JP5796232B2 - Conductive particles, anisotropic conductive materials, and connection structures - Google Patents

Conductive particles, anisotropic conductive materials, and connection structures Download PDF

Info

Publication number
JP5796232B2
JP5796232B2 JP2010285063A JP2010285063A JP5796232B2 JP 5796232 B2 JP5796232 B2 JP 5796232B2 JP 2010285063 A JP2010285063 A JP 2010285063A JP 2010285063 A JP2010285063 A JP 2010285063A JP 5796232 B2 JP5796232 B2 JP 5796232B2
Authority
JP
Japan
Prior art keywords
particles
anisotropic conductive
conductive material
particle
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010285063A
Other languages
Japanese (ja)
Other versions
JP2011066015A (en
Inventor
浅栄 高林
浅栄 高林
朋之 石松
朋之 石松
剛志 田巻
剛志 田巻
雄太 荒木
雄太 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2010285063A priority Critical patent/JP5796232B2/en
Publication of JP2011066015A publication Critical patent/JP2011066015A/en
Application granted granted Critical
Publication of JP5796232B2 publication Critical patent/JP5796232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、カーボン粒子をコア粒子とする導電性粒子及びそれを絶縁性接着剤中に分散させた異方性導電材料に関する。   The present invention relates to conductive particles having carbon particles as core particles and an anisotropic conductive material in which the conductive particles are dispersed in an insulating adhesive.

配線の材料として、絶縁性接着剤中に導電性粒子を分散させた異方性導電材料が使用されており、この導電性粒子としては、粒子径の整った樹脂粒子をコア粒子とし、その表面にニッケル、金等の金属メッキを施したものや、ニッケル等の金属のみからなる粒子などが使用されている。このうち、前者は主にファインピッチ接続用として、LCDパネル等のガラス基板に用いられており、後者はPWB(Printed Wiring Board)と、COF(Chip On Film)、TCP(Tape Carrier Package)等のFPC(Flexible Printed Circuits)との接続、あるいは、ITO、IZO等の表面酸化性の高い配線材料を用いたガラス基板とFPCとの接続に用いられている。   An anisotropic conductive material in which conductive particles are dispersed in an insulating adhesive is used as a wiring material. As the conductive particles, resin particles having a uniform particle diameter are used as core particles, and the surface thereof is used. In addition, a material plated with a metal such as nickel or gold, or a particle made only of a metal such as nickel is used. Among them, the former is mainly used for glass substrates such as LCD panels for fine pitch connection, and the latter is used for PWB (Printed Wiring Board), COF (Chip On Film), TCP (Tape Carrier Package), etc. It is used for connection with FPC (Flexible Printed Circuits), or for connection between a glass substrate and a FPC using a wiring material having high surface oxidation properties such as ITO and IZO.

しかしながら、金属のみからなる粒子を異方性導電材料の導電性粒子とすると、金属粒子は絶縁性接着剤を構成する樹脂組成物に比して比重が大きいために異方性導電材料中で沈降しやすく、沈降により生じた粒子の凝集により、異方性導電材料で接続した配線間にショート等の不具合を生じさせていた。   However, if particles made of only metal are used as conductive particles of an anisotropic conductive material, the metal particles have a higher specific gravity than the resin composition constituting the insulating adhesive, and thus settle in the anisotropic conductive material. It is easy to cause agglomeration of particles caused by sedimentation, causing problems such as a short circuit between wires connected by an anisotropic conductive material.

一方、樹脂粒子をコア粒子とする導電性粒子は、金属のみからなる導電性粒子よりも比重が軽いために異方性導電材料における分散性は向上するが、異方性導電材料を用いた配線間の接続時に導電性粒子の圧痕が十分に発現しないため、接続状態を確認することができず、これにより接続信頼性を向上させることができないという問題がある。   On the other hand, conductive particles with resin particles as core particles have a lighter specific gravity than conductive particles made only of metal, so dispersibility in anisotropic conductive materials is improved, but wiring using anisotropic conductive materials There is a problem in that the indentation of the conductive particles is not sufficiently developed at the time of connection between them, so that the connection state cannot be confirmed, and thus the connection reliability cannot be improved.

この他、異方性導電材料の導電性粒子として、カーボン粒子をコア粒子とし、その表面に金属メッキを施したものも知られており、特に、導電性粒子の表面に複数の突起を設け、導電性粒子と配線との圧着時にはその突起部分に荷重を集中させ、突起部分で導電性粒子が配線に食い込むようにして接続抵抗を低下させることが提案されている(特許文献1)。   In addition, as the conductive particles of the anisotropic conductive material, carbon particles are used as core particles, and the surface thereof is subjected to metal plating. In particular, a plurality of protrusions are provided on the surface of the conductive particles, It has been proposed to reduce the connection resistance by concentrating the load on the protruding portion when the conductive particles and the wiring are pressed together so that the conductive particles bite into the wiring at the protruding portion (Patent Document 1).

特許2823799号公報Japanese Patent No.2823799

しかしながら、特許文献1に記載されているようにカーボン粒子にタールを付着させて焼成により黒鉛化した突起を形成する場合、カーボン粒子が凝集しやすいために、それを導電性粒子として配合した異方性導電材料は、配線間のショートを引き起こしやすくなるという問題があった。   However, as described in Patent Document 1, when tar is attached to carbon particles to form graphitized protrusions by firing, the carbon particles are likely to aggregate, and therefore anisotropically blended as conductive particles The conductive material has a problem that it easily causes a short circuit between wirings.

これに対し、本発明は、異方性導電材料での分散性が良好で、かつ配線への食い込み効果が高い導電性粒子を提供すること、そしてそのような導電性粒子を用いた異方性導電材料を提供することを目的とする。   In contrast, the present invention provides conductive particles that have good dispersibility in anisotropic conductive materials and have a high effect of biting into wiring, and anisotropy using such conductive particles. An object is to provide a conductive material.

本発明者は、異方性導電材料の導電性粒子のコア粒子として、実質的に表面凹凸の無いカーボン粒子を使用し、その外殻として、表面凹凸を有する金属メッキ層を使用すると、異方性導電材料における導電性粒子の分散性が十分に高まり、かつ導電性粒子の配線への食い込み効果が高まって、高い接続信頼性を確保することを見出した。   The present inventor uses anisotropically conductive carbon particles that are substantially free of surface irregularities as the core particles, and uses a metal plating layer having irregularities as the outer shell. It has been found that the dispersibility of the conductive particles in the conductive material is sufficiently increased and the effect of the conductive particles in the wiring is increased, thereby ensuring high connection reliability.

即ち、本発明は、実質的に表面凹凸が無いカーボン粒子がメッキ層で被覆されている導電性粒子であって、粒子の表面凹凸比をT/D(式中、Dは粒子の平面への投影図における粒子の外形線に対する内接円の直径、Tは前記外形線と内接円との距離の最大値)とした場合に、導電性粒子の表面凹凸比が0.01〜0.6である導電性粒子を提供する。   That is, the present invention is a conductive particle in which carbon particles having substantially no surface unevenness are coated with a plating layer, and the surface unevenness ratio of the particles is expressed by T / D (where D is the particle plane Conductivity in which the surface irregularity ratio of the conductive particles is 0.01 to 0.6 when the diameter of the inscribed circle with respect to the outline of the particle in the projected view and T is the maximum distance between the outline and the inscribed circle) Provide particles.

また、本発明は上述の導電性粒子が絶縁性接着剤に分散している異方性導電材料を提供し、さらに、この異方性導電材料を対向する端子間に配置し、端子間を加圧して接続する異方性導電接続方法と、この異方性導電材料により接続された異方性導電接続体を提供する。   In addition, the present invention provides an anisotropic conductive material in which the above-described conductive particles are dispersed in an insulating adhesive, and the anisotropic conductive material is disposed between opposing terminals, and the terminals are added. An anisotropic conductive connection method for connecting by pressing and an anisotropic conductive connection body connected by the anisotropic conductive material are provided.

本発明の導電性粒子は、カーボン粒子をコア粒子としているので、金属粒子よりも比重が小さいため、異方性導電材料中における導電性粒子の分散性が良好である。
また、本発明の導電性粒子は表面凹凸を有するので、導電粒子の配線への食い込み効果に優れるため、高い接続信頼性を確保することができる。
Since the conductive particles of the present invention have carbon particles as core particles and have a specific gravity smaller than that of metal particles, the dispersibility of the conductive particles in the anisotropic conductive material is good.
Moreover, since the electroconductive particle of this invention has surface unevenness | corrugation, since it is excellent in the penetration effect to the wiring of an electroconductive particle, high connection reliability can be ensured.

さらに、この表面凹凸は、カーボン粒子の外殻となっているメッキ層により形成されており、カーボン粒子自体には実質的に表面凹凸が無いため、カーボン粒子自体が表面凹凸を有する場合のようなカーボン粒子の凝集が生じない。そのため、本発明の導電性粒子は、カーボン粒子をコア粒子とし、かつ表面凹凸を有するにもかかわらず、異方性導電材料中で良好な分散性を有する。   Further, the surface irregularities are formed by a plating layer that is an outer shell of the carbon particles, and the carbon particles themselves have substantially no surface irregularities, so that the carbon particles themselves have surface irregularities. Aggregation of carbon particles does not occur. Therefore, the conductive particles of the present invention have good dispersibility in the anisotropic conductive material despite having carbon particles as core particles and surface irregularities.

したがって、本発明の導電性粒子を用いた異方性導電材料や、これを用いる異方性導電接続方法は、不用なショートを引き起こさず、高い接続信頼性を発揮する。   Therefore, the anisotropic conductive material using the conductive particles of the present invention and the anisotropic conductive connection method using the same exhibit high connection reliability without causing an unnecessary short circuit.

図1は、表面凹凸比の計測方法の説明図である。FIG. 1 is an explanatory diagram of a method for measuring the surface roughness ratio.

以下、本発明を具体的に説明する。
本発明の導電性粒子は、カーボン粒子をコア粒子とし、その表面が外殻となるメッキ層で被覆され、導電性粒子表面に凹凸が形成されているものである。
Hereinafter, the present invention will be specifically described.
The conductive particles of the present invention have carbon particles as core particles, the surfaces of which are coated with a plating layer serving as an outer shell, and irregularities are formed on the surfaces of the conductive particles.

ここで、カーボン粒子は、実質的に表面凹凸が無いもの、即ち、表面凹凸比(T/D)が0のものとする。
この表面凹凸比(T/D)において、Dは、図1に示すように、導電性粒子を平面に投影させた投影図において、外形線1に内接する円2の直径Dであり、Tは、この外接円1と内接円2との距離の最大値、即ち、表面凹凸として最も突出している部位と内接円2との距離である。ここで、内接円2は、外接円1に少なくとも3点で接しているものとする。導電性粒子の投影図としては、導電性粒子の走査型電子顕微鏡画像(倍率4000倍程度)を使用することができる。また、実質的に表面凹凸が無いとは、表面凹凸比(T/D)が0.001未満であることをいう。
Here, the carbon particles have substantially no surface unevenness, that is, the surface unevenness ratio (T / D) is zero.
In this surface unevenness ratio (T / D), as shown in FIG. 1, D is a diameter D of a circle 2 inscribed in the outline 1 in a projection view in which conductive particles are projected onto a plane, and T is The maximum value of the distance between the circumscribed circle 1 and the inscribed circle 2, that is, the distance between the most protruding portion as surface irregularities and the inscribed circle 2. Here, it is assumed that the inscribed circle 2 is in contact with the circumscribed circle 1 at least at three points. As a projection view of the conductive particles, a scanning electron microscope image (approximately 4000 times magnification) of the conductive particles can be used. Further, “substantially no surface unevenness” means that the surface unevenness ratio (T / D) is less than 0.001.

カーボン粒子としては、実質的に表面凹凸の無いものであれば、その外形は特に制限はなく、真球状、円盤状、柱状等とすることができるが、真球状が好ましい。   The carbon particles are not particularly limited as long as they are substantially free of surface irregularities, and may have a true spherical shape, a disc shape, a column shape, or the like, but a true spherical shape is preferable.

このようなカーボン粒子は、ベンゾグアナミン・ホルムアルデヒド縮合物、フェノール樹脂等の樹脂粒子の焼成により得ることができる。   Such carbon particles can be obtained by firing resin particles such as benzoguanamine / formaldehyde condensate and phenol resin.

本発明では、以上のような実質的に表面凹凸の無いカーボン粒子を使用することにより、カーボン粒子同士の凝集を低減させる。したがって、表面凹凸を有するカーボン粒子を異方性導電材料の導電性粒子とする場合に生じる、導電性粒子の凝集を低減させ、異方性導電材料で接続した配線間の不用なショートをなくすことができる。   In the present invention, the aggregation of carbon particles is reduced by using carbon particles having substantially no surface irregularities as described above. Therefore, agglomeration of conductive particles that occurs when carbon particles having surface irregularities are made conductive particles of anisotropic conductive material is reduced, and unnecessary shorts between wirings connected by anisotropic conductive material are eliminated. Can do.

一方、カーボン粒子の外殻とするメッキ層には、表面凹凸比(T/D)が0.01〜0.6、好ましくは0.05〜0.25となるように表面凹凸を形成する。この場合、表面凹凸を形成する突起が導電性粒子の表面積の30%以上を覆うことが好ましい。
このような表面凹凸により、配線に対する導電性粒子の食い込み効果を向上させ、接続信頼性を向上させることができる。これに対し、表面凹凸比(T/D)が小さすぎると食い込み効果を十分に得られず、反対に大きすぎると導電性粒子表面の凹凸の起伏が激しくなり、電極などの接続に用いると、該電極との接触面積が小さくなり、接続抵抗値にばらつきが生じるので好ましくない。
On the other hand, surface unevenness is formed on the plating layer as the outer shell of the carbon particles so that the surface unevenness ratio (T / D) is 0.01 to 0.6, preferably 0.05 to 0.25. In this case, it is preferable that the protrusions forming the surface irregularities cover 30% or more of the surface area of the conductive particles.
By such surface irregularities, the effect of the conductive particles biting into the wiring can be improved, and the connection reliability can be improved. On the other hand, if the surface unevenness ratio (T / D) is too small, a sufficient biting effect cannot be obtained. On the other hand, if the surface unevenness ratio is too large, the unevenness of the surface of the conductive particles becomes severe, and when used for connecting electrodes and the like, This is not preferable because the contact area with the electrode becomes small and the connection resistance value varies.

メッキ層における表面凹凸の形成方法としては、例えば、特開2007-324138号公報の実施例の記載に従い、表面突起の芯物質となる微粒子をコア粒子に付着させ、その微粒子ごとコア粒子を被覆するように無電解メッキ層を形成すればよい。   As a method for forming surface irregularities in the plating layer, for example, in accordance with the description in the examples of Japanese Patent Application Laid-Open No. 2007-324138, fine particles that become the core material of surface protrusions are attached to the core particles, and the core particles are covered with the fine particles. Thus, an electroless plating layer may be formed.

メッキ層を形成する金属としては、ニッケル層、銅層、パラジウム層等を挙げることができる。メッキ層の最表面には金層を形成してもよい。   Examples of the metal forming the plating layer include a nickel layer, a copper layer, and a palladium layer. A gold layer may be formed on the outermost surface of the plating layer.

以上のようなカーボン粒子とメッキ層からなる導電性粒子全体としての粒径は、この導電性粒子で接続する配線部材にもよるが、通常、1〜30μmとすることが好ましく、1〜10μmとすることがより好ましい。導電性粒子の粒径が過度に小さいと接続端子の表面凹凸にめり込んでしまい、端子間の接続を担うことができなくなる。反対に、導電性粒子の粒径が過度に大きいと、配線部材が変形しやすくなり、正常な接続状態を保ちにくくなる。   The overall particle size of the conductive particles composed of the carbon particles and the plating layer as described above depends on the wiring member connected by the conductive particles, but is usually preferably 1 to 30 μm, and 1 to 10 μm. More preferably. If the particle size of the conductive particles is excessively small, the surface irregularities of the connection terminals are sunk, and the connection between the terminals cannot be performed. On the other hand, when the particle size of the conductive particles is excessively large, the wiring member is easily deformed and it is difficult to maintain a normal connection state.

本発明の異方性導電材料は、上述の導電性粒子が絶縁性接着剤に分散しているものである。   In the anisotropic conductive material of the present invention, the above-described conductive particles are dispersed in an insulating adhesive.

絶縁性接着剤は、公知の異方性導電材料と同様に種々の態様をとることができ、例えば、膜形成樹脂、液状エポキシ化合物(硬化成分)あるいはアクリルモノマー(硬化成分)、硬化剤、シランカップリング剤等から構成することができる。   Insulating adhesives can take various forms as well as known anisotropic conductive materials, such as film-forming resins, liquid epoxy compounds (curing components) or acrylic monomers (curing components), curing agents, silanes, and the like. It can comprise a coupling agent or the like.

膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。   Examples of the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.

液状エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ノボラック型エポキシ化合物、それらの変性エポキシ化合物、脂環式エポキシ化合物などを挙げることができ、これらの2種以上を併用することができる。この場合、硬化剤としては、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤、フェノール系硬化剤等の潜在性硬化剤を挙げることができる。   Examples of the liquid epoxy compound include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, modified epoxy compounds thereof, alicyclic epoxy compounds, and the like. Can do. In this case, examples of the curing agent include anionic curing agents such as polyamines and imidazoles, cationic curing agents such as sulfonium salts, and latent curing agents such as phenolic curing agents.

アクリルモノマーとしては、エチル(メタ)アクリレート等を挙げることができる。この場合、硬化剤(ラジカル重合開始剤)としては、有機過酸化物、アゾビスブチロニトリル等を挙げることができる。   Examples of the acrylic monomer include ethyl (meth) acrylate. In this case, examples of the curing agent (radical polymerization initiator) include organic peroxides and azobisbutyronitrile.

シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。   Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.

バインダー樹脂組成物には、必要に応じて充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを配合することができる。   In the binder resin composition, a filler, a softener, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like can be blended as necessary.

本発明の異方性導電材料中の導電性粒子の含有量は、少なすぎると導通信頼性が低下し、多すぎると異方導電性が低下するので、好ましくは0.1〜20質量%、より好ましくは0.2〜10質量%である。   If the content of the conductive particles in the anisotropic conductive material of the present invention is too small, the conduction reliability is lowered, and if it is too much, the anisotropic conductivity is lowered, preferably 0.1 to 20% by mass, more preferably Is 0.2 to 10% by mass.

また、異方性導電材料の形態は、ペースト状、フィルム状などとすることができる。特に、フィルム状の異方性導電材料としては、離型フィルム上に異方性導電材料の塗膜を形成した異方性導電フィルムを挙げることができる。   In addition, the anisotropic conductive material may have a paste shape, a film shape, or the like. In particular, examples of the film-like anisotropic conductive material include an anisotropic conductive film in which a coating film of an anisotropic conductive material is formed on a release film.

本発明の異方性導電材料は、従来の異方性導電材料と同様に、フレキシブル基板、リジッド基板、電子部品等の接続すべき端子間に塗膜としてあるいはフィルムとして配置し、端子間を加圧しつつ、加熱、UV照射等を行い、端子間を電気的、機械的に接続する異方導電接続に使用することができ、これにより高い接続信頼性を有する異方導電性接続体の製造が可能となる。本発明は、かかる接続体も包含する。   As in the case of conventional anisotropic conductive materials, the anisotropic conductive material of the present invention is disposed as a coating film or a film between terminals to be connected such as a flexible substrate, a rigid substrate, and an electronic component, and the terminals are added. It can be used for anisotropic conductive connection that electrically and mechanically connects between terminals by heating, UV irradiation, etc. while pressing, thereby producing an anisotropic conductive connection body having high connection reliability. It becomes possible. The present invention also includes such a connection body.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

実施例1
(1)カーボン粒子(コア粒子)の製造
ベンゾグアナミン・ホルムアルデヒド縮合物の平均粒径7μmからなる真球樹脂粒子(「エポスターGP70」:日本触媒社製)を、不活性ガス雰囲気下1000℃で10時間焼成することで、平均粒径5μmの球状カーボン粒子を作製した。
Example 1
(1) Manufacture of carbon particles (core particles) True spherical resin particles (“Epester GP70” manufactured by Nippon Shokubai Co., Ltd.) consisting of an average particle size of 7 μm of benzoguanamine / formaldehyde condensate are treated at 1000 ° C. for 10 hours under an inert gas atmosphere. Sintering produced spherical carbon particles having an average particle size of 5 μm.

(2)導電性粒子の製造
(1)で得たカーボン粒子をコア粒子とし、特開2007-324138号公報の実施例1の記載に従い、コア粒子の表面に、次のようにして表面凹凸を有するメッキ層を形成し、導電性粒子を製造した。
(2) Production of conductive particles The carbon particles obtained in (1) were used as core particles, and surface irregularities were formed on the surfaces of the core particles as described below in Example 1 of JP-A-2007-324138. A plating layer was formed to produce conductive particles.

(2-1)無電解メッキ前処理工程
カーボン粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、および二塩化スズ溶液によるセンシタイジングを行った。その後、二塩化パラジウム溶液によるアクチベイチングを行う無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
(2-1) Electroless Plating Pretreatment Step 10 g of carbon particles were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing with a tin dichloride solution. Thereafter, electroless plating pretreatment for activation with a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.

(2-2)芯物質複合化工程
(2-1)で得られた基材微粒子を脱イオン水300ml中で3分間撹拌し、分散させた。しかる後、その水溶液に、芯物質として平均粒径0.05μmの金属ニッケル粒子1gを3分間かけて添加し、ニッケル粒子付着カーボン粒子を得た。
(2-2) Core material compounding process
The substrate fine particles obtained in (2-1) were stirred and dispersed in 300 ml of deionized water for 3 minutes. Thereafter, 1 g of metallic nickel particles having an average particle size of 0.05 μm was added to the aqueous solution as a core material over 3 minutes to obtain nickel particle-attached carbon particles.

(2-3)無電解ニッケルメッキ
(2-3-1)無電解メッキ前期工程
(2-2)で得られたニッケル粒子付着カーボン粒子を更に水1200mlで希釈し、メッキ安定剤4mlを添加した。しかる後、この水溶液に、硫酸ニッケル450g/l、次亜リン酸ナトリウム150g/l、クエン酸ナトリウム116g/l、およびメッキ安定剤6mlの混合溶液120mlを、81ml/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで撹拌し、水素の発泡が停止するのを確認した。
(2-3) Electroless nickel plating
(2-3-1) Electroless plating first stage process
The nickel particle-attached carbon particles obtained in (2-2) were further diluted with 1200 ml of water, and 4 ml of a plating stabilizer was added. Thereafter, 120 ml of a mixed solution of nickel sulfate 450 g / l, sodium hypophosphite 150 g / l, sodium citrate 116 g / l, and plating stabilizer 6 ml is passed through this metering pump at an addition rate of 81 ml / min. Added. Then, it stirred until pH became stable and it confirmed that foaming of hydrogen stopped.

(2-3-2)無電解メッキ後期工程
次いで、更に硫酸ニッケル450g/l、次亜リン酸ナトリウム150g/l、クエン酸ナトリウム116g/l、およびメッキ安定剤35mlの混合溶液650mlを、27ml/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで撹拌し、水素の発泡が停止するのを確認した。
(2-3-2) Late stage of electroless plating Next, 650 ml of a mixed solution of nickel sulfate 450 g / l, sodium hypophosphite 150 g / l, sodium citrate 116 g / l, and plating stabilizer 35 ml was added to 27 ml / The addition was made through a metering pump at an addition rate of minutes. Then, it stirred until pH became stable and it confirmed that foaming of hydrogen stopped.

次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥して、ニッケルメッキされたカーボン粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、表面凹凸を有する導電性微粒子を得た。
Next, the plating solution was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated carbon particles.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles having surface irregularities.

(3)異方性導電フィルムの製造
熱硬化性バインダーとして、マイクロカプセル型アミン系硬化剤(旭化成ケミカルズ社製、商品名 ノバキュアHX3941HP)50重量部、液状エポキシ樹脂(ジャパンエポキシレジン社製、商品名 EP828)14重量部、フェノキシ樹脂(東都化成社製、商品名YP50)35重量部、シランカップリング剤(信越化学社製、商品名 KBE403)1重量部と、(2)で得た導電性粒子とを、導電性粒子の体積比率が10%となるように混合分散させ、それをシリコーンで剥離処理されたPETフィルム上に、厚み35μmとなるように塗布し、乾燥させて異方性導電フィルムを製造した。
(3) Manufacture of anisotropic conductive film As thermosetting binder, 50 parts by weight of microcapsule amine curing agent (Asahi Kasei Chemicals, trade name NovaCure HX3941HP), liquid epoxy resin (Japan Epoxy Resin, trade name) EP828) 14 parts by weight, phenoxy resin (trade name YP50, manufactured by Toto Kasei Co., Ltd.) 35 parts by weight, silane coupling agent (trade name KBE403, manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part by weight, and the conductive particles obtained in (2) Is mixed and dispersed so that the volume ratio of the conductive particles is 10%, and is applied to a PET film which has been subjected to a release treatment with silicone so as to have a thickness of 35 μm. Manufactured.

(4)異方性導電接続体の製造
評価用基材としてソニーケミカル&インフォメーションデバイス社製COF(50μmピッチ、Cu8μm厚-Snメッキ、38μm厚-Sperflex基材)とソニーケミカル&インフォメーションデバイス社製PWB(50μmピッチ、Cu35μm厚-Auメッキ、FR-4基材)とを用い、(3)で作製した異方性導電フィルムを用いてこれらを接続した。この場合、まず、異方性導電フィルムを1.5mm幅にスリットしておき、これをPWBに貼り付け、その上にCOFを位置合わせして配置し、緩衝材250μm厚シリコーンラバー、1.5mm幅加熱ツールを用いて、圧着条件190℃、3MPa、10秒間で加熱加圧して異方性導電接続体を製造した。
(4) Manufacture of anisotropic conductive connector COF (50 μm pitch, Cu 8 μm thickness-Sn plating, 38 μm thickness-Sperflex substrate) manufactured by Sony Chemical & Information Device and PWB manufactured by Sony Chemical & Information Device Co., Ltd. (50 μm pitch, Cu 35 μm thickness—Au plating, FR-4 base material) and these were connected using the anisotropic conductive film prepared in (3). In this case, first, an anisotropic conductive film is slit to a width of 1.5 mm, this is attached to the PWB, and the COF is aligned and disposed thereon, and a cushioning material 250 μm thick silicone rubber, 1.5 mm width heating Using a tool, an anisotropic conductive connector was manufactured by heating and pressing under pressure bonding conditions of 190 ° C. and 3 MPa for 10 seconds.

実施例2
芯物質複合化工程において、平均粒径0.05μmの金属ニッケル粒子の代わりに、平均粒径0.5μmの金属ニッケル粒子を用いたこと以外は実施例1と同様にして、表面凹凸を有する導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Example 2
Conductive particles having surface irregularities in the same manner as in Example 1 except that metal nickel particles having an average particle size of 0.5 μm were used instead of metal nickel particles having an average particle size of 0.05 μm in the core material compounding step. Got.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

実施例3
芯物質複合化工程において、平均粒径0.05μmの金属ニッケル粒子の代わりに、平均粒径1μmの金属ニッケル粒子を用いたこと以外は実施例1と同様にして、表面凹凸を有する導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Example 3
Conductive particles having surface irregularities were obtained in the same manner as in Example 1 except that metal nickel particles having an average particle diameter of 1 μm were used instead of metal nickel particles having an average particle diameter of 0.05 μm in the core material compounding step. Obtained.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

実施例4
無電解ニッケルメッキの代わりに、無電解銅メッキを行うこと以外は実施例2と同様にして、表面凹凸を有する導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Example 4
Conductive particles having surface irregularities were obtained in the same manner as in Example 2 except that electroless copper plating was performed instead of electroless nickel plating.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

実施例5
無電解ニッケルメッキの代わりに、無電解パラジウムメッキを行うこと以外は実施例2と同様にして、表面凹凸を有する導電微粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Example 5
Conductive fine particles having surface irregularities were obtained in the same manner as in Example 2 except that electroless palladium plating was performed instead of electroless nickel plating.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

比較例1
ベンゾグアナミン・ホルムアルデヒド縮合物の平均粒径7μmからなる真球樹脂粒子(「エポスターGP70」:日本触媒社製)を不活性ガス雰囲気下1000℃で10時間焼成することで、平均粒径5μmの球状カーボン粒子を作成し、この球状カーボン粒子の表面に特許2823799号公報に従いタールを付着させ、焼成により黒鉛化させた突起を有するカーボン粒子を作成した。
この突起を有するカーボン粒子に、無電解メッキ前処理工程、芯物質複合化工程を行わなかったこと以外は実施例1と同様にして表面凹凸を有する導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Comparative Example 1
Spherical carbon with an average particle size of 5 μm is calcined at 1000 ° C. for 10 hours in an inert gas atmosphere with true spherical resin particles (“Eposter GP70” manufactured by Nippon Shokubai Co., Ltd.) having an average particle size of 7 μm of benzoguanamine / formaldehyde condensate Particles were prepared, tar was attached to the surface of the spherical carbon particles according to Japanese Patent No. 2823799, and carbon particles having protrusions graphitized by firing were prepared.
Conductive particles having surface irregularities were obtained in the same manner as in Example 1 except that the carbon particles having protrusions were not subjected to the electroless plating pretreatment step and the core material composite step.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

比較例2
カーボン粒子に無電解メッキ前処理工程の後、芯物質複合化工程を行わなかったこと以外は実施例1と同様にして、真球状の導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Comparative Example 2
True spherical conductive particles were obtained in the same manner as in Example 1 except that the core material composite step was not performed after the electroless plating pretreatment step on the carbon particles.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

比較例3
ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物の単分散の体積平均粒径5μmからなる真球粒子(「エポスターGP50」;日本触媒社製)を主粒子とし、この1質量部に、微粒子であるポリメチルメタクリレート架橋物の単分散の体積平均粒径0.5μmの真球粒子0.1質量部と、アクリル系分散媒30質量部とを添加し、超音波により混合して、主粒子に微粒子を付着させた後、100℃に加熱して融着させ、一般的な湿式外添方式により表面に突起を持った樹脂粒子を得た。
その後、芯物質複合化工程を行わなかったこと以外は実施例1と同様にして、樹脂粒子に金属メッキを行い、表面凹凸を有する導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Comparative Example 3
True spherical particles (“Epester GP50”; manufactured by Nippon Shokubai Co., Ltd.) consisting of a monodispersed volume average particle size of benzoguanamine / melamine / formaldehyde condensate of 5 μm are the main particles. After adding 0.1 part by mass of monodisperse spherical particles having a monodisperse volume average particle size of 0.5 μm and 30 parts by mass of an acrylic dispersion medium, the mixture is mixed by ultrasonic waves to adhere fine particles to the main particles, The mixture was heated and melted at 0 ° C. to obtain resin particles having protrusions on the surface by a general wet external addition method.
Then, except having not performed the core substance compounding process, it carried out similarly to Example 1, and metal-plated the resin particle, and obtained the electroconductive particle which has surface unevenness | corrugation.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

比較例4
コア粒子としてベンゾグアナミン・メラミン・ホルムアルデヒド縮合物の単分散の平均粒径5μmからなる真球粒子(「エポスターGP50」;日本触媒社製)を用いたこと以外は、実施例2と同様にして、表面凹凸を有する導電性粒子を得た。
Comparative Example 4
The surface was the same as in Example 2 except that true spherical particles (“Eposter GP50”; manufactured by Nippon Shokubai Co., Ltd.) having an average particle diameter of 5 μm monodispersed benzoguanamine / melamine / formaldehyde condensate were used as core particles. Conductive particles having irregularities were obtained.

比較例5
コア粒子として、カーボン粒子の代わりに、平均粒径5μmの金属ニッケル粒子を用いたこと以外は実施例2と同様にして、表面凹凸を有する導電性粒子を得た。
また、この導電性粒子を用いて実施例1と同様に、異方性導電フィルムを製造し、さらに異方性導電フィルムを用いて接続体を製造した。
Comparative Example 5
Conductive particles having surface irregularities were obtained in the same manner as in Example 2 except that metal nickel particles having an average particle diameter of 5 μm were used as core particles instead of carbon particles.
Moreover, the anisotropic conductive film was manufactured similarly to Example 1 using this electroconductive particle, and also the connection body was manufactured using the anisotropic conductive film.

評価
(a)表面凹凸比、(b)コア粒子の凝集、(c)接続体の接続抵抗、(d)接続体の絶縁性、(e)接続体の粒子圧痕について次のように試験し評価した。これらの結果を表1に示す。
Evaluation (a) Surface roughness ratio, (b) Aggregation of core particles, (c) Connection resistance of connection body, (d) Insulation property of connection body, (e) Particle indentation of connection body was tested and evaluated as follows. did. These results are shown in Table 1.

(a)表面凹凸比
コア粒子及びそれを用いて製造した導電性粒子を、それぞれ走査型電子顕微鏡(倍率4000倍)を用いて画像に撮り、画像上で表面凹凸比を前述の方法により求めた。
(A) Surface unevenness ratio Core particles and conductive particles produced using the core particles were photographed using a scanning electron microscope (4000 times magnification), respectively, and the surface unevenness ratio was determined on the image by the method described above. .

(b)コア粒子の凝集
実施例1、比較例1及び比較例3のコア粒子について、粒度分布計(「シースフロー電気抵抗式粒度分布計SD2000」、シスメックス社製)を用い、オリフィス径:50μm、分散液:メタノールで凝集粒子の比率を測定した。この場合、測定粒子数は約10000pcs(particle counts)であり、粒度分布が7μmより大きいものを凝集粒子とし、凝集粒子の割合によって次の基準で評価した。
○:凝集粒子10%未満
×:凝集粒子10%以上
(B) Aggregation of core particles For the core particles of Example 1, Comparative Example 1 and Comparative Example 3, a particle size distribution meter (“Sheath Flow Electric Resistance Type Particle Size Distribution Meter SD2000”, manufactured by Sysmex Corporation) was used, and orifice diameter: 50 μm The ratio of the aggregated particles was measured with a dispersion liquid: methanol. In this case, the number of measured particles was about 10000 pcs (particle counts), and those having a particle size distribution larger than 7 μm were regarded as aggregated particles.
○: Less than 10% aggregated particles ×: 10% or more aggregated particles

(c)接続体の接続抵抗
各接続体の接続抵抗を4端子法を用いて、電流1mAを流したときの接続抵抗を、接続体の製造直後と、85℃、85%RHで500hrおいた後に測定した。
(C) Connection resistance of connection body Using the 4-terminal method, the connection resistance of each connection body when the current of 1 mA was applied was set to 500 hours at 85 ° C and 85% RH immediately after the connection body was manufactured. It was measured later.

(d)接続体の絶縁性、
各接続体について、隣接端子間の絶縁抵抗を20V条件下で測定し、次の基準で評価した。
○:108Ω以上
△:107Ω以上108Ω未満
×:107Ω未満
実用上は、○評価であることが望まれる。
(D) Insulating property of the connection body,
About each connection body, the insulation resistance between adjacent terminals was measured on 20V conditions, and the following reference | standard evaluated.
○: 10 8 Ω or more △: 10 7 Ω or more and less than 10 8 Ω ×: less than 10 7 Ω In practice, it is desired that the evaluation is ○.

(e)粒子圧痕
各接続体について、端子上に捕捉された粒子をCOF側から顕微鏡(オリンパス社製、工業用検査顕微鏡MX51)を用いて観察し、圧痕の有無により次の基準で評価した。
○:10点の観察点中、圧痕が認められる観察点が5点以上である
×:10点の観察点中、圧痕が認められる観察点が5点未満である
(E) Particle Indentation For each connected body, particles captured on the terminal were observed from the COF side using a microscope (Olympus Industrial Inspection Microscope MX51), and evaluated according to the presence or absence of the indentation according to the following criteria.
○: Among 10 observation points, there are 5 or more observation points where indentations are observed. ×: Among 10 observation points, there are less than 5 observation points where indentations are observed.

Figure 0005796232
Figure 0005796232

表1の結果から、カーボン粒子をコア粒子とする場合に、比較例1のように、カーボン粒子に突起を設けるとコア粒子が凝集しやすくなるため、それを異方性導電材料の導電性粒子として使用すると、異方性導電材料の絶縁性が劣ること、比較例2のようにカーボン粒子に突起を設けない場合にはカーボン粒子が凝集しにくいが、突起のないカーボン粒子の表面メッキ層に表面凹凸をつけない場合には、接続抵抗が高くなること、これに対し、実施例1〜5のようにカーボン粒子に突起を設けず、表面のメッキ層に凹凸を設けると、カーボン粒子が凝集せずに異方性導電材料の絶縁性が良好であり、接続抵抗は低く、粒子圧痕が観察されて導通信頼性が高くなることがわかる。   From the results in Table 1, when carbon particles are used as core particles, as in Comparative Example 1, if protrusions are provided on the carbon particles, the core particles are likely to aggregate. As a result, the insulating property of the anisotropic conductive material is inferior, and when the projections are not provided on the carbon particles as in Comparative Example 2, the carbon particles are less likely to agglomerate. In the case where the surface unevenness is not provided, the connection resistance becomes high. On the other hand, if the carbon particle is not provided with protrusions as in Examples 1 to 5 and the surface plating layer is provided with unevenness, the carbon particles are aggregated. It can be seen that the insulating property of the anisotropic conductive material is good, the connection resistance is low, the particle indentation is observed, and the conduction reliability is increased.

一方、比較例3及び4のように樹脂粒子をコア粒子とする場合には、コア粒子の凝集は起こらないものの、コア粒子が樹脂粒子であることにより帯電しやすく、帯電により凝集物が多くなるため分散性が悪くなり、絶縁性が低下すること、さらに、比較例3のように、樹脂粒子に突起を設けると粒子圧痕がでず、接続信頼性に劣ることがわかる。   On the other hand, when resin particles are used as core particles as in Comparative Examples 3 and 4, the core particles do not aggregate, but are easily charged when the core particles are resin particles, and the aggregate increases due to charging. Therefore, it can be seen that the dispersibility is deteriorated, the insulating property is lowered, and further, when the protrusion is provided on the resin particle as in Comparative Example 3, the particle indentation is not generated and the connection reliability is poor.

また、比較例5のように金属粒子をコア粒子とすると、それを異方性導電材料に配合した場合に、粒子の比重が大きい為に、粒子の沈降による粒子分散性が低下し、異方性導電材料の絶縁性が低下することがわかる。   In addition, when the metal particles are core particles as in Comparative Example 5, when they are blended in the anisotropic conductive material, the particle specific gravity is large, so that the particle dispersibility due to the sedimentation of the particles is reduced and anisotropic. It can be seen that the insulating property of the conductive conductive material is lowered.

1 外接円
2 内接円
D 内接円の直径
T 外接円と内接円との距離の最大値
1 circumscribed circle 2 inscribed circle D diameter of inscribed circle T maximum value of distance between circumscribed circle and inscribed circle

Claims (5)

導電性粒子が絶縁性接着剤に分散している異方性導電材料であって、
該導性電粒子が、実質的に表面凹凸が無い真球状のカーボン粒子に金属ニッケル微粒子を付着させ、微粒子ごと無電解メッキ層で被覆することにより調製された、表面突起を有する導電性粒子であり、
粒子の表面凹凸比をT/D(式中、Dは粒子の平面への投影図における粒子の外形線に対する内接円の直径、Tは前記外形線と内接円との距離の最大値)とした場合に、該導電性粒子の表面凹凸比が0.21〜0.51である異方性導電材料。
An anisotropic conductive material in which conductive particles are dispersed in an insulating adhesive,
The conductive particles are conductive particles having surface protrusions prepared by attaching metallic nickel fine particles to true spherical carbon particles substantially free of surface irregularities and coating the fine particles together with an electroless plating layer. Yes,
The surface roughness ratio of the particle is T / D (where D is the diameter of the inscribed circle with respect to the outline of the particle in the projection onto the plane of the particle, and T is the maximum value of the distance between the outline and the inscribed circle) An anisotropic conductive material in which the surface unevenness ratio of the conductive particles is 0.21 to 0.51.
メッキ層として、ニッケル層、銅層又はパラジウム層を有する請求項1記載の異方性導電材料。 As the plating layer, the anisotropic conductive material according to claim 1 Symbol mounting having a nickel layer, a copper layer or palladium layer. フィルム状に成形されている請求項1又は2記載の異方性導電材料。 The anisotropic conductive material according to claim 1 or 2, which is formed into a film shape. 請求項1〜のいずれかに記載の異方性導電材料を対向する端子間に配置し、端子間を加圧して接続する異方性導電接続方法。 The anisotropic conductive connection method which arrange | positions the anisotropic conductive material in any one of Claims 1-3 between the terminals which oppose, and pressurizes and connects between terminals. 請求項1〜のいずれかに記載の異方性導電材料を用いて接続された異方性導電接続体。 The anisotropic conductive connection body connected using the anisotropic conductive material in any one of Claims 1-3 .
JP2010285063A 2010-12-21 2010-12-21 Conductive particles, anisotropic conductive materials, and connection structures Active JP5796232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285063A JP5796232B2 (en) 2010-12-21 2010-12-21 Conductive particles, anisotropic conductive materials, and connection structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285063A JP5796232B2 (en) 2010-12-21 2010-12-21 Conductive particles, anisotropic conductive materials, and connection structures

Publications (2)

Publication Number Publication Date
JP2011066015A JP2011066015A (en) 2011-03-31
JP5796232B2 true JP5796232B2 (en) 2015-10-21

Family

ID=43952019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285063A Active JP5796232B2 (en) 2010-12-21 2010-12-21 Conductive particles, anisotropic conductive materials, and connection structures

Country Status (1)

Country Link
JP (1) JP5796232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099191B1 (en) 2013-03-15 2020-05-15 인텔 코포레이션 Logic chip including embedded magnetic tunnel junctions
CN114371578A (en) * 2021-12-23 2022-04-19 长沙惠科光电有限公司 Display panel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417699B2 (en) * 1994-12-26 2003-06-16 日本化学工業株式会社 Conductive electroless plating powder
JP3696429B2 (en) * 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
CN1906705B (en) * 2004-01-30 2010-04-21 积水化学工业株式会社 Conductive fine particle and anisotropic conductive material
JP2006241499A (en) * 2005-03-02 2006-09-14 Nippon Chem Ind Co Ltd Method for producing powder electroless-plated with electroconductive substance
JP4772490B2 (en) * 2005-05-20 2011-09-14 積水化学工業株式会社 Method for producing conductive particles
JPWO2009017001A1 (en) * 2007-07-27 2010-10-21 日立化成工業株式会社 Circuit member connection structure

Also Published As

Publication number Publication date
JP2011066015A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US8932716B2 (en) Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
TWI607458B (en) Conductive particle with insulating particle, conductive material and connecting structure
JP5650611B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
JP4993230B2 (en) Conductive particles with insulating particles, method for producing conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP4640531B2 (en) Conductive particles
JP2018056138A (en) Conductive particle, conductive material, and connection structure
JP2011029180A (en) Coated conductive particle
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP2011108446A (en) Conductive particle, and method of manufacturing the same
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP5484265B2 (en) Conductive particles, conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP6507551B2 (en) Conductive particles
JP2013149468A (en) Anisotropic conductive material, connection structure and method for producing connection structure
JP6333610B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP2014026970A (en) Conductive particle, conductive material, and connection structure
KR20240006491A (en) Conductive particles, conductive materials and connection structures
JP2013254733A (en) Conductive particle, conductive material, and connection structure
JPWO2019194134A1 (en) Conductive particles with insulating particles, methods for producing conductive particles with insulating particles, conductive materials and connecting structures
JPWO2019194133A1 (en) Conductive particles with insulating particles, methods for producing conductive particles with insulating particles, conductive materials and connecting structures
JPWO2018139552A1 (en) Insulating coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure, and method for manufacturing connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5796232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250