級ハロアルキル
    基、低級アルキルオキシ基もしくはハロゲン原子で置換
    されているフェニル基、水素原子、低級アルキル基、ア
    ルキルオキシ基、シアノ基、−COOR7で示される基また
    で示される基(但し、R7、R8は水素原子、炭素数1から
    15のアルキル基、フェニル基またはシクロアルキル基を
    示し、R9は水素原子または低級アルキル基を表わす。)
    を表わす。〕で示される繰返し単位を含有するフルオロ
    アルキル置換スチレン重合体よりなる特許請求の範囲第
    (1)項に記載の撥水撥油剤。
JP15412586A 1985-07-03 1986-07-02 撥水撥油剤 Expired - Lifetime JPH0730308B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP14451785 1985-07-03
JP60-144518 1985-07-03
JP14451885 1985-07-03
JP60-144517 1985-07-03

Publications (2)

Publication Number Publication Date
JPS62109884A JPS62109884A (ja) 1987-05-21
JPH0730308B2 true JPH0730308B2 (ja) 1995-04-05

Family

ID=26475905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15412586A Expired - Lifetime JPH0730308B2 (ja) 1985-07-03 1986-07-02 撥水撥油剤

Country Status (1)

Country Link
JP (1) JPH0730308B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263660A (ja) * 1993-03-12 1994-09-20 Daikin Ind Ltd 含フツ素芳香族化合物
GB2278797B (en) * 1993-06-07 1996-04-10 Honda Motor Co Ltd Stud welding apparatus
JPWO2009087981A1 (ja) * 2008-01-11 2011-05-26 株式会社Kri 重合性化合物及びこの製造方法
JP5790649B2 (ja) * 2010-06-23 2015-10-07 旭硝子株式会社 硬化性組成物および硬化膜の製造方法

Also Published As

Publication number Publication date
JPS62109884A (ja) 1987-05-21

Similar Documents

Publication Publication Date Title
US8575300B2 (en) Fluoropolymers having diacrylate ends
KR100683480B1 (ko) 불소 함유 중합성 단량체 및 중합체, 이를 이용한반사방지막 물질 및 레지스트 조성물
WO2002064648A1 (fr) Composes et polymeres contenant du fluor et leurs procedes de production
EP0168032B1 (en) Novel fluorine-containing acrylic acid derivative and polymer thereof
WO2004096786A1 (ja) 含フッ素環状化合物、含フッ素重合性単量体、含フッ素高分子化合物並びにそれを用いたレジスト材料及びパターン形成方法
JPH0730308B2 (ja) 撥水撥油剤
JPH0547544B2 (ja)
KR100206452B1 (ko) 불소계 그라프트 공중합체 및 이의 제조방법
JP2509274B2 (ja) 光架橋性含フツ素スチレン系重合体
JPWO2007049657A1 (ja) 新規なフルオロアダマンタン誘導体、含フッ素重合体、および製造方法
CN116507646A (zh) 含氟聚合物及其制造方法
JPH0475898B2 (ja)
JPH0713114B2 (ja) フルオロアルキル置換スチレン共重合体
JPH02187411A (ja) フッ素含有重合体の製造方法
JPH03103409A (ja) ポリ(α―フルオロアクリル酸エステル)の製造方法
JPH0475900B2 (ja)
JPH0713113B2 (ja) フルオロアルキル置換スチレン重合体
JP2007254751A (ja) 含フッ素重合性単量体およびそれを用いた高分子化合物、反射防止膜材料、レジスト材料
JPS63186709A (ja) アルコキシシリル基を有する重合体
JPH08134143A (ja) 含フッ素ビニルエーテル共重合体
KR20230117158A (ko) 함불소 중합체의 제조 방법 및 조성물
JPH02184653A (ja) ペンタフルオロベンジルメタアクリレートおよびその重合体
JPS6397215A (ja) 気体透過性重合体膜
JPH0475899B2 (ja)
JPH0283366A (ja) チオエーテル化合物及びその製造方法