JP6507551B2 - Conductive particles - Google Patents

Conductive particles Download PDF

Info

Publication number
JP6507551B2
JP6507551B2 JP2014204764A JP2014204764A JP6507551B2 JP 6507551 B2 JP6507551 B2 JP 6507551B2 JP 2014204764 A JP2014204764 A JP 2014204764A JP 2014204764 A JP2014204764 A JP 2014204764A JP 6507551 B2 JP6507551 B2 JP 6507551B2
Authority
JP
Japan
Prior art keywords
particles
conductive particles
conductive
same manner
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014204764A
Other languages
Japanese (ja)
Other versions
JP2016076338A (en
Inventor
昌之 中川
昌之 中川
邦彦 赤井
邦彦 赤井
芳則 江尻
芳則 江尻
渡辺 靖
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014204764A priority Critical patent/JP6507551B2/en
Publication of JP2016076338A publication Critical patent/JP2016076338A/en
Application granted granted Critical
Publication of JP6507551B2 publication Critical patent/JP6507551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、異方性導電接着剤に好適に用いられる導電粒子に関する。   The present invention relates to conductive particles suitably used for anisotropic conductive adhesives.

液晶やOLED(Organic Light-Emitting Diode)表示用ガラスパネルに駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)実装の2種類に大別することができる。COG実装では、導電粒子を含む異方性導電接着剤を用いて駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに駆動用ICを接合し、導電粒子を含む異方性導電接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。これまでは、ガラスパネル上の配線はITO(Indium Tin Oxide)配線が主流であったが、生産性や平滑性を改善する目的でIZO(Indium Zinc Oxide)に置き換わりつつある。   Methods of mounting a driving IC on a liquid crystal or a glass panel for OLED (Organic Light-Emitting Diode) display are roughly classified into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. be able to. In COG mounting, the drive IC is bonded directly onto the glass panel using an anisotropic conductive adhesive that contains conductive particles. On the other hand, in the COF mounting, a driving IC is bonded to a flexible tape having metal wiring, and they are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The term "anisotropy" as used herein means conducting in the pressure direction and maintaining insulation in the non-pressure direction. In the past, ITO (Indium Tin Oxide) wiring was the mainstream for the wiring on the glass panel, but is being replaced by IZO (Indium Zinc Oxide) for the purpose of improving productivity and smoothness.

さらに、近年、ガラスパネル上にCuやAlなどの金属層やTi層などを複数積層した電極やさらに表面にITOやIZOを形成した複合多層電極などが開発されている。IZO電極のような平滑性が高い電極では、通常の導電粒子では導電性の確保が困難になる傾向がある。また、CuやAl、Moなど酸化・腐食されやすい金属層の表面にTiやCrなどの層が形成されていた場合、TiやCrの表面が大気により酸化され、酸化層が形成されてしまい、これまでの導電粒子では、実装時にこの酸化層を突き破ることが出来ず、接続抵抗の低抵抗化に支障が生じていた。   Furthermore, in recent years, electrodes in which a plurality of metal layers such as Cu and Al, Ti layers and the like are laminated on a glass panel, and composite multilayer electrodes in which ITO and IZO are formed on the surface have been developed. With an electrode having high smoothness such as an IZO electrode, it is likely that it will be difficult to ensure conductivity with ordinary conductive particles. When a layer of Ti or Cr is formed on the surface of a metal layer which is easily oxidized or corroded such as Cu, Al or Mo, the surface of Ti or Cr is oxidized by the air to form an oxidized layer. With conventional conductive particles, this oxide layer can not be pierced at the time of mounting, which causes a problem in lowering the connection resistance.

ところで、ICに形成されたAu電極は、狭小化が進んでおり、隣接電極間の絶縁性を確実に確保することが求められている。異方性導電接着剤に使用される導電粒子としては、これまでにNi粒子などの金属粒子や、その表面に金層などを設けて導電性を高めた粒子が使用されてきた(例えば特許文献1〜2参照)。   By the way, the Au electrode formed in the IC is being narrowed, and it is required to secure insulation between adjacent electrodes. As conductive particles used for the anisotropic conductive adhesive, metal particles such as Ni particles and particles having a gold layer provided on the surface thereof to enhance conductivity have been used (for example, patent documents) 1 to 2).

Ni粒子は硬さがあることから、電極への食い込みが良く接触面積を稼ぐことができたが、比重が重いことから、異方性導電接着剤中での単分散性が低く、たとえばフィルム状に塗工する場合、乾燥工程の間にフィルムの下層方向に沈降し面方向での単分散性が低いなどの問題があった。また、Ni粒子はその製造技術の限界から粒度分布が広いため、狭ピッチ電極ではショートが発生しやすいなどの問題があった。
そこで、これらを解決する方法として、粒度分布が狭い樹脂性粒子の表面に金属導電層を設けた導電粒子が開発されてきた(例えば特許文献3〜4参照)。
Since Ni particles have hardness, they can bite into the electrode well and gain contact area, but since the specific gravity is heavy, monodispersion in anisotropic conductive adhesive is low, for example, film-like In the case of coating on the film, there was a problem such as sedimentation in the lower layer direction of the film during the drying step and low monodispersity in the surface direction. In addition, since Ni particles have a wide particle size distribution due to the limit of their manufacturing technology, there is a problem that a short pitch is likely to occur in a narrow pitch electrode.
Then, the electrically-conductive particle which provided the metal electrically conductive layer in the surface of the resinous particle | grains with narrow particle size distribution as a method of solving these has been developed (for example, refer patent documents 3-4).

金属導電層を設けた導電粒子は、金属粒子より比重が軽く、粒度分布が狭いため、狭ピッチ電極でもショート発生を抑制できる利点がある。さらに、表面に突起部を有する導電粒子が開発され、導電性の改善がなされてきた(例えば特許文献5〜10参照)。   The conductive particle provided with the metal conductive layer has a specific gravity smaller than that of the metal particle and has a narrow particle size distribution, so that even in the case of a narrow pitch electrode, there is an advantage that the occurrence of short circuit can be suppressed. Furthermore, conductive particles having protrusions on the surface have been developed, and the conductivity has been improved (see, for example, Patent Documents 5 to 10).

特開平9−31419号公報Japanese Patent Application Laid-Open No. 9-31419 特許第4188278号Patent No. 4188278 特許第4278374号Patent No. 4278374 特許第4188278号Patent No. 4188278 特許第5184612号Patent No. 5184612 特許第3083535号Patent No. 3083535 特許第4243279号Patent No. 4243279 特許第4860163号Patent No. 4860163 特許第4718926号Patent No. 4718926 特許第4640531号Patent No. 4640531

導電層の突起部分が導電層と電極の間に介在する樹脂の排除性を高め、また電極への接触面積を稼ぐことで抵抗を改善するとされている。近年は、低コスト化や適用分野の拡大にともない、電極材料や構成が複雑・多様化しており、導電粒子の導電性の更なる改善も必要となっている。発明者が誠意検討した結果、これまでに開発された導電粒子では、導電層と電極間の樹脂が十分に排除されず、導電層が電極に十分めり込まないために、接続抵抗が十分向上しない場合があることがわかった。
そこで、本発明の目的は、平滑な電極を接続するための異方性導電接着剤に用いたときであっても、十分な導電性を得ることが可能な導電粒子を提供することである。
It is said that the resistance can be improved by enhancing the removability of the resin interposed between the conductive layer and the electrode and by increasing the contact area to the electrode. In recent years, electrode materials and configurations have become complicated and diversified along with cost reduction and expansion of application fields, and further improvement of the conductivity of conductive particles is also required. As a result of the inventor's sincere investigation, in the conductive particle developed so far, the resin between the conductive layer and the electrode is not sufficiently eliminated, and the conductive layer does not fit into the electrode sufficiently, so the connection resistance is sufficiently improved It turned out that I might not.
Therefore, an object of the present invention is to provide a conductive particle capable of obtaining sufficient conductivity even when used in an anisotropic conductive adhesive for connecting a smooth electrode.

本発明は、非導電性無機粒子と前記非導電性無機粒子の表面に配置した非導電性無機芯材とを有する母粒子と、前記母粒子を覆う金属めっき層とを備え、前記金属めっき層が突起部を形成する表面を有しており、前記非導電性無機粒子及び前記非導電性無機芯材が、いずれも金属めっき層よりも硬い導電粒子に関する。
金属めっき層は突起部を有しており、非導電性無機粒子と非導電性無機芯材は、金属めっき層よりも硬い。本発明に係る導電粒子は、上記特定の構成を備えたことにより、平滑な電極を接続するための異方性導電接着剤に用いられたときであっても、十分な導電性を得ることが可能となった。
また、本発明に係る前記の導電粒子は、前記導電粒子を構成する非導電性無機粒子及び非導電性芯材が、いずれも前記電極の最も厚い層を構成する材料よりも硬いことが好ましい。
本発明に係る導電粒子は、上記特定の特徴を備えたことにより、圧着により対峙する電極間を電気的に接続したときに、突起部分が電極に十分に押し込まれ、安定した導電性を得られる。
本発明に係る前記の導電粒子は、導電粒子を構成する前記非導電性無機粒子及び前記非導電性無機芯材が、いずれも90質量%以上がSiOであることが好ましい。
本発明に係る導電粒子は、上記特定の特徴を備えたことにより、圧着により対峙する電極間を電気的に接続したときに、突起部分が電極に十分に押し込まれ、安定した導電性を得られる。
本発明に係る前記の導電粒子は、金属めっき層に、ニッケル、銅、錫、パラジウム及び金のいずれかを含むことが好ましく、これにより、対峙する電極間の電気的接続を確実に低抵抗化できる。
さらに、これら金属めっき層は、無電解めっきで形成されることが好ましく、これにより、安価で粒子間の厚みばらつきが少ないめっき層を形成することが出来る。すなわち、対峙する電極間を安定して接続できる。
本発明に係る前記の導電粒子は、投影した時の前記非導電性無機粒子の長辺をa、短辺をb、同様に、投影した時の前記非導電性無機芯材の長辺をc、短辺をdとしたときに、a/b<3かつc/d<5かつa≧5cであることが好ましく、これにより、非導電性無機粒子に対して非導電性無機芯材が小さいため、前記非導電性無機芯材を覆う金属めっき層部に存在する突起部分が、対峙する電極に程よく接地、及びめり込むことが出来るため、安定した電気接続を可能とする。
また、本発明は前記の導電粒子を含有してなる異方性導電接着剤に関する。本発明に係る異方性導電接着剤は、硬質で平滑な電極を接続するために有効である。
The present invention comprises a base particle having a nonconductive inorganic particle and a nonconductive inorganic core material disposed on the surface of the nonconductive inorganic particle, and a metal plating layer covering the base particle, the metal plating A layer has the surface which forms a projection part, and the said nonelectroconductive inorganic particle and the said nonelectroconductive inorganic core material are related with the electrically conductive particle which is harder than a metal plating layer.
The metal plating layer has projections, and the nonconductive inorganic particles and the nonconductive inorganic core material are harder than the metal plating layer. The conductive particle according to the present invention can obtain sufficient conductivity even when it is used for an anisotropic conductive adhesive for connecting a smooth electrode by having the above specific configuration. It has become possible.
In the conductive particles according to the present invention, it is preferable that the nonconductive inorganic particles and the nonconductive core material constituting the conductive particles are both harder than the material constituting the thickest layer of the electrode.
The conductive particle according to the present invention is provided with the above-mentioned specific feature, whereby when the electrodes facing each other are electrically connected by pressure bonding, the projection portion is sufficiently pushed into the electrode and stable conductivity can be obtained. .
In the conductive particles according to the present invention, it is preferable that 90% by mass or more of all of the nonconductive inorganic particles and the nonconductive inorganic core material constituting the conductive particles be SiO 2 .
The conductive particle according to the present invention is provided with the above-mentioned specific feature, whereby when the electrodes facing each other are electrically connected by pressure bonding, the projection portion is sufficiently pushed into the electrode and stable conductivity can be obtained. .
The conductive particles according to the present invention preferably contain any of nickel, copper, tin, palladium and gold in the metal plating layer, thereby reliably reducing the electrical connection between opposing electrodes. it can.
Furthermore, these metal plating layers are preferably formed by electroless plating, which makes it possible to form a plating layer inexpensive and with less variation in thickness among particles. That is, stable connection can be made between opposing electrodes.
In the conductive particle according to the present invention, the long side of the nonconductive inorganic particle when projected is a, the short side is b, and the long side of the nonconductive inorganic core material when projected. When c and the short side is d, it is preferable that a / b <3 and c / d <5 and a55c, whereby the nonconductive inorganic core material relative to the nonconductive inorganic particles Since the projection part which exists in the metal plating layer part which covers the said nonelectroconductive inorganic core material can earth | ground and squeeze suitably to an opposing electrode because it is small, it enables stable electrical connection.
The present invention also relates to an anisotropic conductive adhesive comprising the above-described conductive particles. The anisotropic conductive adhesive according to the present invention is effective for connecting hard and smooth electrodes.

本発明によれば、硬質で平滑な電極を接続するための異方性導電接着剤に用いられたときであっても、十分な導電性を得ることが可能な導電粒子が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even when it is used for the anisotropic conductive adhesive for connecting a hard and smooth electrode, the electrically-conductive particle which can acquire sufficient electroconductivity is provided.

導電粒子の一実施形態を示す断面図である。It is a sectional view showing one embodiment of electric conduction particles. 接続構造体の一実施形態を示す断面図である。FIG. 5 is a cross-sectional view of one embodiment of a connection structure. 接続構造体の導電粒子の金属めっき層とバンプ電極又は電極が接触している部分の模式図である。It is a schematic diagram of the part in which the metal plating layer of the electrically-conductive particle of a connection structure and a bump electrode or an electrode are contacting.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
図1は、導電粒子の一実施形態を示す断面図である。図1に示される導電粒子1は、粒子状の非導電性無機粒子20と前記非導電性無機粒子20の表面に配置された複数の非導電性無機芯材30とを有する母粒子5と、母粒子5を覆う金属めっき層40と、を備える。また、金属めっき層40は、突起部40aを有している。
導電粒子1の粒径は接続される回路部材の電極の間隔の最小値よりも小さいことが必要である。また、接続される電極の高さばらつきがある場合、導電粒子1の粒径は高さばらつきよりも大きいことが好ましい。以上の観点から、導電粒子1の粒径は1〜15μmであることが好ましく、2〜10μmであることがより好ましい。
Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
FIG. 1 is a cross-sectional view showing an embodiment of a conductive particle. The conductive particle 1 shown in FIG. 1 is a base particle 5 having a particulate nonconductive inorganic particle 20 and a plurality of nonconductive inorganic core materials 30 disposed on the surface of the nonconductive inorganic particle 20. And a metal plating layer 40 covering the mother particles 5. The metal plating layer 40 also has a protrusion 40a.
The particle size of the conductive particles 1 needs to be smaller than the minimum value of the distance between the electrodes of the connected circuit members. In addition, when there is variation in height of the connected electrodes, the particle diameter of the conductive particles 1 is preferably larger than the variation in height. From the above viewpoints, the particle diameter of the conductive particles 1 is preferably 1 to 15 μm, and more preferably 2 to 10 μm.

具体的には、SEM(電子顕微鏡)を用いた観察において任意に選んだ100個の非導電性無機粒子20の長辺と短辺の平均値を長辺a、短辺bとした場合、a/b<4が好ましく、a/b<3がより好ましく、a/b<2がさらに好ましく、a/b<1.3が特に好ましい。非導電性無機粒子20は、真球状に近いほど、各粒子と電極との接触バラツキが少なく、安定した接続抵抗が得られて好ましい。   Specifically, when the average value of the long side and the short side of the 100 nonconductive inorganic particles 20 arbitrarily selected in the observation using the SEM (electron microscope) is a long side a and a short side b, a / B <4 is preferable, a / b <3 is more preferable, a / b <2 is more preferable, and a / b <1.3 is particularly preferable. As the non-conductive inorganic particles 20 are closer to a true spherical shape, the contact variation between each particle and the electrode is small, and a stable connection resistance is obtained, which is preferable.

非導電性無機粒子20を形成する材料は、金属めっき層40を形成する材料よりも硬い。具体的には、非導電性無機粒子を形成する材料は、シリカ(二酸化ケイ素、モース硬度6〜7)、酸化チタン(モース硬度5.5〜6.5)、ジルコニア(モース硬度8〜9)、アルミナ(モース硬度9)及びダイヤモンド(モース硬度10)から選ばれることが好ましい。モース硬度の値は共立出版株式会社化学大辞典(1962)を参照した。非導電性無機粒子を形成する材料のモース硬度は、金属めっき層を形成する金属のモース硬度よりも大きいことが好ましく、具体的には5以上が好ましい。非導電性無機粒子20はその表面に水酸基(−OH)を有することが望ましい。非導電性無機粒子を形成する材料のモース硬度と金属めっき層を形成する金属のモース硬度の差は1.0以上であることが好ましい。金属めっき層が複層の場合は、それらを構成する全ての金属よりも、非導電性無機粒子が硬いほうが優れた効果が発揮される。   The material forming the nonconductive inorganic particles 20 is harder than the material forming the metal plating layer 40. Specifically, the material forming the nonconductive inorganic particles is silica (silicon dioxide, Mohs hardness 6 to 7), titanium oxide (Mohs hardness 5.5 to 6.5), zirconia (Mohs hardness 8 to 9) It is preferable to be selected from alumina (Mohs hardness 9) and diamond (Mohs hardness 10). The value of Mohs hardness was referred to Kyoritsu Publishing Co., Ltd. Chemical Dictionary (1962). The Mohs hardness of the material forming the nonconductive inorganic particles is preferably larger than the Mohs hardness of the metal forming the metal plating layer, and specifically, 5 or more is preferable. It is desirable that the nonconductive inorganic particle 20 have a hydroxyl group (-OH) on its surface. The difference between the Mohs hardness of the material forming the nonconductive inorganic particles and the Mohs hardness of the metal forming the metal plating layer is preferably 1.0 or more. When the metal plating layer is a multilayer, the nonconductive inorganic particles are more effective when they are harder than all the metals constituting them.

非導電性無機粒子20としては、沈殿法やゾル−ゲル法などで作られたシリカ粒子が使用できる。代表的な方法としては、Stober法などが挙げられる。また、粒子径のバラツキが小さい方が、対峙する電極に挟まれたとき、導電粒子と電極の接触にバラツキが少なく、安定した接続抵抗が得られて好ましい。具体的には、変動係数C.V.が、15%以下であることが好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下が特に好ましい。
また、非導電性無機粒子20は、非導電性の無機材料で構成されていることが好ましい。導電粒子1を作製するプロセスで、非導電性無機粒子20が破壊して、異物となった場合でも、非導電性材料であれば隣接する電極間の絶縁性を保つことが出来るため好ましい。
As the nonconductive inorganic particles 20, silica particles produced by a precipitation method or a sol-gel method can be used. As a representative method, the Stober method etc. may be mentioned. In addition, it is preferable that the smaller the variation in particle diameter, the smaller the variation in the contact between the conductive particles and the electrode and the more stable connection resistance obtained when sandwiched between the opposing electrodes. Specifically, the coefficient of variation CV is preferably 15% or less, more preferably 10% or less, still more preferably 5% or less, and particularly preferably 3% or less.
Moreover, it is preferable that the nonelectroconductive inorganic particle 20 is comprised with the nonelectroconductive inorganic material. Even when the nonconductive inorganic particles 20 are broken and become foreign matter in the process of producing the conductive particles 1, nonconductive materials are preferable because insulation between adjacent electrodes can be maintained.

無機材料としては、シリカ(SiO)、ジルコニア、チタン、又はこれらの酸化物、炭化複合体が好適に用いられる。使用できる無機材料としては、アルミナ(Al)、酸化チタン(TiO)などが挙げられる。非導電性無機粒子20に使用できるシリカ(SiO)粒子としては、具体的には、ハイプレシカ(宇部日東化成株式会社製、「ハイプレシカ」は登録商標)やファインスフィア(日本電気硝子株式会社製、「ファインスフィア」は登録商標)、SWシリーズ(日揮触媒化成株式会社製)などが好適に用いられる。 As the inorganic material, silica (SiO 2 ), zirconia, titanium, or oxides or carbonized complexes thereof are suitably used. As an inorganic material which can be used, alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and the like can be mentioned. Specific examples of the silica (SiO 2 ) particles that can be used for the nonconductive inorganic particles 20 include Hypresica (manufactured by Ube Nitto Kasei Co., Ltd., “Hypresca” is a registered trademark) and Finesphere (manufactured by Nippon Electric Glass Co., Ltd.) "Finesphere" is a registered trademark, SW series (manufactured by JGC Catalysts & Chemicals Co., Ltd.), and the like are suitably used.

導電層や電極の腐食による接続抵抗の低下、絶縁信頼性の悪化を防ぐため、非導電性無機粒子20は、アルカリ金属イオン及びアルカリ土類金属イオンの溶出が少ない方が好ましい。具体的には、粒子0.5gと50gの超純水をフッ素密閉容器に入れ100℃で12h加熱抽出したのち、固液分離した抽出液を液体クロマトグラフィーで分析して得られた各種イオン量が、いずれも100ppm以下であることが好ましい。また、狭ピッチ電極の絶縁性を高めるためには、50ppm以下であることがより好ましく、25ppm以下であることがさらに好ましく、10ppm以下であることが特に好ましい。   In order to prevent the decrease in connection resistance due to the corrosion of the conductive layer or the electrode and the deterioration of the insulation reliability, it is preferable that the nonconductive inorganic particles 20 have less elution of alkali metal ions and alkaline earth metal ions. Specifically, 0.5 g of particles and 50 g of ultrapure water were put in a fluorine closed container and heated and extracted at 100 ° C. for 12 h, and then the solid-liquid separated extract was analyzed by liquid chromatography to obtain various ion amounts However, it is preferable that all are 100 ppm or less. Moreover, in order to improve the insulation of a narrow pitch electrode, 50 ppm or less is more preferable, 25 ppm or less is more preferable, and 10 ppm or less is particularly preferable.

非導電性無機粒子20のモース硬度は5以上であることが好ましい。さらに、モース硬度が6以上であると導電層を電極に確実に押し込むことができて、より好ましい。   The Mohs hardness of the nonconductive inorganic particles 20 is preferably 5 or more. Furthermore, the conductive layer can be reliably pushed into the electrode if the Mohs hardness is 6 or more, which is more preferable.

非導電性無機芯材30は、非導電性無機粒子20で示した材料が使用できる。非導電性無機芯材30の形状は、矩形、多角形、球状、これらの凝集体など、特に限定されないが、絶縁性の観点から、最長辺と最短辺の3.0倍を超えないことが好ましい。非導電性無機粒子20の表面に対して垂直方向に最長辺が配置された場合、非導電性無機芯材30によって形成される導電層の突起部分の高さばらつきが大きくなり、隣接電極間の絶縁性を悪化させる懸念がある。
また、非導電性無機芯材30及び非導電性無機粒子20の材料としては、90質量%以上がシリカ(SiO)であることが、モース硬度の維持及びコストの点から好ましい。さらには、95質量%以上がシリカ(SiO)であることがより好ましく、99質量%以上であることが特に好ましい。
As the nonconductive inorganic core material 30, the material shown by the nonconductive inorganic particles 20 can be used. The shape of the nonconductive inorganic core material 30 is not particularly limited, such as a rectangle, a polygon, a sphere, or an aggregate thereof, but from the viewpoint of insulation, it does not exceed 3.0 times the longest side and the shortest side Is preferred. When the longest side is disposed in the direction perpendicular to the surface of the nonconductive inorganic particle 20, the height variation of the protruding portion of the conductive layer formed by the nonconductive inorganic core material 30 becomes large, and between the adjacent electrodes There is a concern that the insulation of the
As a material of the non-conductive inorganic core material 30 and non-conductive inorganic particles 20, it is preferable from the viewpoint of maintenance and the cost of the Mohs hardness of more than 90 wt% is silica (SiO 2). Further, more preferably more than 95 wt% is silica (SiO 2), particularly preferably at least 99 mass%.

非導電性無機芯材30としては、突起高さバラツキを低く制御できると上記のような絶縁性を高める効果のほかに、突起部分が電極に対してバラツキなく、確実に押し込まれるため、安定した接続抵抗を得られる特徴がある。このような粒子径を制御した粒子としては、水分散コロイダルシリカ(SiO)として供給されるシリカ粒子を用いることが好ましい。水分散コロイダルシリカの市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業株式会社製、「スノーテックス」は登録商標)、クオートロンPLシリーズ(扶桑化学工業株式会社製、「クオートロン」は登録商標)が挙げられる。これらは真球状であり、水分散コロイダルシリカとして入手しやすいため、コストの観点からも有利である。また、水酸基の存在により水溶液中での処理が可能であり、コストが低い。 As the non-conductive inorganic core material 30, if the variation in the height of the protrusions can be controlled low, in addition to the effect of enhancing the insulation property as described above, the protrusions can be reliably pushed into the electrode without variation, so the stability is stable. There is a feature that can obtain the connection resistance. The particles controlling such a particle size, it is preferable to use silica particles fed as a water-dispersed colloidal silica (SiO 2). As a commercial item of water dispersion colloidal silica, for example, Snowtex, Snowtex UP (made by Nissan Chemical Industry Co., Ltd., "Snowtex" is a registered trademark), Quortron PL series (made by Sakai Chemical Industry Co., Ltd., "Cquatron" Registered trademark). These are spherical and easy to obtain as water-dispersed colloidal silica, which is advantageous from the viewpoint of cost. Moreover, the treatment in an aqueous solution is possible due to the presence of hydroxyl groups, and the cost is low.

また、アルミナとしては、タミクロンシリーズ(大明化学工業株式会社製)、ジルコニアとしてはナノユース(日産化学工業株式会社製、「ナノユース」は登録商標)などが好適に用いられる。絶縁信頼性の上では、分散液中のアルカリ金属イオン及びアルカリ土類金属イオンの濃度が100ppm以下であることが好ましい。金属アルコキシドの加水分解反応、いわゆるゾルゲル法により製造される無機酸化物微粒子が非導電性無機芯材30として好適である。モース硬度は、5以上であることが好ましく、6以上であることがより好ましい。
非導電性無機芯材30を用いる理由は、万が一不純物として残存した場合、絶縁不良を起こさないためでもある。
Further, as the alumina, Tamicron series (made by Daimei Chemical Industries, Ltd.), and as the zirconia, Nanouse (made by Nissan Chemical Industries, Ltd., "Nanouse" is a registered trademark) are suitably used. From the viewpoint of insulation reliability, the concentration of alkali metal ions and alkaline earth metal ions in the dispersion is preferably 100 ppm or less. Inorganic oxide fine particles produced by a hydrolysis reaction of metal alkoxide, so-called sol-gel method are suitable as the nonconductive inorganic core material 30. The Mohs hardness is preferably 5 or more, more preferably 6 or more.
The reason for using the nonconductive inorganic core material 30 is also to prevent insulation failure if it remains as an impurity.

非導電性無機芯材30の粒子径は、20〜5000nmであることが好ましく、50〜2000nmであることがより好ましい。これら粒子径はSEMやTEM、BET法による比表面積換算法又はX線小角散乱法により測定される。非導電性無機芯材30の粒子径が小さいと導電性向上効果が小さくなる傾向がある。非導電性無機芯材30の粒子径が大きいと絶縁性が低下して、狭ピッチ回路間の接続には不利になる傾向がある。
具体的には、SEMを用いた観察において任意に選んだ100個の非導電性無機芯材30の長辺と短辺をそれぞれ測長して平均値を算出した値を長辺c、短辺dとした場合、c/d<6が好ましく、c/d<5がより好ましく、c/d<4がさらに好ましく、c/d<3が特に好ましい。非導電性無機芯材30は、真球状に近いほど、金属めっき層の突起の高さにバラツキが少なく、突起部分が電極と安定して接触できるため、安定した接続抵抗が得られて好ましい。
The particle diameter of the nonconductive inorganic core material 30 is preferably 20 to 5000 nm, and more preferably 50 to 2000 nm. These particle sizes are measured by SEM, TEM, specific surface area conversion method by BET method, or X-ray small angle scattering method. When the particle diameter of the nonconductive inorganic core material 30 is small, the conductivity improvement effect tends to be small. When the particle diameter of the nonconductive inorganic core material 30 is large, the insulating property is lowered, and the connection between narrow pitch circuits tends to be disadvantageous.
Specifically, the long side c and the short side are obtained by measuring the long sides and the short sides of 100 non-conductive inorganic core materials 30 arbitrarily selected in observation using SEM and measuring the average value. When the side d is used, c / d <6 is preferable, c / d <5 is more preferable, c / d <4 is more preferable, and c / d <3 is particularly preferable. The non-conductive inorganic core material 30 has less variation in the height of the protrusions of the metal plating layer as it is closer to a spherical shape, and the protrusions can be stably contacted with the electrodes, which is preferable because stable connection resistance can be obtained. .

非導電性無機芯材30の粒子径の変動係数(C.V.)は10%以下が好ましく、5%以下がより好ましい。非導電性無機芯材30は真球状であることが好ましい。導電粒子にした後も同様の方法で測定が可能であり、画像解析により測定される突起の大きさの変動係数は10%以下が好ましく、5%以下が更に好ましい。   The coefficient of variation (C.V.) of the particle diameter of the nonconductive inorganic core material 30 is preferably 10% or less, more preferably 5% or less. The nonconductive inorganic core material 30 is preferably spherical. Even after being made into conductive particles, measurement is possible by the same method, and the coefficient of variation of the size of protrusions measured by image analysis is preferably 10% or less, more preferably 5% or less.

発明者が鋭意検討した結果、対峙する電極間の安定した接続抵抗と、隣接する電極間の絶縁性を両立するためには、非導電無機粒子20と非導電無機芯材30の比率に制限があることを見出した。非導電性無機芯材30は金属めっき層の突起部分を形成させる芯材となり、対峙する電極間に配置された場合、金属めっき層を電極にめり込ませ、電極と金属めっき層間の樹脂を排除する役目があるため、非導電性無機芯材30は非導電性無機粒子20よりも小さいことが求められる。すなわち金属めっき層の突起部分は数が多いほど、電極と金属めっき層を電気的に安定して接続することが出来る。   As a result of intensive investigations by the inventor, in order to simultaneously achieve stable connection resistance between opposing electrodes and insulation between adjacent electrodes, the ratio of nonconductive inorganic particles 20 to nonconductive inorganic core material 30 is limited. I found that there is. The nonconductive inorganic core material 30 serves as a core material for forming the protruding portion of the metal plating layer, and when disposed between the facing electrodes, the metal plating layer is embedded in the electrode, and the resin between the electrode and the metal plating layer The nonconductive inorganic core material 30 is required to be smaller than the nonconductive inorganic particles 20 because it has a role of eliminating That is, the larger the number of protruding portions of the metal plating layer is, the more stably the electrode and the metal plating layer can be connected.

電極非導電性無機粒子20の長辺の平均値aと、非導電性芯材30の長辺の平均値cは、a≧50cが好ましく、a≧25cがより好ましく、a≧10cがさらに好ましく、a≧5cが特に好ましい。   The average value a of the long sides of the electrode nonconductive inorganic particles 20 and the average value c of the long sides of the nonconductive core material 30 are preferably a ≧ 50c, more preferably a ≧ 25c, and still more preferably a ≧ 10c. , A ≧ 5c is particularly preferred.

一方で、金属めっき層と電極層の樹脂を十分に排除し、電極に突起をめり込ませた時に接続面積を稼ぐ必要があるため、非導電性無機芯材30は小さ過ぎると突起が小さく、突起高さが低くなるため、適切な大きさが必要である。具体的には、a≧100cが好ましく、a≧80cがより好ましく、a≧50cがさらに好ましく、a≧30cが特に好ましい。   On the other hand, since the resin of the metal plating layer and the electrode layer needs to be sufficiently removed and it is necessary to increase the connection area when the protrusion is embedded in the electrode, the protrusion of the non-conductive inorganic core material 30 is too small. Because the size is small and the height of the protrusion is low, an appropriate size is required. Specifically, a ≧ 100 c is preferable, a 80 80 c is more preferable, a 50 50 c is more preferable, and a 30 30 c is particularly preferable.

金属めっき層40の形成方法としては、めっき法が利用できる。特に、電源を必要としない無電解めっきが好ましい。金属めっき層40としては、電気抵抗の低さやめっきの容易さの観点から、ニッケル、銅、パラジウム、錫、金又はこれらの組み合わせ、およびニッケル、銅、パラジウム、金を主成分とする合金から形成されることが好ましい。ニッケル、銅、パラジウム、錫及び金のモース硬度は、それぞれ3.8、3.0、4.5、1.5及び2.5である。   As a method of forming the metal plating layer 40, a plating method can be used. In particular, electroless plating which does not require a power source is preferable. The metal plating layer 40 is formed of nickel, copper, palladium, tin, gold or a combination thereof, and an alloy containing nickel, copper, palladium, or gold as a main component from the viewpoint of low electrical resistance and easiness of plating. Preferably. The Mohs hardnesses of nickel, copper, palladium, tin and gold are 3.8, 3.0, 4.5, 1.5 and 2.5 respectively.

また、イオンマイグレーション防止の観点からは、ニッケル、パラジウム、金又はこれらの組み合わせから形成されることが好ましい。これらの組み合わせを採用する場合、めっきの作業性を鑑みて、ニッケルめっきを行った後にパラジウム又は金の置換めっきを行うのが好ましい。   Further, from the viewpoint of preventing ion migration, it is preferable to be formed of nickel, palladium, gold or a combination thereof. When these combinations are employed, it is preferable to perform displacement plating of palladium or gold after nickel plating in view of the workability of plating.

また、金属めっき層40は、第一の層および第二の層の複数の層を有していても良い。第一の層としては、ニッケルおよびニッケル合金が利用できる。具体的には、ニッケル−リン、ニッケル-ホウ素、ニッケル−ホウ素−リン、ニッケル-タングステン、ニッケル-リン-タングステン、ニッケル-リン-ホウ素−タングステン、ニッケル-ホウ素−タングステンなどが挙げられる。第一の層としては、銅を含む層を用いることが可能で、97質量%以上の銅からなる層でもよいが、粒子同士の凝集を抑えてピンホールの発生を抑制できる点から、ニッケルの含有率と銅の含有率の合計が97質量%以上のニッケルと銅を含む層であることが好ましい。ニッケルと銅を含む第一の層は、非導電性無機粒子20の表面から遠ざかるにしたがってニッケルに対する銅の元素比率が高くなる部分を有する。この部分はニッケルと銅を含む第一の層の厚さ方向の一部であって非導電性無機粒子20のほぼ全体もしくは全体をカバーするように設けられた層であってもよい。   Also, the metal plating layer 40 may have a plurality of layers of a first layer and a second layer. Nickel and nickel alloys can be used as the first layer. Specifically, nickel-phosphorus, nickel-boron, nickel-boron-phosphorus, nickel-tungsten, nickel-phosphorus-tungsten, nickel-phosphorus-boron-tungsten, nickel-boron-tungsten and the like can be mentioned. As the first layer, a layer containing copper can be used, and a layer made of 97% by mass or more copper may be used, but from the viewpoint of suppressing aggregation of particles and suppressing generation of pinholes, nickel It is preferable that the layer containing nickel and copper in which the total of the content and the content of copper is 97% by mass or more. The first layer containing nickel and copper has a portion where the elemental ratio of copper to nickel increases as the distance from the surface of the nonconductive inorganic particles 20 increases. This portion may be a layer provided so as to be a part of the thickness direction of the first layer containing nickel and copper and to cover substantially the whole or the whole of the nonconductive inorganic particles 20.

具体的には、非導電性無機粒子20に近い順に、97質量%以上のニッケルを含有する第一の部分と、ニッケル及び銅を主成分とする合金を含有する第二の部分と、銅を主成分とする第三の部分とが積層された構造からなることが好ましい。
第一の部分は、97質量%以上のニッケルを含有する。第一の部分のニッケルの含有率は、98.5質量%以上であることがより好ましく、99.5質量%以上であることがさらに好ましい。ニッケルが97質量%以上であることで、非導電性無機粒子とニッケルと銅を含む第一の層との接着性を良好に保つことで、導電粒子1を圧着接続する場合に、ニッケルと銅を含む第一の層と非導電性無機粒子の剥がれを抑制することができる。このニッケルの含有率の上限は100質量%である。
第三の部分の外側には、83質量%から99.5質量%のニッケルを含有する第四の部分を有していてもよい。第四の部分を有することで、第三の部分を形成する銅の酸化や溶出、変形を防ぐことが出来る。第四の部分を形成するニッケルとしては、前述第一の層で具体的に示したニッケルおよびニッケル合金が利用できる。第一の層として、第一の部分、第二の部分、第三の部分、第四の部分を有することで、安定した導電性を有する導電粒子を提供できる。
Specifically, in order of proximity to the nonconductive inorganic particles 20, a first portion containing 97% by mass or more of nickel, a second portion containing an alloy containing nickel and copper as main components, and copper It is preferable that it has a structure in which a third portion which is a main component is laminated.
The first part contains 97% by mass or more of nickel. The content of nickel in the first portion is more preferably 98.5% by mass or more, and still more preferably 99.5% by mass or more. When the conductive particles 1 are crimped and connected by keeping the adhesion between the non-conductive inorganic particles and the first layer containing nickel and copper excellent when nickel is 97% by mass or more, nickel and copper It is possible to suppress peeling of the first layer containing and the nonconductive inorganic particles. The upper limit of the content of nickel is 100% by mass.
The third portion may have a fourth portion containing 83% by weight to 99.5% by weight of nickel outside the third portion. Having the fourth portion can prevent oxidation, elution, and deformation of copper forming the third portion. As nickel forming the fourth part, the nickel and nickel alloys specifically shown in the first layer can be used. By having the first portion, the second portion, the third portion, and the fourth portion as the first layer, conductive particles having stable conductivity can be provided.

第一の層の外側に第二の層を設けることも出来る。第二の層としては第一の層を形成するニッケルや銅の酸化や溶出を抑える効果があるパラジウムや金属めっき層の導電性をより高め、低抵抗化が可能な金が利用できる。第二の層として第一の層の表面にパラジウム、パラジウムの表面に金を有する複数の層を有することも可能である。パラジウムと金を有する第二の層を形成することで、第一の層の酸化と溶出を抑えると同時に低抵抗化が可能とすることが出来て好ましい。   A second layer can also be provided outside the first layer. As the second layer, palladium which has the effect of suppressing oxidation and elution of nickel and copper which form the first layer can be used to further enhance the conductivity of the metal plating layer, and gold which can reduce resistance can be used. It is also possible to have a plurality of layers having palladium on the surface of the first layer and gold on the surface of the palladium as the second layer. Forming the second layer containing palladium and gold is preferable because it can reduce resistance while simultaneously suppressing oxidation and elution of the first layer.

非導電性無機粒子20および非導電性無機芯材30の表面には水酸基、カルボキシル基、アルコキシ基、アミノ基、グリシジル基及びアルコキシカルボニル基から選ばれる官能基が存在することが望ましい。これら官能基が存在することにより、非導電性無機粒子20と非導電性無機芯材30を強固に固定することができる。例えば、非導電性無機粒子または、非導電性無機芯材をシランカップリング剤処理で、各種官能基を導入することができる。
母粒子5は、非導電性無機粒子20と非導電性無機芯材30との間に設けられた高分子電解質層を更に備えていてもよい。この場合、高分子電解質層を介した化学結合により非導電性無機粒子20の表面に非導電性無機芯材30が配置される。例えば、非導電性無機粒子20、高分子電解質層及び非導電性無機芯材30がそれぞれ官能基を有しており、高分子電解質層の官能基が、非導電性無機粒子及び非導電性無機粒子それぞれの官能基と化学結合していてもよい。化学結合には、共有結合、水素結合、イオン結合等が含まれる。
It is desirable that a functional group selected from a hydroxyl group, a carboxyl group, an alkoxy group, an amino group, a glycidyl group and an alkoxycarbonyl group be present on the surfaces of the nonconductive inorganic particles 20 and the nonconductive inorganic core material 30. By the presence of these functional groups, the nonconductive inorganic particles 20 and the nonconductive inorganic core material 30 can be firmly fixed. For example, non-conductive inorganic particles or non-conductive inorganic core materials can be treated with a silane coupling agent to introduce various functional groups.
The mother particles 5 may further include a polymer electrolyte layer provided between the nonconductive inorganic particles 20 and the nonconductive inorganic core material 30. In this case, the nonconductive inorganic core material 30 is disposed on the surface of the nonconductive inorganic particles 20 by chemical bonding via the polymer electrolyte layer. For example, the nonconductive inorganic particle 20, the polymer electrolyte layer, and the nonconductive inorganic core material 30 each have a functional group, and the functional group of the polymer electrolyte layer is a nonconductive inorganic particle and a nonconductive material. It may be chemically bonded to the functional group of each of the inorganic particles. Chemical bonds include covalent bonds, hydrogen bonds, ionic bonds and the like.

水酸基を有する非導電性無機粒子20と非導電性無機芯材30の表面電位(ゼータ電位)はpHが中性領域であるとき、通常マイナスである。水酸基、カルボキシル基、アルコキシ基、グリシジル基及びアルコキシカルボニル基から選ばれる官能基を表面に有する粒子の表面電位も通常マイナスである。一方、表面電位がマイナスの粒子の表面を表面電位がマイナスの粒子で十分に被覆することは難しい場合が多いが、これらの間に高分子電解質層を設けることにより、効率的に非導電性無機粒子20の表面に非導電性無機芯材30を配置させることができる。   The surface potential (zeta potential) of the nonconductive inorganic particle 20 having a hydroxyl group and the nonconductive inorganic core material 30 is usually negative when the pH is in the neutral region. The surface potential of particles having on the surface a functional group selected from a hydroxyl group, a carboxyl group, an alkoxy group, a glycidyl group and an alkoxycarbonyl group is also usually negative. On the other hand, in many cases it is difficult to sufficiently cover the surface of particles with a negative surface potential with particles with a negative surface potential, but by providing a polymer electrolyte layer between them, it is possible to efficiently form a non-conductive inorganic material The nonconductive inorganic core material 30 can be disposed on the surface of the particles 20.

高分子電解質層を形成する高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができ、ポリカチオンが好ましい。ポリカチオンとしては、一般に、ポリアミン等のように正荷電を帯びることのできる官能基を有するもの、たとえば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミドおよびそれらを少なくとも1種以上を含む共重合体を用いることができる。高分子電解質の中でもポリエチレンイミンは電荷密度が高く、結合力が強い。
高分子電解質層は、エレクトロマイグレーションや腐食を避けるために、アルカリ金属(Li、Na、K、Rb、Cs)イオン、及びアルカリ土類金属(Ca、Sr、Ba、Ra)イオン、ハロゲン化物イオン(フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン)を実質的に含まないことが好ましい。
As a polymer electrolyte which forms a polymer electrolyte layer, it ionizes in aqueous solution and the polymer which has a functional group which has electric charge in a principal chain or a side chain can be used, A polycation is preferable. Polycations generally include those having functional groups capable of being positively charged, such as polyamines, for example, polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethyl ammonium chloride (PDDA), Polyvinylpyridine (PVP), polylysine, polyacrylamide and copolymers containing at least one or more of them can be used. Among polyelectrolytes, polyethylenimine has high charge density and strong bonding power.
The polymer electrolyte layer is made of alkali metal (Li, Na, K, Rb, Cs) ion, alkaline earth metal (Ca, Sr, Ba, Ra) ion, halide ion (in order to avoid electromigration and corrosion). It is preferable that substantially no fluorine ion, chlorine ion, bromine ion, iodine ion) be contained.

上記高分子電解質は、水溶性及び水と有機溶媒との混合液に可溶である。高分子電解質の分子量は、用いる高分子電解質の種類により一概には定めることができないが、一般に、500〜200000程度が好ましい。
高分子電解質の種類や分子量を調整することにより、非導電性無機粒子20またはおよび非導電性無機芯材30に高分子電解質が吸着して、高分子電解質層を形成させることができる。高分子電解質層が設けられていることにより、主に静電的な引力によって吸着される。吸着が進行して電荷が中和されるとそれ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することは実質的にない。
The polymer electrolyte is water soluble and soluble in a mixture of water and an organic solvent. The molecular weight of the polymer electrolyte can not be generally determined depending on the type of polymer electrolyte used, but generally, about 500 to 200,000 is preferable.
By adjusting the type and molecular weight of the polymer electrolyte, the polymer electrolyte can be adsorbed to the nonconductive inorganic particles 20 or the nonconductive inorganic core material 30 to form a polymer electrolyte layer. Due to the provision of the polymer electrolyte layer, it is adsorbed mainly by electrostatic attraction. As the adsorption proceeds and the charge is neutralized, further adsorption does not occur. Therefore, the film thickness does not substantially increase after reaching a certain saturation point.

高分子電解質層が形成された非導電性無機粒子20または非導電性無機芯材30を高分子電解質溶液から取り出した後、リンスにより余剰の高分子電解質を除去することが好ましい。リンスは、例えば、水、アルコール、又はアセトンを用いて行われる。比抵抗値が18MΩ・cm以上のイオン交換水(いわゆる超純水)が好ましく用いられる。非導電性無機粒子20またはおよび非導電性無機芯材30に吸着した高分子電解質は、表面に化学結合により静電的に吸着しているために、このリンスの工程で剥離することはない。   After the nonconductive inorganic particles 20 or the nonconductive inorganic core material 30 on which the polymer electrolyte layer is formed are taken out from the polymer electrolyte solution, it is preferable to remove excess polymer electrolyte by rinsing. The rinse is performed using, for example, water, alcohol, or acetone. Ion exchange water (so-called ultra pure water) having a specific resistance value of 18 MΩ · cm or more is preferably used. The non-conductive inorganic particles 20 and the polymer electrolyte adsorbed on the non-conductive inorganic core material 30 are not peeled off in this rinse step because they are electrostatically adsorbed on the surface by chemical bonding. .

上記高分子電解質溶液は、高分子電解質を水、水溶性の有機溶媒または水と水溶性の有機溶媒との混合溶媒に溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド及びアセトニトリルが挙げられる。   The polymer electrolyte solution is obtained by dissolving a polymer electrolyte in water, a water-soluble organic solvent, or a mixed solvent of water and a water-soluble organic solvent. Water-soluble organic solvents which can be used include, for example, methanol, ethanol, propanol, acetone, dimethylformamide and acetonitrile.

上記高分子電解質溶液における高分子電解質の濃度は、一般に、0.01〜10質量%程度が好ましい。また、高分子電解質溶液のpHは、特に限定されない。高分子電解質を高濃度で用いた場合、非導電性無機芯材30による非導電性無機粒子20の被覆率が高くなる傾向があり、高分子電解質を低濃度で用いた場合、非導電性無機芯材30による非導電性無機粒子20の被覆率が低くなる傾向がある。   Generally, the concentration of the polymer electrolyte in the polymer electrolyte solution is preferably about 0.01 to 10% by mass. In addition, the pH of the polymer electrolyte solution is not particularly limited. When the polymer electrolyte is used at a high concentration, the coverage of the nonconductive inorganic particles 20 by the nonconductive inorganic core material 30 tends to be high, and when the polymer electrolyte is used at a low concentration, the nonconductivity is nonconductive. The coverage of the nonconductive inorganic particles 20 by the inorganic core material 30 tends to be low.

シリカ(SiO)粒子のような非導電性無機粒子は、粒子径をそろえると真球状になる傾向がある。真球状の非導電性無機粒子20と真球状の非導電性無機芯材30の結合は、理論上点接触になる。点接触の場合結合力が不足するため、めっき中に非導電性無機芯材30が剥離する可能性がある。言い換えると、非導電性無機芯材30による被覆率のばらつき(C.V.)が例えば40%以上程度まで大きくなることがある。 Non-conductive inorganic particles such as silica (SiO 2 ) particles tend to be spherical when the particle diameter is made uniform. The bonding between the spherical nonconductive inorganic particles 20 and the spherical nonconductive inorganic core material 30 is theoretically in point contact. In the case of point contact, the non-conductive inorganic core material 30 may be exfoliated during plating because of insufficient bonding force. In other words, the variation (C.V.) of the coverage by the nonconductive inorganic core material 30 may increase to, for example, about 40% or more.

高分子電解質を用いた交互積層により非導電性無機粒子を被覆する場合、非導電性無機芯材30を高分子電解質が巻きつけることになるので、結合力は飛躍的に向上する。結合力の観点からは分子量1万以上の高分子電解質を用いるのが好ましい。結合力は分子量と共に向上するが、分子量が高すぎると粒子同士が凝集してしまいやすくなる傾向がある。非導電性無機芯材30は一層のみ被覆されているのがよい。複層積層すると積層量のコントロールが困難になる。   When the nonconductive inorganic particles are coated by alternate layering using a polymer electrolyte, since the polymer electrolyte wraps the nonconductive inorganic core material 30, the bonding strength is dramatically improved. From the viewpoint of bonding strength, it is preferable to use a polyelectrolyte having a molecular weight of 10,000 or more. The bonding strength improves with the molecular weight, but when the molecular weight is too high, the particles tend to aggregate. The nonconductive inorganic core material 30 should be coated only in one layer. Multilayer lamination makes it difficult to control the amount of lamination.

非導電性無機芯材30による非導電性無機粒子20の被覆率は10〜80%であることが好ましく、25〜60%であることがより好ましい。この場合の被覆率は粒子100枚のSEM写真の中心部を画像解析することで算出できる。80%はほぼ最密充填した場合である。   The coverage of the nonconductive inorganic particles 20 by the nonconductive inorganic core material 30 is preferably 10 to 80%, and more preferably 25 to 60%. The coverage in this case can be calculated by image analysis of the central part of the SEM photograph of 100 particles. 80% is the case of almost close packing.

非導電性無機芯材30の吸着後、公知の方法により金属めっき層を形成することにより、表面に突起部を有する金属めっき層を有する導電粒子を作製することができる。金属めっき層は、単層であってもよく、複数の層から構成される積層構造を有していてもよい。積層構造の場合、耐食性や導電性の観点から、金属めっき層は、内側に設けられたニッケルめっきと、その外側に最外層として積層された金めっき層又はパラジウムめっき層とを有することが好ましい。金属めっき層を形成する方法としては、無電解めっきの他、置換めっき、電気めっき等の方法がある。簡便性やコストの観点から無電解めっきが好ましい。   By forming a metal plating layer by a known method after adsorption of the nonconductive inorganic core material 30, it is possible to produce conductive particles having a metal plating layer having protrusions on the surface. The metal plating layer may be a single layer or may have a laminated structure composed of a plurality of layers. In the case of the laminated structure, in terms of corrosion resistance and conductivity, the metal plating layer preferably has nickel plating provided on the inner side, and a gold plating layer or palladium plating layer laminated on the outer side as the outermost layer. As a method of forming a metal plating layer, there are methods such as displacement plating and electroplating other than electroless plating. Electroless plating is preferred from the viewpoint of simplicity and cost.

無電解めっきを行うに際し、非導電性無機芯材30が非導電性無機粒子20に吸着した母粒子5を水に超音波で分散させる。非導電性無機芯材30が非導電性無機粒子20に強固に結合しているため、超音波処理によって非導電性無機芯材30が脱落することが少なく、好ましい。共振周波数28〜38kHz、超音波出力100Wで15分間超音波照射したときの非導電性無機芯材30の脱落率が10%以下であることが好ましく、3%以下であることが更に好ましい。   When the electroless plating is performed, the base particles 5 adsorbed to the nonconductive inorganic particles 20 by the nonconductive inorganic core material 30 are dispersed in water by ultrasonic wave. Since the nonconductive inorganic core material 30 is firmly bonded to the nonconductive inorganic particles 20, the nonconductive inorganic core material 30 is less likely to be detached by ultrasonic treatment, which is preferable. The falling-off rate of the nonconductive inorganic core material 30 is preferably 10% or less, more preferably 3% or less, when irradiated with ultrasonic waves for 15 minutes at a resonance frequency of 28 to 38 kHz and an ultrasonic output of 100 W for 15 minutes.

めっき触媒付与は、従来公知の方法で行えばよく、特に限定しない。例えば、2−アミノピリジンが配位したパラジウムイオン溶液に、表面に非導電性無機粒子が吸着した非導電性無機粒子を浸漬し、次亜燐酸ナトリウム、水素化ホウ素ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等を加えてパラジウムイオンを金属に還元する方法がある。   The plating catalyst may be applied by a conventionally known method, and is not particularly limited. For example, non-conductive inorganic particles with non-conductive inorganic particles adsorbed on the surface are immersed in a palladium ion solution coordinated with 2-aminopyridine, sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine, There is a method of reducing palladium ion to metal by adding formalin or the like.

また、酸性シーダを用いた触媒化処理方法としては、例えば以下の方法がある。
樹脂粒子を塩化第一錫溶液に分散させ、錫イオンを樹脂粒子表面に吸着させる感受性化処理を行なった後、水洗する。次に、塩化パラジウムを含んだ溶液に分散させ、パラジウムイオンを樹脂粒子表面に補足させる活性化処理を行った後、水洗する。さらに、次亜リン酸ナトリウム、水素化ホウ素ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等の還元剤を含んだ溶液中に分散させて還元処理を行い、樹脂粒子表面に吸着したパラジウムイオンを金属のパラジウムに還元する。
これらのパラジウム触媒化処理方法では、パラジウムイオンを表面に吸着させた後に、水洗し、さらに還元剤を含んだ溶液に分散させることで、表面に吸着したパラジウムイオンを還元することで、原子レベルの大きさのパラジウム析出核を形成する。
Further, as a method of catalyzing treatment using an acid seeder, there are, for example, the following methods.
The resin particles are dispersed in a stannous chloride solution, subjected to sensitization treatment to adsorb tin ions on the surface of the resin particles, and then washed with water. Next, the resin particles are dispersed in a solution containing palladium chloride, activated with a surface of resin particles to capture palladium ions, and then washed with water. Furthermore, it is dispersed in a solution containing a reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine, formalin, etc. and subjected to a reduction treatment, and palladium ions adsorbed on the surface of the resin particles are metal palladium Reduce to
In these palladium-catalyzed treatment methods, palladium ions are adsorbed on the surface, washed with water, and dispersed in a solution containing a reducing agent to reduce the palladium ions adsorbed on the surface, thereby achieving atomic level reduction. It forms palladium precipitate nuclei of a size.

続いて、公知の方法で無電解ニッケルめっきを行う。無電解ニッケルめっきを行う方法としては、次亜燐酸ナトリウムを還元剤として構成される無電解ニッケルめっき液を所定の方法に従って建浴、加温しためっき浴によって、触媒付与され、母粒子5を処理する方法がある。金属めっき層の厚みは10〜300nmであることが好ましい。膜厚が10nm未満であると、めっきが凹凸形状に追従できずに導電性が低下する傾向がある。膜厚が300nmを超えると、導電層表面の突起(凹凸形状)が滑らかになり、電極表面の接着剤の排除性が悪化する可能性がある。
以上のようにして表面に20〜5000nmの突起を有する金属めっき層を有する導電粒子を作製することが出来る。突起の被覆率は10〜80%の範囲であることが好ましく、25〜60%の範囲であるのが更に好ましい。
Subsequently, electroless nickel plating is performed by a known method. As a method of performing electroless nickel plating, an electroless nickel plating solution composed of sodium hypophosphite as a reducing agent is provided with a catalyst by a construction bath and a heated plating bath according to a predetermined method, and the base particles 5 are treated There is a way to The thickness of the metal plating layer is preferably 10 to 300 nm. If the film thickness is less than 10 nm, the plating can not follow the uneven shape, and the conductivity tends to be lowered. When the film thickness exceeds 300 nm, the projections (concave and convex shapes) on the surface of the conductive layer become smooth, and the removability of the adhesive on the electrode surface may be deteriorated.
As described above, conductive particles having a metal plating layer having projections of 20 to 5000 nm on the surface can be produced. The coverage of the projections is preferably in the range of 10 to 80%, and more preferably in the range of 25 to 60%.

絶縁性を向上させるためには、第一の層の表面に金めっきまたはパラジウムめっきを施すことが好ましい。金めっき又はパラジウムめっきの厚みは10〜50nmの範囲であることが好ましい。
以上のようにして作製した表面に突起を有する導電粒子は突起が存在するので、電極ピッチが狭い場合ショート不良が発生する場合がある。そのため、絶縁性微粒子35を吸着させて金属めっき層表面を部分的に被覆することが好ましい。この絶縁性微粒子35は無機や樹脂などの材質からなる電気絶縁性を有する材料が好ましい。絶縁性微粒子35の粒子径は非導電性無機芯材30の粒子径よりも大きいことが好ましい。絶縁性微粒子35の粒子径が非導電性無機芯材30よりも小さいとショート不良が発生しやすくなる傾向がある。絶縁性微粒子の吸着は、非導電性無機芯材30の吸着と同様に、高分子電解質層を介した交互積層法を採用して行うとよい。具体的には、無機粒子としてシリカ(SiO)粒子であることが好ましい。
In order to improve the insulation, it is preferable to apply gold plating or palladium plating to the surface of the first layer. The thickness of gold plating or palladium plating is preferably in the range of 10 to 50 nm.
Since conductive particles having protrusions on the surface produced as described above have protrusions, shorting may occur when the electrode pitch is narrow. Therefore, it is preferable that the insulating fine particles 35 be adsorbed to partially cover the surface of the metal plating layer. The insulating fine particles 35 are preferably made of a material such as an inorganic material or a resin and having an electrical insulating property. The particle diameter of the insulating fine particles 35 is preferably larger than the particle diameter of the nonconductive inorganic core material 30. If the particle size of the insulating fine particles 35 is smaller than that of the nonconductive inorganic core material 30, there is a tendency that short defects easily occur. Like the adsorption of the nonconductive inorganic core material 30, the adsorption of the insulating fine particles may be performed by adopting an alternate lamination method via a polymer electrolyte layer. Specifically, it is preferable as the inorganic particles are silica (SiO 2) particles.

図2は、接続構造体の一実施形態を示す断面図である。図2に示す接続構造体は、ドライバーIC61及びドライバーIC61上に設けられたバンプ電極62を有する第一の回路部材60と、ガラス基板71及びガラス基板71上に設けられた電極72を有する第二の回路部材70とが異方性導電接着剤80を介して接続されたものである。   FIG. 2 is a cross-sectional view showing an embodiment of the connection structure. The connection structure shown in FIG. 2 includes a first circuit member 60 having a driver IC 61 and a bump electrode 62 provided on the driver IC 61, and a second having a glass substrate 71 and an electrode 72 provided on the glass substrate 71. And the circuit member 70 are connected via the anisotropic conductive adhesive 80.

異方性導電接着剤80は、フィルム状の絶縁性接着剤81と、絶縁性接着剤81内に分散した上述の導電粒子1と、を含有する。絶縁性接着剤81は、熱硬化性樹脂及びその硬化剤を含有する。絶縁性接着剤81は、熱硬化性樹脂としてのラジカル反応性樹脂及び硬化剤としての有機過酸化物を含有していてもよいし、紫外線などのエネルギー線硬化性樹脂であってもよい。   The anisotropic conductive adhesive 80 contains a film-like insulating adhesive 81 and the above-described conductive particles 1 dispersed in the insulating adhesive 81. The insulating adhesive 81 contains a thermosetting resin and its curing agent. The insulating adhesive 81 may contain a radical reactive resin as a thermosetting resin and an organic peroxide as a curing agent, or may be an energy ray curable resin such as ultraviolet light.

絶縁性接着剤81を構成する熱硬化性樹脂は、好ましくはエポキシ樹脂であり、エポキシ樹脂とその潜在性硬化剤が好適に組み合わせられる。
潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。エポキシ樹脂としては、エピクロルヒドリンとビスフェノールAやF、AD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独にあるいは2種以上を混合して用いることが可能である。これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロマイグレーション防止のために好ましい。
The thermosetting resin constituting the insulating adhesive 81 is preferably an epoxy resin, and the epoxy resin and its latent curing agent are suitably combined.
Examples of latent curing agents include imidazoles, hydrazides, boron trifluoride-amine complexes, sulfonium salts, amine imides, salts of polyamines, dicyandiamides and the like. As epoxy resins, bisphenol type epoxy resins derived from epichlorohydrin and bisphenol A, F, AD, etc., epoxy novolac resins derived from epichlorohydrin, phenol novolak and cresol novolac, and naphthalene based epoxy resins having a skeleton containing a naphthalene ring It is possible to use various epoxy compounds having two or more glycidyl groups in one molecule, such as glycidyl amine, glycidyl ether, biphenyl and alicyclic, singly or in combination of two or more. As these epoxy resins, it is preferable to use a high purity product in which impurity ions (Na + , Cl − and the like), hydrolyzable chlorine and the like are reduced to 300 ppm or less, in order to prevent electromigration.

絶縁性接着剤81は、接着後の応力を低減するため、あるいは接着性を向上するために、ブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等のゴムを含有してもよい。絶縁性接着剤81をフィルム状にするために、絶縁性接着剤81にフェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂をフィルム形成性高分子として配合することが効果的である。これらの熱可塑性樹脂は、熱硬化性樹脂の硬化時の応力緩和の効果も有する。特に、接着性を向上させるために、フィルム形成性高分子が水酸基等の官能基を有することが好ましい。   The insulating adhesive 81 may contain a rubber such as butadiene rubber, acrylic rubber, styrene-butadiene rubber, or silicone rubber in order to reduce stress after bonding or to improve adhesion. In order to make the insulating adhesive 81 into a film, it is effective to blend a thermoplastic resin such as phenoxy resin, polyester resin, polyamide resin or the like with the insulating adhesive 81 as a film forming polymer. These thermoplastic resins also have a stress relaxation effect at the time of curing of the thermosetting resin. In particular, in order to improve adhesion, the film-forming polymer preferably has a functional group such as a hydroxyl group.

フィルム状の異方性導電接着剤80は、例えば、絶縁性接着剤と、導電粒子と、これらを溶解又は分散する有機溶剤とを含有する液状組成物を剥離性基材に塗布する工程と、塗布された液状組成物から硬化剤の活性温度以下の温度で有機溶剤を除去する工程とを含む方法により得ることができる。このとき用いられる有機溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。フィルム状の異方性導電接着剤の接続前の厚みは導電粒子1の粒径及び異方性導電接着剤80の特性を考慮して適宜決定されるが、好ましくは1〜100μmである。厚みが1μm未満であると接着性が低下する傾向があり、100μmを超えると導電性を得るために多量の導電粒子を必要とする傾向がある。同様の観点から、異方性導電接着剤の厚みはより好ましくは3〜50μmである。   The film-like anisotropic conductive adhesive 80 applies, for example, a liquid composition containing an insulating adhesive, conductive particles, and an organic solvent that dissolves or disperses these on a peelable substrate; And removing the organic solvent from the applied liquid composition at a temperature equal to or lower than the activation temperature of the curing agent. The organic solvent used at this time is preferably a mixed solvent of an aromatic hydrocarbon type and an oxygen-containing type in order to improve the solubility of the material. The thickness of the film-like anisotropic conductive adhesive before connection is appropriately determined in consideration of the particle diameter of the conductive particles 1 and the characteristics of the anisotropic conductive adhesive 80, but is preferably 1 to 100 μm. If the thickness is less than 1 μm, adhesion tends to be lowered, and if it exceeds 100 μm, a large amount of conductive particles tends to be required to obtain conductivity. From the same viewpoint, the thickness of the anisotropic conductive adhesive is more preferably 3 to 50 μm.

異方性導電接着剤はフィルム状である必要は必ずしもなく、例えばペースト状であってもよい。
図2の接続構造体において、導電粒子1の各電極との接触部分では絶縁性微粒子が剥離するか電極に埋め込まれて、対向する電極同士(矢印Aの方向)は導通する。一方、同一基板上で隣り合う電極間(矢印Bの方向)は絶縁性微粒子が介在することで絶縁性が維持される。電極を構成する材料は、ITO、IZOなどの無機酸化物や、金、銅、ニッケル、Ti、Cr、Mo、Nd、Al、Snなどが用いられる。モース硬度は、Ti(4.0)、Cr(9.0)、Mo(5.5)、Nd(6.0)、Al(3.0)、Sn(1.5)である。電極は、前述の材料が単一で構成されていてもよく、複数の材料が積層されていてもよい。<追記しました>
The anisotropic conductive adhesive does not have to be in the form of a film, and may, for example, be in the form of a paste.
In the connection structure of FIG. 2, the insulating fine particles are peeled off or embedded in the electrodes at the contact portions of the conductive particles 1 with the electrodes, and the opposing electrodes (the direction of the arrow A) conduct. On the other hand, insulating fine particles are interposed between adjacent electrodes on the same substrate (in the direction of the arrow B) to maintain the insulating property. As materials for forming the electrodes, inorganic oxides such as ITO and IZO, gold, copper, nickel, Ti, Cr, Mo, Nd, Al, Sn and the like are used. Mohs hardness is Ti (4.0), Cr (9.0), Mo (5.5), Nd (6.0), Al (3.0), Sn (1.5). The electrode may be configured of a single material as described above, or a plurality of materials may be stacked. <Postscripted>

図3は、接続構造体の導電粒子1の金属めっき層とバンプ電極62又は電極72が接触している部分の模式図である。非導電性無機芯材30により形成された金属めっき層の突起部40aが電極にめり込み、金属めっき層40とバンプ電極62又は電極72との接触面積を大きくし、安定した接続抵抗を維持できる。   FIG. 3 is a schematic view of a portion in which the metal plating layer of the conductive particle 1 of the connection structure is in contact with the bump electrode 62 or the electrode 72. The protrusion 40a of the metal plating layer formed of the nonconductive inorganic core material 30 can be embedded in the electrode, and the contact area between the metal plating layer 40 and the bump electrode 62 or the electrode 72 can be increased to maintain stable connection resistance. .

非導電無機粒子と非導電無機芯材は、これらの電極の最も厚い層を構成する材料よりも硬いことが好ましい。非導電無機粒子と非導電無機芯材が、電極の最も厚い層を構成する材料よりも硬いことによって、金属めっき層を電極に十分めり込ませることができ、安定した接続抵抗を得ることが出来る。電極は製造プロセスの安定性やコストの面から、様々な層構成で作製されているが、ドライバIC側は金単独が多く、また、パネル側はガラスやプラスチックフィルムの表面に導電性を発現させる金属層、この金属層を覆う最外層を備える場合が多い。
なおパネル側のガラスとプラスチックフィルムと金属層の間に接着性を発現させる層を備える場合もある。このような構成では、最外層は金属層の酸化を防ぐ目的や平滑性を保つ目的であるため、最外層は金属層よりも薄い場合が多い。
すなわち、最も厚い層を構成する材質の硬度が電極の実質的な硬さとして代替することもできる。よって、非導電無機粒子と非導電無機芯材は、これらの電極を構成する最も厚い材料の硬度よりも硬いことが好ましい。電極の総厚みは、電極の透明性、導電性を確保するために0.05〜2.0μmが好ましく、0.1〜1.5μmがより好ましく、0.2〜1.0μmが特に好ましい。
The nonconductive inorganic particles and the nonconductive inorganic core material are preferably harder than the material constituting the thickest layer of these electrodes. By making the nonconductive inorganic particle and the nonconductive inorganic core material harder than the material constituting the thickest layer of the electrode, the metal plating layer can be sufficiently embedded in the electrode to obtain stable connection resistance. Can do. The electrodes are manufactured in various layer configurations from the viewpoint of the stability of the manufacturing process and cost, but the driver IC side is often made of gold alone, and the panel side is made to exhibit conductivity on the surface of glass or plastic film In many cases, a metal layer is provided and an outermost layer covering the metal layer.
There is also a case in which a layer for exhibiting adhesiveness is provided between the glass on the panel side, the plastic film and the metal layer. In such a configuration, since the outermost layer is for the purpose of preventing oxidation of the metal layer and for the purpose of maintaining smoothness, the outermost layer is often thinner than the metal layer.
That is, the hardness of the material constituting the thickest layer can be substituted as the substantial hardness of the electrode. Therefore, it is preferable that the nonconductive inorganic particles and the nonconductive inorganic core material be harder than the hardness of the thickest material constituting these electrodes. The total thickness of the electrode is preferably 0.05 to 2.0 μm, more preferably 0.1 to 1.5 μm, and particularly preferably 0.2 to 1.0 μm in order to secure the transparency and conductivity of the electrode.

液晶用(LCD)用ガラスパネル上の電極の構成としては、表層側から、ITO、IZO、ITO/金属層、ITO/Ti/金属層、ITO/Ti/金属層/Ti、ITO/Cr/金属層、ITO/Cr/金属層/Crなどがある。また、FPC上の電極の構成としては、表層側から、ITO、IZO、ITO/Cu、IZO/Cu、ITO/Sn/Cu、IZO/Sn/Cuなどがある。具体的には、表面側からITO/Ti/Al(0.05μm/0.02μm/0.15μm)、IZO/Cu(0.05μm/0.23μm)、IZO/Sn/Cu(0.04μm/0.08μm/0.16μm)などがある。
OLEDの場合は、透明電極材料であるITOやIZOが使用されない場合があり、総じて液晶(LCD)用の電極より総厚みが厚い傾向がある。たとえば、表層側から、Ti/Al/Ti、Cr/Al/Cr、IZO/Mo/Al/Mo、Ti/金属層、Mo-Nd/Al-Nd/Mo-Nd、Al-Nd/金属層、Ni-Mo/Mo-Nd/Al/Mo-Nd、ITO/金属層などがある。具体的には、Ti/Al/Ti(0.09μm/0.5μm/0.9μm)、Ti/Cu(0.16μm/0.5μm)などがある。電極層の厚みは、用途や求める特性に応じて選ぶことが出来る。透明性を求めるためには、マイクロメートルオーダーの厚みが好ましい。
From the surface side, ITO, IZO, ITO / metal layer, ITO / Ti / metal layer, ITO / Ti / metal layer / Ti, ITO / Cr / metal as the composition of the electrode on the glass panel for liquid crystal (LCD) Layer, ITO / Cr / metal layer / Cr, etc. Moreover, as a structure of the electrode on FPC, there exist ITO, IZO, ITO / Cu, IZO / Cu, ITO / Sn / Cu, IZO / Sn / Cu etc. from surface layer side. Specifically, from the surface side, ITO / Ti / Al (0.05 μm / 0.02 μm / 0.15 μm), IZO / Cu (0.05 μm / 0.23 μm), IZO / Sn / Cu (0.04 μm / μm) 0.08 μm / 0.16 μm).
In the case of an OLED, ITO or IZO, which is a transparent electrode material, may not be used, and in general, the total thickness tends to be thicker than an electrode for liquid crystal (LCD). For example, from the surface side, Ti / Al / Ti, Cr / Al / Cr, IZO / Mo / Al / Mo, Ti / metal layer, Mo-Nd / Al-Nd / Mo-Nd, Al-Nd / metal layer, There are Ni-Mo / Mo-Nd / Al / Mo-Nd, ITO / metal layers, etc. Specifically, there are Ti / Al / Ti (0.09 μm / 0.5 μm / 0.9 μm), Ti / Cu (0.16 μm / 0.5 μm), and the like. The thickness of the electrode layer can be selected according to the application and the desired characteristics. In order to obtain transparency, a thickness on the order of micrometers is preferred.

いずれの電極も、CuやAl、Moなどの金属層がITO、Tiなどよりも厚い傾向がある。半導体(駆動用IC)チップ上に設けられた電極の材料としては、銅、金、ニッケル、銀、これらの合金、またはこれらを積層した多層構造があげられる。   In any electrode, the metal layer of Cu, Al, Mo or the like tends to be thicker than ITO, Ti or the like. Examples of the material of the electrode provided on the semiconductor (driving IC) chip include copper, gold, nickel, silver, alloys thereof, or a multilayer structure in which these are stacked.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
(実施例1)
(導電粒子の作製)
非導電性無機粒子として、シリカ粒子であるファインスフィア SK-30(商品名、日本電気硝子株式会社製)平均粒径3.0μmを4g準備した。この粒子の成分はSiOが99.9質量%以上であった。分子量70000の30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製)を、超純水で0.3質量%まで希釈した。この0.3質量%ポリエチレン水溶液300mLに上記非導電性無機粒子4gを加え、室温(25℃、以下同様)で15分攪拌した。直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により非導電性無機粒子を取り出し、取り出された非導電性無機粒子を超純水300gに入れて室温で5分攪拌した。次いで直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により非導電性無機粒子を取り出し、メンブレンフィルタ上の非導電性無機粒子を200gの超純水で2回洗浄し、吸着していないポリエチレンイミンを除去して、ポリエチレンイミンが吸着した非導電性無機粒子を得た。
Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to these examples.
Example 1
(Preparation of conductive particles)
As nonconductive inorganic particles, 4 g of silica particles Finesphere SK-30 (trade name, manufactured by Nippon Electric Glass Co., Ltd.) having an average particle diameter of 3.0 μm was prepared. The component of this particle was 99.9% by mass or more of SiO 2 . A 30% by mass polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 70000 was diluted to 0.3% by mass with ultrapure water. 4 g of the nonconductive inorganic particles were added to 300 mL of this 0.3% by mass aqueous polyethylene solution, and the mixture was stirred at room temperature (25 ° C., the same applies hereinafter) for 15 minutes. The nonconductive inorganic particles were taken out by filtration using a membrane filter (made by Millipore) having a diameter of 3 μm, and the taken out nonconductive inorganic particles were placed in 300 g of ultrapure water and stirred at room temperature for 5 minutes. Next, nonconductive inorganic particles are taken out by filtration using a membrane filter (made by Millipore) having a diameter of 3 μm, and the nonconductive inorganic particles on the membrane filter are washed twice with 200 g of ultrapure water, and polyethylene not adsorbed The imine was removed to obtain nonconductive inorganic particles to which polyethyleneimine was adsorbed.

非導電性無機芯材として、平均粒子径30nmのコロイダルシリカ分散液を超純水で希釈して、0.33質量%のシリカ粒子分散液(シリカ総量:1g)を得た。そこにポリエチレンイミンが吸着した上記非導電性無機粒子を入れ、室温で15分攪拌した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により非導電性無機粒子を取り出した。シリカ粒子が吸着した非導電性無機粒子を超純水200gに入れて室温で5分攪拌した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により非導電性無機粒子を取り出し、メンブレンフィルタ上の非導電性無機粒子を200gの超純水で2回洗浄した。洗浄後の非導電性無機粒子を80℃で30分、120℃で1時間の順に加熱することにより乾燥して、表面にシリカ粒子が吸着した非導電性無機粒子(母粒子1)を得た。   As a nonconductive inorganic core material, a colloidal silica dispersion having an average particle diameter of 30 nm was diluted with ultrapure water to obtain a 0.33% by mass silica particle dispersion (total amount of silica: 1 g). The nonconductive inorganic particles to which polyethyleneimine was adsorbed were put there, and stirred at room temperature for 15 minutes. Thereafter, nonconductive inorganic particles were taken out by filtration using a membrane filter (manufactured by Millipore) having a diameter of 3 μm. The nonconductive inorganic particles to which the silica particles were adsorbed were placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Thereafter, the nonconductive inorganic particles were taken out by filtration using a membrane filter (manufactured by Millipore) having a diameter of 3 μm, and the nonconductive inorganic particles on the membrane filter were washed twice with 200 g of ultrapure water. The washed nonconductive inorganic particles were dried by heating in order of 80 ° C. for 30 minutes and at 120 ° C. for 1 hour to obtain nonconductive inorganic particles (mother particles 1) having silica particles adsorbed on the surface. .

上記母粒子4gを、共振周波数28kHz、出力100Wの超音波を15分間照射した後、パラジウム触媒であるアトテックネネオガント834(アトテックジャパン株式会社製:商品名、「ネオガント」は登録商標)を8質量%含有するパラジウム触媒化液100mLに添加して、超音波を照射しながら30℃で30分攪拌した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により母粒子を取出し、取り出された母粒子を水洗した。水洗後の母粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、表面が活性化された母粒子を得た。   After irradiating 4 g of the above-mentioned mother particles for 15 minutes with an ultrasonic wave with a resonance frequency of 28 kHz and an output of 100 W for 8 minutes, 8 It was added to 100 mL of palladium catalyst solution containing% by mass, and stirred at 30 ° C. for 30 minutes while being irradiated with ultrasonic waves. Thereafter, the base particles were taken out by filtration using a membrane filter (made by Millipore) having a diameter of 3 μm, and the taken out base particles were washed with water. The washed mother particles were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to obtain surface-activated mother particles.

表面が活性化された母粒子4.0gを、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第一の層形成用無電解ニッケルめっき液100mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表1に示す100nmの膜厚のニッケル−リン合金被膜からなる第一の層を形成した。なお、第一の層を形成することにより得た導電粒子1は6gであった。
(第一の層形成用無電解ニッケルめっき液)
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
得られた導電粒子1は、表面に突起を有していた。
4.0 g of surface-activated mother particles were dispersed in 1000 mL of water heated to 70 ° C. To this dispersion was added 1 mL of a 1 g / L bismuth nitrate aqueous solution as a plating stabilizer, and then 100 mL of a first layer forming electroless nickel plating solution having the following composition was dropped at a dropping rate of 5 mL / min. After 10 minutes had passed after completion of the dropwise addition, the dispersion to which the plating solution had been added was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. Thus, a first layer consisting of a nickel-phosphorus alloy film having a thickness of 100 nm shown in Table 1 was formed. In addition, the electroconductive particle 1 obtained by forming a 1st layer was 6g.
(Electroless Nickel Plating Solution for First Layer Formation)
Nickel sulfate ················ 400g / L
Sodium hypophosphite ........... 150 g / L
Sodium tartrate dihydrate ..... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ..... 1 mL / L
The obtained conductive particles 1 had protrusions on the surface.

(導電粒子の表面に形成された突起の評価)
得られた導電粒子1について、SEM装置により、3万倍で観察し、SEM画像をもとに、導電粒子表面の突起による被覆率を算出した。また、導電粒子1の直径の1/2の直径を有する同心円内における突起の個数と割合を、SEM装置により3万倍で観察し、SEM画像をもとに算出した。
突起の被覆率は、SEM装置により3万倍で観察し、SEM画像をもとに、導電粒子の直径の1/2の直径を有する同心円内において突起形成部と平坦部を画像解析により区別し、同心円内における突起形成部の割合を算出することで、突起の被覆率とした。突起の外径は、導電粒子の正投影面において、導電粒子の直径の1/2の直径を有する同心円内に存在する突起について、突起の谷の輪郭の面積を測定し、その面積を円の面積とみなしたときに算出される直径の平均値を算出した。具体的には、SEM装置により、3万倍で導電粒子を観察し、得られるSEM画像をもとに、画像解析により突起の輪郭を割り出し、各突起の面積を算出して、その平均値から突起の外径を求めた。
(Evaluation of protrusions formed on the surface of conductive particles)
The obtained conductive particles 1 were observed at 30,000 times by an SEM apparatus, and the coverage by the projections on the surface of the conductive particles was calculated based on the SEM image. In addition, the number and ratio of projections within a concentric circle having a diameter of 1⁄2 of the diameter of the conductive particles 1 were observed at 30,000 × with a SEM apparatus and calculated based on the SEM image.
The coverage of projections is observed at 30,000 times with an SEM apparatus, and based on the SEM image, the projection-formed portion and the flat portion are distinguished by image analysis in concentric circles having a diameter of 1/2 of the diameter of the conductive particles. The coverage of the projections was obtained by calculating the ratio of the projection forming portion in the concentric circles. The outer diameter of the projection is the area of the circle of the contour of the valley of the projection, which is measured in the concentric projection having a diameter of 1⁄2 of the diameter of the conductive particle in the orthographic plane of the conductive particle. The average value of the diameter calculated when it was regarded as the area was calculated. Specifically, the conductive particles are observed at 30,000 times by an SEM apparatus, and based on the obtained SEM image, the outlines of the protrusions are determined by image analysis, the area of each protrusion is calculated, and the average value is calculated. The outer diameter of the protrusion was determined.

[絶縁被覆導電粒子の作製]
分子量70000のポリエチレンイミンの30質量%水溶液(和光純薬工業株式会社製)を、超純水で0.3質量%まで希釈した。この0.3質量%ポリエチレンイミン水溶液300mLに上記と同様の方法で得た導電粒子1を200g加え、室温で15分間攪拌した。直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により導電粒子を取出し、取り出された導電粒子1を超純水200gに入れて室温で5分間攪拌した。更に、直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により導電粒子を取出し、メンブレンフィルタ上の導電粒子1を200gの超純水で2回洗浄して、吸着していないポリエチレンイミンを除去した。
[Production of insulating coated conductive particles]
A 30% by mass aqueous solution of polyethyleneimine having a molecular weight of 70,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted to 0.3% by mass with ultrapure water. 200 g of conductive particles 1 obtained in the same manner as above was added to 300 mL of this 0.3 mass% aqueous solution of polyethyleneimine, and the mixture was stirred at room temperature for 15 minutes. The conductive particles were removed by filtration using a membrane filter (manufactured by Millipore) having a diameter of 3 μm, and the removed conductive particles 1 were placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Furthermore, the conductive particles are taken out by filtration using a membrane filter (made by Millipore) having a diameter of 3 μm, and the conductive particles 1 on the membrane filter are washed twice with 200 g of ultrapure water to remove nonadsorbed polyethylenimine. did.

次いで、絶縁性微粒子として直径70nmのコロイダルシリカ分散液を超純水で希釈して、0.1質量%シリカ粒子分散液を得た。そこに、上記のポリエチレンイミンによる処理済の導電粒子1を200g入れて室温で15分間攪拌した。直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により導電粒子1を取出し、取り出された導電粒子1を超純水200gに入れて室温で5分間攪拌した。更に、直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により導電粒子を取出し、メンブレンフィルタ上の導電粒子1を200gの超純水で2回洗浄して、吸着していないシリカ粒子を除去し、シリカ粒子が表面に吸着した絶縁被覆導電粒子1を得た。   Next, a colloidal silica dispersion having a diameter of 70 nm was diluted with ultrapure water as insulating fine particles to obtain a 0.1 mass% silica particle dispersion. Thereto, 200 g of the conductive particles 1 treated with the above-mentioned polyethyleneimine was placed and stirred at room temperature for 15 minutes. The conductive particles 1 were removed by filtration using a membrane filter (manufactured by Millipore) having a diameter of 3 μm, and the removed conductive particles 1 were put in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Furthermore, the conductive particles are taken out by filtration using a membrane filter (made by Millipore) having a diameter of 3 μm, and the conductive particles 1 on the membrane filter are washed twice with 200 g of ultrapure water to remove nonadsorbed silica particles. As a result, insulating coated conductive particles 1 in which silica particles were adsorbed on the surface were obtained.

得られた絶縁被覆導電粒子1の表面に、分子量3000のシリコーンオリゴマーであるSC6000(日立化成株式会社製、商品名)を付着させて、絶縁被覆導電粒子1の表面を疎水化した。疎水化後の絶縁被覆導電粒子1を80℃で30分間、120℃で1時間の順に、加熱により乾燥して、疎水化された絶縁被覆導電粒子1を得た。SEM画像を画像解析することで絶縁被覆微粒子であるシリカ粒子による導電粒子1の平均被覆率を測定したところ、約40%であった。   The surface of the insulating coated conductive particle 1 was hydrophobized by adhering SC6000 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a silicone oligomer having a molecular weight of 3000, on the surface of the insulating coated conductive particle 1 obtained. The hydrophobized insulating coated conductive particles 1 were dried by heating in the order of 80 ° C. for 30 minutes and at 120 ° C. for 1 hour to obtain hydrophobized insulating coated conductive particles 1. It was about 40% when the average coverage of the electrically conductive particle 1 by the silica particle which is insulation coating microparticles | fine-particles was measured by carrying out the image analysis of the SEM image.

[異方性導電接着フィルム及び接続構造体の作製]
フェノキシ樹脂(ユニオンカーバイド社製、商品名「PKHC」)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、分子量:85万)75gとを、酢酸エチル400gに溶解し、溶液を得た。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185、旭化成イーマテリアルズ株式会社製、商品名「ノバキュアHX−3941」)300gを加え、撹拌して接着剤溶液を得た。
この接着剤溶液に、上記で得た絶縁被覆粒子1を、接着剤溶液の全量を基準として9体積%となるように分散させ、分散液を得た。得られた分散液を、セパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータを用いて塗布し、90℃で10分間の加熱することにより乾燥して、厚み25μmの異方性導電接着フィルムをセパレータ上に作製した。
[Preparation of anisotropic conductive adhesive film and connection structure]
100 g of phenoxy resin (manufactured by Union Carbide Co., Ltd., trade name "PKHC"), acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, 3 parts by mass of glycidyl methacrylate, molecular weight: 85 And 75 g were dissolved in 400 g of ethyl acetate to obtain a solution. To this solution is added 300 g of a liquid epoxy resin (epoxy equivalent 185, manufactured by Asahi Kasei E-Materials Co., Ltd., trade name "Novacua HX-3941") containing a microcapsule type latent curing agent, and the solution is stirred. Obtained.
The insulating coated particles 1 obtained above were dispersed in this adhesive solution so as to be 9% by volume based on the total amount of the adhesive solution, to obtain a dispersion. The obtained dispersion is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) using a roll coater, and dried by heating at 90 ° C. for 10 minutes to form a 25 μm thick anisotropic conductive adhesive. The film was made on a separator.

次に、作製した異方性導電接着フィルムを用いて、金バンプ(面積:30×90μm、スペース10μm、高さ:15μm、バンブ数362)付きチップ(1.7×1.7mm、厚み:0.5μm)と、Ti-Al-Ti電極が形成されたガラス基板(厚み:0.7mm)との接続を、以下に示すi)〜iii)の手順に従って行い、接続構造体を得た。i)異方性導電接着フィルム(2×19mm)をTi-Al-Ti電極回路付きガラス基板に、80℃、0.98MPa(10kgf/cm)で貼り付けた。ii)セパレータを剥離し、チップのバンプとTi-Al-Ti電極回路付きガラス基板の位置合わせを行った。iii)190℃、40gf/バンプ、10秒の条件でチップ上方から加熱及び加圧を行い、本接続を行った。なお、Ti-Al-Ti電極は、ガラス基板側からTi(70nm)、Al(200nm)、Ti(70nm)の積層構造となっている。 Next, using the produced anisotropic conductive adhesive film, a chip (1.7 × 1.7 mm, thickness: 0) with a gold bump (area: 30 × 90 μm, space 10 μm, height: 15 μm, 362 bumps) .5 μm) and the glass substrate (thickness: 0.7 mm) on which the Ti—Al—Ti electrode was formed were performed according to the procedure of i) to iii) shown below to obtain a connection structure. i) An anisotropic conductive adhesive film (2 × 19 mm) was attached to a glass substrate with a Ti—Al—Ti electrode circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ). ii) The separator was peeled off, and the bump of the chip and the glass substrate with Ti-Al-Ti electrode circuit were aligned. iii) This connection was performed by heating and pressurizing from above the chip under the conditions of 190 ° C., 40 gf / bump, 10 seconds. The Ti—Al—Ti electrode has a laminated structure of Ti (70 nm), Al (200 nm) and Ti (70 nm) from the glass substrate side.

[接続構造体の評価]
得られた接続構造体の導通抵抗試験及び絶縁抵抗試験を以下のように行った。
(導通抵抗試験)
チップ電極(バンプ)/ガラス電極(Ti-Al-Ti電極)間の導通抵抗に関しては、導通抵抗の初期値と吸湿耐熱試験(温度85℃、湿度85%の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表1に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が4Ω未満
B:導通抵抗の平均値が4Ω以上7Ω未満
C:導通抵抗の平均値が7Ω以上12Ω未満
D:導通抵抗の平均値が12Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
[Evaluation of connection structure]
The conduction resistance test and the insulation resistance test of the obtained connection structure were performed as follows.
(Conduction resistance test)
Regarding the conduction resistance between the chip electrode (bump) / glass electrode (Ti-Al-Ti electrode), the initial value of the conduction resistance and the moisture absorption heat resistance test (100, 300, 500, 1000 under the conditions of 85 ° C temperature and 85% humidity) The values after standing for time were measured for 20 samples, and their average value was calculated. The conduction resistance was evaluated according to the following criteria from the obtained average value. The results are shown in Table 1. In addition, it can be said that conduction | electrical_connection resistance is favorable, when satisfy | filling the criteria of following A or B 500 hours after a moisture absorption heat resistance test.
A: Average value of conduction resistance is less than 4Ω B: Average value of conduction resistance is 4Ω or more and less than 7Ω C: Average value of conduction resistance is 7Ω or more and less than 12Ω D: Average value of conduction resistance is 12Ω or more and less than 20Ω E: Conduction resistance Average value of 20 Ω or more

(絶縁抵抗試験)
チップ電極間の絶縁抵抗に関しては、絶縁抵抗の初期値とマイグレーション試験(温度60℃、相対湿度90%、20V印加の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、全20サンプル中、絶縁抵抗値が10Ω以上となるサンプルの割合を算出した。得られた割合から下記基準に従って絶縁抵抗を評価した。結果を表1に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たした場合は絶縁抵抗が良好といえる。
A:絶縁抵抗値10Ω以上の割合が100%
B:絶縁抵抗値10Ω以上の割合が90%以上100%未満
C:絶縁抵抗値10Ω以上の割合が80%以上90%未満
D:絶縁抵抗値10Ω以上の割合が50%以上80%未満
E:絶縁抵抗値10Ω以上の割合が50%未満
(Insulation resistance test)
Regarding the insulation resistance between chip electrodes, the initial value of insulation resistance and the value after migration test (leaved for 100, 300, 500, 1000 hours under the conditions of temperature 60 ° C, relative humidity 90%, 20V application) for 20 samples It measured and calculated the ratio of the sample from which an insulation resistance value becomes 10 < 9 > ohm or more in all 20 samples. The insulation resistance was evaluated according to the following criteria from the ratio obtained. The results are shown in Table 1. In addition, it can be said that insulation resistance is favorable when the criteria of the following A or B are satisfy | filled 500 hours after a moisture absorption heat resistance test.
A: 100% of insulation resistance 10 9 Ω or more
B: Ratio of insulation resistance value of 10 9 Ω or more is 90% or more and less than 100% C: Ratio of insulation resistance value of 10 9 Ω or more is 80% or more and less than 90% D: Ratio of insulation resistance value of 10 9 Ω or more is 50% More than 80% E: Insulation resistance 10 9 Ω or more is less than 50%

(実施例2)
非導電性無機芯材として、平均粒子径70nmのコロイダルシリカ分散液(シリカ総量:1g)に代えたこと以外は実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子2の作製を行った。さらに、得られた導電粒子2を用いて、絶縁性微粒子として、直径100nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子2を得た。得られた絶縁被覆導電粒子2を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 2)
Preparation of mother particles having silica particles adsorbed on the surface in the same manner as in Example 1 except that the nonconductive inorganic core material is replaced by a colloidal silica dispersion (total amount of silica: 1 g) having an average particle diameter of 70 nm. And the electroconductive particle 2 which formed the nickel film in the surface of this was produced. Furthermore, using the obtained conductive particles 2, insulating coated conductive particles 2 were obtained by the same procedure as in Example 1 except that a colloidal silica dispersion having a diameter of 100 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 2.

(実施例3)
非導電性無機芯材として、平均粒子径100nmのコロイダルシリカ分散液(シリカ総量:1g)に代えたこと以外は実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子3の作製を行った。さらに、得られた導電粒子2を用いて、絶縁性微粒子として、直径150nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子3を得た。得られた絶縁被覆導電粒子3を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 3)
Preparation of mother particles in which silica particles are adsorbed on the surface in the same manner as in Example 1 except that the nonconductive inorganic core material is replaced by a colloidal silica dispersion (total amount of silica: 1 g) having an average particle diameter of 100 nm. And the electroconductive particle 3 which formed the nickel film in the surface of this was produced. Furthermore, using the obtained conductive particles 2, insulating coated conductive particles 3 were obtained in the same manner as in Example 1, except that a colloidal silica dispersion having a diameter of 150 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 3.

(実施例4)
非導電性無機芯材として、平均粒子径150nmのコロイダルシリカ分散液(シリカ総量:1g)に代えたこと以外は実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子4の作製を行った。さらに、得られた導電粒子4を用いて、絶縁性微粒子として、直径200nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子4を得た。得られた絶縁被覆導電粒子4を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 4)
Preparation of mother particles having silica particles adsorbed on the surface in the same manner as in Example 1 except that the nonconductive inorganic core material is replaced by a colloidal silica dispersion (total amount of silica: 1 g) having an average particle diameter of 150 nm. And the electroconductive particle 4 which formed the nickel film in the surface of this was produced. Furthermore, using the obtained conductive particles 4, insulating coated conductive particles 4 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 200 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 4.

(実施例5)
非導電性無機芯材として、平均粒子径200nmのコロイダルシリカ分散液(シリカ総量:1g)に代えたこと以外は実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子5の作製を行った。さらに、得られた導電粒子5を用いて、絶縁性微粒子として、直径300nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子5を得た。得られた絶縁被覆導電粒子5を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 5)
Preparation of mother particles in which silica particles were adsorbed on the surface in the same manner as in Example 1 except that the nonconductive inorganic core material was changed to a colloidal silica dispersion (total amount of silica: 1 g) having an average particle diameter of 200 nm. And the electroconductive particle 5 in which the nickel film was formed on the surface of this was produced. Furthermore, using the obtained conductive particles 5, insulating coated conductive particles 5 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 300 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 5.

(実施例6)
非導電性無機芯材として、平均粒子径600nmのコロイダルシリカ分散液(シリカ総量:1g)に代えたこと以外は実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子6の作製を行った。さらに、得られた導電粒子5を用いて、絶縁性微粒子として、直径700nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子6を得た。得られた絶縁被覆導電粒子6を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 6)
Preparation of mother particles in which silica particles were adsorbed on the surface in the same manner as in Example 1 except that the nonconductive inorganic core material was replaced by a colloidal silica dispersion (total amount of silica: 1 g) having an average particle diameter of 600 nm. And the electroconductive particle 6 in which the nickel film was formed on the surface of this was produced. Furthermore, using the obtained conductive particles 5, insulating coated conductive particles 6 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 700 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 6.

(実施例7)
非導電性無機芯材であるコロイダルシリカの分散液濃度を0.12質量%に変えたこと以外は、実施例3と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子7の作製を行った。さらに、実施例1と同様の手順で絶縁被覆導電粒子7を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 7)
Production of mother particles in which silica particles are adsorbed on the surface, in the same manner as in Example 3, except that the concentration of the dispersion liquid of colloidal silica which is a nonconductive inorganic core material is changed to 0.12 mass% The conductive particles 7 having a nickel film formed on the surface of the above were produced. Furthermore, the insulation coating electrically conductive particle 7 was produced in the procedure similar to Example 1, and anisotropic conductive adhesive film and connection structure sample were produced.

(実施例8)
非導電性無機芯材であるコロイダルシリカの分散液濃度を0.18質量%に変えたこと以外は、実施例3と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子8の作製を行った。さらに、実施例1と同様の手順で絶縁被覆導電粒子8を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 8)
Production of mother particles in which silica particles are adsorbed on the surface in the same manner as in Example 3 except that the dispersion liquid concentration of colloidal silica which is a nonconductive inorganic core material is changed to 0.18 mass%, and The conductive particle 8 having a nickel film formed on its surface was produced. Furthermore, the insulation coating electrically conductive particle 8 was produced in the procedure similar to Example 1, and anisotropic conductive adhesive film and connection structure sample were produced.

(実施例9)
非導電性無機芯材であるコロイダルシリカの分散液濃度を0.25質量%に変えたこと以外は、実施例3と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子9の作製を行った。さらに、実施例1と同様の手順で絶縁被覆導電粒子9を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 9)
Production of mother particles in which silica particles are adsorbed on the surface, in the same manner as in Example 3, except that the concentration of the dispersion liquid of colloidal silica which is a nonconductive inorganic core material is changed to 0.25 mass% The conductive particle 9 having a nickel film formed on the surface of the above was prepared. Furthermore, the insulation coating electrically conductive particle 9 was produced in the procedure similar to Example 1, and anisotropic conductive adhesive film and connection structure sample were produced.

(実施例10)
非導電性無機芯材であるコロイダルシリカの分散液濃度を0.30質量%に変えたこと以外は、実施例3と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子10の作製を行った。さらに、実施例1と同様の手順で絶縁被覆導電粒子10を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 10)
Production of mother particles in which silica particles are adsorbed on the surface, in the same manner as in Example 3, except that the concentration of the dispersion liquid of colloidal silica, which is a nonconductive inorganic core material, was changed to 0.30 mass% The conductive particle 10 in which the nickel film was formed on the surface of was produced. Furthermore, the insulation coating electrically conductive particle 10 was produced in the procedure similar to Example 1, and anisotropic conductive adhesive film and connection structure sample were produced.

(実施例11)
非導電性無機芯材であるコロイダルシリカの分散液濃度を0.42質量%に変えたこと以外は、実施例3と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子11の作製を行った。さらに、実施例1と同様の手順で絶縁被覆導電粒子11を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 11)
Production of mother particles in which silica particles are adsorbed on the surface in the same manner as in Example 3 except that the concentration of the dispersion liquid of colloidal silica which is a nonconductive inorganic core material is changed to 0.42% by mass The conductive particle 11 in which the nickel film was formed on the surface of was produced. Furthermore, the insulation coating electrically conductive particle 11 was produced in the procedure similar to Example 1, and anisotropic conductive adhesive film and connection structure sample were produced.

(実施例12)
非導電性無機芯材として、平均粒子径100nmのジルコニア(ZrO)分散液(ジルコニア総量:2.7g)に代えたこと以外は実施例1と同様にして、表面にジルコニア粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子12の作製を行った。さらに、得られた導電粒子12を用いて、絶縁性微粒子として、直径150nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子12を得た。得られた絶縁被覆導電粒子12を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 12)
Zirconia particles were adsorbed on the surface in the same manner as in Example 1 except that a non-conductive inorganic core material was replaced by a zirconia (ZrO 2 ) dispersion (total amount of zirconia: 2.7 g) having an average particle diameter of 100 nm. Preparation of mother particles and preparation of conductive particles 12 having a nickel film formed on the surface of the mother particles were performed. Furthermore, using the obtained conductive particles 12, insulating coated conductive particles 12 were obtained by the same procedure as in Example 1 except that a colloidal silica dispersion having a diameter of 150 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 12.

(実施例13)
非導電性無機芯材として、平均粒子径100nmのアルミナ(Al)分散液(アルミナ総量:1.8g)に代えたこと以外は実施例1と同様にして、表面にジルコニア粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子13の作製を行った。さらに、得られた導電粒子13を用いて、絶縁性微粒子として、直径150nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子13を得た。得られた絶縁被覆導電粒子13を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 13)
Zirconia particles were formed on the surface in the same manner as in Example 1 except that an alumina (Al 2 O 3 ) dispersion (average amount of alumina: 1.8 g) having an average particle diameter of 100 nm was used as the nonconductive inorganic core material. Preparation of adsorbed base particles and preparation of conductive particles 13 having a nickel film formed on the surface thereof were performed. Furthermore, using the obtained conductive particles 13, insulating coated conductive particles 13 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 150 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 13.

(実施例14)
非導電性無機芯材として、平均粒子径100nmの酸化チタン(TiO)分散液(酸化チタン総量:1.9g)に代えたこと以外は実施例1と同様にして、表面に酸化チタン粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子14の作製を行った。さらに、得られた導電粒子14を用いて、絶縁性微粒子として、直径150nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子14を得た。得られた絶縁被覆導電粒子14を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 14)
Titanium oxide particles on the surface in the same manner as in Example 1 except that titanium oxide (TiO 2 ) dispersion liquid (total amount of titanium oxide: 1.9 g) having an average particle diameter of 100 nm was used as the nonconductive inorganic core material The production of the base particles on which the carbon black was adsorbed, and the production of the conductive particles 14 having a nickel film formed on the surface thereof, were carried out. Furthermore, using the obtained conductive particles 14, insulating coated conductive particles 14 were obtained by the same procedure as in Example 1 except that a colloidal silica dispersion having a diameter of 150 nm was used as the insulating fine particles. The anisotropic conductive adhesive film and the connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 14.

(実施例15)
非導電性無機芯材として、平均粒子径100nmのダイヤモンド(C)分散液(ダイヤモンド総量:1.6g)に代えたこと以外は実施例1と同様にして、表面にダイヤモンド粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子15の作製を行った。さらに、得られた導電粒子15を用いて、絶縁性微粒子として、直径150nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子15を得た。得られた絶縁被覆導電粒子15を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 15)
In the same manner as in Example 1 except that the non-conductive inorganic core material was replaced by a diamond (C) dispersion (average amount of diamond: 1.6 g) having an average particle diameter of 100 nm, The production of particles and the production of conductive particles 15 having a nickel film formed on the surface thereof were carried out. Furthermore, using the obtained conductive particles 15, insulating coated conductive particles 15 were obtained by the same procedure as in Example 1 except that a colloidal silica dispersion having a diameter of 150 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 15.

(実施例16)
非導電性無機粒子として、平均粒径5.0μmのシリカ粒子(ファインスフィア SK-50、商品名、日本電気硝子株式会社製)を6.66g使用し、非導電性無機芯材として、平均粒径70nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を150mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子16の作製を行った。さらに、得られた導電粒子16を用いて、絶縁性微粒子として、直径150nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子16を得た。得られた絶縁被覆導電粒子16を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 16)
6.66 g of silica particles having an average particle diameter of 5.0 μm (Finesphere SK-50, trade name, manufactured by Nippon Electric Glass Co., Ltd.) is used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material is Silica particles are adsorbed on the surface in the same manner as in Example 1 except that colloidal silica dispersion of 70 nm in particle diameter (total amount of silica: 1 g) is used and 150 mL of first layer electroless nickel plating solution is dropped. Preparation of base particles and conductive particles 16 having a nickel film formed on the surface of the base particles were carried out. Furthermore, using the obtained conductive particles 16, insulating coated conductive particles 16 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 150 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 16.

(実施例17)
非導電性無機粒子として、平均粒径5.0μmのシリカ粒子(ファインスフィア SK-50、商品名、日本電気硝子株式会社製)を6.66g使用し、非導電性無機芯材として、平均粒径150nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を150mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子17の作製を行った。さらに、得られた導電粒子16を用いて、絶縁性微粒子として、直径300nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子17を得た。得られた絶縁被覆導電粒子17を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 17)
6.66 g of silica particles having an average particle diameter of 5.0 μm (Finesphere SK-50, trade name, manufactured by Nippon Electric Glass Co., Ltd.) is used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material is Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 150 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) having a particle diameter of 150 nm. Preparation of the base particle which carried out, and preparation of the electrically-conductive particle 17 in which the nickel film was formed on the surface of this were performed. Furthermore, using the obtained conductive particles 16, insulating coated conductive particles 17 were obtained in the same manner as in Example 1, except that a colloidal silica dispersion having a diameter of 300 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 17.

(実施例18)
非導電性無機粒子として、平均粒径5.0μmのシリカ粒子(ファインスフィア SK-50、商品名、日本電気硝子株式会社製)を6.66g使用し、非導電性無機芯材として、平均粒径450nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を150mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子18の作製を行った。さらに、得られた導電粒子18を用いて、絶縁性微粒子として、直径600nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子18を得た。得られた絶縁被覆導電粒子18を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 18)
6.66 g of silica particles having an average particle diameter of 5.0 μm (Finesphere SK-50, trade name, manufactured by Nippon Electric Glass Co., Ltd.) is used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material is Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 150 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) with a particle diameter of 450 nm. Preparation of base particles and conductive particles 18 having a nickel film formed on the surface of the base particles were carried out. Furthermore, using the obtained conductive particles 18, insulating coated conductive particles 18 were obtained by the same procedure as in Example 1 except that a colloidal silica dispersion having a diameter of 600 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 18.

(実施例19)
非導電性無機粒子として、平均粒径5.0μmのシリカ粒子(ファインスフィア SK-50、商品名、日本電気硝子株式会社製)を6.66g使用し、非導電性無機芯材として、平均粒径1000nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を150mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子19の作製を行った。さらに、得られた導電粒子19を用いて、絶縁性微粒子として、直径1300nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子19を得た。得られた絶縁被覆導電粒子19を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 19)
6.66 g of silica particles having an average particle diameter of 5.0 μm (Finesphere SK-50, trade name, manufactured by Nippon Electric Glass Co., Ltd.) is used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material is Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 150 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) having a particle diameter of 1000 nm. Preparation of base particles and conductive particles 19 having a nickel film formed on the surface of the base particles were carried out. Furthermore, using the obtained conductive particles 19, insulating coated conductive particles 19 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion with a diameter of 1300 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 19.

(実施例20)
非導電性無機粒子として、平均粒径10.0μmのシリカ粒子(ファインスフィア SK-100、商品名、日本電気硝子株式会社製)を13.35g使用し、非導電性無機芯材として、平均粒径100nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を300mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子20の作製を行った。さらに、得られた導電粒子20を用いて、絶縁性微粒子として、直径200nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子20を得た。得られた絶縁被覆導電粒子20を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
Example 20
13.35 g of silica particles with an average particle diameter of 10.0 μm (Finesphere SK-100, trade name, manufactured by Nippon Electric Glass Co., Ltd.) are used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 300 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) having a particle diameter of 100 nm. Preparation of the base particle which carried out, and preparation of the electrically-conductive particle 20 which formed the nickel film in the surface of this were performed. Furthermore, using the obtained conductive particles 20, insulating coated conductive particles 20 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 200 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 20.

(実施例21)
非導電性無機粒子として、平均粒径10.0μmのシリカ粒子(ファインスフィア SK-100、商品名、日本電気硝子株式会社製)を13.35g使用し、非導電性無機芯材として、平均粒径450nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を300mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子20の作製を行った。さらに、得られた導電粒子21を用いて、絶縁性微粒子として、直径600nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子21を得た。得られた絶縁被覆導電粒子21を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 21)
13.35 g of silica particles with an average particle diameter of 10.0 μm (Finesphere SK-100, trade name, manufactured by Nippon Electric Glass Co., Ltd.) are used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 300 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) having a particle diameter of 450 nm. Preparation of the base particle which carried out, and preparation of the electrically-conductive particle 20 which formed the nickel film in the surface of this were performed. Furthermore, using the obtained conductive particles 21, insulating coated conductive particles 21 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 600 nm was used as the insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 21.

(実施例22)
非導電性無機粒子として、平均粒径10.0μmのシリカ粒子(ファインスフィア SK-100、商品名、日本電気硝子株式会社製)を13.35g使用し、非導電性無機芯材として、平均粒径1000nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を300mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子22の作製を行った。さらに、得られた導電粒子22を用いて、絶縁性微粒子として、直径1300nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子22を得た。得られた絶縁被覆導電粒子22を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 22)
13.35 g of silica particles with an average particle diameter of 10.0 μm (Finesphere SK-100, trade name, manufactured by Nippon Electric Glass Co., Ltd.) are used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 300 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) having a particle diameter of 1000 nm. Preparation of base particles and conductive particles 22 having a nickel film formed on the surface of the base particles were carried out. Furthermore, using the obtained conductive particles 22, insulating coated conductive particles 22 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 1300 nm was used as insulating fine particles. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 22.

(実施例23)
非導電性無機粒子として、平均粒径10.0μmのシリカ粒子(ファインスフィア SK-100、商品名、日本電気硝子株式会社製)を13.35g使用し、非導電性無機芯材として、平均粒径2000nmのコロイダルシリカ分散液(シリカ総量:1g)を用い、第一の層形成用無電解ニッケルめっき液を300mL滴下したこと以外は、実施例1と同様にして、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた導電粒子23の作製を行った。さらに、得られた導電粒子23を用いて、絶縁性微粒子として、直径2500nmのコロイダルシリカ分散液を用いたこと以外は実施例1と同様の手順で絶縁被覆導電粒子23を得た。得られた絶縁被覆導電粒子23を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 23)
13.35 g of silica particles with an average particle diameter of 10.0 μm (Finesphere SK-100, trade name, manufactured by Nippon Electric Glass Co., Ltd.) are used as the nonconductive inorganic particles, and the average as the nonconductive inorganic core material Silica particles were adsorbed on the surface in the same manner as in Example 1 except that 300 mL of the first layer electroless nickel plating solution was dropped using colloidal silica dispersion (total amount of silica: 1 g) with a particle diameter of 2000 nm. Preparation of the base particle which carried out, and preparation of the electrically-conductive particle 23 which formed the nickel film in the surface of this were performed. Furthermore, using the obtained conductive particles 23, insulating coated conductive particles 23 were obtained in the same manner as in Example 1 except that a colloidal silica dispersion having a diameter of 2500 nm was used as the insulating fine particles. The anisotropic conductive adhesive film and the connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 23.

(比較例1)
非導電性無機芯材を用いなかったこと以外は、実施例1と同様の手順で非導電性無機粒子の表面にニッケル膜を形成させた比較導電粒子1を作製した。さらに、実施例1と同様の手順で比較絶縁被覆導電粒子1を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Comparative example 1)
Comparative conductive particles 1 in which a nickel film was formed on the surface of nonconductive inorganic particles in the same manner as in Example 1 except that the nonconductive inorganic core material was not used, were produced. Furthermore, comparative insulation coated conductive particles 1 were produced in the same manner as in Example 1, and anisotropic conductive adhesive films and connection structure samples were produced.

(比較例2)
非導電性無機芯材の代わりに、平均粒子径100nm、C.V.2.8%のアクリル微粒子分散液を用いたこと以外は実施例1と同様の手順で、表面にアクリル微粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた比較導電粒子2の作製をおこなった。さらに、実施例1と同様の手順で比較絶縁被覆導電粒子2を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Comparative example 2)
Acrylic fine particles are adsorbed on the surface by the same procedure as in Example 1 except that an acrylic fine particle dispersion having an average particle diameter of 100 nm and a CV of 2.8% is used instead of the nonconductive inorganic core material. Preparation of base particles was carried out, and comparison conductive particles 2 in which a nickel film was formed on the surface of the base particles were prepared. Furthermore, comparative insulation coated conductive particles 2 were produced in the same manner as in Example 1, and anisotropic conductive adhesive films and bonded structure samples were produced.

(比較例3)
非導電性無機芯材の代わりに、平均粒子径100nm、のNi微粒子分散液を用いたこと以外は実施例1と同様の手順で、表面にNi微粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた比較導電粒子2の作製をおこなった。さらに、実施例1と同様の手順で比較絶縁被覆導電粒子3を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Comparative example 3)
Preparation of mother particles having Ni fine particles adsorbed on the surface by the same procedure as in Example 1 except that a Ni fine particle dispersion having an average particle diameter of 100 nm was used instead of the nonconductive inorganic core material, and this Comparative conductive particles 2 in which a nickel film was formed on the surface of the above were produced. Furthermore, comparative insulation coated conductive particles 3 were produced in the same manner as in Example 1, and anisotropic conductive adhesive films and bonded structure samples were produced.

(比較例4)
非導電性無機粒子の代わりに、平均粒子径3.0μmのアクリル粒子を用いたこと以外は実施例1と同様の手順で、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた比較導電粒子4の作製を行った。さらに、実施例1と同様の手順で比較絶縁被覆導電粒子4を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Comparative example 4)
Production of mother particles in which silica particles are adsorbed on the surface, and in the same manner as in Example 1 except that acrylic particles having an average particle diameter of 3.0 μm are used instead of nonconductive inorganic particles Comparative conductive particles 4 having a nickel film formed thereon were produced. Furthermore, comparative insulation coated conductive particles 4 were produced in the same manner as in Example 1, and anisotropic conductive adhesive films and bonded structure samples were produced.

(比較例5)
非導電性無機粒子の代わりに、平均粒子径3.0μmのNi粒子を用いたこと以外は実施例1と同様の手順で、表面にシリカ粒子が吸着した母粒子の作製、及びこれの表面にニッケル膜を形成させた比較導電粒子5の作製を行った。さらに、実施例1と同様の手順で比較絶縁被覆導電粒子5を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Comparative example 5)
In the same manner as in Example 1 except that Ni particles having an average particle diameter of 3.0 μm were used instead of nonconductive inorganic particles, preparation of mother particles in which silica particles were adsorbed on the surface, and on the surface thereof Comparative conductive particles 5 having a nickel film formed thereon were produced. Furthermore, comparative insulation coated conductive particles 5 were produced in the same manner as in Example 1, and anisotropic conductive adhesive films and bonded structure samples were produced.

(被覆率と被覆ばらつきの評価)
表面に非導電性無機芯材又はこれに変わる芯材が吸着した母核体(複合粒子)のSEM画像を100枚準備し、母粒子の中心部分の画像解析によりシリカ粒子による被覆率と被覆ばらつきを測定した。画像解析には、非導電性無機粒子の直径の1/2の円の範囲を用いた。非導電性無機粒子の直径が、3.0μmの場合は直径1.5μmの円、5.0μmの場合は直径2.5μmの円、10.0μmの場合は直径5.0μmの円を用いた。被覆ばらつき(C.V.)は被覆率の標準偏差/平均被覆率により算出した。その結果を各導電粒子の構成とともに表1に示す。
(Evaluation of coverage and coverage variation)
100 sheets of SEM images of mother core (composite particles) with non-conductive inorganic core material or core material instead of non-conductive inorganic core material adsorbed on the surface are prepared, and coverage with silica particles and coating by image analysis of center part of mother particles The variation was measured. For image analysis, a circle range of 1/2 of the diameter of the nonconductive inorganic particles was used. When the diameter of the nonconductive inorganic particles is 3.0 μm, a circle of 1.5 μm in diameter, in the case of 5.0 μm, a circle of 2.5 μm in diameter, and in the case of 10.0 μm, a circle of 5.0 μm in diameter . The coating variation (C.V.) was calculated by the standard deviation of the coverage / average coverage. The results are shown in Table 1 together with the configuration of each conductive particle.

(絶縁抵抗試験及び導通抵抗試験)
各実施例及び比較例で作製したサンプルの絶縁抵抗試験及び導通抵抗試験を行った。異方性導電接着フィルムはチップ電極間の絶縁抵抗が高く、チップ電極/ガラス電極間の導通抵抗が低いことが重要である。チップ電極間の絶縁抵抗は10サンプルを測定した。絶縁抵抗は初期値とマイグレーション試験(気温60℃、相対湿度90%、20V印加)の条件で1000時間放置)を行い、絶縁抵抗>10(Ω)を良品とした場合の歩留まりを算出した。又、チップ電極/ガラス電極間の導通抵抗に関しては14サンプルの平均値を測定した。導通抵抗は初期値と吸湿耐熱試験(気温85℃、相対湿度85%の条件で1000時間放置)後の値を測定した。
(圧痕)実装後ガラス基板側の電極上に粒子の潰れた痕跡が残るかどうかで判断した。圧痕は粒子補足を確認するために、電極部に窪みが出来るかどうかで判断する。粒子が柔らかすぎると圧痕がでない場合がある。この場合は導電性の検査が現実的に困難になる。
(Insulation resistance test and conduction resistance test)
The insulation resistance test and the conduction resistance test of the samples produced in each example and comparative example were conducted. It is important that the anisotropic conductive adhesive film has high insulation resistance between tip electrodes and low conduction resistance between tip electrodes / glass electrodes. The insulation resistance between tip electrodes measured ten samples. The insulation resistance was subjected to an initial value and a migration test (air temperature 60 ° C., relative humidity 90%, 20 V applied) for 1000 hours) to calculate the yield when the insulation resistance> 10 9 (Ω) was good. Moreover, regarding the conduction resistance between the tip electrode / glass electrode, the average value of 14 samples was measured. The conduction resistance was measured at the initial value and the value after the hygroscopic heat resistance test (standing at a temperature of 85 ° C. and a relative humidity of 85% for 1000 hours).
(Impression) It was judged whether or not a crushed trace of particles remained on the electrode on the glass substrate side after mounting. The indentation is judged by whether or not the electrode portion can be dented in order to confirm particle trapping. If the particles are too soft there may be no impression. In this case, the inspection of conductivity becomes practically difficult.

(めっき剥がれ)
導電粒子の10%以上にめっき剥がれが発生した場合にめっき剥がれありと判断した。
(Plating peeling)
It was judged that there was plating peeling when plating peeling occurred in 10% or more of the conductive particles.

Figure 0006507551
Figure 0006507551

測定結果を表1に示す。いずれの実施例も、比較例と比較して低い初期導通抵抗を達成した。これは、硬質なシリカ粒子が突起形状を有するめっき層をTi-Al-Ti電極に押し付けることにより硬質なTi層に突起が突き刺さることで、導通性が増したためと考えられる。Ti層はその表面が酸化され硬質な酸化膜(TiO)を有しており、安定した接続抵抗を得ることが難しいが、本実施例では硬質なシリカ粒子の表面にシリカ芯材が配置されているため、シリカ芯材で形成された突起部分が、Tiの酸化層に押し負けることなく、導電層をめり込ませたと考えられる。実施例2、3、4、5、16、17、18、21、22は特に接続抵抗が高温高湿試験後も安定していた。言い換えると、粒子の直径と、粒子表面に配置された芯材粒子の直径の比が概ね2〜10の場合に特に良好な接続抵抗であった。比較例1では、非導電性無機芯材が無いため、Niめっき表面に突起がなく、めっき層と電極間の樹脂排除性が悪く、さらに電極にめっき層が十分に食い込まないために接触面積が少なく、接続抵抗が悪かったためと考えられる。比較例2と3は、シリカ粒子の表面に芯材を配置しているため、めっき層に突起が形成されているが、芯材がめっき層よりも柔らかいアクリルまたはめっき層と同じ材質のニッケルであったため、突起が電極とシリカ粒子にはさまれたときに、芯材が潰れてしまい、めっき層を電極に十分めり込ませることができなかったことを示している。また、比較例4、5は、シリカ芯材よりも柔らかいアクリル粒子やニッケル粒子を用いたため、シリカ芯材がアクリル粒子やニッケル粒子側に戻されてしまい、実施例よりも接続抵抗が劣った。特に、比較例5は、粒度分布が広く(C.V.が悪い)ため、絶縁信頼性も著しく劣っていた。 The measurement results are shown in Table 1. Both examples achieved lower initial conduction resistance as compared to the comparative example. This is considered to be due to the fact that the conductivity is increased by the projections sticking into the hard Ti layer when the hard silica particles press the plating layer having the projection shape against the Ti—Al—Ti electrode. The Ti layer has its surface oxidized and has a hard oxide film (TiO 2 ), and it is difficult to obtain stable connection resistance, but in this example, a silica core material is disposed on the surface of hard silica particles. Therefore, it is considered that the conductive layer was embedded in the protrusion portion formed of the silica core material without pushing the oxide layer of Ti. In Examples 2, 3, 4, 5, 16, 17, 18, 21, and 22, particularly, the connection resistance was stable even after the high temperature and high humidity test. In other words, the connection resistance was particularly good when the ratio of the diameter of the particles to the diameter of the core material particles disposed on the surface of the particles was approximately 2 to 10. In Comparative Example 1, since there is no nonconductive inorganic core material, there is no protrusion on the Ni plating surface, the resin removability between the plating layer and the electrode is poor, and the plating layer does not bite into the electrode sufficiently. And the connection resistance was bad. In Comparative Examples 2 and 3, since the core material is disposed on the surface of the silica particles, protrusions are formed on the plating layer, but the core material is made of acrylic which is softer than the plating layer or nickel of the same material as the plating layer. As a result, when the projections were inserted between the electrode and the silica particle, the core material was crushed, indicating that the plating layer could not be sufficiently embedded in the electrode. Further, in Comparative Examples 4 and 5, since the acrylic particles and the nickel particles that are softer than the silica core material are used, the silica core material is returned to the acrylic particles and the nickel particles, and the connection resistance is inferior to that of the example. In particular, in Comparative Example 5, since the particle size distribution is wide (C.V. poor), the insulation reliability is also significantly inferior.

次に、めっき層の異なる場合について実施例を持って効果を説明する。
(実施例24)
テトラクロロパラジウム9g、エチレンジアミン10g、アミノピリジン5g、次亜リン酸ナトリウム18g、ポリエチレングリコール20gを1Lの超純水に加えためっき液を準備した。このめっき液を用いて、実施例3で作製した導電粒子3に対して、引き続き、pH7.5、液温60℃の条件で厚さが平均20nmとなるまでパラジウムめっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmのパラジウムめっき膜を有する導電粒子24を作製した。さらに、得られた導電粒子24を用いて、実施例3と同様の手順で絶縁被覆導電粒子24を得た。得られた絶縁被覆導電粒子24を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
Next, the effects of different plated layers will be described with an example.
(Example 24)
A plating solution was prepared by adding 9 g of tetrachloropalladium, 10 g of ethylene diamine, 5 g of aminopyridine, 18 g of sodium hypophosphite, and 20 g of polyethylene glycol to 1 L of ultrapure water. Using this plating solution, the conductive particles 3 produced in Example 3 were successively subjected to palladium plating treatment under conditions of pH 7.5 and liquid temperature 60 ° C. until the thickness became 20 nm on average. After filtration, the conductive particles 24 were washed with 100 mL of pure water for 60 seconds to produce conductive particles 24 having a 20 nm-thick palladium plating film formed on the outside of the nickel film. Furthermore, insulation coated conductive particles 24 were obtained using the obtained conductive particles 24 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 24.

(実施例25)
0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、実施例3で作製した導電粒子3に対して、引き続き、液温60℃の条件で厚さが平均20nmとなるまで金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmの金膜を有する導電粒子25を作製した。さらに、得られた導電粒子25を用いて、実施例3と同様の手順で絶縁被覆導電粒子25を得た。得られた絶縁被覆導電粒子25を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 25)
A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium potassium cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, the conductive particles 3 produced in Example 3 were subsequently subjected to a gold plating treatment under the conditions of a solution temperature of 60 ° C. until the average thickness became 20 nm. After filtration, the resultant was washed with 100 mL of pure water for 60 seconds to produce conductive particles 25 having a 20 nm-thick gold film formed on the outside of the nickel film. Furthermore, insulation coated conductive particles 25 were obtained using the obtained conductive particles 25 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 25.

(実施例26)
0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、実施例24で作製した導電粒子24に対して、引き続き、液温60℃の条件で厚さが平均20nmとなるまで金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、パラジウム膜の外側に形成された厚さ20nmの金膜を有する導電粒子26を作製した。さらに、得られた導電粒子26を用いて、実施例3と同様の手順で絶縁被覆導電粒子26を得た。得られた絶縁被覆導電粒子26を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 26)
A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium potassium cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, the conductive particles 24 produced in Example 24 were subsequently subjected to gold plating treatment at a solution temperature of 60 ° C. until the thickness became 20 nm on average. After filtration, the resultant was washed with 100 mL of pure water for 60 seconds to produce conductive particles 26 having a 20 nm-thick gold film formed on the outside of the palladium film. Furthermore, insulation coated conductive particles 26 were obtained using the obtained conductive particles 26 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 26.

(実施例27)
導電粒子12に代えたこと以外は実施例24と同様にして、ニッケル膜の外側に厚さ20nmのパラジウムめっき膜を有する導電粒子27を作製した。さらに、得られた導電粒子27を用いて、実施例3と同様の手順で絶縁被覆導電粒子27を得た。得られた絶縁被覆導電粒子27を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 27)
In the same manner as in Example 24 except that the conductive particles 12 were used, conductive particles 27 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film were produced. Furthermore, insulation coated conductive particles 27 were obtained in the same manner as in Example 3 using the obtained conductive particles 27. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 27.

(実施例28)
導電粒子12に代えたこと以外は実施例25と同様にして、ニッケル膜の外側に厚さ20nmの金めっき膜を有する導電粒子28を作製した。さらに、得られた導電粒子28を用いて、実施例3と同様の手順で絶縁被覆導電粒子28を得た。得られた絶縁被覆導電粒子28を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 28)
A conductive particle 28 having a gold-plated film with a thickness of 20 nm on the outside of the nickel film was produced in the same manner as in Example 25 except that the conductive particle 12 was replaced. Furthermore, insulation coated conductive particles 28 were obtained using the obtained conductive particles 28 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 28.

(実施例29)
導電粒子27に代えたこと以外は実施例26と同様にして、ニッケル膜の外側に厚さ20nmのパラジムめっき膜、さらにパラジウムめっき膜の外側に厚さ20nmの金めっき膜を有する導電粒子29を作製した。さらに、得られた導電粒子29を用いて、実施例3と同様の手順で絶縁被覆導電粒子29を得た。得られた絶縁被覆導電粒子29を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 29)
In the same manner as in Example 26 except that the conductive particles 27 were replaced, a conductive particle 29 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film and a gold plating film with a thickness of 20 nm on the outside of the palladium plating film Made. Furthermore, insulation coated conductive particles 29 were obtained using the obtained conductive particles 29 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 29.

(実施例30)
導電粒子13に代えたこと以外は実施例24と同様にして、ニッケル膜の外側に厚さ20nmのパラジウムめっき膜を有する導電粒子30を作製した。さらに、得られた導電粒子30を用いて、実施例3と同様の手順で絶縁被覆導電粒子30を得た。得られた絶縁被覆導電粒子30を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 30)
A conductive particle 30 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film was produced in the same manner as in Example 24 except that the conductive particle 13 was replaced. Furthermore, insulation coated conductive particles 30 were obtained using the obtained conductive particles 30 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 30.

(実施例31)
導電粒子13に代えたこと以外は実施例25と同様にして、ニッケル膜の外側に厚さ20nmの金めっき膜を有する導電粒子31を作製した。さらに、得られた導電粒子31を用いて、実施例3と同様の手順で絶縁被覆導電粒子31を得た。得られた絶縁被覆導電粒子31を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 31)
A conductive particle 31 having a gold-plated film with a thickness of 20 nm outside the nickel film was produced in the same manner as in Example 25 except that the conductive particle 13 was replaced. Furthermore, insulation coated conductive particles 31 were obtained in the same manner as in Example 3 using the obtained conductive particles 31. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 31.

(実施例32)
導電粒子30に代えたこと以外は実施例26と同様にして、ニッケル膜の外側に厚さ20nmのパラジムめっき膜、さらにパラジウムめっき膜の外側に厚さ20nmの金めっき膜を有する導電粒子32を作製した。さらに、得られた導電粒子32を用いて、実施例3と同様の手順で絶縁被覆導電粒子32を得た。得られた絶縁被覆導電粒子32を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 32)
In the same manner as in Example 26 except that conductive particles 30 were replaced, conductive particles 32 having a palladium plating film with a thickness of 20 nm on the outside of a nickel film and a gold plating film with a thickness of 20 nm on the outside of a palladium plating film Made. Furthermore, insulation coated conductive particles 32 were obtained using the obtained conductive particles 32 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 32.

(実施例33)
導電粒子14に代えたこと以外は実施例24と同様にして、ニッケル膜の外側に厚さ20nmのパラジウムめっき膜を有する導電粒子33を作製した。さらに、得られた導電粒子33を用いて、実施例3と同様の手順で絶縁被覆導電粒子33を得た。得られた絶縁被覆導電粒子33を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 33)
In the same manner as in Example 24 except that the conductive particles 14 were replaced, conductive particles 33 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film were produced. Furthermore, using the obtained conductive particles 33, insulating coated conductive particles 33 were obtained in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 33.

(実施例34)
導電粒子14に代えたこと以外は実施例25と同様にして、ニッケル膜の外側に厚さ20nmの金めっき膜を有する導電粒子34を作製した。さらに、得られた導電粒子34を用いて、実施例3と同様の手順で絶縁被覆導電粒子34を得た。得られた絶縁被覆導電粒子34を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 34)
A conductive particle 34 having a gold plating film with a thickness of 20 nm outside the nickel film was produced in the same manner as in Example 25 except that the conductive particle 14 was replaced. Furthermore, insulation coated conductive particles 34 were obtained in the same manner as in Example 3 using the obtained conductive particles 34. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 34.

(実施例35)
導電粒子33に代えたこと以外は実施例26と同様にして、ニッケル膜の外側に厚さ20nmのパラジムめっき膜、さらにパラジウムめっき膜の外側に厚さ20nmの金めっき膜を有する導電粒子35を作製した。さらに、得られた導電粒子35を用いて、実施例3と同様の手順で絶縁被覆導電粒子35を得た。得られた絶縁被覆導電粒子35を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 35)
In the same manner as in Example 26 except that conductive particles 33 were replaced, conductive particles 35 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film and a gold plating film with a thickness of 20 nm on the outside of the palladium plating film Made. Furthermore, using the obtained conductive particles 35, insulating coated conductive particles 35 were obtained in the same procedure as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 35.

(実施例36)
導電粒子15に代えたこと以外は実施例24と同様にして、ニッケル膜の外側に厚さ20nmのパラジウムめっき膜を有する導電粒子36を作製した。さらに、得られた導電粒子36を用いて、実施例3と同様の手順で絶縁被覆導電粒子36を得た。得られた絶縁被覆導電粒子36を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 36)
In the same manner as in Example 24 except that the conductive particles 15 were replaced, conductive particles 36 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film were produced. Furthermore, using the obtained conductive particles 36, insulating coated conductive particles 36 were obtained in the same manner as in Example 3. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 36.

(実施例37)
導電粒子15に代えたこと以外は実施例25と同様にして、ニッケル膜の外側に厚さ20nmの金めっき膜を有する導電粒子37を作製した。さらに、得られた導電粒子37を用いて、実施例3と同様の手順で絶縁被覆導電粒子37を得た。得られた絶縁被覆導電粒子37を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 37)
A conductive particle 37 having a gold plating film with a thickness of 20 nm outside the nickel film was produced in the same manner as in Example 25 except that the conductive particle 15 was replaced. Furthermore, insulation coated conductive particles 37 were obtained using the obtained conductive particles 37 in the same procedure as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 37.

(実施例38)
導電粒子36に代えたこと以外は実施例26と同様にして、ニッケル膜の外側に厚さ20nmのパラジムめっき膜、さらにパラジウムめっき膜の外側に厚さ20nmの金めっき膜を有する導電粒子38を作製した。さらに、得られた導電粒子38を用いて、実施例3と同様の手順で絶縁被覆導電粒子38を得た。得られた絶縁被覆導電粒子38を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 38)
In the same manner as in Example 26 except that the conductive particles 36 were replaced, conductive particles 38 having a 20 nm-thick palladium plating film on the outside of the nickel film and a 20 nm-thick gold plating film on the outside of the palladium plating film Made. Furthermore, using the obtained conductive particles 38, insulating coated conductive particles 38 were obtained in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 38.

(実施例39)
導電粒子18に代えたこと以外は実施例24と同様にして、ニッケル膜の外側に厚さ20nmのパラジウムめっき膜を有する導電粒子39を作製した。さらに、得られた導電粒子39を用いて、実施例3と同様の手順で絶縁被覆導電粒子39を得た。得られた絶縁被覆導電粒子39を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 39)
In the same manner as in Example 24 except that the conductive particles 18 were used, conductive particles 39 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film were produced. Furthermore, using the obtained conductive particles 39, insulating coated conductive particles 39 were obtained in the same manner as in Example 3. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 39.

(実施例40)
導電粒子18に代えたこと以外は実施例25と同様にして、ニッケル膜の外側に厚さ20nmの金めっき膜を有する導電粒子40を作製した。さらに、得られた導電粒子40を用いて、実施例3と同様の手順で絶縁被覆導電粒子40を得た。得られた絶縁被覆導電粒子40を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 40)
A conductive particle 40 having a gold-plated film with a thickness of 20 nm on the outside of the nickel film was produced in the same manner as in Example 25 except that the conductive particle 18 was replaced. Furthermore, insulation coated conductive particles 40 were obtained in the same manner as in Example 3 using the obtained conductive particles 40. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 40.

(実施例41)
導電粒子39に代えたこと以外は実施例26と同様にして、ニッケル膜の外側に厚さ20nmのパラジムめっき膜、さらにパラジウムめっき膜の外側に厚さ20nmの金めっき膜を有する導電粒子41を作製した。さらに、得られた導電粒子41を用いて、実施例3と同様の手順で絶縁被覆導電粒子41を得た。得られた絶縁被覆導電粒子41を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 41)
In the same manner as in Example 26 except that the conductive particles 39 were replaced, a conductive particle 41 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film and a gold plating film with a thickness of 20 nm on the outside of the palladium plating film Made. Furthermore, insulation coated conductive particles 41 were obtained in the same manner as in Example 3 using the obtained conductive particles 41. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 41.

(実施例42)
導電粒子22に代えたこと以外は実施例24と同様にして、ニッケル膜の外側に厚さ20nmのパラジウムめっき膜を有する導電粒子42を作製した。さらに、得られた導電粒子42を用いて、実施例3と同様の手順で絶縁被覆導電粒子42を得た。得られた絶縁被覆導電粒子42を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 42)
In the same manner as in Example 24 except that the conductive particles 22 were replaced, conductive particles 42 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film were produced. Furthermore, insulation coated conductive particles 42 were obtained using the obtained conductive particles 42 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 42.

(実施例43)
導電粒子22に代えたこと以外は実施例25と同様にして、ニッケル膜の外側に厚さ20nmの金めっき膜を有する導電粒子43を作製した。さらに、得られた導電粒子43を用いて、実施例3と同様の手順で絶縁被覆導電粒子43を得た。得られた絶縁被覆導電粒子43を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 43)
A conductive particle 43 having a gold-plated film with a thickness of 20 nm on the outside of the nickel film was produced in the same manner as in Example 25 except that the conductive particle 22 was replaced. Furthermore, insulation coated conductive particles 43 were obtained using the obtained conductive particles 43 in the same manner as in Example 3. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 43.

(実施例44)
導電粒子42に代えたこと以外は実施例26と同様にして、ニッケル膜の外側に厚さ20nmのパラジムめっき膜、さらにパラジウムめっき膜の外側に厚さ20nmの金めっき膜を有する導電粒子44を作製した。さらに、得られた導電粒子44を用いて、実施例3と同様の手順で絶縁被覆導電粒子44を得た。得られた絶縁被覆導電粒子44を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
評価結果を表2に示す。
(Example 44)
In the same manner as in Example 26 except that the conductive particles 42 were replaced, a conductive particle 44 having a palladium plating film with a thickness of 20 nm on the outside of the nickel film and a gold plating film with a thickness of 20 nm on the outside of the palladium plating film Made. Furthermore, using the obtained conductive particles 44, insulating coated conductive particles 44 were obtained in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 44.
The evaluation results are shown in Table 2.

Figure 0006507551
Figure 0006507551

ニッケル層の外側に金めっき層を設けた場合は、ニッケル層だけよりも接続抵抗が低抵抗化し、ニッケル層の外側にパラジウムめっき層を設けた場合は、ニッケル層だけよりも絶縁性が向上した。さらに、ニッケル層の外側にパラジウムめっき層、パラジウムめっき層の外側に金めっき層を設けた場合は、接続抵抗の低抵抗化と絶縁性の向上が確認された。   When the gold plating layer was provided outside the nickel layer, the connection resistance was lower than that of the nickel layer alone, and when the palladium plating layer was provided outside the nickel layer, the insulation was improved more than the nickel layer alone. . Furthermore, when the palladium plating layer was provided on the outside of the nickel layer and the gold plating layer was provided on the outside of the palladium plating layer, it was confirmed that the connection resistance was reduced and the insulation was improved.

(実施例45)
実施例3の方法を用いて、平均粒径3.0μmのシリカ無機粒子の表面に平均粒径100nmのシリカ無機芯材が配置された母粒子3を得た。
前記母粒子(母粒子3)4gに対し、共振周波数28kHz、出力100Wの超音波を15分間照射した後、パラジウム触媒であるアトテックネネオガント834(アトテックジャパン株式会社製:商品名)を8質量%含有するパラジウム触媒化液100mLに添加して、超音波を照射しながら30℃で30分攪拌した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により母粒子を取出し、取り出された母粒子を水洗した。水洗後の母粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、表面が活性化された母粒子を得た。
(Example 45)
Using the method of Example 3, mother particles 3 in which a silica inorganic core material having an average particle diameter of 100 nm was disposed on the surface of silica inorganic particles having an average particle diameter of 3.0 μm were obtained.
After irradiating an ultrasonic wave with a resonance frequency of 28 kHz and an output of 100 W for 15 minutes to 4 g of the mother particles (mother particles 3), 8 mass of Atotech Neneoganto 834 (Atotech Japan Co., Ltd .: trade name) which is a palladium catalyst The solution was added to 100 mL of a palladium catalyst solution containing 10% and stirred at 30 ° C. for 30 minutes while being irradiated with ultrasonic waves. Thereafter, the base particles were taken out by filtration using a membrane filter (made by Millipore) having a diameter of 3 μm, and the taken out base particles were washed with water. The washed mother particles were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to obtain surface-activated mother particles.

その後、40℃に加温した下記の組成を有する2Lの建浴液に、母粒子3を加えて、97質量%以上のニッケルを含有する第一の部分、及び、ニッケル及び銅を主成分とする合金を含有する第二の部分を形成した。さらに、添加法により下記組成のニッケルを含有しない補充液A及び補充液Bをそれぞれ930mL準備し、20mL/minの速度で連続的に滴下し、銅を主成分とする第三の部分を形成した。
(建浴液)
CuSO・5HO:0.03mol/L
NiSO・6HO:0.005mol/L
HCHO(ホルムアルデヒド):0.2mol/L
NaCN:0.0001mol/L
EDTA・4Na:0.2mol/L
NaOH:0.3mol/L
pH:12.7
(補充液 A)
CuSO・5HO:0.8mol/L
HCHO:1mol/L
NaCN:0.001mol/L
(補充液 B)
EDTA・4Na:1mol/L
NaOH:1mol/L
Thereafter, mother particles 3 are added to a 2 L construction bath solution having the following composition heated to 40 ° C., and a first portion containing 97 mass% or more of nickel, and nickel and copper as main components Form a second part containing the alloy. Further, 930 mL of each of nickel-free replenisher A and replenisher B having the following composition were prepared by the addition method, and continuously dropped at a rate of 20 mL / min to form a third portion mainly composed of copper .
(Building solution)
CuSO 4 · 5H 2 O: 0.03 mol / L
NiSO 4 · 6H 2 O: 0.005 mol / L
HCHO (formaldehyde): 0.2 mol / L
NaCN: 0.0001 mol / L
EDTA · 4Na: 0.2 mol / L
NaOH: 0.3 mol / L
pH: 12.7
(Refillment solution A)
CuSO 4 · 5 H 2 O: 0.8 mol / L
HCHO: 1 mol / L
NaCN: 0.001 mol / L
(Refilling solution B)
EDTA · 4Na: 1 mol / L
NaOH: 1 mol / L

続いて、パラジウム触媒であるアトテックネネオガント834(アトテックジャパン株式会社製、商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した後、直径3μmのメンブレンフィルタ(ミリポア株式会社製)で濾過し、水洗を行った。その後、粒子をpH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、粒子の表面を活性化させた。その後、20mLの蒸留水に、表面が活性化された粒子を浸漬し、超音波分散することで、粒子分散液を得た。
続いて、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第四の部分形成用無電解ニッケルめっき液50mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表3に示す40nmの膜厚のニッケル−リン合金被膜をからなる第四の部分を有する導電粒子45を得た。得られた導電粒子45は8gであった。
[第四の部分形成用無電解ニッケルめっき液]
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
Subsequently, 100 mL of a palladium catalyzed solution containing 8% by mass of Atotech Neneoganto 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst, is added and stirred at 30 ° C. for 30 minutes. It filtered with a filter (made by Millipore, Inc.) and washed with water. Thereafter, the particles were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to activate the surface of the particles. Thereafter, the particles whose surface was activated were immersed in 20 mL of distilled water and ultrasonically dispersed to obtain a particle dispersion.
Subsequently, it was dispersed in 1000 mL of water heated to 70 ° C. 1 mL of a 1 g / L aqueous solution of bismuth nitrate as a plating stabilizer was added to this dispersion, and then 50 mL of a fourth partial formation electroless nickel plating solution having the following composition was dropped at a dropping rate of 5 mL / min. After 10 minutes had passed after completion of the dropwise addition, the dispersion to which the plating solution had been added was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. Thus, conductive particles 45 having a fourth portion composed of a 40 nm-thick nickel-phosphorus alloy film shown in Table 3 were obtained. The obtained conductive particles 45 were 8 g.
[The fourth part formation electroless nickel plating solution]
Nickel sulfate ················ 400g / L
Sodium hypophosphite ........... 150 g / L
Sodium tartrate dihydrate ..... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ..... 1 mL / L

以降は、実施例3と同様にして、絶縁被覆粒子の作製、異方性導電接着フィルム及び接続構造体の作製、接続構造体の評価を実施した。
(実施例46〜51)
実施例12〜15、実施例18、実施例22と同じ方法でそれぞれ母粒子12〜15、母粒子18、母粒子22を得た。実施例45と同様の方法で、母粒子表面に金属めっき層を形成した、導電粒子46〜51を得た。
以降は、実施例12〜15、実施例18、実施例22と同様にして、絶縁被覆粒子の作製、異方性導電接着フィルム及び接続構造体の作製、接続構造体の評価を実施した。
Thereafter, in the same manner as in Example 3, preparation of insulating coated particles, preparation of anisotropic conductive adhesive film and connection structure, and evaluation of connection structure were performed.
(Examples 46 to 51)
In the same manner as in Examples 12 to 15, 18 and 22, mother particles 12 to 15, mother particles 18 and mother particles 22 were obtained. In the same manner as in Example 45, conductive particles 46 to 51 were obtained in which the metal plating layer was formed on the surface of the base particles.
Thereafter, in the same manner as in Examples 12 to 15, Example 18, and Example 22, preparation of insulating coated particles, preparation of anisotropic conductive adhesive film and connected structure, and evaluation of connected structure were performed.

(比較例6)
非導電性無機芯材を用いなかったこと以外は、実施例45と同様の手順で表3に示された第一の層の厚みとなるようにめっき液量を調整し、非導電性無機粒子の表面にニッケルおよび銅を主成分とするめっき膜を形成させた比較導電粒子6を作製した。さらに、実施例1と同様の手順で比較絶縁被覆導電粒子6を作製し、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Comparative example 6)
The amount of the plating solution was adjusted to the thickness of the first layer shown in Table 3 by the same procedure as in Example 45 except that the nonconductive inorganic core material was not used, and the nonconductive inorganic material was used. Comparative conductive particles 6 were produced in which a plating film containing nickel and copper as main components was formed on the surface of the particles. Furthermore, comparative insulation coated conductive particles 6 were produced in the same manner as in Example 1, and anisotropic conductive adhesive films and bonded structure samples were produced.

(比較例7〜10)
比較例2〜5と同じ方法でそれぞれ比較母粒子2〜5を得た。実施例45と同様の方法で、母粒子表面にニッケルおよび銅を主成分とするめっき膜を形成した、比較導電粒子2〜5を得た。
(Comparative Examples 7 to 10)
Comparative mother particles 2 to 5 were obtained in the same manner as in Comparative Examples 2 to 5, respectively. Comparative conductive particles 2 to 5 were obtained in the same manner as in Example 45, except that plating films containing nickel and copper as main components were formed on the surface of the base particles.

以降は、実施例45と同様にして、絶縁被覆粒子の作製、異方性導電接着フィルム及び接続構造体の作製、接続構造体の評価を実施した。
測定結果を表3に示す。
Thereafter, in the same manner as in Example 45, preparation of insulating coated particles, preparation of anisotropic conductive adhesive film and connected structure, and evaluation of connected structure were carried out.
The measurement results are shown in Table 3.

Figure 0006507551
Figure 0006507551

いずれの実施例45〜51も、比較例6〜10と比較して低い初期導通抵抗を達成した。めっき層をニッケルおよび銅を主成分とすることで、ニッケル層単独よりも接続抵抗が更に低抵抗化した。めっき層にニッケルよりも更に硬度が低い銅を含有した場合も、粒子および芯材がめっき層よりも硬質な材料を用いることで、めっき層を電極に強く押し付け、電極にめっき層をめり込ませることができることから、安定した接続抵抗が得られたと考ええられる。比較例6は、比較例1よりも初期抵抗はやや改善したが、吸湿試験後は抵抗が悪化した。これは、比較例6はめっき層にニッケルよりも低抵抗な銅を含有しているが、突起形状を有していないため、硬質な電極に十分にめっき層が食い込んでいないためと考えられる。   All Examples 45-51 achieved low initial conduction resistance as compared to Comparative Examples 6-10. By making the plating layer mainly composed of nickel and copper, the connection resistance is further lowered than that of the nickel layer alone. Even in the case where the plating layer contains copper having a hardness lower than that of nickel, the plating layer is strongly pressed against the electrode and the plating layer is embedded in the electrode by using a material whose particles and core are harder than the plating layer. It can be considered that stable connection resistance was obtained because it can not be done. In Comparative Example 6, although the initial resistance was slightly improved compared to Comparative Example 1, the resistance was deteriorated after the moisture absorption test. This is considered to be because, although Comparative Example 6 contains copper having a resistance lower than that of nickel in the plating layer, the plating layer does not sufficiently bite into a hard electrode because it does not have a protrusion shape.

(実施例52)
テトラクロロパラジウム9g、エチレンジアミン10g、アミノピリジン5g、次亜リン酸ナトリウム18g、ポリエチレングリコール20gを1Lの超純水に加えためっき液を準備した。このめっき液を用いて、実施例45で作製した導電粒子45に対して、引き続き、pH7.5、液温60℃の条件で厚さが平均20nmとなるまでパラジウムめっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmのパラジウムめっき膜を有する導電粒子52を作製した。さらに、得られた導電粒子52を用いて、実施例3と同様の手順で絶縁被覆導電粒子52を得た。得られた絶縁被覆導電粒子52を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 52)
A plating solution was prepared by adding 9 g of tetrachloropalladium, 10 g of ethylene diamine, 5 g of aminopyridine, 18 g of sodium hypophosphite, and 20 g of polyethylene glycol to 1 L of ultrapure water. Using this plating solution, the conductive particles 45 produced in Example 45 were successively subjected to palladium plating treatment under conditions of pH 7.5, solution temperature 60 ° C. until the thickness became 20 nm on average. After filtration, the conductive particles 52 were washed with 100 mL of pure water for 60 seconds to produce a 20 nm-thick palladium-plated film formed on the outside of the nickel film. Furthermore, insulation coated conductive particles 52 were obtained in the same manner as in Example 3 using the obtained conductive particles 52. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 52.

(実施例53)
0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、実施例45で作製した導電粒子45に対して、引き続き、液温60℃の条件で厚さが平均20nmとなるまで金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmの金膜を有する導電粒子53を作製した。さらに、得られた導電粒子53を用いて、実施例3と同様の手順で絶縁被覆導電粒子53を得た。得られた絶縁被覆導電粒子53を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 53)
A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium potassium cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, the conductive particles 45 produced in Example 45 were successively subjected to gold plating treatment at a solution temperature of 60 ° C. until the thickness became 20 nm on average. After filtration, the resultant was washed with 100 mL of pure water for 60 seconds to produce conductive particles 53 having a gold film with a thickness of 20 nm formed on the outside of the nickel film. Furthermore, using the obtained conductive particles 53, insulating coated conductive particles 53 were obtained in the same manner as in Example 3. An anisotropic conductive adhesive film and a connection structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 53.

(実施例54)
0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、実施例52で作製した導電粒子52に対して、引き続き、液温60℃の条件で厚さが平均20nmとなるまで金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、パラジウム膜の外側に形成された厚さ20nmの金膜を有する導電粒子54を作製した。さらに、得られた導電粒子54を用いて、実施例3と同様の手順で絶縁被覆導電粒子54を得た。得られた絶縁被覆導電粒子54を用いて、実施例1と同様の手順で異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 54)
A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium potassium cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, the conductive particles 52 produced in Example 52 were successively subjected to gold plating treatment at a solution temperature of 60 ° C. until the thickness became 20 nm on average. After filtration, the resultant was washed with 100 mL of pure water for 60 seconds to produce conductive particles 54 having a gold film with a thickness of 20 nm formed on the outside of the palladium film. Furthermore, insulation coated conductive particles 54 were obtained in the same manner as in Example 3 using the obtained conductive particles 54. An anisotropic conductive adhesive film and a connected structure sample were produced in the same manner as in Example 1 using the obtained insulating coated conductive particles 54.

(実施例55)
導電粒子45に変えて導電粒子46を利用したこと以外、実施例52と同様にして、導電粒子55の作製、絶縁被覆導電粒子55の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 55)
In the same manner as in Example 52, except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 55, production of the insulating coated conductive particles 55, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例56)
導電粒子45に変えて導電粒子46を利用したこと以外、実施例53と同様にして、導電粒子56の作製、絶縁被覆導電粒子56の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 56)
In the same manner as in Example 53, except that the conductive particles 45 are used instead of the conductive particles 45, production of the conductive particles 56, production of the insulating coated conductive particles 56, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例57)
導電粒子52に変えて導電粒子55を利用したこと以外、実施例54と同様にして、導電粒子57の作製、絶縁被覆導電粒子57の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 57)
In the same manner as in Example 54, except that the conductive particles 52 were used instead of the conductive particles 52, production of conductive particles 57, production of insulating coated conductive particles 57, production of anisotropic conductive adhesive film and connection structure sample Did.

(実施例58)
導電粒子45に変えて導電粒子47を利用したこと以外、実施例52と同様にして、導電粒子58の作製、絶縁被覆導電粒子58の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 58)
In the same manner as in Example 52 except that the conductive particles 45 were used instead of the conductive particles 45, production of conductive particles 58, production of insulating coated conductive particles 58, production of anisotropic conductive adhesive film and connection structure sample Did.

(実施例59)
導電粒子45に変えて導電粒子47を利用したこと以外、実施例53と同様にして、導電粒子59の作製、絶縁被覆導電粒子59の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 59)
In the same manner as in Example 53, except that the conductive particles 45 were used instead of the conductive particles 45, production of conductive particles 59, production of insulating coated conductive particles 59, production of anisotropic conductive adhesive film and connection structure sample Did.

(実施例60)
導電粒子52に変えて導電粒子58を利用したこと以外、実施例54と同様にして、導電粒子60の作製、絶縁被覆導電粒子60の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 60)
In the same manner as in Example 54, except that the conductive particles 52 were used instead of the conductive particles 52, production of the conductive particles 60, production of the insulating coated conductive particles 60, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例61)
導電粒子45に変えて導電粒子48を利用したこと以外、実施例52と同様にして、導電粒子60の作製、絶縁被覆導電粒子60の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 61)
In the same manner as in Example 52 except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 60, production of the insulating coated conductive particles 60, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例62)
導電粒子45に変えて導電粒子48を利用したこと以外、実施例53と同様にして、導電粒子62の作製、絶縁被覆導電粒子62の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 62)
In the same manner as in Example 53, except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 62, production of the insulating coated conductive particles 62, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例63)
導電粒子52に変えて導電粒子61を利用したこと以外、実施例54と同様にして、導電粒子63の作製、絶縁被覆導電粒子63の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 63)
In the same manner as in Example 54, except that the conductive particles 52 were used instead of the conductive particles 52, production of the conductive particles 63, production of the insulating coated conductive particles 63, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例64)
導電粒子45に変えて導電粒子49を利用したこと以外、実施例52と同様にして、導電粒子64の作製、絶縁被覆導電粒子64の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 64)
In the same manner as in Example 52 except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 64, production of the insulating coated conductive particles 64, production of the anisotropic conductive adhesive film and the connection structure sample Did.

(実施例65)
導電粒子45に変えて導電粒子49を利用したこと以外、実施例53と同様にして、導電粒子65の作製、絶縁被覆導電粒子65の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 65)
In the same manner as in Example 53, except that the conductive particles 45 are used instead of the conductive particles 45, production of the conductive particles 65, production of the insulating coated conductive particles 65, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例66)
導電粒子52に変えて導電粒子64を利用したこと以外、実施例54と同様にして、導電粒子66の作製、絶縁被覆導電粒子66の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 66)
In the same manner as in Example 54, except that the conductive particles 52 were used instead of the conductive particles 52, production of conductive particles 66, production of insulating coated conductive particles 66, production of anisotropic conductive adhesive film and connection structure sample Did.

(実施例67)
導電粒子45に変えて導電粒子50を利用したこと以外、実施例52と同様にして、導電粒子67の作製、絶縁被覆導電粒子67の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 67)
In the same manner as in Example 52 except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 67, production of the insulating coated conductive particles 67, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例68)
導電粒子45に変えて導電粒子50を利用したこと以外、実施例53と同様にして、導電粒子68の作製、絶縁被覆導電粒子68の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 68)
In the same manner as in Example 53, except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 68, production of the insulating coated conductive particles 68, production of the anisotropic conductive adhesive film and the connection structure sample Did.

(実施例69)
導電粒子52に変えて導電粒子67を利用したこと以外、実施例54と同様にして、導電粒子69の作製、絶縁被覆導電粒子69の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 69)
In the same manner as in Example 54, except that the conductive particles 52 were used instead of the conductive particles 52, production of conductive particles 69, production of insulating coated conductive particles 69, production of anisotropic conductive adhesive film and connection structure sample Did.

(実施例70)
導電粒子45に変えて導電粒子51を利用したこと以外、実施例52と同様にして、導電粒子70の作製、絶縁被覆導電粒子70の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 70)
In the same manner as in Example 52, except that the conductive particles 45 were used instead of the conductive particles 45, production of the conductive particles 70, production of the insulating coated conductive particles 70, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例71)
導電粒子45に変えて導電粒子52を利用したこと以外、実施例53と同様にして、導電粒子71の作製、絶縁被覆導電粒子71の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
(Example 71)
In the same manner as in Example 53, except that the conductive particles 45 are used instead of the conductive particles 45, production of the conductive particles 71, production of the insulating coated conductive particles 71, production of an anisotropic conductive adhesive film and a connection structure sample Did.

(実施例72)
導電粒子52に変えて導電粒子70を利用したこと以外、実施例54と同様にして、導電粒子72の作製、絶縁被覆導電粒子72の作製、異方性導電接着フィルム及び接続構造体サンプルの作製を行った。
測定結果を表4に示す。
(Example 72)
In the same manner as in Example 54, except that the conductive particles 52 were used instead of the conductive particles 52, production of the conductive particles 72, production of the insulating coated conductive particles 72, production of an anisotropic conductive adhesive film and a connection structure sample Did.
The measurement results are shown in Table 4.

Figure 0006507551
Figure 0006507551

ニッケルおよび銅を主成分とする層の外側に金めっき層を設けた場合は、ニッケルおよび銅を主成分とする層のみよりも接続抵抗が低抵抗化し、ニッケルおよび銅を主成分とする層の外側にパラジウムめっき層を設けた場合は、ニッケルおよび銅を主成分とする層のみよりも絶縁性が向上した。さらに、ニッケルおよび銅を主成分とする層の外側にパラジウムめっき層、パラジウムめっき層の外側に金めっき層を設けた場合は、接続抵抗の低抵抗化と絶縁性の向上が確認された。   When a gold plating layer is provided on the outside of the layer mainly composed of nickel and copper, the connection resistance becomes lower than that of the layer mainly composed of nickel and copper and the layer mainly composed of nickel and copper When the palladium plating layer was provided outside, insulation improved rather than only the layer which has nickel and copper as a main component. Furthermore, when the palladium plating layer was provided on the outside of the layer mainly composed of nickel and copper and the gold plating layer was provided on the outside of the palladium plating layer, reduction in connection resistance and improvement in insulation were confirmed.

1…導電粒子、5…母粒子、20…非導電性無機粒子、30…非導電性無機芯材、35…絶縁性微粒子、40…金属めっき層、40a…突起部、60…第一の回路部材、61…ドライバーIC、62…バンプ電極、70…第二の回路部材、71…ガラス基板、72…電極、80…異方性導電接着剤、81…絶縁性接着剤。 DESCRIPTION OF SYMBOLS 1 ... Conductive particle, 5 ... Mother particle, 20 ... Nonconductive inorganic particle, 30 ... Nonconductive inorganic core material, 35 ... Insulating fine particle, 40 ... Metal plating layer, 40a ... Projection part, 60 ... 1st Circuit member, 61: driver IC, 62: bump electrode, 70: second circuit member, 71: glass substrate, 72: electrode, 80: anisotropic conductive adhesive, 81: insulating adhesive.

Claims (7)

非導電性無機粒子と前記非導電性無機粒子の表面に配置した非導電性無機芯材とを有する母粒子と、
前記母粒子を覆う金属めっき層と
前記金属めっき層の表面を部分的に被覆する絶縁性微粒子と、を備え、
前記金属めっき層が突起部を形成する表面を有しており、
前記非導電性無機粒子及び前記非導電性無機芯材が、いずれも金属めっき層よりも硬いことを特徴とする導電粒子。
Mother particles having nonconductive inorganic particles and a nonconductive inorganic core material disposed on the surface of the nonconductive inorganic particles;
A metal plating layer covering the mother particles ;
And insulating fine particles partially covering the surface of the metal plating layer ,
The metal plating layer has a surface on which a protrusion is formed,
A conductive particle, wherein the nonconductive inorganic particle and the nonconductive inorganic core material are both harder than a metal plating layer.
前記導電粒子を構成する非導電性無機粒子及び非導電性芯材が、いずれも電極の最も厚い層を構成する材料よりも硬いことを特徴とする請求項1に記載の導電粒子。 Conductive particles of claim 1 wherein the conductive particles constituting the non-conductive inorganic particles and non-conductive core material are both, characterized in that harder than the material constituting the thickest layer of the electrodes. 前記非導電性無機粒子及び前記非導電性無機芯材が、いずれも90質量%以上がSiOであることを特徴とする請求項1又は2に記載の導電粒子。 The non-conductive inorganic particles and the non-conductive inorganic core material, the conductive particle according to claim 1 or 2 any more than 90 wt%, characterized in that a SiO 2. 前記金属めっき層が、ニッケル、銅、錫、パラジウム及び金のいずれかを含むことを特徴とする請求項1〜3いずれか一項に記載の導電粒子。   The conductive particle according to any one of claims 1 to 3, wherein the metal plating layer contains any of nickel, copper, tin, palladium and gold. 前記金属めっき層が、無電解めっきで形成されることを特徴とする請求項1〜4いずれか一項に記載の導電粒子。   The said metal plating layer is formed by electroless plating, The electrically-conductive particle as described in any one of Claims 1-4 characterized by the above-mentioned. 前記非導電性無機粒子の投影長辺aと投影短辺b、前記非導電性無機芯材の投影長辺cと投影短辺dが、a/b<3かつc/d<5かつa≧5cであることを特徴とする請求項1〜5いずれか一項に記載の導電粒子。   The projected long side a and the projected short side b of the nonconductive inorganic particle, and the projected long side c and the projected short side d of the nonconductive inorganic core material are a / b <3 and c / d <5 and a The conductive particle according to any one of claims 1 to 5, wherein ≧ 5c. 請求項1〜6のいずれか一項に記載の導電粒子を含有してなる異方性導電接着剤。   An anisotropic conductive adhesive comprising the conductive particle according to any one of claims 1 to 6.
JP2014204764A 2014-10-03 2014-10-03 Conductive particles Active JP6507551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014204764A JP6507551B2 (en) 2014-10-03 2014-10-03 Conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014204764A JP6507551B2 (en) 2014-10-03 2014-10-03 Conductive particles

Publications (2)

Publication Number Publication Date
JP2016076338A JP2016076338A (en) 2016-05-12
JP6507551B2 true JP6507551B2 (en) 2019-05-08

Family

ID=55951433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014204764A Active JP6507551B2 (en) 2014-10-03 2014-10-03 Conductive particles

Country Status (1)

Country Link
JP (1) JP6507551B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458776B1 (en) * 2016-12-21 2022-10-25 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Conductive Particles, Articles and Methods
CN108267870B (en) * 2016-12-30 2021-03-30 财团法人工业技术研究院 Copper foil composite material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083535B2 (en) * 1990-06-01 2000-09-04 積水化学工業株式会社 Conductive fine particles and conductive adhesive
JP2003109436A (en) * 2001-09-28 2003-04-11 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP4108340B2 (en) * 2002-01-23 2008-06-25 宇部日東化成株式会社 Conductive silica-based particles
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
JP2007242307A (en) * 2006-03-06 2007-09-20 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
KR101375298B1 (en) * 2011-12-20 2014-03-19 제일모직주식회사 Conductive microspheres and an anisotropic conductive film comprising the same
WO2013094636A1 (en) * 2011-12-21 2013-06-27 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
JP6034177B2 (en) * 2011-12-22 2016-11-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Also Published As

Publication number Publication date
JP2016076338A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP5151920B2 (en) Conductive particles and method for producing conductive particles
KR101261184B1 (en) Coated conductive particles and method for producing same
JP5472369B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP4640532B2 (en) Coated conductive particles
JP5472332B2 (en) Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP4640531B2 (en) Conductive particles
KR101271814B1 (en) Conductive particle
JP5549069B2 (en) Particulate conductive material for anisotropic conductive adhesive, method for producing the same, and anisotropic conductive adhesive
JP4715969B1 (en) Conductive particles
JP5589361B2 (en) Conductive particles and method for producing the same
JP6507551B2 (en) Conductive particles
JP2013251099A (en) Conductive particle and process of manufacturing the same
JP6507552B2 (en) Conductive particles
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
KR101151072B1 (en) Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
JP5549352B2 (en) Conductive particles, adhesive composition, circuit connection material, and connection structure
JP5626288B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6507551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350