JP3417699B2 - Conductive electroless plating powder - Google Patents

Conductive electroless plating powder

Info

Publication number
JP3417699B2
JP3417699B2 JP33734194A JP33734194A JP3417699B2 JP 3417699 B2 JP3417699 B2 JP 3417699B2 JP 33734194 A JP33734194 A JP 33734194A JP 33734194 A JP33734194 A JP 33734194A JP 3417699 B2 JP3417699 B2 JP 3417699B2
Authority
JP
Japan
Prior art keywords
base material
electroless plating
particles
carbon
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33734194A
Other languages
Japanese (ja)
Other versions
JPH08176836A (en
Inventor
雅明 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP33734194A priority Critical patent/JP3417699B2/en
Publication of JPH08176836A publication Critical patent/JPH08176836A/en
Application granted granted Critical
Publication of JP3417699B2 publication Critical patent/JP3417699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種のマトリックス材
料に配合した際に優れた分散性ならびに高導電性能を付
与することができる無電解めっき粉体、特にプラスチッ
ク材料に分散配合して電子機器類の微小部位を電気的に
接続する目的に好適な導電性無電解めっき粉体に関す
る。
FIELD OF THE INVENTION The present invention relates to an electroless plating powder capable of imparting excellent dispersibility and high electroconductivity when blended in various matrix materials, especially in a plastic material for electronic equipment. The present invention relates to a conductive electroless plated powder suitable for electrically connecting minute parts of a class.

【0002】[0002]

【従来の技術】導電性を付与したプラスチック材料は、
電子機器やその部品の静電防止、電波吸収あるいは電磁
波シールド等の部材に広く使用されている。プラスチッ
ク材料に導電性を付与する方法としては、従来からマト
リックス樹脂成分に微粉状の導電性フィラーを分散複合
化する手段が主要な技術とされており、導電性フィラー
には例えばCu、Fe、Niの粉末、繊維または箔片な
どの金属系物質、黒鉛粉末、カーボンブラック、炭素繊
維チョップなどの炭素系物質が一般に用いられている。
このほか、着色可能な導電性フィラーとして二酸化チタ
ン顔料の基材面に、酸化第二錫を被覆したもの(特公昭
58−39175 号公報) や酸化第二錫およびアンチモンを被
覆したもの(特開昭56−41603 号公報)が知られてお
り、さらに透明性のある導電性フィラーとして二酸化チ
タン基材の粒子面に特定比率の酸化錫と酸化アンチモン
の被覆層を設けた導電性二酸化チタン粉末(特開昭61−
141616号公報)が提案されている。
2. Description of the Related Art Plastic materials with conductivity are
It is widely used as a member for preventing static electricity, absorbing electric waves, shielding electromagnetic waves, etc. of electronic devices and their parts. As a method for imparting conductivity to a plastic material, conventionally, a means for dispersing and compositing a fine powdery conductive filler in a matrix resin component has been the main technique, and for the conductive filler, for example, Cu, Fe, or Ni is used. In general, powder-based materials, metal-based materials such as fibers or foil pieces, carbon-based materials such as graphite powder, carbon black, and carbon fiber chops are commonly used.
In addition, titanium dioxide pigment as the colorable conductive filler is coated with stannic oxide on the substrate surface (Japanese Patent Publication No.
58-39175) and those coated with stannic oxide and antimony (Japanese Patent Laid-Open No. 56-41603) are known, and moreover, as a transparent conductive filler on the particle surface of a titanium dioxide base material. Conductive titanium dioxide powder provided with a coating layer of tin oxide and antimony oxide in a specific ratio (Japanese Patent Laid-Open No. 61-
No. 141616) has been proposed.

【0003】近時、液晶ディスプレーパネルの電極と駆
動用LSIの接続、LSIチップの回路基板への接続、
その他微小ピッチの電極端子間の接続など電子機器類の
微小部位を電気的接続するための導電材料としても導電
性を付与したプラスチック材料が使用されるが、これら
の用途目的には特に高度かつ再現性の良好な導電性能が
要求されている。このため、上記した従来技術による導
電性プラスチック材料では要求特性を十分に満足する導
電性能や分散性が確保できず、対応することができない
問題がある。本出願人は、先に有機質または無機質の基
材表面に無電解めっき法による微細な金属粒子が濃密で
実質的な連続皮膜として沈積形成された無電解めっき粉
末からなる導電性フィラー(特開平1−242782号公報)
を開発したが、該無電解めっき粉末において無電解めっ
き被膜をNi、Ag、Au等にすると、上記のような特
殊な電子機器類用途の厳しい要求を満たす優れた高導電
性能を付与することが可能となる。
Recently, the connection between the electrodes of the liquid crystal display panel and the driving LSI, the connection of the LSI chip to the circuit board,
In addition, a plastic material with conductivity is used as a conductive material for electrically connecting minute parts of electronic equipment such as connection between electrode terminals with a fine pitch, but it is particularly advanced and reproducible for these purposes. Conductive performance with good properties is required. Therefore, the conductive plastic material according to the above-mentioned conventional technique cannot secure the conductive performance and dispersibility that sufficiently satisfy the required characteristics, and there is a problem that it is not possible to cope with it. The applicant of the present invention has previously found that a conductive filler composed of an electroless plating powder in which fine metal particles are previously deposited as a dense and substantially continuous film on the surface of an organic or inorganic substrate by an electroless plating method (Japanese Unexamined Patent Application Publication No. Hei 1 (Kokai) 1). -242782 publication)
However, when the electroless plating film of the electroless plating powder is made of Ni, Ag, Au, etc., it is possible to impart excellent high conductivity performance satisfying the strict requirements for the above-mentioned special electronic device applications. It will be possible.

【0004】[0004]

【発明が解決しようとする課題】ところが、特開平1−
242782号公報記載の無電解めっき粉末は無電解め
っき工程中に基材粒子同士が凝集化し、金属めっき層の
膜厚が増すに従って凝集が大きく強固となって分散性を
損ねる難点がある。導電性粉末の分散性はプラスチック
ス材料に混合した際の導電性能に大きな影響を与える関
係で、この分散性後退現象が解消されない限り再現性の
ある高導電性能の付与は期待できない。
However, Japanese Patent Laid-Open No. 1-
The electroless plating powder described in Japanese Patent No. 242782 has a drawback that base particles are aggregated with each other during the electroless plating process, and as the film thickness of the metal plating layer is increased, the agglomeration becomes large and becomes strong and the dispersibility is impaired. Since the dispersibility of the conductive powder has a great influence on the conductive performance when mixed with the plastics material, reproducible high conductive performance cannot be expected unless the backward dispersion phenomenon is eliminated.

【0005】本発明者らは、かかる未解決課題について
鋭意研究を重ねたところ、無電解めっきを施す基材を硬
質の球状カーボン微粒子としてNiまたはNi−Auの
電解めっき皮膜を形成すると、無電解めっき工程中に基
材粒子同士が凝集化するような現象は起こらず、更に表
面が微小凹凸粗面を呈する特定粒径の球状カーボン微粒
子を選択的に使用すると導電性能が一層効果的に向上す
る事実を確認した。
The inventors of the present invention have made extensive studies on such unsolved problems. As a result, when a Ni or Ni-Au electrolytic plating film is formed by using hard spherical carbon fine particles as a base material for electroless plating, electroless plating is performed. The phenomenon that the base particles do not agglomerate with each other during the plating process does not occur, and the conductive performance is further effectively improved by selectively using the spherical carbon fine particles having a specific particle size, the surface of which has a fine uneven rough surface. I confirmed the facts.

【0006】本発明は前記の知見に基づいて開発された
もので、その目的とするところは、対象マトリックス成
分に対し常に優れた分散性ならびに高導電性能を付与す
ることができる導電性無電解めっき粉体を提供すること
にある。
The present invention was developed on the basis of the above-mentioned findings, and an object of the present invention is to provide a conductive electroless plating which can always impart excellent dispersibility and high conductivity to a target matrix component. To provide powder.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による導電性無電解めっき粉体は、骨格がガ
ラス状炭素からなり、表層部に他のカーボン微粒子が一
体に付着して形成された微小凹凸粗面を有する平均粒径
1〜50μm の球状カーボン粒子を基材とし、該基材の
表面に無電解めっき法によりNi被膜あるいはNi−A
uの複層皮膜を形成してなることを構成上の特徴とす
る。
Means for Solving the Problems In order to achieve the above object, the electroless electroless plated powder according to the present invention has a skeleton made of glassy carbon, and other carbon fine particles are integrally attached to the surface layer part. The formed spherical carbon particles having an average particle size of 1 to 50 μm having a rough surface with fine irregularities are used as a base material, and a Ni coating or Ni-A is formed on the surface of the base material by electroless plating.
The constitutional feature is that a multi-layered film of u is formed.

【0008】本発明の第1の要件は、無電解めっき基材
がガラス状炭素を骨格とし、その表層部に微小凹凸粗面
を有する平均粒径1〜100μm の球状カーボン粒子を
選択した点にある。この基材は、球状のガラス状炭素微
粒子の表面に他のカーボン微粒子が一体に付着して表層
部に微小凹凸粗面が形成された特殊性状の球状カーボン
微粒子である。
The first requirement of the present invention is that spherical carbon particles having an average particle diameter of 1 to 100 μm are selected as the electroless plating base material having glassy carbon as a skeleton and a finely rough surface on the surface layer thereof. is there. This base material is a spherical carbon fine particle having a special property in which other carbon fine particles are integrally attached to the surface of the spherical glassy carbon fine particle to form a fine uneven rough surface on the surface layer portion.

【0009】上記の基材は、例えば炭化処理によりガラ
ス状炭素に転化する炭化残留率の高い樹脂類の球状粒子
と粒子径10μm 以下のバルクメソフェーズピッチの微
粒子を乾式混合して前記球状粒子面にバルクメソフェー
ズピッチを付着したのち、酸化性雰囲気下で250〜3
50℃の温度域で熱安定処理を施し、ついで非酸化性雰
囲気中で焼成炭化または/および黒鉛化する方法、ある
いは前記と同一樹脂類の球状粒子とカーボンブラック、
黒鉛粉末、コークス粉末等を乾式混合して前記球状粒子
面にこれら炭素質物質を付着したのち、酸化性雰囲気下
で100〜400℃の温度域で熱安定処理を施し、つい
で同様に非酸化性雰囲気中で焼成炭化または/および黒
鉛化する方法によって製造することができる。骨格のガ
ラス状炭素に転化する炭化残留率の高い樹脂としては、
フェノール系樹脂、ナフタレン系樹脂、フラン系樹脂、
ジビニルベンゼン重合体、スチレン−ジビニルベンゼン
重合体などの1種もしくは2種類以上の混合物が用いら
れる。かかる製造方法によれば、炭化過程で芯材となる
樹脂類の球状粒子が硬質のガラス状炭素に転化して骨格
を形成し、球状粒子面に付着したバルクメソフェーズピ
ッチや炭素質物質が軟質のカーボン微粒子となって骨格
部分の表面に一体に付着して、表層部に微小凹凸粗面と
して形成される。
The above-mentioned base material is, for example, spherical particles of a resin having a high carbonization residual rate which is converted into glassy carbon by carbonization treatment and fine particles of bulk mesophase pitch having a particle diameter of 10 μm or less are dry-mixed to the spherical particle surface. After depositing bulk mesophase pitch, 250 ~ 3 in oxidizing atmosphere
A method of performing heat stabilization treatment in a temperature range of 50 ° C., followed by firing carbonization and / or graphitization in a non-oxidizing atmosphere, or spherical particles of the same resins as above and carbon black,
Graphite powder, coke powder, etc. are dry-mixed to adhere these carbonaceous substances to the spherical particle surfaces, and then heat-stabilized in a temperature range of 100 to 400 ° C. in an oxidizing atmosphere, and then similarly non-oxidizing. It can be produced by a method of firing carbonization and / or graphitization in an atmosphere. As a resin with a high carbonization residual rate that is converted to glassy carbon of the skeleton,
Phenolic resin, naphthalene resin, furan resin,
One kind or a mixture of two or more kinds of divinylbenzene polymer, styrene-divinylbenzene polymer and the like is used. According to such a manufacturing method, spherical particles of a resin as a core material in the carbonization process are converted into hard glassy carbon to form a skeleton, and the bulk mesophase pitch and the carbonaceous substance attached to the spherical particle surface are soft. It becomes carbon fine particles and adheres integrally to the surface of the skeleton portion, and is formed as a fine uneven rough surface on the surface layer portion.

【0010】このような独特の粒性状を備える基材用の
球状カーボン粒子は、平均粒径が1〜50μm 、好まし
くは10〜30μm 範囲のものが用いられる。平均粒径
が1μm 未満の微粒子を得ることは実質的に不可能であ
り、50μm を越える平均粒径になると比表面積が小さ
くなって導電性を減退させる原因となる。この粒径の調
整は、樹脂類の炭化収縮率を見込んで骨格となる球状微
粒子の粒子径を予め一定範囲に分級しておくことによっ
て容易に行うことができる。
As the spherical carbon particles for a substrate having such a unique grain property, those having an average particle size of 1 to 50 μm, preferably 10 to 30 μm are used. It is practically impossible to obtain fine particles having an average particle size of less than 1 μm, and if the average particle size exceeds 50 μm, the specific surface area becomes small, which causes a decrease in conductivity. This adjustment of the particle size can be easily performed by classifying the particle size of the spherical fine particles serving as the skeleton in advance within a certain range in consideration of the carbonization shrinkage of the resins.

【0011】本発明の第2の要件は、上記基材の表面に
無電解めっき法によりNi被膜またはNi−Auの複層
被膜を形成する点にある。Ni被膜を被覆するのは、こ
のNiめっき層が球状カーボン基材と強固に密着して優
れた導電性被膜となるうえ、Ni−Au複層被膜を形成
する場合に上層のAu被膜との良好な密着性を確保する
中間層として有効に機能するからである。また、Ni−
Auの複層被膜とするのは、Ni単独被膜に比べて一層
導電性を向上させることができるからである。したがっ
て、Ni単層の被膜とするか、Ni−Auの複層被膜と
するかは、使用目的によって適宜に決定すればよい。形
成する無電解めっき層の好ましい膜厚は、Ni被膜が1
0〜200nm、Au被膜が10〜50nmの範囲である。
The second requirement of the present invention is that a Ni coating or a Ni-Au multi-layer coating is formed on the surface of the substrate by electroless plating. The Ni coating coats the Ni plating layer firmly with the spherical carbon substrate to form an excellent conductive coating, and when forming a Ni-Au multi-layer coating, is good as the upper Au coating. This is because it effectively functions as an intermediate layer that secures excellent adhesion. In addition, Ni-
The Au multilayer coating is used because the conductivity can be further improved as compared with the Ni single coating. Therefore, whether to form a Ni single-layer coating or a Ni-Au multilayer coating may be appropriately determined depending on the purpose of use. The preferred thickness of the electroless plating layer to be formed is 1 Ni film
The range is 0 to 200 nm and the Au coating is 10 to 50 nm.

【0012】本発明に係る導電性無電解めっき粉体は、
骨格がガラス状炭素からなり、表層部が他のカーボン微
粒子による微小凹凸粗面を呈する平均粒径1〜50μm
の球状カーボン粒子を基材とし、該基材の表面にパラジ
ウムイオンを捕捉させたのち、これを還元してパラジウ
ムを基材面に担持させる触媒化処理工程と、触媒化処理
を施した基材の水性スラリーに錯化剤を添加して十分に
分散させ、ついでNi無電解めっき液を少なくとも2液
に分別添加してNi被膜を形成する無電解めっき工程を
施すことによって製造することができる。また、Ni−
Auの複層被膜を形成するには、前記の工程でNi被膜
を形成した基材を対象にAu無電解めっきを施し、Ni
めっき層の上面にAu被膜を被覆する方法が採られる。
The conductive electroless plated powder according to the present invention is
The skeleton is made of glassy carbon, and the surface layer has a micro-roughened rough surface due to other carbon particles.
Of the spherical carbon particles as a base material, and after capturing palladium ions on the surface of the base material, a catalytic treatment step of reducing the palladium ions to support palladium on the surface of the base material, and a base material subjected to the catalytic treatment It can be manufactured by adding a complexing agent to the above aqueous slurry to sufficiently disperse it, and then performing an electroless plating step of separately adding at least two Ni electroless plating solutions to form a Ni coating film. In addition, Ni-
To form the Au multi-layer coating, the electroless plating of Au is performed on the base material on which the Ni coating is formed in the above step,
A method of coating the upper surface of the plating layer with an Au film is adopted.

【0013】無電解めっき法の具体的手段は、次のよう
にして行われる。まず、基材となる球状カーボン粒子の
表面に触媒捕捉能を付与する改質処理を行う。触媒捕捉
能とは、触媒化処理工程において基材表面がパラジウム
イオンをキレートまたは塩として捕捉しうる機能であ
り、改質化は特開昭61−64882号公報記載の方法
に従って行うことができる。本発明の目的には、アミノ
基置換オルガノシラン系カップリング剤やアミン系硬化
剤により硬化するエポキシ系樹脂を用いて表面処理した
基材の適用が好ましい。
The specific means of the electroless plating method is as follows. First, a modification treatment for imparting a catalyst capturing ability to the surface of the spherical carbon particles as the base material is performed. The catalyst scavenging ability is a function by which the surface of the base material can capture palladium ions as a chelate or a salt in the catalysis treatment step, and the modification can be carried out according to the method described in JP-A-61-64882. For the purpose of the present invention, it is preferable to apply a substrate whose surface is treated with an epoxy resin which is cured by an amino group-substituted organosilane coupling agent or an amine curing agent.

【0014】触媒化処理工程は、改質化により触媒捕捉
能を付与した基材を塩化パラジウムの希薄な酸性水溶液
に十分に分散させて表面上にパラジウムイオンを捕捉さ
せ、ついで捕捉させたパラジウムイオンを還元処理して
基材粒子の表面にパラジウムを担持させる方法で行われ
る。この際、塩化パラジウム水溶液の濃度は、0.05
〜1g/l の範囲とし、還元剤には次亜リン酸ナトリウ
ム、水素化ほう素ナトリウム、水素化ほう素カリウム、
ジメチルアミンボラン、ヒドラジンまたはホルマリンな
どが用いられる。還元剤の添加量は基材の粒径により異
なるが、概ね水溶液に対して0.01〜10g/l の範囲
が適当である。
In the catalysis treatment step, the base material provided with the ability to capture the catalyst by the reforming is sufficiently dispersed in a dilute acidic aqueous solution of palladium chloride to capture the palladium ion on the surface, and then the captured palladium ion. Is subjected to a reduction treatment to support palladium on the surface of the base material particles. At this time, the concentration of the palladium chloride aqueous solution is 0.05
The reducing agent is sodium hypophosphite, sodium borohydride, potassium borohydride,
Dimethylamine borane, hydrazine or formalin are used. The amount of the reducing agent added varies depending on the particle size of the base material, but is generally in the range of 0.01 to 10 g / l with respect to the aqueous solution.

【0015】無電解めっき工程は、第1段階として触媒
化処理を施した基材粒子を水に十分均一に分散し、分散
濃度が2〜500g/l 、好ましくは5〜300g/l の水
性スラリーを調製する。分散操作には、通常撹拌、高速
撹拌あるいはコロイドミルまたはホモジナイザーのよう
な剪断分散装置を用いて行うことができる。ついで水性
スラリーに錯化剤を添加して十分に分散させる。錯化剤
としては、例えばクエン酸、ヒドロキシ酢酸、酒石酸、
リンゴ酸、乳酸、グルコン酸またはそのアルカリ金属塩
やアンモニウム塩などのカルボン酸(塩)、グリシンな
どのアミノ酸、エチレンジアミン、アルキルアミンなど
のアミン酸、その他のアンモニウム、EDTA、ピロリ
ン酸(塩)など、Niイオンに対し錯化作用のある化合
物の少なくとも1種が用いられる。錯化剤は通常水溶液
の状態で添加されるが、その濃度は1〜100g/l 、好
ましくは5〜50g/l の範囲に設定する。この段階での
好ましい水性スラリーのpHは、4〜14の範囲であ
る。
In the electroless plating step, the base particles which have been subjected to the catalytic treatment as the first step are dispersed in water sufficiently uniformly, and the dispersion concentration is 2-500 g / l, preferably 5-300 g / l aqueous slurry. To prepare. The dispersion operation can be carried out by ordinary stirring, high-speed stirring, or a shearing dispersion device such as a colloid mill or a homogenizer. Then, a complexing agent is added to the aqueous slurry to sufficiently disperse it. Examples of complexing agents include citric acid, hydroxyacetic acid, tartaric acid,
Malic acid, lactic acid, carboxylic acid (salt) such as gluconic acid or its alkali metal salts and ammonium salts, amino acids such as glycine, amine acids such as ethylenediamine and alkylamines, other ammonium, EDTA, pyrophosphoric acid (salt), etc. At least one compound having a complexing effect on Ni ions is used. The complexing agent is usually added in the form of an aqueous solution, but its concentration is set in the range of 1 to 100 g / l, preferably 5 to 50 g / l. The preferred pH of the aqueous slurry at this stage is in the range 4-14.

【0016】このようにして調製した水性スラリーに、
無電解めっき液としてニッケル塩、次亜リン酸ナトリウ
ムおよび水酸化ナトリウムの各水溶液を、少なくとも2
液にしてそれぞれ個別かつ同時に分別添加することによ
り無電解めっき反応を行う。水性スラリーに無電解めっ
き液を添加すると速やかにめっき反応が始まるが、その
添加量を調整することにより形成されるNi被膜を所望
の膜厚に制御することができる。無電解めっき液の添加
終了後、水素ガスの発生が完全に認められなくなってか
ら暫く液温を保持しながら撹拌を継続して反応を完結さ
せる。
In the aqueous slurry thus prepared,
At least two aqueous solutions of nickel salt, sodium hypophosphite and sodium hydroxide are used as the electroless plating solution.
The electroless plating reaction is performed by separately and simultaneously adding as a liquid. When the electroless plating solution is added to the aqueous slurry, the plating reaction immediately starts, but the Ni coating formed can be controlled to have a desired film thickness by adjusting the addition amount. After the completion of addition of the electroless plating solution, stirring is continued while maintaining the solution temperature for a while after the generation of hydrogen gas is not completely observed, and the reaction is completed.

【0017】上記の工程によりNi被膜が濃密で連続的
薄膜として形成されるが、さらにその表面に無電解Au
めっき処理を施すことにより、一層導電性能に優れるN
i−Auの複層被膜を形成することができる。Au被膜
の形成は、Ni被膜を形成した基材をEDTA−4N
a、クエン酸−2Naおよびシアン化金カリウムからな
り、水酸化ナトリウム水溶液でpHを弱酸性領域に調整
した加温無電解めっき液に撹拌しながら添加してめっき
処理を施したのち、シアン化金カリウム、EDTA−4
Naおよびクエン酸−2Naの混合水溶液と、水素化ほ
う素カリウム、水酸化ナトリウムの混合水溶液を別個に
添加してめっき反応させる操作によって行われる。
The Ni film is formed as a dense and continuous thin film by the above steps, and the electroless Au film is further formed on the surface of the Ni film.
N that has better conductivity by plating
A multi-layer coating of i-Au can be formed. The formation of the Au coating is carried out by using EDTA-4N
a, citric acid-2Na and potassium gold cyanide, which are added to a heated electroless plating solution whose pH is adjusted to a weakly acidic region with an aqueous sodium hydroxide solution with stirring to perform plating treatment, and then gold cyanide Potassium, EDTA-4
This is performed by an operation of separately adding a mixed aqueous solution of Na and citric acid-2Na and a mixed aqueous solution of potassium borohydride and sodium hydroxide to cause a plating reaction.

【0018】[0018]

【作用】本発明の導電性無電解めっき粉体は、基材とし
て骨格がガラス状炭素で、表層部に他のカーボン微粒子
が一体に付着して形成された微小凹凸粗面を有する平均
粒径1〜50μm の球状カーボン粒子を選択使用し、こ
の基材面に無電解めっき法によってNi単独被膜または
Ni−Auの複層被膜を形成した特有の複合化構造に特
徴づけられる。この複合化構造において、基材骨格を構
成するガラス状炭素は極めて硬質であるため配合時やそ
の他の操作過程で外力の負荷により破粒することはな
く、その表面に微小凹凸粗面として介在するカーボン微
粒子は骨格部分に一体に付着しているから容易に欠落す
ることはない。
The conductive electroless plated powder of the present invention has an average particle size having a fine rugged rough surface formed of glassy carbon as a base material and other carbon fine particles integrally attached to the surface layer. It is characterized by a unique composite structure in which spherical carbon particles of 1 to 50 μm are selectively used and a Ni single coating or a Ni-Au multilayer coating is formed on the surface of this substrate by electroless plating. In this composite structure, the glassy carbon that constitutes the base material skeleton is extremely hard, so it does not break due to the load of external force during compounding or other operation processes, and it intervenes on the surface as a micro-roughened rough surface. Since the carbon fine particles are integrally attached to the skeleton portion, they are not easily removed.

【0019】本発明の導電性無電解めっき粉体が優れた
導電性能を発揮するのは、高導電性のNi単独またはN
i−Au複層が被覆された表層部が微小凹凸粗面を呈し
ていて、粒子相互が面接触に近い状態で接触するためと
推測される。そのうえ、微小凹凸粗面のカーボン微粒子
が軟質である関係で、荷重がかかった際に変形して一層
粒子同志の接触面積を高めることも接触抵抗を低下させ
る要因となる。また、分散性が改善される理由は、基材
となるカーボン粒子が本質的に不活性で適度の滑性を有
しており、この材質性状が実質的に球状の粒子形状の良
流動化作用と相俟って、無電解めっき工程中に基材粒子
同士が凝集化する現象を未然に防止するために有効に機
能するためである。このような独特の作用を介して、マ
トリックス材料に対して常に分散性よく配合でき、かつ
高度の導電性能を付与することが可能となる。
The conductive electroless plated powder of the present invention exhibits excellent conductive performance because it has high conductivity of Ni alone or N.
It is presumed that the surface layer portion coated with the i-Au multilayer has a finely roughened rough surface, and the particles come into contact with each other in a state close to surface contact. In addition, because the carbon fine particles on the micro-roughened rough surface are soft, they are deformed when a load is applied to further increase the contact area between the particles, which also causes a decrease in contact resistance. In addition, the reason why the dispersibility is improved is that the carbon particles that are the base material are essentially inert and have appropriate lubricity, and this material property is a good fluidizing action of the substantially spherical particle shape. This is because, in combination with this, it effectively functions to prevent a phenomenon in which the base particles are aggregated with each other during the electroless plating process. Through such a unique action, it is possible to always mix the matrix material with good dispersibility and to impart high conductivity performance.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0021】実施例1〜4 (1) 基材の製造;市販の球状フェノール樹脂と粒径3μ
m 以下の石炭系バルクメソフェーズピッチ微粉末を十分
均一に乾式混合し、球状フェノール樹脂粒子の表面にバ
ルクメソフェーズ微粉末を均質に付着させた。この粒子
を空気中で280℃の温度で熱安定化処理を施したの
ち、窒素雰囲気に保持された焼成炉で1000℃の温度
により炭化処理して、骨格がガラス状炭素からなり、表
層部にピッチ炭化微粒子が一体に付着して形成された微
小凹凸粗面を有する球状カーボン粒子を得た。該球状カ
ーボン粒子は平均粒径19.0μm 、嵩密度0.8〜
0.9g/cc、真比重1.40〜1.56の性状を有する
ものであった。
Examples 1 to 4 (1) Production of base material; commercially available spherical phenol resin and particle size 3 μm
Coal-based bulk mesophase pitch fine powder having a particle size of m or less was dry-mixed sufficiently uniformly, and the bulk mesophase fine powder was uniformly adhered to the surface of the spherical phenol resin particles. After heat-stabilizing these particles in air at a temperature of 280 ° C., they are carbonized at a temperature of 1000 ° C. in a firing furnace maintained in a nitrogen atmosphere, and the skeleton is made of glassy carbon, and the surface layer part is formed. Spherical carbon particles having fine irregularities rough surface formed by integrally adhering pitch carbonized fine particles were obtained. The spherical carbon particles have an average particle size of 19.0 μm and a bulk density of 0.8 to
It had a property of 0.9 g / cc and a true specific gravity of 1.40 to 1.56.

【0022】(2) Ni無電解めっき処理;上記に基材粒
子10gを、コンディショナー液〔シプレイ製、“クリ
ーナーコンディショナー231”〕40ml/l水溶液20
0mlに撹拌しながら投入し、引き続き5分間撹拌処理し
て表面改質を行った。水溶液を濾過し、1回リパルプ水
洗した基材粒子を常温の1g/l 塩化第1錫水溶液200
mlに5分間浸漬し、濾過・洗浄して増感処理を施した。
ついで、0.1g/l 塩化パラジウム水溶液および0.1
ml/lの塩酸からなる触媒化液200mlに撹拌しながら投
入し、引き続き5分間撹拌処理してパラジウムイオンを
捕捉させた。水溶液を濾過し、1回リパルプ水洗した基
材粉体を、常温の1g/l 次亜リン酸ナトリウム水溶液に
5分間浸漬して還元処理を施し、基材表面にパラジウム
を担持させた。基材を65℃の温度に加温した表1に示
す各錯化剤水溶液に撹拌しながら添加し、十分に撹拌分
散させて水性スラリーを調製したのち、各水性スラリー
に次亜燐酸ナトリウム3g を投入して撹拌溶解した。
(2) Ni electroless plating treatment; 10 g of the above-mentioned base material particles was added to a conditioner solution [made by Shipley, "Cleaner conditioner 231"] 40 ml / l aqueous solution 20.
The mixture was added to 0 ml with stirring, followed by stirring for 5 minutes for surface modification. The aqueous solution was filtered and washed once with repulp water, and the base particles were washed with 1 g / l stannous chloride aqueous solution at room temperature 200
It was immersed in ml for 5 minutes, filtered, washed and sensitized.
Then 0.1 g / l palladium chloride solution and 0.1
200 ml of a catalyzed liquid consisting of ml / l hydrochloric acid was added with stirring, followed by stirring for 5 minutes to capture palladium ions. The aqueous solution was filtered, and the base material powder washed once with repulp water was immersed in a 1 g / l aqueous solution of sodium hypophosphite at room temperature for 5 minutes for reduction treatment to support palladium on the surface of the base material. The base material was added to each complexing agent aqueous solution shown in Table 1 heated to a temperature of 65 ° C. with stirring and sufficiently dispersed by stirring to prepare an aqueous slurry, and then 3 g of sodium hypophosphite was added to each aqueous slurry. It was charged and dissolved by stirring.

【0023】[0023]

【表1】 [Table 1]

【0024】次亜燐酸ナトリウムを添加すると、間もな
く水素ガスの発生を伴って発泡し始めるが、暫くして発
泡が治まった時点で表2に示すNi無電解めっき液をa
液とb液に分けて各々80mlを5ml/分の添加速度で撹
拌しながら同時に添加した。
When sodium hypophosphite was added, foaming soon started with the generation of hydrogen gas, but when the foaming stopped for a while, the Ni electroless plating solution shown in Table 2 was used.
Separately, the liquid and the liquid b were added at the same time with stirring at an addition rate of 5 ml / min while stirring 80 ml each.

【0025】[0025]

【表2】 [Table 2]

【0026】Ni無電解めっき液の全量を添加後、水素
の発泡が停止するまで65℃の温度を保持しながら撹拌
を継続した。ついで、めっき液を濾過し、濾過物を3回
リパルプ洗浄したのち、真空乾燥機で100℃で乾燥し
てNi被膜を有する粉末を得た。めっき反応後の濾液は
いずれも無色透明であり、供しためっき液は完全にめっ
き反応に消費されたことが認められた。得られたNi無
電解めっき粒子につき、電子顕微鏡で観察したところ、
いずれも微細なNi金属粒子による均質で平滑な被覆層
を呈する球状粒子であり、めっき皮膜が濃密で実質的な
連続皮膜として形成されていることが確認された。
After the total amount of the Ni electroless plating solution was added, stirring was continued while maintaining the temperature of 65 ° C. until the bubbling of hydrogen stopped. Then, the plating solution was filtered, the filtered product was repulped three times, and then dried at 100 ° C. in a vacuum dryer to obtain a powder having a Ni coating. All the filtrates after the plating reaction were colorless and transparent, and it was confirmed that the supplied plating solution was completely consumed in the plating reaction. When the obtained Ni electroless plated particles were observed with an electron microscope,
It was confirmed that all of them were spherical particles having a uniform and smooth coating layer of fine Ni metal particles, and that the plating film was formed as a dense and substantially continuous film.

【0027】(3) Au無電解めっき処理;上記の工程で
得られたNi無電解めっき粒子10.0gを、EDTA
−4Na( 10g/l)、クエン酸−2Na(10g/l) およびシ
アン化金カリウム(3.0g/l,Auとして2.1g/l) からなる組
成で水酸化ナトリウム水溶液によりpH6に調整した液
温60℃の無電解めっき液(A液)に撹拌しながら添加
し、10分間Auめっき処理を施した。ついで、シアン
化金カリウム(10g/l, Auとして6.8g/l) 、EDTA−4
Na(10g/l) およびクエン酸−2Na(10g/l) の混合水
溶液(B液)と、水素化ほう素カリウム(30g/l) 、水酸
化ナトリウム(60g/l) の混合水溶液(C液)を送液ポン
プを通して個別かつ同時に20分間で添加した。この際
のA液量、B液量およびC液量は、表3に示す量に設定
した。
(3) Au electroless plating treatment: 10.0 g of the Ni electroless plated particles obtained in the above step was added to EDTA.
-4Na (10g / l), citric acid-2Na (10g / l) and potassium gold cyanide (3.0g / l, 2.1g / l as Au) composition adjusted to pH 6 with aqueous sodium hydroxide It was added to the electroless plating solution (solution A) at 60 ° C. with stirring and subjected to Au plating treatment for 10 minutes. Then, potassium gold cyanide (10 g / l, 6.8 g / l as Au), EDTA-4
Mixed aqueous solution of Na (10g / l) and citric acid-2Na (10g / l) (liquid B), mixed aqueous solution of potassium borohydride (30g / l), sodium hydroxide (60g / l) (liquid C) ) Was added individually and simultaneously for 20 minutes through the feed pump. The amounts of A liquid, B liquid and C liquid at this time were set to the amounts shown in Table 3.

【0028】[0028]

【表3】 [Table 3]

【0029】引き続き、液を濾過し、濾過物を3回リパ
ルプ洗浄したのち、熱風乾燥機で100℃の温度で乾燥
してNi被膜上にAu無電解めっき被覆処理を施し、基
材面にNi−Auの複層被膜を形成した。
Subsequently, the liquid is filtered, and the filtered material is repulped and washed three times, and then dried at a temperature of 100 ° C. by a hot air dryer to subject the Ni coating to Au electroless plating treatment, and the base material surface is treated with Ni. A multi-layer coating of Au was formed.

【0030】(4) 物性評価;このようにして得られた導
電性無電解めっき粉体の平均粒径、Ni無電解めっき処
理後のNi被膜の膜厚および導電性、Au無電解めっき
処理後のNi−Au複層被膜の膜厚および導電性をそれ
ぞれ測定評価し、その結果を表4に示した。なお、めっ
き膜厚は下式により算出した。 但し、r は基材粒子の半径 (μm)、t はめっき膜厚 (μ
m)、d1はめっき膜の比重、d2は基材粒子の比重である。
また、導電性の評価は、めっき粉末1.5g を垂直に立
てた内径10mmの樹脂製円筒内に入れ、5kgの荷重をか
けた状態で上下電極間の電気抵抗を測定する方法で行っ
た。比較のために、基材に用いた微小凹凸粗面を有する
球状カーボン粒子の性状についても表4に併載した(比
較例1)。
(4) Evaluation of physical properties; average particle diameter of the electroless electroless plated powder thus obtained, film thickness and electroconductivity of Ni coating film after Ni electroless plating treatment, after Au electroless plating treatment The film thickness and conductivity of the Ni-Au multilayer coating film were measured and evaluated, and the results are shown in Table 4. The plating film thickness was calculated by the following formula. Where r is the radius of the base material particles (μm) and t is the plating film thickness (μm)
m), d 1 is the specific gravity of the plating film, and d 2 is the specific gravity of the base material particles.
The conductivity was evaluated by placing 1.5 g of the plating powder in a vertically standing resin cylinder having an inner diameter of 10 mm and measuring the electrical resistance between the upper and lower electrodes under a load of 5 kg. For comparison, the properties of the spherical carbon particles having a micro-roughened rough surface used for the base material are also shown in Table 4 (Comparative Example 1).

【0031】図1および図2は実施例1によりNi−A
u複層被膜を形成した導電性無電解めっき粉体の電子顕
微鏡(SEM)写真である。これらの図から、粉体の状
態はめっき層が基材の表層に沿った微少凹凸粗面を呈し
ていることが認められる。
1 and 2 show Ni-A according to the first embodiment.
It is an electron microscope (SEM) photograph of a conductive electroless plated powder on which a u multilayer coating is formed. From these figures, it is recognized that the state of the powder is such that the plating layer has a rough surface with fine irregularities along the surface layer of the base material.

【0032】比較例2 実施例で用いた市販の球状フェノール樹脂(平均粒径14
μm)をそのまま空気中で280℃の温度で熱安定化処理
を施したのち、窒素雰囲気に保持された焼成炉で100
0℃の温度により炭化処理して、全体がガラス状炭素に
より構成され、表面が平滑な真球状のカーボン粒子を得
た。その性状は平均粒径10μm 、嵩密度0.8〜0.
9g/cc、真比重は1.35〜1.40であった。該基材
に対し、実施例1と同一条件でNi無電解めっき処理
し、更に上層にAu無電解めっき処理を施した。得られ
た無電解めっき粉体の性状を測定評価し、表4に併載し
た。
Comparative Example 2 Commercially available spherical phenol resin (average particle size 14
(μm) is heat-stabilized in air at a temperature of 280 ° C. and then heated in a nitrogen atmosphere at 100 ° C. in a firing furnace.
Carbonization treatment was performed at a temperature of 0 ° C. to obtain truly spherical carbon particles which were entirely composed of glassy carbon and had a smooth surface. Its properties are an average particle size of 10 μm and a bulk density of 0.8-0.
The true specific gravity was 9 g / cc and 1.35 to 1.40. The base material was subjected to Ni electroless plating under the same conditions as in Example 1, and further subjected to Au electroless plating as an upper layer. The properties of the obtained electroless plated powder were measured and evaluated, and are also shown in Table 4.

【0033】[0033]

【表4】 〔表注〕比較例1の電気抵抗値は、基材そのものの測定値である。[Table 4] [Table Note] The electric resistance value of Comparative Example 1 is a measured value of the base material itself.

【0034】表4に示すように本発明の要件を満たす実
施例品の導電性は、比較例に比べて優れており、特にN
i−Auの複層めっき品において高度な電気伝導性を示
すことが判る。また、実施例の無電解めっき粉体は無電
解めっき過程で凝集化することはなく、樹脂に分散させ
たところ容易に均一分散することが認められた。
As shown in Table 4, the conductivity of the example products satisfying the requirements of the present invention is superior to that of the comparative example, and particularly N
It can be seen that the i-Au multi-layer plated product exhibits a high degree of electrical conductivity. It was also found that the electroless plated powders of the examples did not aggregate during the electroless plating process and were easily dispersed uniformly when dispersed in the resin.

【0035】[0035]

【発明の効果】以上のとおり、本発明によれば骨格がガ
ラス状炭素からなり、表層部が他のカーボン微粒子によ
り一体に被覆された微少凹凸粗面を備える球状カーボン
微粒子を基材とし、この表面にNiまたはNi−Auの
微細な金属粒子が濃密で実質的に連続皮膜として形成さ
れた分散性ならびに導電性能に優れる無電解めっき粉体
を提供することができる。したがって、プラスチック材
などに導電性を付与する導電性フィラーとして、また液
晶ディスプレイパネルの電極と駆動用LSIの接続、L
SIチップの回路基板への接続、その他微小ピッチの電
極端子間の接続するための導電材料として極めて有用性
が期待される。
As described above, according to the present invention, a spherical carbon fine particle having a skeleton made of glassy carbon and a surface layer portion integrally covered with other carbon fine particles and having a minute uneven rough surface is used as a base material. It is possible to provide an electroless plated powder having excellent dispersibility and conductive performance in which fine metal particles of Ni or Ni-Au are densely formed on the surface as a substantially continuous film. Therefore, as a conductive filler that imparts conductivity to a plastic material or the like, connection between electrodes of a liquid crystal display panel and a driving LSI, L
It is expected to be extremely useful as a conductive material for connecting an SI chip to a circuit board and other connection between electrode terminals having a fine pitch.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1による導電性無電解めっき粉体の粒子
構造を示した電子顕微鏡拡大写真(倍率500倍)であ
る。
1 is an electron microscope enlarged photograph (magnification: 500 times) showing a particle structure of a conductive electroless plated powder according to Example 1. FIG.

【図2】実施例1による導電性無電解めっき粉体の粒子
構造を示した電子顕微鏡拡大写真(倍率2000倍)で
ある。
FIG. 2 is an electron microscope enlarged photograph (magnification: 2000 times) showing a particle structure of a conductive electroless plated powder according to Example 1.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 18/31 H01B 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C23C 18/31 H01B 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 骨格がガラス状炭素からなり、表層部に
他のカーボン微粒子が一体に付着して形成された微小凹
凸粗面を有する平均粒径1〜50μm の球状カーボン粒
子を基材とし、該基材の表面に無電解めっき法によりN
i被膜を形成してなることを特徴とする導電性無電解め
っき粉体。
1. A spherical carbon particle having an average particle diameter of 1 to 50 μm, which has a skeleton made of glassy carbon and has fine irregularities and rough surfaces formed by integrally adhering other carbon particles to the surface layer, as a base material, N on the surface of the base material by electroless plating
A conductive electroless plated powder characterized by being formed with an i coating.
【請求項2】 骨格がガラス状炭素からなり、表層部に
他のカーボン微粒子が一体に付着して形成された微小凹
凸粗面を有する平均粒径1〜50μm の球状カーボン微
粒子を基材とし、該基材の表面に無電解めっき法により
Ni−Auの複層被膜を形成してなることを特徴とする
導電性無電解めっき粉体。
2. A spherical carbon fine particle having an average particle size of 1 to 50 μm having a skeleton made of glassy carbon and having a fine uneven rough surface formed by integrally adhering other carbon fine particles to the surface layer, as a base material, A conductive electroless plated powder, comprising a Ni-Au multilayer coating formed on the surface of the base material by an electroless plating method.
JP33734194A 1994-12-26 1994-12-26 Conductive electroless plating powder Expired - Lifetime JP3417699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33734194A JP3417699B2 (en) 1994-12-26 1994-12-26 Conductive electroless plating powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33734194A JP3417699B2 (en) 1994-12-26 1994-12-26 Conductive electroless plating powder

Publications (2)

Publication Number Publication Date
JPH08176836A JPH08176836A (en) 1996-07-09
JP3417699B2 true JP3417699B2 (en) 2003-06-16

Family

ID=18307724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33734194A Expired - Lifetime JP3417699B2 (en) 1994-12-26 1994-12-26 Conductive electroless plating powder

Country Status (1)

Country Link
JP (1) JP3417699B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765363B1 (en) * 2005-10-31 2007-10-09 전자부품연구원 Method for fabricating conductive particle
TW200729236A (en) * 2005-12-22 2007-08-01 Sekisui Chemical Co Ltd Conductive fine particle and anisotropic conductive material
JP4849930B2 (en) * 2006-03-28 2012-01-11 日本化学工業株式会社 Conductive electroless plating powder and method for producing the same
US20090104405A1 (en) * 2007-10-17 2009-04-23 Honeywell International Inc. Laminated printed wiring board with controlled spurious rf emission capability/characteristics
EP2211354B1 (en) 2007-10-22 2020-12-16 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP5796232B2 (en) * 2010-12-21 2015-10-21 デクセリアルズ株式会社 Conductive particles, anisotropic conductive materials, and connection structures

Also Published As

Publication number Publication date
JPH08176836A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
KR100602726B1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JP4728665B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
KR101922575B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
WO2012023566A1 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2007242307A (en) Conductive particulate and anisotropic conductive material
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
WO2006006688A1 (en) Conductive microparticle, process for producing the same and anisotropic conductive material
JP5941328B2 (en) Conductive particles and conductive material containing the same
KR101538012B1 (en) Anisotropic conductive film used for connecting wiring and manufacturing method for the same
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
KR20130082470A (en) Conductive particle, insulating coated conductive particle, and anisotropic conductive adhesive
JP6454154B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JP3417699B2 (en) Conductive electroless plating powder
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP2012178270A (en) Conductive particle and manufacturing method of the same, adhesive composition, circuit connection material, connection structure, and connection method of circuit member
JP7144472B2 (en) Conductive particles, conductive materials and connecting structures
JP5707247B2 (en) Method for producing conductive particles
JP4247039B2 (en) Method for producing conductive electroless plating powder
JP2007002299A (en) Tubular metal powder, manufacturing method therefor, anisotropic electroconductive film, electroconductive paste, and catalyst
JPH04354882A (en) Aluminum electroless plating powder and conductive filler and production thereof
CN114226725A (en) Silver-modified micron-sized particles, and preparation method and application thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term