JPH0726327A - 無方向性電磁厚板の製造方法 - Google Patents
無方向性電磁厚板の製造方法Info
- Publication number
- JPH0726327A JPH0726327A JP5170738A JP17073893A JPH0726327A JP H0726327 A JPH0726327 A JP H0726327A JP 5170738 A JP5170738 A JP 5170738A JP 17073893 A JP17073893 A JP 17073893A JP H0726327 A JPH0726327 A JP H0726327A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- less
- magnetic field
- flux density
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】
【目的】 本発明は、無方向性電磁厚板の製造方法を提
供する。 【構成】 C:0.01%以下、Si:0.10〜3.
5%、S:0.02〜0.20%、Al:0.10〜
3.0%の成分系で950〜1150℃加熱、800℃
以上で圧延形状比0.6以上の圧延と圧下率35〜70
%の圧延を行ない、板厚に応じて、脱水素熱処理、焼鈍
または焼準を行なうことで切削性が良く、中磁場での磁
気特性の優れた無方向性電磁厚板の製造方法。 【効果】 切削性が良く、中磁場での磁気特性が優れて
いる。
供する。 【構成】 C:0.01%以下、Si:0.10〜3.
5%、S:0.02〜0.20%、Al:0.10〜
3.0%の成分系で950〜1150℃加熱、800℃
以上で圧延形状比0.6以上の圧延と圧下率35〜70
%の圧延を行ない、板厚に応じて、脱水素熱処理、焼鈍
または焼準を行なうことで切削性が良く、中磁場での磁
気特性の優れた無方向性電磁厚板の製造方法。 【効果】 切削性が良く、中磁場での磁気特性が優れて
いる。
Description
【0001】
【産業上の利用分野】本発明は大型構造部材等に使用さ
れる無方向性電磁厚板の製造方法に関するものである。
れる無方向性電磁厚板の製造方法に関するものである。
【0002】
【従来の技術】近年最先端科学技術である素粒子研究や
医療機器の進歩に伴って、大型構造物に磁気を用いる装
置が使われ、その性能向上が求められている。直流磁化
条件で使用される粒子加速器用磁極材、リターンヨーク
材では、高い飽和磁束密度の他に5Oe(400A/m)
付近の中磁場での高い磁束密度が求められているが、さ
らに、加工時の良好な切削性も要求されている。
医療機器の進歩に伴って、大型構造物に磁気を用いる装
置が使われ、その性能向上が求められている。直流磁化
条件で使用される粒子加速器用磁極材、リターンヨーク
材では、高い飽和磁束密度の他に5Oe(400A/m)
付近の中磁場での高い磁束密度が求められているが、さ
らに、加工時の良好な切削性も要求されている。
【0003】磁束密度に優れた電磁鋼板として、従来か
ら薄板分野で珪素鋼板、電磁軟鉄板をはじめとする数多
くの材料が提供されていることは良く知られている。し
かし、構造部材として使用するには組立加工及び強度上
の問題があり、厚鋼板を利用する必要が生じてくる。こ
れまで電磁厚板としては純鉄系成分で製造されているこ
とが、たとえば、特開昭60−96749号公報により
公知である。しかしながら、近年の装置の大型化、能力
の向上等に伴い、切削性とともにさらに磁気特性の優れ
た、特に中磁場、たとえば5Oe(400A/m)付近で
の磁束密度の高い鋼材開発の要望が強い。前掲の公報等
で開示された鋼材では、5Oe付近での中磁場の高い磁束
密度が安定して得られていない。
ら薄板分野で珪素鋼板、電磁軟鉄板をはじめとする数多
くの材料が提供されていることは良く知られている。し
かし、構造部材として使用するには組立加工及び強度上
の問題があり、厚鋼板を利用する必要が生じてくる。こ
れまで電磁厚板としては純鉄系成分で製造されているこ
とが、たとえば、特開昭60−96749号公報により
公知である。しかしながら、近年の装置の大型化、能力
の向上等に伴い、切削性とともにさらに磁気特性の優れ
た、特に中磁場、たとえば5Oe(400A/m)付近で
の磁束密度の高い鋼材開発の要望が強い。前掲の公報等
で開示された鋼材では、5Oe付近での中磁場の高い磁束
密度が安定して得られていない。
【0004】
【発明が解決しようとする課題】本発明は以上の点を鑑
みなされたもので、切削性が良く、中磁場での磁気特性
の優れた無方向性電磁厚板の製造方法を提供することを
目的とするものである。
みなされたもので、切削性が良く、中磁場での磁気特性
の優れた無方向性電磁厚板の製造方法を提供することを
目的とするものである。
【0005】
【課題を解決するための手段】本発明は重量%で、 C :0.01%以下、 Si:0.10%以
上、3.5%以下、Mn:0.20%以下、
S :0.02%以上、0.20%以下、Al:0.10
%以上、3.0%以下、N :0.004%以下、O :
0.005%以下、 H :0.0002%以
下、残部実質的に鉄からなる鋼組成の鋼片または、鋳片
を950〜1150℃に加熱し、800℃以上で下記
(1)式での圧延形状比Aが0.6以上の圧延パスを1
回以上はとる圧延を行ない、引き続き800℃以下で圧
下率を35〜70%とする圧延を行ない、板厚50mm以
上の厚板については必要に応じて600〜750℃の脱
水素熱処理を行なった後、750〜950℃で焼鈍する
かあるいは910〜1000℃で焼準し、板厚50mm未
満については750〜950℃で焼鈍するかあるいは9
10〜1000℃で焼準することを特徴とする切削性が
良く、中磁場での磁気特性の優れた無方向性電磁厚板の
製造方法である。
上、3.5%以下、Mn:0.20%以下、
S :0.02%以上、0.20%以下、Al:0.10
%以上、3.0%以下、N :0.004%以下、O :
0.005%以下、 H :0.0002%以
下、残部実質的に鉄からなる鋼組成の鋼片または、鋳片
を950〜1150℃に加熱し、800℃以上で下記
(1)式での圧延形状比Aが0.6以上の圧延パスを1
回以上はとる圧延を行ない、引き続き800℃以下で圧
下率を35〜70%とする圧延を行ない、板厚50mm以
上の厚板については必要に応じて600〜750℃の脱
水素熱処理を行なった後、750〜950℃で焼鈍する
かあるいは910〜1000℃で焼準し、板厚50mm未
満については750〜950℃で焼鈍するかあるいは9
10〜1000℃で焼準することを特徴とする切削性が
良く、中磁場での磁気特性の優れた無方向性電磁厚板の
製造方法である。
【0006】
【数2】
【0007】
【作用】以下に本発明を詳細に説明する。まず、磁化の
プロセスについて述べる。消磁状態の鋼を磁界の中に入
れ、磁界を強めていくと次第に磁区の向きに変化が生
じ、磁界の方向に近い磁区が優勢になり他の磁区を蚕食
併合していく。つまり、磁壁の移動が起こる。さらに磁
界が強くなり磁壁の移動が完了すると、次に磁区全体が
磁化方向に向きを変えていく。この磁化プロセスの中で
低磁場での磁束密度を決めているのは、磁壁の移動しや
すさである。つまり低磁場で高磁束密度を得るために
は、磁壁の移動を障害するものを極力減らすことである
と定性的に言うことができる。この観点から従来磁壁の
移動の障害となる結晶粒を粗大化することが重要な技術
となっていた(特開昭60−96749号)。これに対
し、中磁場で高磁束密度を得るための方法については知
見がなかった。
プロセスについて述べる。消磁状態の鋼を磁界の中に入
れ、磁界を強めていくと次第に磁区の向きに変化が生
じ、磁界の方向に近い磁区が優勢になり他の磁区を蚕食
併合していく。つまり、磁壁の移動が起こる。さらに磁
界が強くなり磁壁の移動が完了すると、次に磁区全体が
磁化方向に向きを変えていく。この磁化プロセスの中で
低磁場での磁束密度を決めているのは、磁壁の移動しや
すさである。つまり低磁場で高磁束密度を得るために
は、磁壁の移動を障害するものを極力減らすことである
と定性的に言うことができる。この観点から従来磁壁の
移動の障害となる結晶粒を粗大化することが重要な技術
となっていた(特開昭60−96749号)。これに対
し、中磁場で高磁束密度を得るための方法については知
見がなかった。
【0008】発明者らは、ここにおいて中磁場で高磁束
密度を得るためには、単に結晶粒の粗大化だけでなく、
隣合った結晶粒間の磁化の方向が圧延方向に平行に揃っ
ていることが重要であることを見出した。超粗大粒で
も、細粒でもない比較的粗粒(フェライト粒度No.が0
〜4番程度)でかつ〔100〕方向が圧延方向に平行に
ランダムとなることで中磁場の磁気特性が大幅に向上す
ることを見出したのである。このための熱間圧延条件と
して、800℃以下において35%以上70%以下の圧
下率をとることで、圧延後の熱処理前の結晶粒を微細化
して再結晶させやすくするとともに、鋼中に歪みを導入
して、この歪みを熱処理時の再結晶の駆動力とすること
で、比較的大きな結晶粒を板厚全体にわたって安定的に
得ると同時に、〔100〕の結晶方位を圧延方向に平行
にランダムとなる。図1に1.5Si−0.08Mn−
0.8Al鋼での800℃以下の圧下率と5Oeでの磁束
密度との関係を示す。図から35〜70%の圧下によ
り、高磁束密度が得られることがわかる。
密度を得るためには、単に結晶粒の粗大化だけでなく、
隣合った結晶粒間の磁化の方向が圧延方向に平行に揃っ
ていることが重要であることを見出した。超粗大粒で
も、細粒でもない比較的粗粒(フェライト粒度No.が0
〜4番程度)でかつ〔100〕方向が圧延方向に平行に
ランダムとなることで中磁場の磁気特性が大幅に向上す
ることを見出したのである。このための熱間圧延条件と
して、800℃以下において35%以上70%以下の圧
下率をとることで、圧延後の熱処理前の結晶粒を微細化
して再結晶させやすくするとともに、鋼中に歪みを導入
して、この歪みを熱処理時の再結晶の駆動力とすること
で、比較的大きな結晶粒を板厚全体にわたって安定的に
得ると同時に、〔100〕の結晶方位を圧延方向に平行
にランダムとなる。図1に1.5Si−0.08Mn−
0.8Al鋼での800℃以下の圧下率と5Oeでの磁束
密度との関係を示す。図から35〜70%の圧下によ
り、高磁束密度が得られることがわかる。
【0009】さらに中磁場での高磁束密度を得るための
手段として、内部応力の原因となる元素及び空隙性欠陥
の作用につき詳細な検討を行ない、所期の目的を達成し
た。また、空隙性欠陥の影響についても種々検討した結
果、そのサイズが100μ以上のものが磁気特性を大幅
に低下することを知見したものである。そしてこの10
0μ以上の有害な空隙性欠陥をなくすためには下記
(1)式での圧延形状比Aが0.6以上必要であること
を見出した。
手段として、内部応力の原因となる元素及び空隙性欠陥
の作用につき詳細な検討を行ない、所期の目的を達成し
た。また、空隙性欠陥の影響についても種々検討した結
果、そのサイズが100μ以上のものが磁気特性を大幅
に低下することを知見したものである。そしてこの10
0μ以上の有害な空隙性欠陥をなくすためには下記
(1)式での圧延形状比Aが0.6以上必要であること
を見出した。
【0010】
【数3】
【0011】さらに、鋼中の水素の存在も有害で、脱水
素熱処理を行なうことによって磁気特性が大幅に向上す
ることを知見した。高形状比圧延により空隙性欠陥のサ
イズを100μ以下にし、かつ、脱水素熱処理により鋼
中水素を減少することで中磁場での磁束密度が大幅に上
昇する。
素熱処理を行なうことによって磁気特性が大幅に向上す
ることを知見した。高形状比圧延により空隙性欠陥のサ
イズを100μ以下にし、かつ、脱水素熱処理により鋼
中水素を減少することで中磁場での磁束密度が大幅に上
昇する。
【0012】成分元素に関して、本発明製造法において
は、特にSi及びAl添加が低磁場で高磁束密度を得る
ために非常に有効であることを見出した。図2及び図3
は、0.005C−0.12Mn鋼にあって、Si量及
びAl量が中磁場(5Oe)での磁束密度に及ぼす影響を
示したものである。図から明らかのように本発明製造法
において、Si量が0.1〜3.5%、特に0.6〜
2.5%の範囲で、Al量が0.1〜3.0%、特に
0.9〜2.5%の範囲で高い磁束密度を示している。
は、特にSi及びAl添加が低磁場で高磁束密度を得る
ために非常に有効であることを見出した。図2及び図3
は、0.005C−0.12Mn鋼にあって、Si量及
びAl量が中磁場(5Oe)での磁束密度に及ぼす影響を
示したものである。図から明らかのように本発明製造法
において、Si量が0.1〜3.5%、特に0.6〜
2.5%の範囲で、Al量が0.1〜3.0%、特に
0.9〜2.5%の範囲で高い磁束密度を示している。
【0013】また、本発明高純鋼の切削性、特に切削後
の表面粗度低減のためにはS添加が非常に有効であるこ
とを見出した。図4に0.007C−0.08Mn−
1.6Al鋼で切削長さ10mでの表面粗度とS含有量
との関係を示した。図において、切削長さ10mの表面
粗度が10μm程度を普通(△で示す)、5μm程度を
良好(○で示す)、1μm程度を特に良好(◎で示す)
の切削性を示すと定義した。同図から、S添加量が0.
02%以上の範囲で表面粗度5μm以下の良好な切削性
を示すことがわかる。
の表面粗度低減のためにはS添加が非常に有効であるこ
とを見出した。図4に0.007C−0.08Mn−
1.6Al鋼で切削長さ10mでの表面粗度とS含有量
との関係を示した。図において、切削長さ10mの表面
粗度が10μm程度を普通(△で示す)、5μm程度を
良好(○で示す)、1μm程度を特に良好(◎で示す)
の切削性を示すと定義した。同図から、S添加量が0.
02%以上の範囲で表面粗度5μm以下の良好な切削性
を示すことがわかる。
【0014】次に成分限定理由を述べる。Cは鋼中の内
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが中磁場での磁束
密度を低下させないことに寄与する。また、磁気時効の
点からも低いほど経時低下が少なく、磁気特性の良い状
態で恒久的に使用できるものであり、このようなことか
ら、0.01%以下に限定する。図5に5Oeでの磁束密
度とCの関係を示すように、Cをさらに0.005%以
下にすることにより一層高磁束密度が得られる。Si,
Alは中磁場での磁束密度の点から添加した方が有利な
元素である。Siに関しては、図2に示すように、0.
1〜3.5%の範囲で、さらに望ましくは、0.6〜
3.0%の範囲で添加する。Alに関しては、図3に示
すように、0.1〜3.0%の範囲で、さらに望ましく
は、0.9〜2.5%の範囲で添加する。
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが中磁場での磁束
密度を低下させないことに寄与する。また、磁気時効の
点からも低いほど経時低下が少なく、磁気特性の良い状
態で恒久的に使用できるものであり、このようなことか
ら、0.01%以下に限定する。図5に5Oeでの磁束密
度とCの関係を示すように、Cをさらに0.005%以
下にすることにより一層高磁束密度が得られる。Si,
Alは中磁場での磁束密度の点から添加した方が有利な
元素である。Siに関しては、図2に示すように、0.
1〜3.5%の範囲で、さらに望ましくは、0.6〜
3.0%の範囲で添加する。Alに関しては、図3に示
すように、0.1〜3.0%の範囲で、さらに望ましく
は、0.9〜2.5%の範囲で添加する。
【0015】Mnは中磁場での磁束密度の点から少ない
方が好ましく、MnはMnS系介在物を生成する点から
も低い方が良いので、0.20%以下に限定する。Mn
に関してはMnS系介在物を生成する点よりさらに望ま
しくは0.10%以下が良い。Sは工具摩耗量を低下さ
せ、切削性を上昇させる元素で、図4に示すように0.
020%以上添加する必要があるが、0.20%を超え
て添加すると低磁場での磁気特性を低下させるため上限
を0.20%とする。
方が好ましく、MnはMnS系介在物を生成する点から
も低い方が良いので、0.20%以下に限定する。Mn
に関してはMnS系介在物を生成する点よりさらに望ま
しくは0.10%以下が良い。Sは工具摩耗量を低下さ
せ、切削性を上昇させる元素で、図4に示すように0.
020%以上添加する必要があるが、0.20%を超え
て添加すると低磁場での磁気特性を低下させるため上限
を0.20%とする。
【0016】Oは鋼中において非金属介在物を形成し、
結晶粒の粗大化を妨げる害を及ぼし含有量が多くなるに
従って磁束密度の低下が見られ、磁気特性を低下させる
ので少ないほど良い。このため、Oは0.005%以下
とした。Nは内部応力を高めかつAlNにより結晶粒微
細化作用により中磁場での磁束密度を低下させるので上
限は0.004%とする。Hは磁気特性を低下させ、か
つ、空隙性欠陥の減少を妨げるので0.0002%以下
とする。
結晶粒の粗大化を妨げる害を及ぼし含有量が多くなるに
従って磁束密度の低下が見られ、磁気特性を低下させる
ので少ないほど良い。このため、Oは0.005%以下
とした。Nは内部応力を高めかつAlNにより結晶粒微
細化作用により中磁場での磁束密度を低下させるので上
限は0.004%とする。Hは磁気特性を低下させ、か
つ、空隙性欠陥の減少を妨げるので0.0002%以下
とする。
【0017】次に製造法について述べる。圧延条件につ
いては、まず圧延前加熱温度を1150℃以下にするの
は、1150℃を超える加熱温度では、加熱γ粒径の板
厚方向のバラツキは大きく、このバラツキが圧延後も残
り最終的な結晶粒が不均一となるため、上限を1150
℃とする。加熱温度が950℃未満となると圧延の変形
抵抗が大きくなり、以下に述べる空隙性欠陥をなくすた
めの形状比の高い圧延の圧延負荷が大きくなるため、9
50℃を下限とする。
いては、まず圧延前加熱温度を1150℃以下にするの
は、1150℃を超える加熱温度では、加熱γ粒径の板
厚方向のバラツキは大きく、このバラツキが圧延後も残
り最終的な結晶粒が不均一となるため、上限を1150
℃とする。加熱温度が950℃未満となると圧延の変形
抵抗が大きくなり、以下に述べる空隙性欠陥をなくすた
めの形状比の高い圧延の圧延負荷が大きくなるため、9
50℃を下限とする。
【0018】熱間圧延にあたり前述の空隙性欠陥は鋼の
凝固過程で大小はあるが、必ず発生するものでありこれ
をなくす手段は圧延によらなければならないので、熱間
圧延の役目は重要である。すなわち、熱間圧延1回当た
りの変形量を大きくし板厚中心部にまで変形が及ぶ熱間
圧延が有効である。具体的には圧延形状比Aが0.6以
上の圧延パスが1回以上を含む高形状比圧延を行ない、
空隙性欠陥のサイズを100μ以下にすることが磁気特
性に良い。圧延中にこの高形状比圧延により空隙性欠陥
をなくすことで、後で行なう脱水素熱処理における脱水
素効率が飛躍的に上昇する。
凝固過程で大小はあるが、必ず発生するものでありこれ
をなくす手段は圧延によらなければならないので、熱間
圧延の役目は重要である。すなわち、熱間圧延1回当た
りの変形量を大きくし板厚中心部にまで変形が及ぶ熱間
圧延が有効である。具体的には圧延形状比Aが0.6以
上の圧延パスが1回以上を含む高形状比圧延を行ない、
空隙性欠陥のサイズを100μ以下にすることが磁気特
性に良い。圧延中にこの高形状比圧延により空隙性欠陥
をなくすことで、後で行なう脱水素熱処理における脱水
素効率が飛躍的に上昇する。
【0019】次に800℃以下の温度において累積圧下
率35%以上にすることにより結晶粒を微細化するとと
もに歪みを導入し、これに続く熱処理時の再結晶を促進
させる。さらにこの圧延により、〔100〕の結晶方位
を圧延方向に平行にランダムとする。ただし70%超の
圧下率になると、熱処理後結晶粒度が板厚方向に不均一
になり、磁束密度のバラツキを大きくする。従って板厚
方向に均一な比較的粗大な粒を得るために、圧下率を3
5〜70%とする。
率35%以上にすることにより結晶粒を微細化するとと
もに歪みを導入し、これに続く熱処理時の再結晶を促進
させる。さらにこの圧延により、〔100〕の結晶方位
を圧延方向に平行にランダムとする。ただし70%超の
圧下率になると、熱処理後結晶粒度が板厚方向に不均一
になり、磁束密度のバラツキを大きくする。従って板厚
方向に均一な比較的粗大な粒を得るために、圧下率を3
5〜70%とする。
【0020】次に熱間圧延に引き続き結晶粒粗大化、内
部歪除去及び板厚50mm以上の厚手材については必要に
応じて脱水素熱処理を施す。板厚50mm以上では水素の
拡散がしにくく、これが空隙性欠陥の原因となり、か
つ、水素自身の作用と合わさって低磁場での磁束密度を
低下させる。このため、脱水素熱処理を行なうが、その
際600℃未満では脱水素効率が悪く750℃超では変
態が一部開始するので600〜750℃の温度範囲で行
なう。脱水素時間としては種々検討の結果〔0.6(t
−50)+6〕時間(t:板厚)が適当である。
部歪除去及び板厚50mm以上の厚手材については必要に
応じて脱水素熱処理を施す。板厚50mm以上では水素の
拡散がしにくく、これが空隙性欠陥の原因となり、か
つ、水素自身の作用と合わさって低磁場での磁束密度を
低下させる。このため、脱水素熱処理を行なうが、その
際600℃未満では脱水素効率が悪く750℃超では変
態が一部開始するので600〜750℃の温度範囲で行
なう。脱水素時間としては種々検討の結果〔0.6(t
−50)+6〕時間(t:板厚)が適当である。
【0021】焼鈍は結晶粒粗大化及び内部歪除去のため
に行なうが、750℃未満では結晶粒粗大化が起こら
ず、また、950℃以上では結晶粒の板厚方向の均質性
が保てないため、焼鈍温度としては750〜950℃に
限定する。焼準は板厚方向の結晶粒調整及び内部歪除去
のために行なうが、下限はオーステナイト域下限のAc
3 点である910℃以上で、かつ、1000℃以上では
結晶粒の板厚方向の均質性が保てないので、焼準温度は
910〜1000℃に限定する。なお、板厚50mm以上
の厚手材で行なう脱水素熱処理でこの焼鈍あるいは、焼
準を兼ねることが可能である。一方、板厚50mm未満の
ものは水素の拡散が容易なため、脱水素熱処理は不要で
前述の焼鈍または焼準するのみで良い。
に行なうが、750℃未満では結晶粒粗大化が起こら
ず、また、950℃以上では結晶粒の板厚方向の均質性
が保てないため、焼鈍温度としては750〜950℃に
限定する。焼準は板厚方向の結晶粒調整及び内部歪除去
のために行なうが、下限はオーステナイト域下限のAc
3 点である910℃以上で、かつ、1000℃以上では
結晶粒の板厚方向の均質性が保てないので、焼準温度は
910〜1000℃に限定する。なお、板厚50mm以上
の厚手材で行なう脱水素熱処理でこの焼鈍あるいは、焼
準を兼ねることが可能である。一方、板厚50mm未満の
ものは水素の拡散が容易なため、脱水素熱処理は不要で
前述の焼鈍または焼準するのみで良い。
【0022】
【実施例】次に本発明の実施例を比較例とともに挙げ
る。表1に化学成分を示し、表2にそれぞれの電磁厚板
の製造条件とフェライト粒径、中磁場での磁束密度を示
す。
る。表1に化学成分を示し、表2にそれぞれの電磁厚板
の製造条件とフェライト粒径、中磁場での磁束密度を示
す。
【表1】
【0023】
【表2】
【0024】例1〜6は本発明の実施例を示し、例7〜
25は比較例を示す。例1〜3は板厚115mmに仕上げ
たもので、中磁場で高磁束密度で、かつ、切削性も良好
である。例1に比べ、例2はさらに低C、例3は低Mn
であり、より高い磁気特性を示す。例4は55mm、例5
は6mm、例6は8mmに仕上げたもので、高磁束密度で切
削性も良好である。例7〜8はSが低く切削性が良好で
ない。例9はSが高すぎ、例10はCが高く、例11は
Mnが高く、例12はSiが低く、例13はSiが高
く、例14はAlが低く、例15はAlが高く、例16
はNが高く、例17はOが高く、例18はHが高く、そ
れぞれ低磁気特性値となっている。例19は加熱温度が
上限を超え低磁束密度となっている。例20は加熱温度
が下限を外れるため、低磁束密度となっている。例21
は800℃以下の圧下率が下限を外れ低磁束密度となっ
ている。例22は最大形状比が下限を外れ、例23は脱
水素熱処理温度が下限を外れ、例24は焼鈍温度が下限
を外れ、例25は脱水素熱処理がないため低磁束密度と
なっている。
25は比較例を示す。例1〜3は板厚115mmに仕上げ
たもので、中磁場で高磁束密度で、かつ、切削性も良好
である。例1に比べ、例2はさらに低C、例3は低Mn
であり、より高い磁気特性を示す。例4は55mm、例5
は6mm、例6は8mmに仕上げたもので、高磁束密度で切
削性も良好である。例7〜8はSが低く切削性が良好で
ない。例9はSが高すぎ、例10はCが高く、例11は
Mnが高く、例12はSiが低く、例13はSiが高
く、例14はAlが低く、例15はAlが高く、例16
はNが高く、例17はOが高く、例18はHが高く、そ
れぞれ低磁気特性値となっている。例19は加熱温度が
上限を超え低磁束密度となっている。例20は加熱温度
が下限を外れるため、低磁束密度となっている。例21
は800℃以下の圧下率が下限を外れ低磁束密度となっ
ている。例22は最大形状比が下限を外れ、例23は脱
水素熱処理温度が下限を外れ、例24は焼鈍温度が下限
を外れ、例25は脱水素熱処理がないため低磁束密度と
なっている。
【0025】
【発明の効果】以上詳細に述べたごとく、本発明によれ
ば適切な成分限定により板厚の厚い厚鋼板に均質な高電
磁特性を具備せしめることに成功し、直流磁化による磁
気特性を利用する構造物に適用可能としたものであり、
かつその製造法も前述の成分限定と熱間圧延後結晶粒調
整及び脱水素熱処理を同時に行なう方式であり極めて経
済的に製造する方法を提供するもので産業上多大な効果
を奏するものである。
ば適切な成分限定により板厚の厚い厚鋼板に均質な高電
磁特性を具備せしめることに成功し、直流磁化による磁
気特性を利用する構造物に適用可能としたものであり、
かつその製造法も前述の成分限定と熱間圧延後結晶粒調
整及び脱水素熱処理を同時に行なう方式であり極めて経
済的に製造する方法を提供するもので産業上多大な効果
を奏するものである。
【図面の簡単な説明】
【図1】5Oeにおける磁束密度に及ぼす800℃以下の
圧下率の影響を示すグラフである。
圧下率の影響を示すグラフである。
【図2】5Oeにおける磁束密度に及ぼすSi含有量の影
響を示すグラフである。
響を示すグラフである。
【図3】5Oeにおける磁束密度に及ぼすAl含有量の影
響を示すグラフである。
響を示すグラフである。
【図4】切削性に及ぼすS含有量の影響を示すグラフで
ある。
ある。
【図5】5Oeにおける磁束密度に及ぼすC含有量の影響
を示すグラフである。
を示すグラフである。
Claims (2)
- 【請求項1】 重量%で、 C :0.01%以下、 Si:0.10%以上、3.5%以下、 Mn:0.20%以下、 S :0.02%以上、0.20%以下、 Al:0.10%以上、3.0%以下、 N :0.004%以下、 O :0.005%以下、 H :0.0002%以下、 残部実質的に鉄からなる鋼組成の鋼片または、鋳片を9
50〜1150℃に加熱し、800℃以上で下記(1)
式での圧延形状比Aが0.6以上の圧延パスを1回以上
はとる圧延を行ない、引き続き800℃以下で圧下率を
35〜70%とする圧延を行なった後、750〜950
℃で焼鈍するかあるいは910〜1000℃で焼準する
ことを特徴とする切削性が良く、中磁場での磁気特性の
優れた無方向性電磁厚板の製造方法。 【数1】 - 【請求項2】 請求項1における800℃以下で圧下率
を35〜70%とする圧延を行なった後、板厚50mm以
上の厚板については600〜750℃の脱水素熱処理を
行ない、さらに750〜950℃で焼鈍するかあるいは
910〜1000℃で焼準することを特徴とする請求項
1記載の切削性が良く、中磁場での磁気特性の優れた無
方向性電磁厚板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5170738A JPH0726327A (ja) | 1993-07-09 | 1993-07-09 | 無方向性電磁厚板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5170738A JPH0726327A (ja) | 1993-07-09 | 1993-07-09 | 無方向性電磁厚板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0726327A true JPH0726327A (ja) | 1995-01-27 |
Family
ID=15910473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5170738A Withdrawn JPH0726327A (ja) | 1993-07-09 | 1993-07-09 | 無方向性電磁厚板の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726327A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006055859A (ja) * | 2004-08-17 | 2006-03-02 | Daido Steel Co Ltd | 電磁軟鉄薄肉シートの製造方法 |
-
1993
- 1993-07-09 JP JP5170738A patent/JPH0726327A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006055859A (ja) * | 2004-08-17 | 2006-03-02 | Daido Steel Co Ltd | 電磁軟鉄薄肉シートの製造方法 |
JP4655541B2 (ja) * | 2004-08-17 | 2011-03-23 | 大同特殊鋼株式会社 | 電磁軟鉄薄肉シートの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3392664B2 (ja) | 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法 | |
JP2503110B2 (ja) | 磁気特性の優れた無方向性電磁厚板の製造方法 | |
JPH079040B2 (ja) | 切削性が良く板厚方向の磁気特性の均一な良電磁厚板の製造方法 | |
JP2503111B2 (ja) | 磁気特性の優れた無方向性電磁厚板の製造法 | |
JP2679928B2 (ja) | 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法 | |
JPH0726326A (ja) | 無方向性電磁厚板の製造法 | |
JPH0711026B2 (ja) | 磁束密度の高い無方向性電磁厚板の製造法 | |
JPH0726327A (ja) | 無方向性電磁厚板の製造方法 | |
JP2503113B2 (ja) | 無方向性電磁厚板の製造法 | |
JP2503112B2 (ja) | 良電磁厚板の製造方法 | |
JPH0713264B2 (ja) | 板厚方向の磁気特性の均一な無方向性電磁厚板の製造法 | |
JPH0726325A (ja) | 良電磁厚板の製造法 | |
JPH06104866B2 (ja) | 直流磁化用電磁厚板の製造方法 | |
JP2503125B2 (ja) | 良電磁厚板の製造方法 | |
JPH0745688B2 (ja) | 高磁束密度電磁厚板の製造方法 | |
JP3311021B2 (ja) | 鉄損の低い高磁束密度一方向性電磁鋼板の製造方法 | |
JP2503122B2 (ja) | 磁気特性の優れた無方向性電磁厚板の製造方法 | |
JP2503123B2 (ja) | 磁気特性の優れた無方向性電磁厚板の製造法 | |
JPH0711328A (ja) | 良電磁厚板の製造方法 | |
JP2503124B2 (ja) | 良電磁厚板の製造法 | |
JPH0762175B2 (ja) | 板厚方向の磁気特性の均一な無方向性電磁厚板の製造方法 | |
JPH04293722A (ja) | 良切削型無方向性電磁厚板の製造方法 | |
JPH0762174B2 (ja) | 磁束密度の高い無方向性電磁厚板の製造方法 | |
JPH04268022A (ja) | 良電磁厚板の製造法 | |
JPH0745692B2 (ja) | 磁束密度の高い無方向性電磁厚板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001003 |