JPH0696771B2 - Electroless plating powder, conductive filler and method for producing the same - Google Patents

Electroless plating powder, conductive filler and method for producing the same

Info

Publication number
JPH0696771B2
JPH0696771B2 JP63070373A JP7037388A JPH0696771B2 JP H0696771 B2 JPH0696771 B2 JP H0696771B2 JP 63070373 A JP63070373 A JP 63070373A JP 7037388 A JP7037388 A JP 7037388A JP H0696771 B2 JPH0696771 B2 JP H0696771B2
Authority
JP
Japan
Prior art keywords
powder
electroless plating
core material
plating
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63070373A
Other languages
Japanese (ja)
Other versions
JPH01242782A (en
Inventor
浩 川上
淳一 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP63070373A priority Critical patent/JPH0696771B2/en
Publication of JPH01242782A publication Critical patent/JPH01242782A/en
Publication of JPH0696771B2 publication Critical patent/JPH0696771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無電解めっき粉末およびその製造方法に関す
る。より詳しくは、有機質又は無機質の粉末状芯材に濃
密で実質的な連続性の無電解めっき皮膜を形成してなる
無電解めっき粉末およびその製造法に係り、更に発展さ
せて上記無電解めっき粉末を合成樹脂や無機材料に導電
性を付与しうる導電性フィラーとして提供するものであ
る。
The present invention relates to an electroless plating powder and a method for producing the same. More specifically, the present invention relates to an electroless plating powder formed by forming a dense and substantially continuous electroless plating film on an organic or inorganic powdery core material, and a method for producing the same, which is further developed to the electroless plating powder. Is provided as a conductive filler capable of imparting conductivity to a synthetic resin or an inorganic material.

〔従来の技術〕[Conventional technology]

一般に、無電解めっきはその技術の進歩と用途の開発に
よって、今日では有機または無機の材質を問わないこと
は勿論、その形状や大きさに関係なく適用されている。
とは言え多くの場合、基材は板状または成型体が多く、
粉末または粒状の芯材についてはその用途開発が新しい
だけに最近のことであって、確立された製造方法はな
く、僅かに従来の一般的方法に従って処理されているの
が実状である。
In general, electroless plating is applied irrespective of its shape or size, not to mention organic or inorganic materials, due to the progress of its technology and the development of its applications.
However, in many cases, the base material is often a plate or molded body,
With respect to powdered or granular core materials, the development of their uses is new, and there is no established manufacturing method. In reality, the core materials are treated in accordance with the conventional general method.

即ち、無電解めっきする場合には、通常、予め調製され
ためっき液に被めっき基材を浸潰して予め推測により定
められた時間、反応させた後、反応を停止させる方法が
とられている。
That is, in the case of electroless plating, a method of immersing a base material to be plated in a preliminarily prepared plating solution, causing the reaction for a predetermined time determined in advance, and then stopping the reaction is taken. .

被めっき基材が粉末または粉状体であっても、上記と同
様な方法が採られているが、この場合は速やかにめっき
液に添加してめっきを施し、反応後はめっき液のろ過、
急冷または希釈等の停止を行わなければならない。
Even if the substrate to be plated is a powder or powder, the same method as above is adopted, but in this case, the plating solution is rapidly added to perform plating, and after the reaction, the plating solution is filtered,
Stops such as quenching or dilution must be performed.

基材が粉粒体(粉末または粉状体)である場合は他の基
材に比べ著しく比表面積が大きいためめっき反応速度が
異常に速い。
When the base material is a granular material (powder or powder), the plating reaction rate is abnormally fast because the specific surface area is remarkably large as compared with other base materials.

従って、めっき液のpHや各成分の変動も激しいのでpHの
調節や各成分の補給によりめっき液を安定に保持するこ
とは極めて困難であるのみならず、その度にめっき速度
も不定となる。
Therefore, since the pH of the plating solution and the fluctuation of each component are severe, it is extremely difficult to keep the plating solution stable by adjusting the pH and replenishing each component, and the plating rate becomes unstable each time.

他方、粉粒体を一挙によくめっき液に投入できれば問題
はないが、時間をかけて投入した場合、始めと終りとで
はめっき皮膜の膜厚に差が生じ不均一となる。
On the other hand, there is no problem if the powder and granules can be thrown well into the plating solution all at once. However, if the powder and granules are thrown in over a long period of time, there will be a difference in the film thickness of the plating film at the beginning and at the end, resulting in non-uniformity.

特に、粉粒体をめっきする場合に問題なのは凝集した二
次粒子にめっき皮膜が施されるとその使用に際して、二
次粒子が壊れて未被覆面の露出による被膜の欠陥が現れ
る。
In particular, when plating a powder or granular material, when a plating film is applied to agglomerated secondary particles, the secondary particles are broken during use and defects in the film due to exposure of the uncoated surface appear.

従って、粉粒体をめっきする場合に可能な限り、二次粒
子の少ない状態によく分散したものにめっき皮膜を施す
ことが最も重要なことになるが、従来の方法では全く期
待できないものであった。
Therefore, when plating powder or granular material, it is most important to apply a plating film to a material in which secondary particles are well dispersed in a state where it is as small as possible, but it cannot be expected by conventional methods. It was

このような粉粒体の微細粒子をめっきするに際して生じ
る上記の事実に鑑み、本発明者は、先に粉粒状芯材に無
電解めっきをする方法として該芯材を水性懸濁体にし、
これに無電解めっき液を添加することによりめっき皮膜
を付与させる方法を開発し、既にいくつか特許出願して
いる(特開昭60-59070号公報、特開昭60-16779号公報、
特開昭60-177182号公報、特開昭60-177183号公報)。
In view of the above facts that occur when plating fine particles of such a granular material, the present inventor has made the core material an aqueous suspension as a method of electroless plating the powdery core material,
A method of applying a plating film by adding an electroless plating solution to this has been developed, and several patent applications have already been filed (JP-A-60-59070, JP-A-60-16779,
JP-A-60-177182, JP-A-60-177183).

このほかに有機質芯材に無電解めっきする方法におい
て、予備処理として貴金属捕捉性表面処理剤で貴金属イ
オンを担持させた後無電解めっきを施すことにより摩擦
下の抵抗性に優れる金属皮膜を形成させる技術も開発し
た(特開昭61-64882号公報)。
In addition to this, in the method of electroless plating on an organic core material, a metal film having excellent resistance under friction is formed by carrying out electroless plating after supporting precious metal ions with a precious metal-trapping surface treating agent as a pretreatment. Technology was also developed (Japanese Patent Laid-Open No. 61-64882).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記の開発技術は、予め建浴しためっき浴に被めっき材
料である粉末を投入して行う従来の無電解めっき方法に
比べて、著しく改良され、品質の向上が認められたが、
なお、改善の予地があり、要求性能を十分に満足する金
属皮膜を得るには至っていなかった。
The above-mentioned development technology is significantly improved compared to the conventional electroless plating method in which the powder that is the material to be plated is put into a plating bath that has been constructed in advance, and an improvement in quality was recognized,
In addition, there is a room for improvement, and it has not been possible to obtain a metal film that sufficiently satisfies the required performance.

すなわち周知のように無電解めっきするには、その予備
処理として、被めっき材表面を塩化パラジウムを用いて
処理し金属パラジウムを触媒核として担持せしめること
が必要であるが、通常の場合には塩化第一錫および塩化
パラジウムの溶液を順次又は同時に処理した後めっき処
理を行う方法が採られている。しかしながら、この方法
によるめっき金属粉末の皮膜は極めて不均質であって、
連続皮膜が形成されず又そのような皮膜の形成をするに
はかなりの膜厚を要求されることが実験的に確かめられ
ている。しかも、その皮膜は摩擦下の抵抗性は弱いうえ
に、めっき金属粒子が粗で多くは、瘤状の表面を形成し
ている。
That is, as is well known, to perform electroless plating, as a pretreatment, it is necessary to treat the surface of the material to be plated with palladium chloride to support metallic palladium as a catalyst nucleus. A method is employed in which a solution of stannous and palladium chloride is sequentially or simultaneously treated and then a plating treatment is performed. However, the coating of plated metal powder by this method is extremely inhomogeneous,
It has been experimentally confirmed that a continuous film is not formed and a considerable film thickness is required to form such a film. In addition, the coating has low resistance to friction, and the plated metal particles are coarse and often form a bumpy surface.

この理由は、めっき反応の建速となるパラジウムの触媒
核が粉体表面に不均質に形成され、この核に基づいてめ
っき金属が形成された島状に成長されるからと考えられ
る。
The reason for this is considered to be that the catalytic nucleus of palladium, which is the building speed of the plating reaction, is heterogeneously formed on the surface of the powder, and the plated metal is grown on the basis of this nucleus to form an island.

このような被覆状態は、前述した特開昭61-64882号の方
法によりかなりの改善が図られているものの、基本的に
は同様の傾向が現出する。
Although such a coated state has been considerably improved by the method described in JP-A-61-64882, basically the same tendency appears.

次に、金属被覆粉体を導電性フィラーとして利用する場
合、第1に揚げられる優位性に比重の軽さである。とこ
ろが、金属の膜厚が仮りに、1000Å以上でなければなら
ないとすると、実用可能な粉体の粒径は1μm以上とな
る。理解し易くするため、表1に比重1.2の各粒径の粉
末に比重9.0の金属を1000Å被覆した場合の金属比率
(金属/製品重量比)と比重の関係を示す。
Next, when the metal-coated powder is used as a conductive filler, the first advantage is that it has a low specific gravity. However, assuming that the film thickness of the metal must be 1000 Å or more, the particle size of the powder that can be used is 1 μm or more. For easy understanding, Table 1 shows the relationship between the metal ratio (metal / product weight ratio) and the specific gravity when the powder having the specific gravity of 1.2 and each particle size is coated with 1000Å of the metal having the specific gravity of 9.0.

表1から明らかなように、めっき金属皮膜の膜厚は可能
な限り薄くすることが実用上かつ経済上の面から要求さ
れるが、このためには均質かつ強固な皮膜にしなければ
解決されない。
As is apparent from Table 1, it is practically and economically required to make the plated metal film as thin as possible, but for this purpose, a homogeneous and strong film cannot be solved.

本発明は、従来の欠点である不均質なめっき皮膜を改善
してより均質で強固な被覆力を有する金属めっき粉末を
製造することを目的として、鋭意研究を重ねた結果開発
に成功したものである。
The present invention has been succeeded in the development as a result of intensive studies for the purpose of improving a non-uniform plating film which is a conventional defect and producing a metal plating powder having a more uniform and strong covering power. is there.

〔課題を解決するための手段〕[Means for Solving the Problems]

すなわち、本発明により提供される無電解めっき粉末
は、有機質又は無機質の芯材の表面に、無電解めっき法
による金属被覆を施した無電解めっき粉末であって、電
子顕微鏡(SEM)により拡大倍率5000〜10000倍で観察し
た際に微細な金属粒子が濃密で実質的な連続皮膜を呈
し、かつ少なくとも50Åの膜厚で沈積形成されてなるこ
とを構成上の特徴とする。
That is, the electroless plating powder provided by the present invention is an electroless plating powder obtained by subjecting a surface of an organic or inorganic core material to metal coating by an electroless plating method, and magnifying magnification by an electron microscope (SEM). The structural feature is that the fine metal particles form a dense and substantially continuous film when observed at a magnification of 5000 to 10,000 times, and are deposited and formed at a film thickness of at least 50Å.

また本発明の導電性フィラーは上記の無電解めっき粉末
から構成されるもので、合成樹脂等の基材へ導電性を付
与するための用途適用品である。
Further, the conductive filler of the present invention is composed of the above electroless plating powder, and is a use application product for imparting conductivity to a base material such as a synthetic resin.

更に上記の無電解めっき粉末並びに導電性フィラーを製
造するための本発明の方法は、貴金属イオンの捕捉能を
有するか、もしくは表面処理により貴金属イオンを付与
した有機質又は無機質の芯材粉末に貴金属イオンを捕捉
させた後、これを還元して前記金属の芯材表面に担持せ
しめる第1工程(触媒化処理)と、前工程で処理された
芯材粉末を、無電解めっき液を構成する少なくとも1種
の薬剤を含有する水性媒体に分散させて水性懸濁体を調
製し、これに無電解めっき構成液を少くとも2液にして
個別かつ同時に添加して無電解めっき反応を行わせる第
2工程(無電解めっき処理)とからなることを特徴とす
るものである。
Furthermore, the method of the present invention for producing the electroless plating powder and the conductive filler described above has a capturing ability of noble metal ions, or a noble metal ion in an organic or inorganic core material powder to which a noble metal ion is added by surface treatment. Of the core material powder treated in the first step (catalyzing treatment) in which the metal is captured and then reduced to be supported on the surface of the metal core material, and the core material powder treated in the previous step is used to form an electroless plating solution. Second step of preparing an aqueous suspension by dispersing it in an aqueous medium containing various chemicals and adding at least two electroless plating constituent solutions individually and simultaneously to carry out an electroless plating reaction (Electroless plating treatment).

以下、本発明について詳述する。Hereinafter, the present invention will be described in detail.

まず、本発明に係る無電解めっき粉末は、前記のように
芯材粉末の表面に無電解めっき法による金属粒子が濃密
で実質的な連続皮膜として沈積被覆されていることを特
徴とする。
First, the electroless plating powder according to the present invention is characterized in that the surface of the core material powder is deposited and coated as a dense and substantially continuous film on the surface of the core material powder as described above.

ここに、濃密なというのは、均質で微細な金属粒子が緻
密な状態にあることであって、皮膜形成に寄与しない遊
離した金属粒子や、金属粒子が瘤状に殆んど形成されて
いないことをいう。
Here, “dense” means that homogeneous and fine metal particles are in a dense state, and almost no free metal particles that do not contribute to film formation or metal particles are formed in a bump shape. Say that.

また、実質的な連続皮膜とは、芯材の表面に濃密な状態
で一様に覆われて芯材の表面が殆んど露出していない状
態をいう。
The term "substantially continuous film" refers to a state in which the surface of the core material is uniformly covered in a dense state and the surface of the core material is barely exposed.

上記の金属粒子が濃密で実質的な連続被膜の沈積被覆状
態は、電子顕微鏡(SEM)により拡大倍率5000〜10000倍
で観察した際に視覚的に捉えられる表面状態で評価され
る。例えば、図面の各写真は、いずれもニッケルめっき
粉末の表面粒子構造を示す電子顕微鏡写真であり、この
うち第1〜5図は雲母を芯材としためっき粉末(第1−
a図と第1図−b図は本発明めっき品、第2〜5図は従
来めっき品)、また第6〜8図はメチルメタアクリレー
ト樹脂球粉末を芯材としたニッケルめっき粉末(第6図
は本発明めっき品、第7〜8図は従来めっき品)であ
る。
The above-mentioned deposited state of a substantially continuous film in which the metal particles are dense and substantially continuous is evaluated by the surface state visually observed when observed with an electron microscope (SEM) at a magnification of 5000 to 10000 times. For example, each of the photographs in the drawings is an electron micrograph showing the surface particle structure of the nickel-plated powder. Of these, FIGS.
a and FIG. 1-b are the plated products of the present invention, FIGS. 2 to 5 are conventional plated products, and FIGS. 6 to 8 are the nickel plated powders containing the methylmethacrylate resin sphere powder as the core material. The figure shows the plated product of the present invention, and FIGS. 7 to 8 show the conventional plated product).

本発明に係るめっき粉末は濃密で実質的な連続皮膜とし
て被覆されているのに比べ、従来法によるめっき粉末
は、金属粒子が粗くかつ不均質で、いずれも瘤状粒子が
存在しているのみならず、芯材の露出面が認められて濃
密で実質的な連続皮膜でないことが判る。
Whereas the plating powder according to the present invention is coated as a dense and substantially continuous film, the plating powder according to the conventional method has coarse and inhomogeneous metal particles, and only bump particles are present. However, the exposed surface of the core material is recognized, and it is understood that it is not a dense and substantially continuous film.

このように本発明に係る無電解めっき粉末は被覆力が強
固であるため、使用における摩擦下の抵抗性が従来のめ
っき粉末品に比べて著しい大きい。このことは、芯材や
めっき金属の種類あるいは使用目的によって一様ではな
いものの、めっき皮膜は可及的に薄層でありうるが、均
質で実質的な連続性皮膜を形成するためには少なくとも
50Åの膜厚を有する必要がある。なお、ここに言うめっ
き膜厚は、めっきに供しためっき液の金属量から芯材の
表面積に基づいて得られる計算値であるが、本発明の方
法では理論的に近い量でめっき皮膜を形成することか
ら、めっき量の実測からこれを求めた場合と概ね一致す
る。
As described above, since the electroless plating powder according to the present invention has a strong covering power, the resistance under friction during use is significantly larger than that of the conventional plating powder product. Although this is not uniform depending on the type of core material or plated metal or the purpose of use, the plated film may be as thin as possible, but at least for forming a homogeneous and substantially continuous film.
Must have a film thickness of 50Å. The plating film thickness referred to here is a calculated value obtained from the metal amount of the plating solution used for plating based on the surface area of the core material, but in the method of the present invention, a plating film is formed in a theoretically close amount. Therefore, it is almost the same as the case where this is obtained from the actual measurement of the plating amount.

本発明に係る無電解めっき粉末は、通常は同種金属の単
層めっき品であるが、所望により2種以上の異種金属に
よる多層めっき品とすることもできる。また、微細なめ
っき金属粒子は、その種類やめっき方法によって結晶質
又は非晶質のいずれであってもよい。更に、同様の理由
から、このめっき金属粒子は磁性又は非磁性を示すもの
でありうる。
The electroless plating powder according to the present invention is usually a single-layer plated product of the same type of metal, but may be a multi-layer plated product of two or more different metals if desired. The fine plated metal particles may be either crystalline or amorphous depending on the type and plating method. Further, for the same reason, the plated metal particles may be magnetic or non-magnetic.

なお、適用できるめっき金属としては、Fe,Cu,Co,Ag,Pd
又はAuが挙げられるが、経済的な面からNiが最も代表的
な物質となる。ZnやMnは単独では適用できないが、合金
として適用可能である。
The applicable plating metals are Fe, Cu, Co, Ag, Pd.
Or Au can be mentioned, but Ni is the most representative substance from the economical aspect. Zn and Mn cannot be applied alone, but can be applied as an alloy.

被めっき材料となる芯材は特に限定されるものではな
く、後記する有機質又は無機質の水に分散可能な粉末が
適用できる。
The core material as the material to be plated is not particularly limited, and an organic or inorganic water-dispersible powder described later can be applied.

本発明の無電解めっき粉末は、特に合成樹脂等の導電フ
ィラーとして有用であるが、触媒や顔料その他装飾品と
しても利用することができる。また、顔料や装飾品とし
て利用する場合、本発明に係る無電解めっき粉末を所望
の温度で加熱処理すると、緑、青、紺、又は紫色の美麗
な着色金属光沢を呈した粉末が得られるのでその適応性
を一層拡大させることができる。
The electroless plating powder of the present invention is particularly useful as a conductive filler such as a synthetic resin, but can also be used as a catalyst, a pigment and other decorative articles. When used as a pigment or a decorative article, when the electroless plating powder according to the present invention is heat-treated at a desired temperature, a powder having a beautiful colored metallic luster of green, blue, navy blue, or purple can be obtained. The adaptability can be further expanded.

次に、本発明に係る無電解めっき粉末の製造方法につき
説明する。
Next, a method for producing the electroless plating powder according to the present invention will be described.

まず、ニッケルめっき基材(以下、単に「芯材」とい
う)について説明すると、その第1の特徴は芯材が水に
分散可能なものである。
First, the nickel-plated base material (hereinafter, simply referred to as “core material”) will be described. The first feature thereof is that the core material is dispersible in water.

水に分散可能な芯材というのは、攪拌等の通常の分散手
段により、めっき皮膜が芯材に形成しうる程度に実質的
に水中に分散した懸濁体を形成しうるものをいう。
The core material dispersible in water means a core material that can be substantially dispersed in water to the extent that a plating film can be formed on the core material by a normal dispersion means such as stirring.

水に懸濁しうるものであるから、水に実質的に不溶性の
もの、好ましくは酸やアルカリに対しても溶解または変
質しないものである。
Since it can be suspended in water, it is substantially insoluble in water, preferably, it is insoluble or denatured in acid or alkali.

それ故、芯材は水に実質的に不溶性の分散可能なもので
あれば、その形状や大きさは基本的には問題でないが、
多くの場合、芯材というのは粉状ないし粒状を対象とす
る。しかし、球状、繊維状、中空状、板状、針状のよう
な芯材の物性に起因する特定又は不特定の粒形状であっ
てもよい。
Therefore, if the core material is substantially water-insoluble and dispersible, its shape and size basically do not matter,
In many cases, the core material is powdery or granular. However, it may have a specific or unspecified particle shape such as a spherical shape, a fibrous shape, a hollow shape, a plate shape, or a needle shape, which is caused by the physical properties of the core material.

従って、芯材が粉末というのは厳密な意味ではなく、例
えば、アスペクト比の大きい板状、針状又は繊維状の芯
材は数cmの大きさのものであっても分散可能であるから
芯材として適用することができる。
Therefore, it is not strictly meant that the core material is a powder, and for example, a plate-shaped, needle-shaped or fibrous core material having a large aspect ratio can be dispersed even if it has a size of several cm. It can be applied as a material.

芯材の材質は、有機質または無機質を問わず無電解めっ
き可能な材質を全て包含する。これらは、天然物または
合成物のいずれであってもよい。また、芯材は化学的に
均一な組織であることを要しないのはもちろんである
が、それが結晶質または非晶質のいずれであってもよ
い。
The material of the core material includes all materials which can be electroless plated regardless of whether they are organic or inorganic. These may be natural products or synthetic products. Further, it is needless to say that the core material does not have to have a chemically uniform structure, but it may be either crystalline or amorphous.

かかる芯材の例示的に列挙すれば、無機芯材としては、
金属(合金も含む)、ガラス、セラミックス、金属また
は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を
含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸
塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸
塩、金属ハロゲン化物または炭素などであり、有機芯材
としては天然繊維、天然樹脂、ポリエチレン、ポリプロ
ピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、
ポリアミド、ポリアクリル酸エステル、ポリアクリルニ
トリル、ポリアセタール、アイオノマー、ポリエステル
などの熱可塑性樹脂、アルキッド樹脂、フェノール樹
脂、尿素樹脂、メラミン樹脂、キシレン樹脂、シリコー
ン樹脂、エポキシ樹脂またはジアリルフタレート樹脂の
如き熱硬化性樹脂などが挙げられる。これらは、1種ま
たは2種以上の混合物であってもよい。
As an example of the core material, as the inorganic core material,
Metals (including alloys), glass, ceramics, metal or non-metal oxides (including hydrates), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metals Phosphates, metal sulfides, metal salts, metal halides, carbon, etc., as the organic core material, natural fiber, natural resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene,
Thermosetting resin such as polyamide, polyacrylic ester, polyacrylonitrile, polyacetal, ionomer, polyester, alkyd resin, phenol resin, urea resin, melamine resin, xylene resin, silicone resin, epoxy resin or diallyl phthalate resin And the like. These may be one kind or a mixture of two or more kinds.

次に、芯材としての第2の特徴は、芯材が貴金属イオン
の捕捉能を有するものであるから、又はその表面処理に
より少なくとも表面が該金属イオンの捕捉能を有するも
のとして改質されているものであるということである。
Next, the second feature of the core material is that the core material has the ability to capture noble metal ions, or its surface treatment is modified so that at least the surface has the ability to capture the metal ions. It means that there is.

貴金属イオンの捕捉能を有するとは、貴金属イオンをキ
レート又は塩として捕捉しうることをいい、アミノ基、
イミノ基、アミド基、イミド基、シアノ基、水酸基、ニ
トリル基又はカルボキシル基の1種又は2種以上を芯材
の表面に有するものである。芯材自体にかかる捕捉能を
有する物質としては、アミノ系樹脂、ニトリル系樹脂又
はアミノ硬化剤で硬化させたエポキシ系樹脂などの有機
質が挙げられ、好適に使用される。アミノ系樹脂の例と
して、尿素、チオ尿素、メラミン、ベンゾグアナミン、
アセトグアナミン、ジシアンジアミド、アニリン等のア
ミノ化合物とホルムアルデヒド、パラホルムアルデヒ
ド、アセトアルデヒド、グリオキザール等のアルデヒド
類との縮合反応によって得られるものである。
Having the ability to capture noble metal ions means being able to capture noble metal ions as a chelate or a salt, an amino group,
It has one or more kinds of imino group, amide group, imide group, cyano group, hydroxyl group, nitrile group or carboxyl group on the surface of the core material. Examples of the substance having the capturing ability of the core material itself include organic substances such as amino resins, nitrile resins, and epoxy resins cured with an amino curing agent, and are preferably used. Examples of amino resins include urea, thiourea, melamine, benzoguanamine,
It is obtained by a condensation reaction of an amino compound such as acetoguanamine, dicyandiamide and aniline with an aldehyde such as formaldehyde, paraformaldehyde, acetaldehyde and glyoxal.

従って、本発明において、芯材自体が貴金属イオンの捕
捉能を有しない場合は、いずれの芯材も表面処理によ
り、該捕捉能を有するものに改質する必要がある。この
改質は、特開昭61−64882号公報記載の方法に従って行
うことができる。特に本発明では、アミノ基置換オルガ
ノシラン系カップリング剤やアミン系硬化剤により硬化
するエポキシ系樹脂にて表面処理した芯材の適用が好ま
しい。
Therefore, in the present invention, when the core material itself does not have the capturing ability of the noble metal ion, it is necessary to modify any of the core materials to have the capturing ability by surface treatment. This modification can be performed according to the method described in JP-A-61-64882. Particularly in the present invention, it is preferable to apply a core material surface-treated with an epoxy resin that is cured with an amino group-substituted organosilane coupling agent or an amine curing agent.

また、上記において、貴金属イオンとは、パラジウム又
は銀のイオンが特に好適である。
Further, in the above description, the noble metal ion is particularly preferably a palladium or silver ion.

第1工程(触媒化処理) 芯材自体が前記官能基を有する場合は、直接触媒化処理
を行ってもよいが、そうでない芯材は表面改質処理操作
を不可欠とする。即ち、表面処理剤を溶解した水又は有
機溶媒に芯材を充分に攪拌処理して分散させた後、分離
し乾燥する。用いる表面処理剤は、芯材の物性やその種
類によって一様ではないが、多くの場合、芯材の比表面
積1m2/g当り0.3〜100mgが適当である。この理由は、約
0.3mg以下の場合は表面の均一な改質効果を与えるに不
充分であり、他方、約100mg以上では改質効果はあるも
のの経済的でないからである。
First step (catalyzing treatment) When the core material itself has the above-mentioned functional group, it may be directly subjected to the catalyzing treatment, but the core material other than that requires a surface modification treatment operation. That is, the core material is thoroughly stirred and dispersed in water or an organic solvent in which the surface treatment agent is dissolved, and then separated and dried. The surface treatment agent used is not uniform depending on the physical properties of the core material and its type, but in most cases, 0.3 to 100 mg is appropriate per 1 m 2 / g of the specific surface area of the core material. The reason for this is
This is because if it is 0.3 mg or less, it is insufficient to give a uniform surface modifying effect, while if it is about 100 mg or more, there is a modifying effect but it is not economical.

次に、貴金属イオンの捕捉能を有する芯材を塩化パラジ
ウム又は硝酸銀のような貴金属塩の希薄な酸性水溶液に
分散させて貴金属イオンを捕捉させる。この場合の該溶
液濃度は0.05g/〜1g/の範囲で充分である。
Next, the core material having the ability to capture the precious metal ions is dispersed in a dilute acidic aqueous solution of a precious metal salt such as palladium chloride or silver nitrate to capture the precious metal ions. In this case, the solution concentration of 0.05 g / -1 g / is sufficient.

このような予備処理は、パラジウム塩について公知であ
り、通常は、次いで無電解めっき処理を行うが、本発明
では芯材表面に捕捉した貴金属を該めっき薬液で用いる
還元剤により芯材表面を還元させることが重要な操作と
なる。この還元処理は、貴金属イオンの捕捉処理後に還
元剤を添加してもよいが、好ましくは捕捉処理後の分離
および水洗したのちに、次のめっき工程に移行させるた
めに調製した水性懸濁体に還元剤を溶液として又はそれ
自体を添加して触媒化処理を完結させる。還元剤の添加
量は、芯材の比表面積により異なるので一様ではない
が、懸濁体に対して0.01〜10g/が適当である。この場
合、錯化剤が存在している方が好ましいが、必しも不可
欠なものではない。また、温度は常温又は加温のいずれ
でもよく特に限定されるものではない。
Such a pretreatment is known for a palladium salt, and usually an electroless plating treatment is then performed. In the present invention, the noble metal captured on the core material surface is reduced by the reducing agent used in the plating chemical solution to reduce the core material surface. It is an important operation. This reducing treatment may be carried out by adding a reducing agent after the capturing treatment of the noble metal ions, but preferably after separation after the capturing treatment and washing with water, an aqueous suspension prepared for shifting to the next plating step is obtained. The reducing agent is added as a solution or itself to complete the catalyzed treatment. The amount of the reducing agent added is not uniform because it depends on the specific surface area of the core material, but 0.01 to 10 g / is suitable for the suspension. In this case, it is preferable that a complexing agent is present, but it is not absolutely necessary. The temperature may be either normal temperature or heating and is not particularly limited.

このように本発明では、従来のように、塩化第1錫‐塩
化パラジウム処理又は単なる塩化パラジウムのキレート
捕捉処理による触媒核の形成と異なり均一で完全な触媒
核が形成されるため、これが次の無電解めっき工程の作
用と相俟って強固な連続性めっき金属皮膜を形成するこ
とができる。
As described above, according to the present invention, unlike the conventional case in which the catalyst nucleus is formed by the stannous chloride-palladium chloride treatment or the simple palladium chloride chelate capturing treatment, a uniform and complete catalyst nucleus is formed. A strong continuous plated metal film can be formed in combination with the action of the electroless plating process.

第2工程(無電解めっき処理) この工程で重要なことは、無電解めっきするに当り、芯
材の可及的な水性懸濁体を調製することである。凝集し
た芯材に施されためっき皮膜は、摩擦下の使用にあたり
未処理面の露出が生ずることがあるので、これを避ける
べく芯材を充分に分散させておくことが望ましい。な
お、同様の理由で前工程でも、充分な分散処理が施され
る方がよい。
Second step (electroless plating treatment) What is important in this step is to prepare an aqueous suspension of the core material as much as possible during the electroless plating. The plating film applied to the agglomerated core material may expose the untreated surface during use under friction, so it is desirable to sufficiently disperse the core material in order to avoid this. For the same reason, it is preferable that sufficient dispersion treatment is performed in the previous step as well.

水性懸濁体の分散性は芯材の物性によって異なるので、
分散方法は適宜所望の手段、例えば、通常攪拌から高速
攪拌、あるいはコロイドミルまたはホモジナイザーの如
き剪断分散装置等を用い、芯材のアグロメレートをでき
るだけ除去した一次粒子に近い分散状態の懸濁体を調製
することが望ましい。なお、芯材を分散させるに際し、
例えば界面活性剤等の分散剤を上記したように必要に応
じて用いることができる。懸濁体の濃度は、特に限定す
る理由はないが、スラリー濃度が低いとめっき濃度が低
下するので処理容量が大となるから経済的でなく、ま
た、逆のその濃度が濃くなると芯材の分散性が悪くなる
ので芯材の物性に応じ適宜所望のスラリー濃度に設定す
ればよい。多くの場合1g/〜500g/、好ましくは5g/
〜300g/の範囲にある。また、この懸濁体中の芯材
をめっきするに当り、めっきが効果的に実施されるべく
懸濁体の温度をめっき可能温度、多くの場合、55℃以上
に予め調節しておくことが望ましい。
Since the dispersibility of the aqueous suspension depends on the physical properties of the core material,
Dispersion method is appropriately desired means, for example, from normal stirring to high-speed stirring, or using a shearing dispersion device such as a colloid mill or a homogenizer, to prepare a suspension in a dispersed state close to primary particles in which the agglomerates of the core material are removed as much as possible. It is desirable to do. When dispersing the core material,
For example, a dispersant such as a surfactant can be used as necessary as described above. The concentration of the suspension is not particularly limited, but if the concentration of the slurry is low, the plating concentration will be low and the processing capacity will be large, so it is not economical. Conversely, if the concentration is high, the concentration of the core material Since the dispersibility deteriorates, the desired slurry concentration may be appropriately set according to the physical properties of the core material. Often 1g / ~ 500g /, preferably 5g /
It is in the range of ~ 300g /. In addition, when plating the core material in this suspension, the temperature of the suspension should be adjusted in advance to a plateable temperature, in many cases 55 ° C or higher, so that plating can be carried out effectively. desirable.

次に、芯材の水性懸濁体の調製は無電解めっき液を構成
する少なくとも1種の薬剤を含有する水性媒体、特に錯
化剤の水溶液を分散媒としておこなうことが特徴の1つ
となっている。従って、第1工程の還元処理後は特に分
離操作を必要としないので、水素ガスの発生が終了した
後そのまま第2工程の操作へ連続的に移行すればよい。
Next, one of the features of the preparation of the aqueous suspension of the core material is that the dispersion medium is an aqueous medium containing at least one chemical agent constituting the electroless plating solution, especially an aqueous solution of a complexing agent. There is. Therefore, since the separation operation is not particularly required after the reduction treatment in the first step, it is sufficient to continuously shift to the operation in the second step as it is after the generation of hydrogen gas is completed.

上記において、無電解めっき液を構成する成分の少くと
も1種とは、錯化剤、酸又はアルカリ剤、界面活性剤を
主として指し、必要があればめっき老化液を用いること
ができる。
In the above, at least one of the components constituting the electroless plating solution mainly refers to a complexing agent, an acid or alkali agent, or a surfactant, and a plating aging solution can be used if necessary.

また、錯化剤というのはめっき金属イオンに対し錯化作
用のある化合物であり、例えばクエン酸、ヒドロキシ酢
酸、酒石酸、リンゴ酸、乳酸、グルコン酸またはそのア
ルカリ金属塩やアンモニウム塩等のカルボン酸(塩)、
グリシン等のアミノ酸、エチレンジアミン、アルキルア
ミン等のアミン類、その他のアンモニウム、EDTA、ピロ
リン酸(塩)等が挙げられ、それらは1種または2種以
上であってもよい。錯化剤の懸濁体における含有量は、
1〜100g/、望ましくは5〜50g/の範囲とする。
Further, the complexing agent is a compound having a complexing action with respect to plating metal ions, and examples thereof include carboxylic acids such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or their alkali metal salts or ammonium salts. (salt),
Examples thereof include amino acids such as glycine, amines such as ethylenediamine and alkylamine, and ammonium, EDTA, and pyrophosphate (salt), which may be used alone or in combination of two or more. The content of the complexing agent in the suspension is
The range is 1 to 100 g /, preferably 5 to 50 g /.

また、懸濁体のpHは4〜14の範囲にあるが、この範囲の
設定は、めっき金属、および用いる還元剤の種類によっ
て異なる。一例を挙げると表2の如くである。
The pH of the suspension is in the range of 4 to 14, but the setting of this range varies depending on the plating metal and the type of reducing agent used. Table 2 shows an example.

表 2 被覆金属 還元剤 適正範囲(pH) ニッケル 次亜りん酸ソーダ 4〜10 ニッケル ヒドラジン 9〜13 ニッケル ほう水素化合物 7〜14 銅 ホルマリン 8〜12 金 ほう水素化合物 8〜14 銀 〃 8〜14 このようにして調製した芯材の水性懸濁体に、無電解め
っき反応をさせるために予め調製されためっき液を徐々
に添加する。この場合、該懸濁体に無電解めっき構成液
を少くとも2液にしてそれぞれ個別かつ同時に添加して
めっき反応を行わせることが必要である。
Table 2 Coated metal reducing agent Proper range (pH) Nickel Sodium hypophosphite 4-10 Nickel hydrazine 9-13 Nickel borohydride compound 7-14 Copper formalin 8-12 Gold borohydride compound 8-14 Silver 〃 8-14 This The plating solution prepared in advance for causing the electroless plating reaction is gradually added to the aqueous suspension of the core material thus prepared. In this case, it is necessary to make at least two electroless plating constituent liquids in the suspension and individually and simultaneously add them to carry out the plating reaction.

適用できる金属塩としては、例えば、硫酸ニッケル、塩
化ニッケルの如きニッケル塩、硫酸銅、硝酸銅の如き銅
塩、硫酸コバルト、塩化鉄、硫酸鉄の如き鉄塩、硝酸
銀、シアン化銀の如き鉄塩、シアン化金、塩化金酸の如
き金塩、塩化パラジウムの如きパラジウム塩、また、必
要に応じ亜鉛、マンガン等の可溶性塩も合金成分として
用いることができ、更に、これらの1種又は2種以上で
あってもよい。
Examples of applicable metal salts include nickel salts such as nickel sulfate and nickel chloride, copper salts such as copper sulfate and copper nitrate, iron salts such as cobalt sulfate, iron chloride and iron sulfate, and iron salts such as silver nitrate and silver cyanide. Salts, gold cyanides, gold salts such as chloroauric acid, palladium salts such as palladium chloride, and, if necessary, soluble salts such as zinc and manganese can also be used as alloy components, and one or two of these may be used. It may be more than one species.

次に還元剤としては、例えば次亜りん酸ナトリウム、水
酸化ほう素ナトリウム、水素化ほう素カリウム、ジメチ
ルアミンボラン、ヒドラジン又はホルマリン等が用いら
れる。
Next, as the reducing agent, for example, sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine or formalin are used.

その他の薬剤としては、上記した錯化剤、pH調整剤ある
いは必要に応じて添加できる光沢付与剤が用いられる。
As the other agents, the above-mentioned complexing agent, pH adjusting agent, or gloss imparting agent which can be added if necessary is used.

金属塩と還元剤の添加すべき配合割合はそれらの組合せ
により異なるため一様ではないが、多くの場合それらの
組合せと適正な配合割合は概ね表3のような関係にある
ことが望ましい。
The compounding ratios of the metal salt and the reducing agent to be added vary depending on their combination, and therefore are not uniform, but in many cases, it is desirable that the combination and the appropriate compounding ratio have a relationship as shown in Table 3.

表 3 金属塩 還元剤 配合比(モル比) ニッケル 次亜りん酸ソーダ 1:2 〜3 ニッケル 水素化ほう素アルカリ 1:1.5〜2.5 ニッケル ヒドラジン 1:3 〜5 銅 ホルマリン 1:3 〜5 金 水素化ほう素アルカリ 1:1.1〜1.5 銀 〃 1:1.1〜1.5 薬剤濃度は各薬剤の飽和濃度まででよく特に限定しない
が、薄い場合は経済的でないので下限は実用上から自ず
と限定される。薬剤溶液の添加速度はめっき反応に直接
的に影響し、芯材の表面積、物性等に著しく関係するの
で、これらを考慮しめっき皮膜のむらが生じないよう均
一且つ強固な皮膜を形成させるよう制御して添加するこ
とが必要であり、多くの場合徐々に定量的に添加する方
がよい。
Table 3 Metal salt Reducing agent Mixing ratio (molar ratio) Nickel Sodium hypophosphite 1: 2 to 3 Nickel Boron borohydride 1: 1.5 to 2.5 Nickel hydrazine 1: 3 to 5 Copper formalin 1: 3 to 5 Gold Hydrogen Alkali boride 1: 1.1 to 1.5 Silver 〃 1: 1.1 to 1.5 The drug concentration is not particularly limited as long as it is a saturated concentration of each drug, but when it is thin, it is not economical and the lower limit is naturally limited. The addition rate of the chemical solution directly affects the plating reaction and is significantly related to the surface area, physical properties, etc. of the core material.Therefore, in consideration of these, control is performed to form a uniform and strong film so that unevenness of the plating film does not occur. It is necessary to add in a quantitative manner in many cases.

なお、当然のことながら、必要に応じて攪拌、超音波分
散処理などを与えておくことが望ましく、また、温度も
制御できるように設定しておくことが望ましい。無電解
めっき液は、水性懸濁体に添加してその容量の大小に応
じて希釈されるために、通常のめっき液濃度の浴に被め
っき基材を浸潰処理してめっき操作を行うのと異なり、
通常のめっき液濃度よりも濃い状態で使用することがで
きる。
As a matter of course, it is desirable that stirring, ultrasonic dispersion treatment, and the like be given as necessary, and that the temperature be set so that it can be controlled. Since the electroless plating solution is added to the aqueous suspension and diluted according to its volume, the plating operation is performed by immersing the base material to be plated in a bath having a normal plating solution concentration. Unlike
It can be used in a state where the concentration of the plating solution is higher than usual.

めっき液を添加することにより速やかにめっき反応が始
まるが、各薬剤が適正な割合で添加されれば添加した金
属塩は全て還元され、芯材表面に析出するので、添加量
に応じてめっき皮膜の膜厚を任意に調節することができ
る。
The plating reaction starts immediately by adding the plating solution, but if each chemical is added in an appropriate ratio, all the added metal salts will be reduced and deposited on the surface of the core material. The film thickness of can be adjusted arbitrarily.

このようにして得た金属被覆粉体は、更にその上に異種
金属を、幾層にも被覆することができる。
The metal-coated powder thus obtained can be further coated with different layers in different layers.

この場合、上記のめっき反応終了後、異種金属めっき液
を同様の操作で添加するか又は一度反応液を別し、新
たな懸濁液を調製して改めて異種金属めっき液を添加す
ることにより遂行される。
In this case, after completion of the above plating reaction, the dissimilar metal plating solution is added by the same operation, or the reaction solution is once separated, a new suspension is prepared, and the dissimilar metal plating solution is added again. To be done.

めっき液の添加終了後、水素ガスの発生が完全に認めら
れなくなってからなお暫時攪拌を続けて熟成させ、めっ
き反応操作を終了する。次いで常法により分離、洗浄お
よび乾燥したのち、必要に応じ粉砕して製品として回収
する。
After the addition of the plating solution is completed, hydrogen gas is not completely generated, and stirring is continued for a while for aging to complete the plating reaction operation. Then, after separation, washing and drying by a conventional method, the product is crushed as necessary and collected as a product.

〔作用〕[Action]

本発明に係る無電解めっき粉末は、微細な金属粒子が濃
密で実質的な連続皮膜として極めて均質かつ強固に沈積
形成されている。したがって、合成樹脂や合成ゴム等に
混練しても皮膜が剥離するなどの現象を生じることはな
く良好な導電性能を付与することができるから、そのま
ま導電性フィラーとして有用可能となる。
In the electroless plating powder according to the present invention, fine metal particles are formed as a dense and substantially continuous film which is extremely uniformly and strongly deposited. Therefore, even if it is kneaded with a synthetic resin or synthetic rubber, a phenomenon such as peeling of the film does not occur, and good conductive performance can be imparted, so that it can be useful as a conductive filler as it is.

また、本発明の製造方法によれば、芯材粉末の表面に捕
捉された貴金属キレートが還元されて触媒核が形成さ
れ、これが無電解めっき反応の作用と相俟って上記のよ
うな著るしく良質の無電解めっき粉末を再現性よく製造
することができる。
Further, according to the production method of the present invention, the noble metal chelate captured on the surface of the core material powder is reduced to form a catalyst nucleus, which is combined with the action of the electroless plating reaction as described above. It is possible to produce a good quality electroless plating powder with good reproducibility.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.

実施例 1〜10 真比重1.26、平均粒径20μm、比表面積0.5m2/gの液状
フェノール系樹脂粉末〔鐘紡(株)製、商品名ベルバー
ルR-800〕100gをアミノシランカップリング剤〔チッソ
(株)製、商品名S-330〕0.1g/水溶液1に投入し
て、約15分間攪拌により充分に分散させた後、過分離
し、次いで、105℃の温度で乾燥してキレート能を有す
る表面処理を施したフェノール樹脂粉末を得た。
Examples 1 to 10 100 g of a liquid phenolic resin powder having a true specific gravity of 1.26, an average particle size of 20 μm and a specific surface area of 0.5 m 2 / g [Bellbar R-800 manufactured by Kanebo Co., Ltd. under the trade name of Chisso ( Co., Ltd., trade name S-330] 0.1 g / aqueous solution 1 and thoroughly dispersed by stirring for about 15 minutes, then superseparated and then dried at a temperature of 105 ° C. to have a chelating ability. A surface-treated phenol resin powder was obtained.

次いで、0.1g/の塩化パラジウムおよび0.1ml/の塩
酸からなる触媒化液1に該粉末を投入して同様に分散
させて5分間攪拌後、過、リパルプおよび過してパ
ラジウムイオンの捕捉処理を行った。
Next, the powder is put into a catalyzed liquid 1 consisting of 0.1 g / palladium chloride and 0.1 ml / hydrochloric acid, dispersed in the same manner, stirred for 5 minutes, and then treated with excess pulp, repulp and excess palladium ion. went.

次いで、この樹脂粉末をそれぞれ表4に示す各錯化剤水
溶液に投入して充分に分散処理を施して、温度80℃に保
持した水性懸濁体をそれぞれ調製した後、次亜りん酸ソ
ーダ粉末を各懸濁体に2g投入し攪拌溶解させた。添加間
もなくパラジウムイオンの還元により水素ガス発生に伴
って発泡し始めるが、発泡が終了したところで触媒化処
理を完結させた。
Then, each of the resin powders was put into each complexing agent aqueous solution shown in Table 4 and sufficiently dispersed to prepare an aqueous suspension kept at a temperature of 80 ° C., and then sodium hypophosphite powder was prepared. 2 g was added to each suspension and dissolved with stirring. Shortly after addition, foaming started to occur with hydrogen gas generation due to reduction of palladium ions, but when the foaming was completed, the catalyzation treatment was completed.

次いで、表5に示す無電解めっき液をa液およびb液に
分けて夫々86mlを10ml/分の添加速度で攪拌しながら各
懸濁体に同時に添加した。
Next, the electroless plating solution shown in Table 5 was divided into solution a and solution b, and 86 ml of each was simultaneously added to each suspension while stirring at an addition rate of 10 ml / min.

めっき液の全量を添加後、水素の発生が停止するまで80
℃に保持しながら暫時攪拌を続けた。
After adding the total amount of plating solution, until the generation of hydrogen stops 80
The stirring was continued for a while while maintaining the temperature at 0 ° C.

次いで過、水素、過および乾燥を施して各ニッケル
めっき被覆の樹脂粉末を得た。なお、めっき反応後の
液はいずれも無色透明であるところから、供しためっき
液は完全にめっき反応による樹脂表面への沈積に消費尽
され、非常に効果的に処理し得たことが判明した。
Then, excess, hydrogen, excess, and drying were performed to obtain resin powder of each nickel plating coating. Since all the solutions after the plating reaction were colorless and transparent, it was found that the provided plating solution was completely consumed by the deposition on the resin surface due to the plating reaction and could be treated very effectively. .

得られためっき樹脂粉末につき、電子顕微鏡でその表面
を観察したところ、いずれも微細な金属粒子による均一
かつ平滑な面を有しており、このことから、濃密で実質
的に連続皮膜として沈積被覆していることが確認され
た。
When the surface of the obtained plated resin powder was observed with an electron microscope, they all had a uniform and smooth surface due to fine metal particles, and from this fact, a dense and substantially continuous film was deposited and deposited. It was confirmed that

実施例 11〜20 表6に示す実施例11〜17の各芯材100gをエポキシ樹脂
〔セメダイン(株)製、商品名セメダイン1500〕および
アミノ系硬化剤の夫々1gをエタノール500mlに溶解した
溶液に投入し、30分間攪拌分散させた後、別しエタノ
ールを輝散させ、更に60℃に加温して各芯材粉末表面に
エポキシ樹脂の被覆による表面処理を施した。
Examples 11 to 20 100 g of each core material of Examples 11 to 17 shown in Table 6 was added to an epoxy resin [Cemedine Co., Ltd., trade name Cemedine 1500] and 1 g of each amino-based curing agent dissolved in 500 ml of ethanol. The mixture was charged, stirred and dispersed for 30 minutes, separated, ethanol was dispersed, and the mixture was further heated to 60 ° C. and subjected to surface treatment by coating an epoxy resin on the surface of each core material powder.

このように芯材粉末をエポキシ樹脂で表面改質した実施
例11〜17の粉末および実施例18〜20の粉末(表面改質し
ないでそのまま用いる)を0.1g/の硝酸銀水溶液1
に投入し、攪拌機で30分間攪拌分散させた後、過、リ
パルプ、過してそれぞれ各芯材につき銀イオンの捕捉
処理を行なった。
Thus, the powder of Examples 11 to 17 and the powder of Examples 18 to 20 in which the core material powder was surface-modified with an epoxy resin (used as it is without surface modification) was 0.1 g / a silver nitrate aqueous solution 1
After being stirred and dispersed for 30 minutes with a stirrer, silver core scavenging treatment was carried out for each core material in excess, repulp and excess.

次いで、各芯材粉末をそれぞれEDTA-3Naの20g/水溶液
1に投入して充分に分散させ、温度を60℃に加熱して
水性懸濁体をそれぞれ調製した後、水素化ほう素ナトリ
ウム粉末0.5gを各水性懸濁体に投入し攪拌溶解させた。
添加後間もなく銀イオンの還元により水素ガスの発生に
伴う発泡が始まる。しばらくして発泡が終了した時点で
触媒化処理を完結させた。
Then, each core material powder was poured into 20 g of EDTA-3Na / aqueous solution 1 to sufficiently disperse, and the temperature was raised to 60 ° C. to prepare aqueous suspensions, and then sodium borohydride powder 0.5 g was added to each aqueous suspension and dissolved by stirring.
Shortly after the addition, foaming begins with the generation of hydrogen gas due to the reduction of silver ions. After a while, when the foaming was completed, the catalytic treatment was completed.

次いで、196.5g/の硫酸銅溶液、202.5g/のホルマリ
ン溶液および157.4g/の水酸化ナトリウム溶液をそれ
ぞれ個別に各液とも表6に示す量を3ml/分の添加速度で
攪拌下の60℃にある上記各懸濁体に添加した。
Next, 196.5 g / copper sulfate solution, 202.5 g / formalin solution and 157.4 g / sodium hydroxide solution were separately added to the respective solutions in the amounts shown in Table 6 at an addition rate of 3 ml / min at 60 ° C. under stirring. To each of the above suspensions in.

めっき液の全量を添加後、反応が終了するまで約15分間
同温度に保持しながら攪拌を継続した。
After the total amount of the plating solution was added, stirring was continued while maintaining the same temperature for about 15 minutes until the reaction was completed.

以下常法により、先の実施例と同様の操作を経て各種芯
材の表面に形成した銅めっき粉末を得た。
The copper plating powder formed on the surface of each core material was obtained by the same method as the above-mentioned example by the conventional method.

なお、めっき反応終了後の過液はいずれも無色透明で
あり、また、めっき粉末はいずれも微細な銅金属粒子に
よる濃密で実質的な連続皮膜として沈積されためっき製
品であることが認められた。
In addition, it was confirmed that all the excess liquid after the plating reaction was colorless and transparent, and that all the plating powders were plated products deposited as a dense and substantially continuous film of fine copper metal particles. .

実施例21〜26、比較例1〜2 真比重2.89、平均粒径4.9μm、比表面瀬7.0m2/gの雲母
粉末30gを実施例1と同様にしてパラジウムイオンの捕
捉処理を行なった。次に、5g/酒石酸ナトリウム水溶
液1に投入して分散させ温度を70℃に加温した。
Examples 21 to 26, Comparative Examples 1 and 2 30 g of mica powder having a true specific gravity of 2.89, an average particle size of 4.9 μm and a specific surface of 7.0 m 2 / g was subjected to a trapping treatment of palladium ions in the same manner as in Example 1. Next, 5 g / sodium tartrate aqueous solution 1 was added to disperse the mixture and the temperature was raised to 70 ° C.

次いで、次亜りん酸ソーダ粉末3gを添加溶解させ、パラ
ジウムイオンの還元により水素ガスの発生に伴う発泡現
象が終了したところで、触媒化処理を完結させた。
Then, 3 g of sodium hypophosphite powder was added and dissolved, and when the foaming phenomenon accompanying the generation of hydrogen gas due to the reduction of palladium ions was completed, the catalyzation treatment was completed.

次いで、224g/硫酸ニッケル溶液(a液)および226g/
次亜りん酸ソーダ溶液と85g/苛性ソーダ溶液との混
合液(b液)の各液を表7に示す量に設定して各液共に
10ml/min.の添加速度にて充分に分散して調製された水
性懸濁体中へ攪拌下で添加した。
Then, 224 g / nickel sulfate solution (liquid a) and 226 g /
Set each liquid of the mixed solution (solution b) of sodium hypophosphite solution and 85 g / sodium hydroxide solution to the amount shown in Table 7 for each solution.
It was added with stirring to an aqueous suspension prepared by sufficient dispersion at an addition rate of 10 ml / min.

全量添加後、水素の発生が停止するまで70℃に保持しな
がら攪拌を続けた。
After the total amount was added, stirring was continued while maintaining the temperature at 70 ° C. until the generation of hydrogen stopped.

次いで、常法により回収操作を施したそれぞれ表7に示
す各添加量の異なるニッケル被覆めっき雲母を得た。
Then, nickel-coated plated mica having different addition amounts shown in Table 7, respectively, which were subjected to recovery operation by a conventional method, were obtained.

得られためっき雲母は、いずれも微細なニッケル金属粒
子による濃密で実質的な連続皮膜として沈積しためっき
品であった。
Each of the obtained plated mica was a plated product deposited as a dense and substantially continuous film of fine nickel metal particles.

なお、表7の金属化率はめっき液添加量から求められる
計算値であるが、めっき反応終了後の液がいずれも無
色透明であるところから、ほヾ理論的にめっき反応が行
われていることが判った。
The metallization rate in Table 7 is a calculated value obtained from the added amount of the plating solution. However, since all the solutions after the plating reaction are colorless and transparent, the plating reaction is performed theoretically. I knew that.

実施例 27 平均粒径7μm、真比重1.42、比表面積6.03m2/gのメチ
ルメタアクリレート樹脂粉末30gにつき実施例1と同様
にパラジウムイオンの捕捉処理を施した。
Example 27 30 g of methylmethacrylate resin powder having an average particle size of 7 μm, a true specific gravity of 1.42 and a specific surface area of 6.03 m 2 / g was subjected to a palladium ion scavenging treatment in the same manner as in Example 1.

この樹脂粉末を5g/酒石酸ソーダ水溶液1に添加し
て温度80℃に保持し充分に分散した水性懸濁体を調製し
た後、次亜りん酸ソーダ粉末2gを添加混合させてパラジ
ウムイオンを還元し触媒化処理を完結させた。224g/
硫酸ニッケル水溶液および226g/次亜りん酸ソーダ水
溶液と119g/水酸化ナトリウム水溶液との混合液各612
mlをそれぞれ20ml/の添加速度で攪拌下の上記懸濁体
に添加した。全量添加後、水素の発生が停止するまで80
℃の温度を保持しながら攪拌を続けてニッケルめっきの
一次被覆処理を施した。次いで、過、水洗および過
した後、過ケーキを50g/EDTA-4Na水溶液に投入して
攪拌下によく分散し、温度を80℃に加温して水性懸濁体
を再び調製した。
This resin powder was added to 5 g / sodium tartrate aqueous solution 1 to maintain a temperature of 80 ° C. to prepare a sufficiently dispersed aqueous suspension, and 2 g of sodium hypophosphite powder was added and mixed to reduce palladium ions. The catalytic treatment was completed. 224g /
Nickel sulfate aqueous solution and mixed solution of 226 g / sodium hypophosphite aqueous solution and 119 g / sodium hydroxide aqueous solution 612 each
Each ml was added to the above suspension under stirring at an addition rate of 20 ml /. After adding the total amount, 80 until the generation of hydrogen stops
While maintaining the temperature of ° C, stirring was continued to perform a nickel plating primary coating treatment. Then, after overwashing, washing with water, and passing, the overcake was put into 50 g / EDTA-4Na aqueous solution and well dispersed under stirring, and the temperature was heated to 80 ° C. to prepare an aqueous suspension again.

次いで、14.63g/シアン化金カリ水溶液および2.30g/
水素化ほう素ナトリウム水溶液と12.18g/水酸化ナ
トリウム水溶液との混合液各604mlをそれぞれ1θml/分
の添加速度で攪拌下の上記懸濁体に添加した。全量添加
後、15分間80℃を保持しながら攪拌を続けた。次いで常
法により過、水洗、過した後、乾燥してめっき粉末
を得た。得られためっき粉末は濃密で実質的な連続皮膜
として沈積被覆されたニッケル‐金の二重層めっき樹脂
粉末であった。
Then, 14.63 g / potassium cyanide aqueous solution and 2.30 g /
Each 604 ml of a mixed solution of an aqueous sodium borohydride solution and an aqueous 12.18 g / sodium hydroxide solution was added to the above suspension under stirring at an addition rate of 1 θ ml / min. After the total amount was added, stirring was continued while maintaining the temperature at 80 ° C for 15 minutes. Then, after passing through a conventional method, washing with water, passing, and drying, a plating powder was obtained. The resulting plating powder was a nickel-gold double layer plating resin powder that was deposited and coated as a dense, substantially continuous film.

比較例 3 真比重2.89、平均粒径4.9μm、比表面積7.0m2/gの雲母
粉末30gを塩化第1錫10g/および塩酸1ml/からなる
水溶液2に投入し攪拌下でよく分散させて15分間感受
性処理を行なった。次いで、この処理物を水洗後、塩化
パラジウム1g/および塩酸1ml/からなる溶液2に
投入し攪拌下でよく分散させ5分間活性化処理を行なっ
て、雲母粉末の表面に触媒核を形成させた。
Comparative Example 3 30 g of mica powder having a true specific gravity of 2.89, an average particle size of 4.9 μm and a specific surface area of 7.0 m 2 / g was put into an aqueous solution 2 containing 10 g of stannous chloride / and 1 ml / of hydrochloric acid, and well dispersed under stirring 15 Sensitizing treatment was performed for a minute. Next, this treated product was washed with water, then put into a solution 2 consisting of 1 g / palladium chloride and 1 ml / hydrochloric acid, well dispersed under stirring, and activated for 5 minutes to form a catalyst nucleus on the surface of the mica powder. .

次いで、硫酸ニッケル30g/、次亜りん酸ナトリウム25
g/、クエン酸ナトリウム20g/、酢酸ナトリウム10g/
および酢酸鉛0.001g/からなるpH5のめっき液20を
60℃に加温して建浴し、その浴に先の触媒処理を施した
雲母粉を投入し攪拌分散させた。なお、反応中溶液のpH
は自動調節装置を用い、160g/水酸化ナトリウム水溶
液の添加により始めのpHに保持させた。また、途中反応
が停止したら、200g/次亜りん酸ナトリウム水溶液を
少量づつ添加して反応を継続させた。次亜りん酸ナトリ
ウム水溶液を加えても発泡しなくなったら、全ての添加
を止め、過水洗し、過乾燥して、ニッケル被覆雲母
粉を得た。
Next, nickel sulfate 30g /, sodium hypophosphite 25
g /, sodium citrate 20g /, sodium acetate 10g /
And a plating solution of pH 5 consisting of 0.001 g of lead acetate / 20
A bath was prepared by heating to 60 ° C., and the mica powder which had been subjected to the above-mentioned catalytic treatment was added to the bath and dispersed by stirring. The pH of the solution during the reaction
Using an automatic controller, the initial pH was maintained by adding 160 g / sodium hydroxide aqueous solution. Further, when the reaction was stopped on the way, 200 g / sodium hypophosphite aqueous solution was added little by little to continue the reaction. When no foaming occurred even after adding the sodium hypophosphite aqueous solution, all the additions were stopped, the product was washed with water and overdried to obtain nickel-coated mica powder.

比較例 4 真比重2.89、平均粒径4.9μm、比表面積7.0m2/gの雲母
粉末30gを比較例3と同様にして触媒化処理を行なっ
た。次いで20g/酒石酸ナトリウム水溶液1に投入し
て分散させ温度を70℃に加温して、水性懸濁体を調製し
た。
Comparative Example 4 30 g of mica powder having a true specific gravity of 2.89, an average particle size of 4.9 μm and a specific surface area of 7.0 m 2 / g was subjected to a catalytic treatment in the same manner as in Comparative Example 3. Then, 20 g / sodium tartrate aqueous solution 1 was added to disperse the mixture and the temperature was raised to 70 ° C. to prepare an aqueous suspension.

次いで、次亜りん酸ナトリウム粉末を3g投入し攪拌溶解
させた。添加後間もなくパラジウムイオンの還元により
水素ガスが発生する。次いで発泡がおさまった後224g/
硫酸ニッケル水溶液(a液)および226g/次亜りん
酸ソーダと119g/水酸化ナトリウムの混合水溶液(b
液)夫々10.72を個別かつ同時に10ml/分の速度で攪拌
下の上記懸濁体に添加した。全量添加後、水素の発生が
停止するまで70℃を保持しながら攪拌を続けた。次いで
過水洗し、過および乾燥した後、ニッケル被覆雲母
粉を得た。
Next, 3 g of sodium hypophosphite powder was added and dissolved by stirring. Shortly after addition, hydrogen gas is generated by reduction of palladium ions. 224g / after foaming subsides
Nickel sulfate aqueous solution (a liquid) and mixed aqueous solution of 226 g / sodium hypophosphite and 119 g / sodium hydroxide (b
Liquid) 10.72 of each was added individually and simultaneously to the above suspension under stirring at a rate of 10 ml / min. After the addition of the entire amount, stirring was continued while maintaining the temperature at 70 ° C until the generation of hydrogen stopped. Then, after washing with excess water, passing and drying, nickel-coated mica powder was obtained.

比較例 5 真比重2.89、平均粒径4.9μm、比表面積7.0m2/gの雲母
粉末30gを実施例1と同様の方法で触媒化処理を行なっ
た。次に比較例3と同一条件で建浴しためっき液にて無
電解ニッケルめっきを施し、ニッケル被覆雲母粉末を得
た。
Comparative Example 5 30 g of mica powder having a true specific gravity of 2.89, an average particle size of 4.9 μm and a specific surface area of 7.0 m 2 / g was subjected to a catalytic treatment in the same manner as in Example 1. Next, electroless nickel plating was performed using a plating solution prepared under the same conditions as in Comparative Example 3 to obtain nickel-coated mica powder.

比較例 6 真比重2.89、平均粒径4.9μm、比表面積7.0m2/gの雲母
粉末30gにつき実施例1と同一条件でパラジウムイオン
の捕捉による触媒化処理を施した。
Comparative Example 6 30 g of mica powder having a true specific gravity of 2.89, an average particle size of 4.9 μm and a specific surface area of 7.0 m 2 / g was subjected to a catalytic treatment by capturing palladium ions under the same conditions as in Example 1.

次いで、5g/酒石酸ナトリウム水溶液1に投入して
分散させ、温度を70℃に加温して水性懸濁体を調製し
た。次に244g/硫酸ニッケル水溶液(a液)および226
g/次亜りん酸ナトリウムと119g/水酸化ナトリウム
の混合水溶液(b液)の夫々20mlを個別かつ同時に攪拌
下の上記懸濁体に添加してめっき反応を開始させた後、
直ちにa液およびb液を夫々同様に10ml/分の速度で各
液量2.4添加した。全量添加後、水素の発生が停止す
るまで70℃を保持しながら攪拌を続けた。次いで、
過、水洗、過および乾燥した後、ニッケル被覆雲母粉
末を得た。
Next, 5 g / sodium tartrate aqueous solution 1 was added and dispersed, and the temperature was raised to 70 ° C. to prepare an aqueous suspension. Next, 244 g / nickel sulfate aqueous solution (liquid a) and 226
After 20 ml each of a mixed aqueous solution (b solution) of g / sodium hypophosphite and 119 g / sodium hydroxide was added individually and simultaneously to the above suspension under stirring to start the plating reaction,
Immediately, liquids a and b were similarly added at a rate of 10 ml / min for each liquid volume of 2.4. After the addition of the entire amount, stirring was continued while maintaining the temperature at 70 ° C until the generation of hydrogen stopped. Then
After filtering, washing with water, filtering and drying, nickel-coated mica powder was obtained.

ニッケル皮膜の分析 実施例および比較例で得たニッケル被覆粉末につき硝酸
に投入して皮膜を溶解した後、これを分析して皮膜中の
ニッケルおよびりんを実測した。
Analysis of Nickel Coating The nickel-coated powders obtained in Examples and Comparative Examples were put into nitric acid to dissolve the coating, and this was analyzed to measure nickel and phosphorus in the coating.

その結果を表8に示した。The results are shown in Table 8.

導電性の測定 ポリプロピレン35.7ml(32.13g)〔三菱油化(株)製MA
-4、PPホモポリマー〕とニッケルめっき雲母試料粉6.3m
lをBRABENDER PLASTOGRAPHを用いて、温度220℃、30R.
P.Mの条件で5分間混練した後取出し、次に熱ロールで
板状に延ばし、更にホットプレスで厚さ1mmの板を成形
した。成形した板を30×60mmに裁断した試験片につき電
気抵抗値を測定して比抵抗値を求め実施例品および比較
例品の導電性の評価を行った。この結果を表9に示す。
Conductivity measurement Polypropylene 35.7ml (32.13g) [Mitsubishi Yuka Co., Ltd. MA
-4, PP homopolymer] and nickel-plated mica sample powder 6.3m
1 using BRABENDER PLASTOGRAPH, temperature 220 ℃, 30R.
The mixture was kneaded for 5 minutes under PM conditions, taken out, and then rolled into a plate shape with a hot roll, and a plate with a thickness of 1 mm was formed with a hot press. The electrical resistance value of a test piece obtained by cutting the molded plate into 30 × 60 mm was measured to obtain a specific resistance value, and the electrical conductivity of the example product and the comparative example product was evaluated. The results are shown in Table 9.

表9から明らかなように、比較例品は実施例品よりもニ
ッケルめっき被覆量が著しく多く、その膜厚が大である
にも拘らず樹脂との混練に際しめっき皮膜の剥離が生
じ、その結果樹脂の比抵抗が大きくなるため効果的な導
電性樹脂が得られない。他方、実施例品はいずれも樹脂
へ効果的に導電性を付与する。
As is clear from Table 9, the comparative example products had a remarkably larger amount of nickel plating than the example products, and despite the large film thickness, peeling of the plating film occurred during kneading with the resin, resulting in An effective conductive resin cannot be obtained because the specific resistance of the resin increases. On the other hand, each of the example products effectively imparts conductivity to the resin.

このことから、本発明に係るめっき粉末は、いずれもめ
っき皮膜が芯材に対して強固に形成されており、優れた
導電性フィラーとして適用できることが判った。
From this, it was found that the plating powder according to the present invention had a plating film firmly formed on the core material and could be applied as an excellent conductive filler.

実施例 28 平均粒径7μm、真比重1.42、比表面積6.03m2/g、の球
状メチルメタアクリレート樹脂粉末30gにつき実施例1
と同様にパラジウムイオンの捕捉処理を施した。この樹
脂粉末を20g/酒石酸ソーダ水溶液1に添加して液温
65℃に保持し、充分に分散した水性懸濁体を調製した
後、次亜リン酸ソーダ2gを添加溶解させて、粉体表面に
捕捉したパラジウムイオンを還元して触媒化処理を施し
た。
Example 28 Example 1 per 30 g of spherical methyl methacrylate resin powder having an average particle size of 7 μm, a true specific gravity of 1.42 and a specific surface area of 6.03 m 2 / g.
Similarly to the above, a trapping treatment of palladium ions was performed. Add this resin powder to 20g / sodium tartrate aqueous solution 1 and add
After maintaining at 65 ° C. to prepare an adequately dispersed aqueous suspension, 2 g of sodium hypophosphite was added and dissolved to reduce the palladium ions captured on the powder surface for catalytic treatment.

224g/硫酸ニッケル水溶液及び226g/次亜リン酸ソー
ダと119g/水酸化ナトリウムとの混合水溶液を各15.6m
lそれぞれ5ml/分の添加速度で攪拌下の上記懸濁体に添
加した。全量添加後、水素の発生が停止するまで65℃の
温度を保持しながら攪拌を続けた。次いで、濾過、水
洗、濾過の操作を3回繰り返した後、乾燥してニッケル
めっき膜厚50Åの粉末を得た。第6図は、得られたニッ
ケルめっき粉末の電子顕微鏡拡大写真(10000倍)であ
る。
224 g / nickel sulfate aqueous solution and 226 g / sodium hypophosphite mixed solution of 119 g / sodium hydroxide 15.6 m each
l Each was added to the above suspension under stirring at an addition rate of 5 ml / min. After the total amount was added, stirring was continued while maintaining the temperature of 65 ° C. until the generation of hydrogen stopped. Then, the procedure of filtration, washing with water, and filtration was repeated three times and then dried to obtain a powder having a nickel plating film thickness of 50 Å. FIG. 6 is an electron microscope enlarged photograph (10000 times) of the obtained nickel-plated powder.

比較例 7 樹脂粉体表面に捕捉したパラジウムイオンを還元した触
媒化処理する工程を施さないほかは、全て実施例28と同
一条件によりニッケルめっき膜厚50Åの粉末を得た。第
7図は、得られたニッケルめっき粉末の電子顕微鏡拡大
写真(5000倍)である。
Comparative Example 7 A powder having a nickel plating film thickness of 50 Å was obtained under the same conditions as in Example 28 except that the step of carrying out a catalytic treatment for reducing the palladium ions captured on the surface of the resin powder was not performed. FIG. 7 is an electron microscope enlarged photograph (5000 times) of the obtained nickel plating powder.

比較例 8 実施例28と同一方法により樹脂粉末表面に捕捉したパラ
ジウムイオンを還元させたのち濾過して触媒活性を施し
た粉末を得た。次いで、硫酸ニッケル30g/、次亜リン
酸ソーダ25g/、リンゴ酸ナトリウム50g/、酢酸ナト
リウム15g/及び酢酸鉛0.001g/からなるpH5のめっき
液2を70℃に加温して建浴し、その浴に上記の触媒活
性を施した粉末を投入して撹拌分散させた。反応中溶液
のpHを自動調節装置を用い、160g/水酸化ナトリウム
水溶液の添加により始めのpHに調整保持した。また、途
中反応が停止したら200g/の次亜リン酸ソーダ水溶液
を少量ずつ添加して反応を継続させた。次亜リン酸ソー
ダ水溶液を加えても発泡しなくなったら、全ての添加を
止め、濾過、水洗、濾過の操作を3回繰り返した後、乾
燥してニッケルめっき膜厚500Åの粉末を得た。第8図
は、得られたニッケルめっき粉末の電子顕微鏡拡大写真
(5000倍)である。
Comparative Example 8 By the same method as in Example 28, palladium ions captured on the surface of the resin powder were reduced and then filtered to obtain a powder having catalytic activity. Next, the plating solution 2 of pH 5 consisting of nickel sulfate 30 g /, sodium hypophosphite 25 g /, sodium malate 50 g /, sodium acetate 15 g / and lead acetate 0.001 g / is heated to 70 ° C. and a bath is constructed. The powder having the above-mentioned catalytic activity was put into the bath and dispersed by stirring. During the reaction, the pH of the solution was adjusted and maintained at the initial pH by the addition of 160 g / sodium hydroxide aqueous solution using an automatic controller. When the reaction stopped halfway, 200 g / sodium hypophosphite aqueous solution was added little by little to continue the reaction. When foaming stopped even after adding the sodium hypophosphite aqueous solution, all the additions were stopped, and the operations of filtration, washing with water and filtration were repeated 3 times, and then dried to obtain a powder with a nickel plating film thickness of 500Å. FIG. 8 is an electron microscope enlarged photograph (5000 times) of the obtained nickel plating powder.

〔発明の効果〕〔The invention's effect〕

本発明に係るめっき粉末は、従来のめっき粉末に比べて
著しく均一で強固なめっき皮膜を有している。即ち、瘤
状の粒子やめっきムラなどのない微細な金属粒子による
濃密で実質的な連続皮膜として沈積被覆されている結合
力の大きい無電解めっき粉末であり、このものは導電性
フィラーをはじめ多様な用途への適用が期待できる。
The plating powder according to the present invention has a significantly uniform and strong plating film as compared with the conventional plating powder. In other words, it is an electroless plating powder with a large binding force, which is deposited and coated as a dense and substantially continuous film of fine metal particles without bump-shaped particles or uneven plating, which is widely used in various conductive fillers. It can be expected to be applied to various uses.

更に、本発明に係る方法によれば、従来のようなコロイ
ド状又は単なるキレート状のパラジウムによる触媒核と
異なって被めっき表面に捕捉された貴金属キレートが還
元されて触媒核を形成しているために、添加方式に基づ
くめっき反応と相俟って、上記の如きめっき粉末を再現
性よく工業的に有利に製造することができる。
Furthermore, according to the method of the present invention, the noble metal chelate captured on the surface to be plated is reduced to form a catalyst nucleus unlike the conventional catalyst nucleus with colloidal or simple chelate palladium. In addition, in combination with the plating reaction based on the addition method, the plating powder as described above can be produced with good reproducibility and industrially advantageous.

従って、本発明によれば金属化率を可及的に小さく、換
言すればサブミクロン級の強力なめっき皮膜を付与する
ことができるので、比重の軽いめっき粉末を得ることが
できる。
Therefore, according to the present invention, the metallization rate can be made as small as possible, in other words, a strong submicron-class plating film can be provided, so that a plating powder having a low specific gravity can be obtained.

このことは、種々の芯材の適用性が可能であることと相
俟って、導電性フィラーとして塗料や合成樹脂、合成ゴ
ム等に混練する際に分離を生ぜずに均質な導電性材料を
提供しうることを保証するものである。
This, combined with the applicability of various core materials, enables the production of a homogeneous conductive material without causing separation when kneading paints, synthetic resins, synthetic rubbers, etc. as conductive fillers. It guarantees that it can be provided.

【図面の簡単な説明】 図面は、実施例および比較例で得られた無電解ニッケル
めっき皮膜表面の粒子構造を示す電子顕微鏡写真であ
り、第1−a図は実施例26(拡大倍率500倍)、第1−
b図は実施例26(拡大倍率5000倍)、第2図は比較例3
(拡大倍率10000倍)、第3図は比較例4(拡大倍率100
00倍)、第4図は比較例5(拡大倍率10000倍)、第5
−a図(拡大倍率500倍)および第5−b図(拡大倍率5
000倍)は第1−a図と第1−b図にそれぞれ対応する
比較例6、第6図は実施例28(拡大倍率10000倍)、第
7図は比較例7(拡大倍率5000倍)、そして第8図は比
較例8(拡大倍率5000倍)の各めっき皮膜である。
BRIEF DESCRIPTION OF THE DRAWINGS The drawings are electron micrographs showing the particle structures of the surfaces of electroless nickel plating films obtained in Examples and Comparative Examples, and FIG. 1-a shows Example 26 (magnification of 500 times). ), 1st
Fig. b shows Example 26 (magnification of 5000 times), Fig. 2 shows Comparative Example 3
(Enlargement magnification 10,000 times), FIG. 3 shows Comparative Example 4 (Enlargement magnification 100
00 times), FIG. 4 shows comparative example 5 (enlargement magnification of 10,000 times),
-A (magnification of 500) and Fig. 5-b (magnification of 5)
(000 times) corresponds to Comparative Example 6 corresponding to FIGS. 1-a and 1-b, FIG. 6 shows Example 28 (magnification of 10,000 times), and FIG. 7 shows Comparative Example 7 (magnification of 5000 times). FIG. 8 shows each plating film of Comparative Example 8 (magnification of 5000 times).

フロントページの続き (56)参考文献 特開 昭60−181294(JP,A) 特開 昭59−182961(JP,A) 特開 昭62−30885(JP,A) 特公 昭47−44975(JP,B1) 特公 昭57−6481(JP,B2) 特公 昭57−31533(JP,B2)Continuation of the front page (56) Reference JP-A-60-181294 (JP, A) JP-A-59-182961 (JP, A) JP-A-62-30885 (JP, A) JP-B-47-44975 (JP , B1) JP-B 57-6481 (JP, B2) JP-B 57-31533 (JP, B2)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】有機質又は無機質の芯材の表面に、無電解
めっ き法による金属被覆を施した無電解めっき粉末で
あって、電子顕微鏡(SEM)により拡大倍率5000〜10000
倍で観察した際に微細な金属粒子が濃密で実質的な連続
皮膜を呈し、かつ少なくとも50Åの膜厚で沈積形成され
てなる無電解めっき粉末。
1. An electroless plating powder in which a surface of an organic or inorganic core material is coated with a metal by an electroless plating method, and the magnification is 5000 to 10000 by an electron microscope (SEM).
An electroless plating powder in which fine metal particles form a dense and substantially continuous film when observed under a double magnification, and are deposited and formed in a film thickness of at least 50Å.
【請求項2】連続皮膜が、異種金属の多層めっき皮膜で
ある請求項1記載の無電解めっき粉末。
2. The electroless plating powder according to claim 1, wherein the continuous film is a multi-layered plating film of different metals.
【請求項3】請求項1記載の無電解めっき粉末からなる
導電性フィラー。
3. A conductive filler made of the electroless plating powder according to claim 1.
【請求項4】貴金属イオンの捕捉能を有するか、もしく
は表 面処理により貴金属イオンの捕捉能を付与した有
機質または無機質の芯材粉末に貴金属イオンを捕捉させ
た後、これを還元して前記金属を芯材表面に担持せしめ
る第1工程(触媒化工程)と、前工程で処理された芯材
粉末を、無電解めっき液を構成する少なくとも1種の薬
剤を含有する水性媒体に分散させて水性懸濁体を調製
し、これに無電解めっき構成液を少くとも2液にして個
別かつ同時に添加して無電解めっき反応を行わせる第2
工程(無電解めっき処理)とからなることを特徴とする
無電解めっき粉末並びに導電性フィラーの製造方法。
4. A noble metal ion is trapped in an organic or inorganic core material powder having a noble metal ion-trapping ability or a surface treatment to give a noble metal ion-trapping ability, and then the noble metal ion is reduced to obtain the metal. The first step (catalyzing step) of supporting the core material on the surface of the core material, and the core material powder treated in the previous step are dispersed in an aqueous medium containing at least one chemical agent constituting the electroless plating solution to form an aqueous solution. Second, a suspension is prepared, and at least two electroless plating constituent liquids are added to the suspension individually and simultaneously to carry out an electroless plating reaction.
A method for producing an electroless plating powder and a conductive filler, which comprises a step (electroless plating treatment).
【請求項5】芯材粉末が、実質的に球状、繊維状、中空
状、板状、針状の如き特定形状又は不特定な粒子形状を
有する請求項4記載の無電解めっき粉末並びに導電性フ
ィラーの製造方法。
5. The electroless plating powder and the electroconductivity according to claim 4, wherein the core material powder has a specific shape such as a substantially spherical shape, a fibrous shape, a hollow shape, a plate shape, or a needle shape, or an unspecified particle shape. Filler manufacturing method.
【請求項6】少くともその表面に貴金属イオンの捕捉能
を有する芯材粉末は、エポキシ系樹脂、アクリロニトリ
ル系樹脂又はアミノ系樹脂の1種もしくは2種以上の樹
脂粉末である請求項4記載の無電解めっき粉末並びに導
電性フィラーの製造方法。
6. The core powder having at least the ability to capture precious metal ions on its surface is one or more resin powders of an epoxy resin, an acrylonitrile resin or an amino resin. Method for producing electroless plating powder and conductive filler.
【請求項7】表面処理により貴金属イオンの捕捉能を付
与した芯材粉末が、アミノ基置換オルガノシラン系 カ
ップリング剤または/およびアミン系硬化剤により硬化
するエポキシ樹脂で表面処理された物質である請求項4
記載の無電解めっき粉末並びに導電フィラーの製造方
法。
7. A core material powder, which has been given a capturing ability of noble metal ions by surface treatment, is a substance surface-treated with an epoxy resin which is cured by an amino group-substituted organosilane coupling agent and / or an amine curing agent. Claim 4
A method for producing the described electroless plating powder and a conductive filler.
【請求項8】第1工程の触媒化処理を、無電解めっき反
応で用いられるいずれかの還元剤を適用して行う請求項
4記載の無電解めっき粉末並びに導電性フィラーの製造
方法。
8. The method for producing an electroless plating powder and a conductive filler according to claim 4, wherein the catalytic treatment in the first step is performed by applying one of the reducing agents used in the electroless plating reaction.
JP63070373A 1988-03-24 1988-03-24 Electroless plating powder, conductive filler and method for producing the same Expired - Lifetime JPH0696771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070373A JPH0696771B2 (en) 1988-03-24 1988-03-24 Electroless plating powder, conductive filler and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070373A JPH0696771B2 (en) 1988-03-24 1988-03-24 Electroless plating powder, conductive filler and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01242782A JPH01242782A (en) 1989-09-27
JPH0696771B2 true JPH0696771B2 (en) 1994-11-30

Family

ID=13429575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070373A Expired - Lifetime JPH0696771B2 (en) 1988-03-24 1988-03-24 Electroless plating powder, conductive filler and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0696771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026880A (en) * 1999-07-14 2001-01-30 Fujitsu Ltd Formation of conductor pattern
JP2003034879A (en) * 2001-07-26 2003-02-07 Sony Chem Corp Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
JP5620678B2 (en) * 2007-10-23 2014-11-05 宇部エクシモ株式会社 Metal film forming method and conductive particles
WO2017018657A1 (en) * 2015-07-24 2017-02-02 (주)트러스 Conductive adhesive tape using conductive cushion ball and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632007B2 (en) * 1988-07-04 1997-07-16 日本化学工業株式会社 Manufacturing method of magnetic electroless plating powder
DE19518942C2 (en) * 1995-05-23 1998-12-10 Fraunhofer Ges Forschung Process for the production of metallized polymer particles and polymer material produced by the process and their use
JP3696429B2 (en) 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
US6485831B1 (en) 1999-05-13 2002-11-26 Shin-Etsu Chemical Co., Ltd. Conductive powder and making process
WO2002013205A1 (en) 2000-08-04 2002-02-14 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structural body
DE102004005999B4 (en) * 2004-02-06 2009-02-12 Nippon Chemical Industrial Co., Ltd. Conductive electroless metallized powder and method of making the same
JP4494108B2 (en) * 2004-07-22 2010-06-30 三井金属鉱業株式会社 Nickel-coated copper powder manufacturing method, nickel-coated copper powder and conductive paste
JP4637559B2 (en) * 2004-12-14 2011-02-23 エスケー化研株式会社 Method for producing colored particles
JPWO2008032839A1 (en) * 2006-09-15 2010-01-28 宇部日東化成株式会社 Metal layer-coated substrate and method for producing the same
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
EP2211354B1 (en) 2007-10-22 2020-12-16 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP5667541B2 (en) * 2011-09-26 2015-02-12 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
JP5970178B2 (en) * 2011-09-29 2016-08-17 株式会社日本触媒 Conductive fine particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500952A (en) * 1980-05-23 1985-02-19 International Business Machines Corporation Mechanism for control of address translation by a program using a plurality of translation tables
IN161541B (en) * 1980-06-20 1987-12-19 Nat Res Dev
JPS59182961A (en) * 1983-03-31 1984-10-17 Agency Of Ind Science & Technol Production of inorganic powder having metallic film
JPS60181294A (en) * 1984-02-24 1985-09-14 Agency Of Ind Science & Technol Production of inorganic powder having metallic film on surface
JP2602495B2 (en) * 1985-04-01 1997-04-23 日本化学工業 株式会社 Manufacturing method of nickel plating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026880A (en) * 1999-07-14 2001-01-30 Fujitsu Ltd Formation of conductor pattern
JP2003034879A (en) * 2001-07-26 2003-02-07 Sony Chem Corp Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
JP5620678B2 (en) * 2007-10-23 2014-11-05 宇部エクシモ株式会社 Metal film forming method and conductive particles
WO2017018657A1 (en) * 2015-07-24 2017-02-02 (주)트러스 Conductive adhesive tape using conductive cushion ball and method for manufacturing same

Also Published As

Publication number Publication date
JPH01242782A (en) 1989-09-27

Similar Documents

Publication Publication Date Title
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
WO2000051138A1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JP2007262495A (en) Electroconductive electroless-plated powder and production method therefor
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2619266B2 (en) Colored electroless plating powder and method for producing the same
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JPH0225431B2 (en)
JP3028972B2 (en) Aluminum-based electroless plating powder, conductive filler and method for producing the same
JP4261973B2 (en) Method for producing conductive electroless plating powder
JPH06102830B2 (en) Resin powder granule having noble metal coating and method for producing the same
JP2602495B2 (en) Manufacturing method of nickel plating material
JP3417699B2 (en) Conductive electroless plating powder
JP2632007B2 (en) Manufacturing method of magnetic electroless plating powder
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JPS62207875A (en) Production of metal plated inorganic particles
JP4247039B2 (en) Method for producing conductive electroless plating powder
JPH0224358A (en) Polymer composition containing electrolessly plated powder
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
JPH0475316B2 (en)
KR100547605B1 (en) Conductive electroless plating powder and manufacturing method thereof
JPS63159580A (en) Production of metal coated potassium titanate fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14