JP5472369B2 - Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive - Google Patents

Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive Download PDF

Info

Publication number
JP5472369B2
JP5472369B2 JP2012101185A JP2012101185A JP5472369B2 JP 5472369 B2 JP5472369 B2 JP 5472369B2 JP 2012101185 A JP2012101185 A JP 2012101185A JP 2012101185 A JP2012101185 A JP 2012101185A JP 5472369 B2 JP5472369 B2 JP 5472369B2
Authority
JP
Japan
Prior art keywords
conductive particles
particles
layer
copper
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012101185A
Other languages
Japanese (ja)
Other versions
JP2012190806A (en
Inventor
健次 高井
憂子 永原
昭男 高橋
清 長谷川
寿茂 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012101185A priority Critical patent/JP5472369B2/en
Publication of JP2012190806A publication Critical patent/JP2012190806A/en
Application granted granted Critical
Publication of JP5472369B2 publication Critical patent/JP5472369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemically Coating (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、導電粒子、絶縁被覆導電粒子及びその製造方法並びに異方導電性接着剤に関する。   The present invention relates to conductive particles, insulating coated conductive particles, a method for producing the same, and an anisotropic conductive adhesive.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)の2種類に大別することが出来る。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting a liquid crystal driving IC on a liquid crystal display glass panel can be broadly classified into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex). In COG mounting, an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The anisotropy referred to here means conduction in the pressing direction and insulation in the non-pressing direction.

ところが、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金バンプは狭ピッチ化、狭面積化しており、そのため、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させるといった問題がある。隣接する回路電極間に導電粒子が流出すると、金バンプとガラスパネルとの間に補足される異方導電性接着剤中の導電粒子数が減少し、対抗する回路電極間の接続抵抗が上昇し、接続不良を起こすといった問題があった。   However, along with the recent high definition of liquid crystal display, gold bumps, which are circuit electrodes of liquid crystal driving ICs, have narrowed pitch and narrowed area. Therefore, a circuit in which conductive particles of anisotropic conductive adhesive are adjacent to each other. There is a problem that a short circuit occurs between the electrodes. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive captured between the gold bump and the glass panel decreases, and the connection resistance between the opposing circuit electrodes increases. There was a problem of poor connection.

そこで、これらの問題を解決する方法として、異方導電性接着剤の少なくとも片面に絶縁性の接着剤を形成することで、COF実装又はCOF実装における接合品質の低下を防ぐ方法(特許文献1)、導電粒子の全表面を絶縁性の被膜で被覆する方法(特許文献2)などが提案されている。   Therefore, as a method for solving these problems, a method for preventing deterioration in bonding quality in COF mounting or COF mounting by forming an insulating adhesive on at least one side of the anisotropic conductive adhesive (Patent Document 1). A method of covering the entire surface of the conductive particles with an insulating film (Patent Document 2) has been proposed.

また、絶縁性の子粒子を金粒子表面に被覆させる方法が提案されている(特許文献3、4)。特許文献4に記載の方法では、粒子の金表面にメルカプト基、スルフィド基、ジスルフィド基のいずれかを有する化合物で処理し、金属表面に官能基を形成する工程を設け、金属表面における強固な官能基の形成を図っている。   In addition, methods for coating the surface of gold particles with insulating child particles have been proposed (Patent Documents 3 and 4). In the method described in Patent Document 4, a process of forming a functional group on a metal surface by treating with a compound having either a mercapto group, a sulfide group, or a disulfide group on the gold surface of the particle is provided. The formation of the group is aimed at.

また、導電粒子の導電性を向上させる試みとして、樹脂微粒子上に銅/金めっきを行なう方法がある(特許文献5)。また、銅を50重量%以上含む金属層の上にニッケルと金で被覆された導電粒子(特許文献6)、金属被覆相中の金の含有量が90重量%以上の金属被覆粒子(特許文献7)などが知られている。   Further, as an attempt to improve the conductivity of conductive particles, there is a method of performing copper / gold plating on resin fine particles (Patent Document 5). In addition, conductive particles coated with nickel and gold on a metal layer containing 50% by weight or more of copper (Patent Document 6), metal coated particles having a gold content in the metal-coated phase of 90% by weight or more (Patent Document) 7) is known.

特開平8−279371号公報JP-A-8-279371 特開平8−335407号公報JP-A-8-335407 特開平4−259766号公報JP-A-4-259766 国際公開WO2003/02955号公報International Publication WO2003 / 02955 特開2006−28438号公報JP 2006-28438 A 特開2001−155539号公報JP 2001-155539 A 特開2005−36265号公報JP 2005-36265 A

しかしながら、回路接続部材の片面に絶縁性の接着剤を形成する方法において、バンプ面積が3000μm未満であり、安定した接続抵抗を得るために導電粒子を増やす場合には、隣り合う電極間の絶縁性について未だ改良の余地がある。更に、導電粒子の全表面を絶縁性の被膜で被覆する方法は、絶縁性が高いものの導電性が低くなりやすいといった課題がある。 However, in the method of forming an insulating adhesive on one side of the circuit connection member, when the bump area is less than 3000 μm 2 and the conductive particles are increased in order to obtain a stable connection resistance, the insulation between adjacent electrodes There is still room for improvement in sex. Furthermore, the method of covering the entire surface of the conductive particles with an insulating coating has a problem that the conductivity tends to be low although the insulating property is high.

金属被覆相中の金の含有量が90重量%以上の金属被覆粒子は信頼性の面では良好であるが、コストが高く、近年は金含有量を下げる傾向であり実用的とは言い難い。銅めっき粒子は導電性、コストの上で優れてはいるが、マイグレーションしやすいため耐吸湿性の観点から問題がある。そこで両者(金と銅)の短所を補う為の試みがなされているが何れも完全ではない。   Metal-coated particles having a gold content of 90% by weight or more in the metal-coated phase are good in terms of reliability, but cost is high, and in recent years, the gold content tends to be lowered and is hardly practical. Although the copper plating particles are excellent in terms of conductivity and cost, there is a problem from the viewpoint of moisture absorption resistance because they easily migrate. Attempts have been made to compensate for the shortcomings of both (gold and copper), but none of them are perfect.

特許文献7にも指摘されているように、銅は金中にマイグレーションするという問題がある。特に酸性の樹脂に配合した場合、吸湿した場合はマイグレーションしやすく、金は銅のストッパーとして不十分である。   As pointed out in Patent Document 7, there is a problem that copper migrates into gold. In particular, when blended with an acidic resin, migration easily occurs when moisture is absorbed, and gold is insufficient as a copper stopper.

Cu/Ni/Au粒子やCu/Ni粒子は耐マイグレーション性という観点ではCu/Au粒子より優れている。しかしながら、銅のストッパー層にニッケルを用いると、その後金属上に絶縁層を形成する際不具合を生じることが分かってきた。   Cu / Ni / Au particles and Cu / Ni particles are superior to Cu / Au particles in terms of migration resistance. However, it has been found that the use of nickel for the copper stopper layer causes problems when subsequently forming an insulating layer on the metal.

絶縁性の子粒子をCu/Ni/Au粒子表面に被覆させる方法においては、ニッケル表面を金が完全に覆っていることが望ましい。しかしながら金の平均膜厚が薄い場合(例えば300Å以下の場合)、金が金の内側(通常はニッケル)の金属を完全に被覆することは難しい。近年コスト低減の観点から、金膜厚を低減する傾向にある。貴金属でないニッケルは酸化皮膜を形成する為、ニッケルが露出していると絶縁被膜形成が困難になる。絶縁被覆工程を強固に行なう為にはストッパー層は貴金属であることが望ましい。   In the method of coating the surface of the Cu / Ni / Au particles with the insulating child particles, it is desirable that the nickel surface is completely covered with gold. However, when the average film thickness of gold is thin (for example, 300 mm or less), it is difficult for gold to completely cover the metal inside the gold (usually nickel). In recent years, from the viewpoint of cost reduction, the gold film thickness tends to be reduced. Since nickel which is not a noble metal forms an oxide film, it is difficult to form an insulating film if nickel is exposed. In order to perform the insulating coating process firmly, the stopper layer is preferably a noble metal.

また、ニッケルをストッパー層に用いるとめっき工程で酸化しやすいのでめっき外観に不具合をきたすことも多く、やはりストッパー層は貴金属であることが望ましい。   Further, when nickel is used for the stopper layer, it is likely to be oxidized in the plating process, which often causes defects in the plating appearance, and it is also desirable that the stopper layer is a noble metal.

また、絶縁性の子粒子を導電粒子表面に被覆させる方法においては、子粒子と導電粒子の接着性の問題から、アクリル等樹脂製の子粒子を用いる必要がある。その場合、樹脂製の子粒子は熱圧着時溶融することで導通をとることになる。従って、導電粒子の全表面を絶縁性の被膜で被覆する方法と同様導電性が低くなりやすいといった課題があることが分かってきた。   Further, in the method of covering the surface of the conductive particles with the insulating child particles, it is necessary to use the child particles made of resin such as acrylic because of the problem of adhesion between the child particles and the conductive particles. In that case, the resin-made child particles become conductive by melting at the time of thermocompression bonding. Therefore, it has been found that there is a problem that the conductivity tends to be low as in the method of covering the entire surface of the conductive particles with an insulating coating.

上記理由により、絶縁性の子粒子は無機酸化物等比較的高硬度で溶融温度が高いものが適している。例えば特許文献4に記載の方法では、シリカ表面を3−イソシアネートプロピルトリエトキシシランで処理し、表面にイソシアネート基を有するシリカと表面にアミノ基を有する導電粒子を反応させている。しかしながら、粒子径が500nm以下の粒子表面を官能基で修飾するのは一般的には難しいとされており、官能基で修飾させた後に行う遠心分離や濾過の際にシリカ等の無機酸化物が凝集してしまう不具合が発生しやすい。さらに、特許文献4に記載の方法では、絶縁性の子粒子の被覆率をコントロールするのが難しい。   For the above reason, the insulating child particles are suitable, for example, inorganic oxides having relatively high hardness and high melting temperature. For example, in the method described in Patent Document 4, the silica surface is treated with 3-isocyanatopropyltriethoxysilane, and the silica having an isocyanate group on the surface is reacted with the conductive particles having an amino group on the surface. However, it is generally considered difficult to modify the surface of particles having a particle diameter of 500 nm or less with a functional group, and inorganic oxides such as silica are used during centrifugation or filtration after modification with a functional group. The problem of agglomeration tends to occur. Furthermore, in the method described in Patent Document 4, it is difficult to control the coverage of the insulating child particles.

本発明は、このような実情に鑑みてなされたものであり、その目的は、導電性及び絶縁性に優れた高信頼性の異方導電性フィルムを実現可能な導電粒子、該導電粒子を用いた絶縁被覆導電粒子及びその製造方法、並びに該絶縁被覆導電粒子を用いた異方導電性接着剤を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to use conductive particles capable of realizing a highly reliable anisotropic conductive film excellent in conductivity and insulation, and use of the conductive particles. An object of the present invention is to provide an insulating coated conductive particle, a method for producing the same, and an anisotropic conductive adhesive using the insulating coated conductive particle.

上記課題を解決するために、本発明は、樹脂粒子と、該樹脂粒子の表面に設けられた金属層と、を備え、金属層が、樹脂粒子に近い順に、銅又は銅合金を含有する第1の層と、パラジウムを含有する第2の層とが積層された構造を有することを特徴とする導電粒子を提供する。   In order to solve the above-mentioned problem, the present invention comprises resin particles and a metal layer provided on the surface of the resin particles, and the metal layer contains copper or a copper alloy in the order closer to the resin particles. Provided is a conductive particle having a structure in which one layer and a second layer containing palladium are laminated.

また、本発明は、樹脂粒子と、該樹脂粒子の表面に設けられた金属層と、を備え、金属層が、樹脂粒子に近い順に、銅又は銅合金を含有する第1の層と、パラジウムを含有する第2の層と、金を含む第3の層とが積層された構造を有することを特徴とする導電粒子を提供する。   The present invention also includes resin particles and a metal layer provided on the surface of the resin particles, wherein the metal layer is in the order closer to the resin particles, the first layer containing copper or a copper alloy, and palladium. Provided is a conductive particle characterized in that it has a structure in which a second layer containing bismuth and a third layer containing gold are laminated.

上記第2の層は還元めっき型のパラジウム層であることが好ましく、上記第3の層は還元めっき型の金層であることが好ましい。   The second layer is preferably a reduction plating type palladium layer, and the third layer is preferably a reduction plating type gold layer.

また、上記第1の層の厚みは300Å以上であることが好ましく、上記第2の層の厚さは100Å以上であることが好ましい。   The thickness of the first layer is preferably 300 mm or more, and the thickness of the second layer is preferably 100 mm or more.

また、上記金属層における銅/(金+パラジウム)比は0.4以下であることが好ましい。   The copper / (gold + palladium) ratio in the metal layer is preferably 0.4 or less.

また、本発明の導電粒子の平均粒径は2〜4μmであることが好ましい。   Moreover, it is preferable that the average particle diameter of the electroconductive particle of this invention is 2-4 micrometers.

また、本発明は、上記本発明の導電粒子の金属層表面の少なくとも一部が絶縁性子粒子により被覆されてなることを特徴とする絶縁被覆導電粒子を提供する。   The present invention also provides insulating coated conductive particles, wherein at least a part of the surface of the metal layer of the conductive particles of the present invention is coated with insulating particles.

また、本発明は、上記本発明の導電粒子の金属層表面の少なくとも一部が高分子電解質により被覆されてなり、高分子電解質により被覆された金属層の表面が絶縁性子粒子により更に被覆されてなることを特徴とする絶縁被覆導電粒子を提供する。   Further, in the present invention, at least a part of the metal layer surface of the conductive particle of the present invention is coated with a polymer electrolyte, and the surface of the metal layer coated with the polymer electrolyte is further coated with insulator particles. Insulating coated conductive particles are provided.

上記高分子電解質はポリアミン類であることが好ましく、ポリエチレンイミンであることが更に好ましい。   The polymer electrolyte is preferably a polyamine, and more preferably polyethyleneimine.

導電粒子の金属表面は、高分子電解質又は絶縁性子粒子による被覆の前に、メルカプト基、スルフィド基、ジスルフィド基のいずれかの官能基を有する化合物で処理してなることが好ましい。   The metal surface of the conductive particles is preferably treated with a compound having a functional group of mercapto group, sulfide group, or disulfide group before coating with the polymer electrolyte or insulator particles.

また、本発明は、上記本発明の導電粒子の金属層表面をメルカプト基、スルフィド基及びジスルフィド基から選ばれる少なくとも1種の官能基を有する化合物で処理し、金属層表面に上記官能基を形成する第1の工程と、
第1の工程で処理された導電粒子の金属層表面を絶縁性子粒子で処理し、金属層表面の少なくとも一部を絶縁性子粒子で被覆する第2の工程と、
を備えることを特徴とする絶縁被覆導電粒子の製造方法を提供する。
In the present invention, the surface of the metal layer of the conductive particle of the present invention is treated with a compound having at least one functional group selected from a mercapto group, a sulfide group and a disulfide group, thereby forming the functional group on the surface of the metal layer. A first step of:
A second step of treating the metal layer surface of the conductive particles treated in the first step with the insulator particles and coating at least a part of the metal layer surface with the insulator particles;
A method for producing insulation-coated conductive particles is provided.

本発明の絶縁被覆導電粒子は、第1の工程と第2の工程との間に、前記第1の工程で処理された前記導電粒子の表面を高分子電解質で処理し、前記金属層表面の少なくとも一部を前記高分子電解質で被覆する第3の工程を更に備えることが好ましい。   Insulating coated conductive particles of the present invention are obtained by treating the surface of the conductive particles treated in the first step with a polymer electrolyte between the first step and the second step. It is preferable to further include a third step of covering at least a part with the polymer electrolyte.

また、上記製造方法に用いられる高分子電解質はポリアミン類であることが好ましく、ポリエチレンイミンであることが更に好ましい。   The polymer electrolyte used in the above production method is preferably polyamines, and more preferably polyethyleneimine.

上記第1の工程に供される導電粒子は、金属層表面に水酸基、カルボキシル基、アルコキシル基及びアルコキシカルボニル基から選ばれる少なくとも1種の官能基を有することが好ましい。   The conductive particles used in the first step preferably have at least one functional group selected from a hydroxyl group, a carboxyl group, an alkoxyl group, and an alkoxycarbonyl group on the surface of the metal layer.

また、上記製造方法に用いられる絶縁性子粒子は無機酸化物であることが好ましく、シリカ粒子であることが更に好ましい。   Insulator particles used in the above production method are preferably inorganic oxides, and more preferably silica particles.

また、本発明は、上記本発明の絶縁被覆導電粒子を接着剤に分散してなる異方導電性接着剤を提供する。   The present invention also provides an anisotropic conductive adhesive obtained by dispersing the insulating coated conductive particles of the present invention in an adhesive.

本発明によれば、導電性及び絶縁性に優れた高信頼性の異方導電性フィルムを実現可能な導電粒子、該導電粒子を用いた絶縁被覆導電粒子及びその製造方法、並びに該絶縁被覆導電粒子を用いた異方導電性接着剤を提供することが可能となる。   According to the present invention, conductive particles capable of realizing a highly reliable anisotropic conductive film excellent in conductivity and insulation, insulating coated conductive particles using the conductive particles, a method for producing the same, and the insulating coated conductive An anisotropic conductive adhesive using particles can be provided.

異方性導電接着剤を用いた接続構造体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the connection structure using an anisotropic conductive adhesive.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の導電粒子は、樹脂粒子と、該樹脂粒子の表面に設けられた金属層と、を備えるものであり、金属層は、樹脂粒子に近い順に、銅又は銅合金を含有する第1の層と、パラジウムを含有する第2の層とが積層された構造を有する。導電粒子の平均粒径は基板の電極の最小の間隔よりも小さいことが必要で、電極の高さばらつきがある場合、高さばらつきよりも大きいことが好ましい。上記概念により1〜10μmの範囲が好ましく、2〜4μmの範囲がより好ましい。   The conductive particles of the present invention include resin particles and a metal layer provided on the surface of the resin particles, and the metal layer contains copper or a copper alloy in the order closer to the resin particles. It has a structure in which a layer and a second layer containing palladium are laminated. The average particle size of the conductive particles needs to be smaller than the minimum interval between the electrodes of the substrate, and when there is a variation in the height of the electrodes, it is preferable that the average particle size is larger than the variation in height. The range of 1-10 micrometers is preferable by the said concept, and the range of 2-4 micrometers is more preferable.

導電粒子のコアを構成する樹脂粒子(「有機コア粒子」ともいう。)は特に限定されないが、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂等が挙げられる。   Resin particles constituting the core of the conductive particles (also referred to as “organic core particles”) are not particularly limited, but acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene and polybutadiene, etc. Is mentioned.

また、樹脂粒子の表面に設けられる金属層のうち、樹脂粒子に近い側に設けられる第1の層は銅又は銅合金を含んで構成される。銅は、柔軟性や延性があり、圧縮後も金属割れ等が発生し難く、また、無機微粒子等を絶縁被覆したときに無機微粒子が銅にめり込むことで導電性を発現しやすい。更に、銅はコスト、めっき液の扱いやすさ等の点でも優れている。また、銅合金としては銅とニッケル等との合金を用いることができる。銅合金は銅と比較して樹脂粒子に対する接着強度の点で優れている。銅合金を用いる場合、導電性の観点から、銅の含有量は70重量%以上であることが好ましく、90〜100重量%の範囲であることが更に好ましい。   Moreover, the 1st layer provided in the side close | similar to a resin particle among the metal layers provided in the surface of a resin particle is comprised including copper or a copper alloy. Copper has flexibility and ductility, and does not easily cause metal cracking or the like even after compression. In addition, when the inorganic fine particles or the like are coated with insulation, the inorganic fine particles are likely to be embedded in the copper, thereby easily exhibiting conductivity. Furthermore, copper is excellent in terms of cost, ease of handling of the plating solution, and the like. As the copper alloy, an alloy of copper and nickel can be used. Copper alloys are superior in terms of adhesive strength to resin particles compared to copper. When using a copper alloy, from the viewpoint of conductivity, the copper content is preferably 70% by weight or more, and more preferably in the range of 90 to 100% by weight.

第1の層の厚みは、300〜2000Åの範囲が好ましく、300〜1000Åの範囲がより好ましい。第1の層の厚みが300Å未満であると導電性が低下する傾向にあり、他方、1000Åを超えるとめっき時に凝集しやすくなる。   The thickness of the first layer is preferably in the range of 300 to 2000 mm, and more preferably in the range of 300 to 1000 mm. If the thickness of the first layer is less than 300 mm, the conductivity tends to decrease. On the other hand, if the thickness exceeds 1000 mm, it tends to aggregate during plating.

第1の層は、例えば銅めっき工程を経て形成することができる。銅めっきの工程としては、まず銅めっきを行う前にパラジウム触媒を付与し、その後無電解銅めっきを行うのが良い。   The first layer can be formed through a copper plating process, for example. As a copper plating process, it is preferable to first apply a palladium catalyst before performing copper plating, and then perform electroless copper plating.

無電解銅めっきの組成としては、(i)硫酸銅などの水溶性銅塩、(ii)ホルマリン等の還元剤、(iii)ロッシェル塩、EDTA等の錯化剤、(iv)水酸化アルカリ等のpH調整剤を加えたものが好ましい。   The composition of the electroless copper plating includes (i) a water-soluble copper salt such as copper sulfate, (ii) a reducing agent such as formalin, (iii) a complexing agent such as Rochelle salt, EDTA, (iv) an alkali hydroxide, etc. What added the pH adjuster of is preferable.

また、次亜りん酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の銅還元剤を用いてもよい。   Further, a copper reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine may be used.

また、クエン酸、酒石酸、ヒドロキシ酢酸、リンゴ酸、乳酸、グルコン酸、グリシン等のアミノ酸、エチレンジアミン、アルキルアミン等のアミン類、その他のアンモニウム、EDTA、ピロリン酸等の銅錯化剤を用いてもよい。   Also, amino acids such as citric acid, tartaric acid, hydroxyacetic acid, malic acid, lactic acid, gluconic acid and glycine, amines such as ethylenediamine and alkylamine, and other copper complexing agents such as ammonium, EDTA and pyrophosphoric acid may be used. Good.

上記めっき液に硫酸ニッケル等の他の金属イオン源を用いることで合金めっきを行なうこともできる。特に微量のニッケルが入ると樹脂―金属間結合強度が増すので、状況に応じてニッケルを添加するのが好ましい。   Alloy plating can also be performed by using another metal ion source such as nickel sulfate in the plating solution. In particular, if a very small amount of nickel is added, the bond strength between the resin and the metal increases, so it is preferable to add nickel depending on the situation.

無電解銅めっき終了後の水洗は、短時間に効率よく行うことが望ましい。水洗時間が短いほど、銅表面に酸化皮膜が出来にくい為、後のめっきが有利になる。   It is desirable that the washing with water after the electroless copper plating is completed efficiently in a short time. The shorter the washing time, the more difficult it is to form an oxide film on the copper surface.

上記第1の層上には、パラジウムを含む第2の層が形成される。第2の層は銅のマイグレーションストップ層として機能する。第2の層の厚みは100Å以上1000Å以下が好ましく、100Å以上300Å以下が更に好ましい。第2の層の厚みが100Å未満であると、第2の層をめっき等により形成した場合に第2の層がまばらになり、銅のマイグレーションストップ層としての効果が低下する傾向にある。一方、第2の層の厚みが1000Åを超えると製造コストが増大する傾向にある。   A second layer containing palladium is formed on the first layer. The second layer functions as a copper migration stop layer. The thickness of the second layer is preferably from 100 to 1000 mm, and more preferably from 100 to 300 mm. If the thickness of the second layer is less than 100 mm, the second layer becomes sparse when the second layer is formed by plating or the like, and the effect as a copper migration stop layer tends to be reduced. On the other hand, when the thickness of the second layer exceeds 1000 mm, the manufacturing cost tends to increase.

第2の層は、例えばパラジウムめっき工程を経て形成することができ、第2の層は無電解めっき型のパラジウム層であることが好ましい。無電解パラジウムめっきは、置換型(還元剤の入っていないタイプ)、還元型(還元剤の入ったタイプ)のいずれを用いても良い。このような無電解パラジウムめっきの例としては、還元型ではAPP(石原薬品工業、商品名)等があり、置換型ではMCA(株式会社ワールドメタル製、商品名)等がある。   The second layer can be formed, for example, through a palladium plating step, and the second layer is preferably an electroless plating type palladium layer. For electroless palladium plating, either a substitution type (a type that does not contain a reducing agent) or a reduction type (a type that contains a reducing agent) may be used. Examples of such electroless palladium plating include APP (Ishihara Pharmaceutical Co., Ltd., trade name) for the reduction type, and MCA (trade name, manufactured by World Metal Co., Ltd.) for the replacement type.

置換型と還元型を比較した場合、還元型はボイドが少なくなりやすいため特に好ましい。置換めっきは内側の金属を溶解させながら析出するため、還元型に比べて被覆面積が上がりにくい。   When the substitution type and the reduction type are compared, the reduction type is particularly preferable because voids tend to decrease. Since displacement plating precipitates while dissolving the inner metal, the coating area is less likely to increase compared to the reduced type.

第2の層上には、金を含む第3の層が設けられる。かかる第3の層を設けることによって、導電粒子の表面抵抗を下げ、特性を向上させることが出来る。第3の層の厚みは、導電粒子の表面抵抗の低減効果と製造コストとのバランスの観点から、0Å以上300Å以下が好ましいが、300Å以上であっても特性上は問題ない。   A third layer containing gold is provided on the second layer. By providing such a third layer, the surface resistance of the conductive particles can be lowered and the characteristics can be improved. The thickness of the third layer is preferably 0 mm or more and 300 mm or less from the viewpoint of the balance between the effect of reducing the surface resistance of the conductive particles and the manufacturing cost, but even if it is 300 mm or more, there is no problem in characteristics.

第3の層は、例えば金めっき工程を経て形成することができる。金めっきはHGS−100(日立化成工業、商品名)のような置換型金めっきやHGS−2000(日立化成工業、商品名)のような還元型無電解銅めっきを用いることができる。   The third layer can be formed through a gold plating process, for example. As the gold plating, substitutional gold plating such as HGS-100 (Hitachi Chemical Industry, trade name) or reduction-type electroless copper plating such as HGS-2000 (Hitachi Chemical Industry, trade name) can be used.

置換型と還元型を比較した場合、還元型はボイドが少なくなりやすいため特に好ましい。置換めっきは内側の金属を溶解させながら析出するため、還元型に比べて被覆面積が上がりにくい。   When the substitution type and the reduction type are compared, the reduction type is particularly preferable because voids tend to decrease. Since displacement plating precipitates while dissolving the inner metal, the coating area is less likely to increase compared to the reduced type.

本発明の導電粒子においては、上述の通り、樹脂粒子の外側に300Å以上の厚みの銅めっき、更にその外側を100Å以上の厚みのパラジウムめっきが覆い、適宜金めっきで覆った構造をとり得る。ここでいう厚みはサンプルをフッ酸等に溶解後、原子吸光やICP等で測定した値を厚み換算したものであり、厚みの平均値である。均一な厚みの無電解銅めっきを300Å程度の厚みで行なうに際し、厚みの直接的な測定に変わる指標として、XPS(X−ray Photoelectron Spectroscopy,X線光電子分光装置(ESCAともいう。))により特定の元素比を測定した。100Å以下のパラジウム被覆銅めっき粒子の銅/(パラジウム+金)比(パラジウム+金の比率を1としたときの銅の比率)をXPSにより測定したところ、何れも0.4を超える値を示すことが分かった。したがって、本発明においては、銅/(パラジウム+金)比が0.4以下であることが好ましい。尚、ここで比を測定する理由としては、空気中でのXPSは金属上の異物の影響を受けやすい為である。ここでいう銅/(パラジウム+金)はあくまでもXPSによる測定結果である。XPSによる測定結果も測定装置等により厳密には異なる為、本願においては表1の方法での測定方法に従うものとする。   As described above, the conductive particles of the present invention may have a structure in which the outer side of the resin particles is covered with copper plating having a thickness of 300 mm or more, and the outer side thereof is covered with palladium plating having a thickness of 100 mm or more, and appropriately covered with gold plating. The thickness referred to here is an average value of thicknesses obtained by dissolving the sample in hydrofluoric acid or the like and then converting the value measured by atomic absorption, ICP or the like into thickness. When electroless copper plating with a uniform thickness is performed at a thickness of about 300 mm, it is specified by XPS (X-ray Photoelectron Spectroscopy, also referred to as ESCA) as an index that changes to direct thickness measurement. The element ratio of was measured. When the copper / (palladium + gold) ratio (copper ratio when the ratio of palladium + gold is 1) of the palladium-coated copper-plated particles of 100% or less was measured by XPS, all showed values exceeding 0.4. I understood that. Therefore, in the present invention, the copper / (palladium + gold) ratio is preferably 0.4 or less. Here, the reason for measuring the ratio is that XPS in air is easily affected by foreign matters on the metal. Copper / (palladium + gold) here is a measurement result by XPS to the last. Since the measurement result by XPS is also strictly different depending on the measurement device or the like, in this application, the measurement method according to the method of Table 1 is used.

Figure 0005472369
Figure 0005472369

銅/(パラジウム+金)比を下げる方法としては、パラジウムや金の膜厚を上げる以外にも以下の方法が考えられる。   As a method for decreasing the copper / (palladium + gold) ratio, the following methods can be considered in addition to increasing the film thickness of palladium or gold.

めっき後の水洗時間を短くすること(具体的には常温で120秒以内)や、濾過時間を短くすることによって、銅/(パラジウム+金)比を下げることができる。また、パラジウム又は金めっき後にEDTAやシアンを含む洗浄液で洗浄することもできる。   The copper / (palladium + gold) ratio can be lowered by shortening the washing time after plating (specifically, within 120 seconds at room temperature) or shortening the filtration time. Moreover, it can also wash | clean with the washing | cleaning liquid containing EDTA and cyan after palladium or gold plating.

また、プラズマや他の物理的手法により銅を除去する工程も可能である。   A step of removing copper by plasma or other physical methods is also possible.

以上のようなプロセスを経ることで、銅/(パラジウム+金)を0.4以下とすることができる。   By passing through the above processes, copper / (palladium + gold) can be made 0.4 or less.

以上のようにして作製した銅/パラジウム粒子や銅/パラジウム/金粒子はそのまま異方導電性接着剤の構成材料として用いることもできる。この場合も従来の銅含有粒子に比してマイグレーション性が向上する。また従来のNi/Au粒子に比べて導電性が向上する。   The copper / palladium particles and copper / palladium / gold particles produced as described above can be used as a constituent material of the anisotropic conductive adhesive as they are. Also in this case, the migration property is improved as compared with the conventional copper-containing particles. Further, the conductivity is improved as compared with the conventional Ni / Au particles.

次に、本発明の絶縁被覆導電粒子について説明する。本発明の被覆粒子は上記本発明の導電粒子の金属層表面の少なくとも一部が絶縁性子粒子により被覆されてなるものである。COG用の異方導電性接着剤は近年10μmレベルの狭ピッチでの絶縁信頼性が求められているので、更に絶縁信頼性を向上させるためには銅/パラジウム粒子や銅/パラジウム/金粒子に絶縁被覆を施す必要がある。本発明の絶縁被覆導電粒子によればかかる要求特性を有効に実現することができる。   Next, the insulating coated conductive particles of the present invention will be described. The coated particles of the present invention are those in which at least a part of the metal layer surface of the conductive particles of the present invention is coated with insulator particles. In recent years, anisotropic conductive adhesives for COG have been required to have insulation reliability at a narrow pitch of 10 μm, so in order to further improve insulation reliability, copper / palladium particles and copper / palladium / gold particles are used. It is necessary to apply insulation coating. According to the insulating coated conductive particles of the present invention, such required characteristics can be effectively realized.

導電粒子に被覆する絶縁性子粒子としては無機酸化物微粒子が好ましい。なお、有機微粒子を用いると、異方導電性接着剤の作製工程で絶縁性子粒子が変形してしまい、特性が変化しやすい。   As the insulator particles coated on the conductive particles, inorganic oxide fine particles are preferable. Note that when organic fine particles are used, the insulator particles are deformed in the manufacturing process of the anisotropic conductive adhesive, and the characteristics are easily changed.

無機酸化物微粒子としては、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム、マグネシウムの各元素を含む酸化物が好ましく、これらは単独で又は二種類以上を混合して使用することができる。無機酸化物の中でも水分散コロイダルシリカ(SiO)は表面に水酸基を有する為、導電粒子との結合性に優れる、更に粒子径を揃えやすい、安価であるといった特徴を有するため特に好適である。このような無機酸化物微粒子の市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業社製)、クオートロンPLシリーズ(扶桑化学工業社製)等が挙げられる。絶縁信頼性の上では、分散溶液中のアルカリ金属イオン及び、アルカリ土類金属イオン濃度が100ppm以下であることが望ましく、好ましくは、金属アルコキシドの加水分解反応、いわゆるゾルゲル法により製造される無機酸化物微粒子が適する。 As the inorganic oxide fine particles, oxides containing each element of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium are preferable, and these may be used alone or in combination of two or more. it can. Among inorganic oxides, water-dispersed colloidal silica (SiO 2 ) is particularly suitable because it has a hydroxyl group on the surface, and thus has excellent properties such as excellent bonding with conductive particles, easy alignment of particle diameters, and low cost. Examples of such commercially available inorganic oxide fine particles include Snowtex, Snowtex UP (manufactured by Nissan Chemical Industries), Quatron PL series (manufactured by Fuso Chemical Industries), and the like. In terms of insulation reliability, the concentration of alkali metal ions and alkaline earth metal ions in the dispersion solution is desirably 100 ppm or less, preferably an inorganic oxidation produced by a hydrolysis reaction of metal alkoxide, a so-called sol-gel method. Fine particles are suitable.

無機酸化物微粒子の大きさは、BET法による比表面積換算法またはX線小角散乱法で測定された粒子径が、20〜500nmであることが好ましい。粒子径が20nm未満であると、導電粒子に吸着された無機微粒子が絶縁膜として作用せずに、一部にショートが発生しやすくなる傾向にある。一方、500nmを超えると、接続の加圧方向の導電性が低下する傾向にある。   As for the size of the inorganic oxide fine particles, the particle diameter measured by the specific surface area conversion method by the BET method or the X-ray small angle scattering method is preferably 20 to 500 nm. If the particle diameter is less than 20 nm, the inorganic fine particles adsorbed on the conductive particles do not act as an insulating film, and a short circuit tends to occur in part. On the other hand, when it exceeds 500 nm, the conductivity in the pressurizing direction of the connection tends to be lowered.

無機酸化物表面の水酸基はシランカップリング剤等でアミノ基やカルボキシル基、エポキシ基に変性することが可能であるが、無機酸化物の粒子径が500nm以下の場合、困難である。従って、官能基の変性を行わずに導電粒子に被覆することが望ましい。   The hydroxyl group on the surface of the inorganic oxide can be modified to an amino group, a carboxyl group or an epoxy group with a silane coupling agent or the like, but it is difficult when the particle size of the inorganic oxide is 500 nm or less. Therefore, it is desirable to coat the conductive particles without modifying the functional group.

一般的に水酸基は水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基と強固な結合を形成することが可能である。水酸基とこれら官能基の結合の様式としては、脱水縮合による共有結合や水素結合が挙げられる。従って、導電粒子表面にこれらの官能基を形成すると良い。   In general, a hydroxyl group can form a strong bond with a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group. Examples of the mode of bonding between the hydroxyl group and these functional groups include covalent bonding by dehydration condensation and hydrogen bonding. Therefore, these functional groups are preferably formed on the surface of the conductive particles.

導電粒子表面が金やパラジウム表面を有する場合、金に対して配位結合を形成するメルカプト基、スルフィド基、ジスルフィド基のいずれかを有する化合物で金表面に水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基を形成すると良い。具体的には、メルカプト酢酸、2−メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン、システイン等が挙げられる。金表面の銅/(パラジウム+金)比が0.4以下だと、導電粒子表面上に強固に官能基を形成することができる。   When the conductive particle surface has a gold or palladium surface, it is a compound having any of a mercapto group, sulfide group, or disulfide group that forms a coordinate bond with gold, and has a hydroxyl group, carboxyl group, alkoxyl group, alkoxycarbonyl on the gold surface. It is good to form a group. Specific examples include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin, and cysteine. When the copper / (palladium + gold) ratio on the gold surface is 0.4 or less, the functional group can be firmly formed on the surface of the conductive particles.

金、パラジウム、銅といった貴金属はチオールと反応しやすく、ニッケルのような卑金属はチオールと反応し難い。従って、本発明の銅/パラジウム粒子や銅/パラジウム/金粒子は、従来型のニッケル/金粒子に比べてチオールと反応しやすい。特にニッケル/金粒子は金の厚みが300Å以下だと粒子表面のニッケル割合が高くなる傾向がある。   Precious metals such as gold, palladium, and copper easily react with thiols, and base metals such as nickel hardly react with thiols. Therefore, the copper / palladium particles and copper / palladium / gold particles of the present invention are more likely to react with thiols than conventional nickel / gold particles. In particular, nickel / gold particles tend to have a high nickel ratio on the particle surface when the gold thickness is 300 mm or less.

金表面に上記化合物を処理する方法としては特に限定しないが、メタノールやエタノール等の有機溶媒中にメルカプト酢酸等の化合物を10〜100mmol/l程度分散し、その中に本発明の銅/パラジウム粒子や銅/パラジウム/金粒子を分散させる。   The method for treating the above compound on the gold surface is not particularly limited, but a compound such as mercaptoacetic acid is dispersed in an amount of about 10 to 100 mmol / l in an organic solvent such as methanol or ethanol, and the copper / palladium particles of the present invention are dispersed therein. Disperse copper / palladium / gold particles.

次に官能基を有する導電粒子表面に無機酸化物を被覆するのであるが、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基を有する導電粒子の表面電位(ゼータ電位)は通常(pHが中性領域であれば)マイナスである。一方で水酸基を有する無機酸化物の表面電位も通常マイナスである。表面電位がマイナスの粒子の周囲に表面電位がマイナスの粒子を被覆するのは難しい。   Next, the surface of the conductive particles having a functional group is coated with an inorganic oxide. The surface potential (zeta potential) of the conductive particles having a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group is usually (pH is in a neutral region). If so) negative. On the other hand, the surface potential of an inorganic oxide having a hydroxyl group is usually negative. It is difficult to coat particles having a negative surface potential around particles having a negative surface potential.

そこで、高分子電解質と無機酸化物を交互に積層する方法が好ましい。より具体的な製造方法としては官能基を有する導電粒子を、(1)高分子電解質溶液に分散し、導電粒子の表面に高分子電解質を吸着させた後、リンスする工程、(2)導電粒子を無機酸化物微粒子の分散溶液に分散し、導電粒子の表面に無機微粒子を吸着させた後、リンスする工程を行うことで表面が高分子電解質と無機酸化物微粒子とが積層された絶縁性被覆膜で皮膜された微粒子を製造できる。このような方法は、交互積層法(Layer−by−Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films, 210/211, p831(1992))。この方法では、正電荷を有するポリマー電解質(ポリカチオン)と負電荷を有するポリマー電解質(ポリアニオン)の水溶液に、基材を交互に浸漬することで基板上に静電的引力によって吸着したポリカチオンとポリアニオンの組が積層して複合膜(交互積層膜)が得られるものである。   Therefore, a method of alternately laminating a polymer electrolyte and an inorganic oxide is preferable. As a more specific production method, conductive particles having a functional group are (1) dispersed in a polymer electrolyte solution, the polymer electrolyte is adsorbed on the surface of the conductive particles, and then rinsed; (2) conductive particles Is dispersed in a dispersion solution of inorganic oxide fine particles, and after the inorganic fine particles are adsorbed on the surface of the conductive particles, a rinsing process is performed, so that the surface is insulated with a polymer electrolyte and inorganic oxide fine particles laminated. Fine particles coated with a coating can be produced. Such a method is called an alternating lamination method (Layer-by-Layer assembly). The alternate lamination method is described in G.H. This is a method of forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, p831 (1992)). In this method, a polycation adsorbed on a substrate by electrostatic attraction by alternately immersing the base material in an aqueous solution of a polymer electrolyte having a positive charge (polycation) and a polymer electrolyte having a negative charge (polyanion). A combination of polyanions is laminated to obtain a composite film (alternate laminated film).

交互積層法では、静電的な引力によって、基材上に形成された材料の電荷と、溶液中の反対電荷を有する材料が引き合うことにより膜成長するので、吸着が進行して電荷の中和が起こるとそれ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することはない。Lvovらは交互積層法を、微粒子に応用し、シリカやチタニア、セリアの各微粒子分散液を用いて、微粒子の表面電荷と反対電荷を有する高分子電解質を交互積層法で積層する方法を報告している(Langmuir、Vol.13、(1997)p6195−6203)。この方法を用いると、負の表面電荷を有するシリカの微粒子とその反対電荷を持つポリカチオンであるポリジアリルジメチルアンモニウムクロライド(PDDA)またはポリエチレンイミン(PEI)などとを交互に積層することで、シリカ微粒子と高分子電解質が交互に積層された微粒子積層薄膜を形成することが可能である。   In the alternating layering method, the film is grown by attracting the charge of the material formed on the substrate and the material having the opposite charge in the solution by electrostatic attraction, so that the adsorption proceeds and the charge is neutralized. When this occurs, no further adsorption occurs. Therefore, when reaching a certain saturation point, the film thickness does not increase any more. Lvov et al. Applied the alternate lamination method to fine particles and reported a method of laminating a polymer electrolyte having a charge opposite to the surface charge of the fine particles by using the fine particle dispersions of silica, titania and ceria. (Langmuir, Vol. 13, (1997) p6195-6203). By using this method, silica fine particles having a negative surface charge and polydiallyldimethylammonium chloride (PDDA) or polyethyleneimine (PEI), which are polycations having the opposite charge, are alternately laminated to form silica. It is possible to form a fine particle laminated thin film in which fine particles and a polymer electrolyte are alternately laminated.

高分子電解質溶液あるいは無機酸化物微粒子の分散液に浸漬後、反対電荷を有する微粒子分散液あるいは高分子電解質溶液に浸漬する前に溶媒のみのリンスによって余剰の高分子電解質溶液あるいは無機酸化物微粒子の分散液を洗い流すことが好ましい。このようなリンスに用いるものとしては、水、アルコール、アセトンなどがあるが、通常、過剰な高分子電解質溶液あるいは無機酸化物微粒子の分散液除去の点から、比抵抗値が18MΩ・cm以上のイオン交換水(いわゆる超純水)が用いられる。導電粒子に吸着した高分子電解質及び無機酸化物微粒子は導電粒子表面に静電的に吸着しているために、このリンスの工程で剥離することはない。また、反対電荷の溶液に、吸着していない高分子電解質または無機酸化物微粒子を持ち込むことを防ぐためにリンスを行うことが好ましい。これをしない場合は、持ち込みによって溶液内でカチオン、アニオンが混ざり、高分子電解質と無機酸化物微粒子の凝集や沈殿を起こすことがある。   After immersing in the dispersion of the polymer electrolyte solution or inorganic oxide fine particles, before immersing in the fine particle dispersion or polymer electrolyte solution having the opposite charge, the excess polymer electrolyte solution or inorganic oxide fine particles are rinsed only with a solvent. It is preferred to wash away the dispersion. Examples of such rinsing include water, alcohol, and acetone. Usually, the specific resistance value is 18 MΩ · cm or more from the viewpoint of removing an excessive polymer electrolyte solution or a dispersion of inorganic oxide fine particles. Ion exchange water (so-called ultrapure water) is used. Since the polymer electrolyte and inorganic oxide fine particles adsorbed on the conductive particles are electrostatically adsorbed on the surface of the conductive particles, they are not peeled off in this rinsing step. In addition, it is preferable to perform rinsing in order to prevent the polymer electrolyte or inorganic oxide fine particles not adsorbed from being brought into the solution having the opposite charge. If this is not done, cations and anions may be mixed in the solution by bringing them in, which may cause aggregation and precipitation of the polymer electrolyte and the inorganic oxide fine particles.

この発明で使用する高分子電解質溶液は、水または水と水溶性の有機溶媒の混合溶媒に溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどがあげられる。   The polymer electrolyte solution used in the present invention is dissolved in water or a mixed solvent of water and a water-soluble organic solvent. Examples of water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like.

高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができる。この場合はポリカチオンを用いるのが良い。また、ポリカチオンとしては、一般に、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、たとえば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミドおよびそれらを少なくとも1種以上を含む共重合体などを用いることができる。   As the polymer electrolyte, a polymer that is ionized in an aqueous solution and has a charged functional group in the main chain or side chain can be used. In this case, a polycation is preferably used. The polycation generally has a positively charged functional group such as polyamines, such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride ( PDDA), polyvinyl pyridine (PVP), polylysine, polyacrylamide, and a copolymer containing at least one of them can be used.

高分子電解質の中でもポリエチレンイミンは電荷密度が高く、結合力が強い。これらの高分子電解質の中でも、エレクトロマイグレーションや腐食を避けるために、アルカリ金属(Li、Na、K、Rb、Cs)イオン、及びアルカリ土類金属(Ca、Sr、Ba、Ra)イオン、ハロゲン化物イオン(フッ素イオン、クロライドイオン、臭素イオン、ヨウ素イオン)を含まないものが好ましい。これらの高分子電解質は、いずれも水溶性あるいは水と有機溶媒との混合液に可溶なものであり、高分子電解質の分子量としては、用いる高分子電解質の種類により一概には定めることができないが、一般に、500〜200,000程度のものが好ましい。なお、溶液中の高分子電解質の濃度は、一般に、0.01〜10%(重量)程度が好ましい。また、高分子電解質溶液のpHは、特に限定されない。   Among polyelectrolytes, polyethyleneimine has a high charge density and a strong binding force. Among these polymer electrolytes, alkali metal (Li, Na, K, Rb, Cs) ions, alkaline earth metal (Ca, Sr, Ba, Ra) ions, halides are used to avoid electromigration and corrosion. Those not containing ions (fluorine ions, chloride ions, bromine ions, iodine ions) are preferred. These polymer electrolytes are all water-soluble or soluble in a mixture of water and an organic solvent, and the molecular weight of the polymer electrolyte cannot be generally determined depending on the type of polymer electrolyte used. However, generally about 500-200,000 is preferable. In general, the concentration of the polymer electrolyte in the solution is preferably about 0.01 to 10% (weight). Further, the pH of the polymer electrolyte solution is not particularly limited.

この高分子電解質薄膜を用いることにより導電粒子の表面に欠陥なく均一に被覆することができ、回路電極間隔が狭ピッチでも絶縁性が確保され、電気的に接続する電極間では接続抵抗が低く良好となる。また、高分子電解質薄膜の種類や分子量、濃度を調整することにより無機酸化物の被覆率をコントロールすることが出来る。   By using this polymer electrolyte thin film, the surface of the conductive particles can be uniformly coated without defects, insulation is ensured even when the circuit electrode interval is narrow, and the connection resistance is low and good between the electrically connected electrodes. It becomes. In addition, the coverage of the inorganic oxide can be controlled by adjusting the type, molecular weight, and concentration of the polymer electrolyte thin film.

ポリエチレンイミン等、電荷密度の高い高分子電解質薄膜を用いた場合、無機酸化物の被覆率が高くなる傾向があり、ポリジアリルジメチルアンモニウムクロリド等、電荷密度の低い高分子電解質薄膜を用いた場合、無機酸化物の被覆率が低くなる傾向がある。又、高分子電解質の分子量が大きい場合無機酸化物の被覆率が高くなる傾向があり、高分子電解質の分子量が小さい場合、無機酸化物の被覆率が低くなる傾向がある。高分子電解質の分子量が大きい場合無機酸化物を強固に吸着させることができる。結合力という観点で見た場合、高分子電解質の分子量は10,000以上が好ましい。   When a polyelectrolyte thin film with a high charge density such as polyethyleneimine is used, the coverage of the inorganic oxide tends to be high, and when a polyelectrolyte thin film with a low charge density such as polydiallyldimethylammonium chloride is used, There exists a tendency for the coverage of an inorganic oxide to become low. Further, when the molecular weight of the polymer electrolyte is large, the coverage of the inorganic oxide tends to be high, and when the molecular weight of the polymer electrolyte is small, the coverage of the inorganic oxide tends to be low. When the molecular weight of the polymer electrolyte is large, the inorganic oxide can be strongly adsorbed. From the viewpoint of bonding strength, the molecular weight of the polymer electrolyte is preferably 10,000 or more.

更に高分子電解質を高濃度で用いた場合無機酸化物の被覆率が高くなる傾向があり、高分子電解質を低濃度で用いた場合、無機酸化物の被覆率が低くなる傾向がある。   Further, when the polymer electrolyte is used at a high concentration, the coverage of the inorganic oxide tends to be high, and when the polymer electrolyte is used at a low concentration, the coverage of the inorganic oxide tends to be low.

無機酸化物の被覆率が高い場合は絶縁性が高く導電性が悪い傾向があり、無機酸化物の被覆率が低い場合は導電性が高く絶縁性が悪い傾向がある。   When the coverage of the inorganic oxide is high, the insulation tends to be high and the conductivity tends to be poor, and when the coverage of the inorganic oxide is low, the conductivity tends to be high and the insulation is poor.

なお、無機酸化物は一層のみ被覆されているのが良い。複層積層すると積層量のコントロールが困難になる。   In addition, it is good that the inorganic oxide is covered only by one layer. Multi-layer stacking makes it difficult to control the stacking amount.

無機酸化物の被覆率は20〜100%の範囲であることが好ましく、30〜60%の範囲であることが更に好ましい。   The coverage of the inorganic oxide is preferably in the range of 20 to 100%, and more preferably in the range of 30 to 60%.

導電粒子を絶縁性子粒子で処理した後、加熱乾燥することで、絶縁性子粒子と導電粒子の結合を強化することが出来る。また加熱を真空で行なうと、金属のさび防止の観点から好ましい。結合力が増す理由としては、例えば金表面のカルボキシル基等官能基と絶縁性子粒子表面の水酸基の化学結合、金表面のカルボキシル基とアミノ基の脱水縮合が挙げられる。加熱乾燥の温度としては60℃〜200℃、加熱時間は10〜180分の範囲が良い。温度が60℃より低い場合や加熱時間が10分より短い場合は絶縁性子粒子が剥離しやすく、温度が200℃より高い場合や加熱時間が180分より長い場合は導電粒子が変形しやすいので好ましくない。   After the conductive particles are treated with the insulator particles, the bonding between the insulator particles and the conductor particles can be strengthened by heating and drying. In addition, it is preferable to perform heating in vacuum from the viewpoint of preventing rust of the metal. Reasons for increasing the binding force include, for example, a chemical bond between a functional group such as a carboxyl group on the gold surface and a hydroxyl group on the surface of the insulator particles, and dehydration condensation between a carboxyl group and an amino group on the gold surface. The temperature for heating and drying is preferably 60 ° C to 200 ° C, and the heating time is preferably in the range of 10 to 180 minutes. When the temperature is lower than 60 ° C. or when the heating time is shorter than 10 minutes, the insulator particles are easy to peel off, and when the temperature is higher than 200 ° C. or when the heating time is longer than 180 minutes, the conductive particles are easily deformed, which is preferable. Absent.

以上のようにして作製した絶縁被覆導電粒子を接着剤に分散させ異方導電性接着剤とする。   The insulating coated conductive particles produced as described above are dispersed in an adhesive to obtain an anisotropic conductive adhesive.

本発明の異方導電性接着剤に用いられる接着剤には、熱反応性樹脂と硬化剤の混合物が用いられる。好ましく用いられる接着剤としては、エポキシ樹脂と潜在性硬化剤との混合物である。潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。この他、接着剤には、ラジカル反応性樹脂と有機過酸化物の混合物や紫外線などのエネルギー線硬化性樹脂が用いられる。   For the adhesive used in the anisotropic conductive adhesive of the present invention, a mixture of a heat-reactive resin and a curing agent is used. The adhesive preferably used is a mixture of an epoxy resin and a latent curing agent. Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. In addition, an energy ray curable resin such as a mixture of a radical reactive resin and an organic peroxide or ultraviolet rays is used for the adhesive.

本発明において用いられるエポキシ樹脂としては、エピクロルヒドリンとビスフェノールAやF、AD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独にあるいは2種以上を混合して用いることが可能である。   The epoxy resin used in the present invention includes a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A, F, AD, etc., an epoxy novolac resin derived from epichlorohydrin and phenol novolac or cresol novolac, and a skeleton containing a naphthalene ring. It is possible to use various epoxy compounds having two or more glycidyl groups in one molecule such as naphthalene type epoxy resin, glycidylamine, glycidyl ether, biphenyl, alicyclic, etc. Is possible.

これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロマイグレーション防止のために好ましい。 For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na + , Cl −, etc.), hydrolyzable chlorine and the like are reduced to 300 ppm or less, in order to prevent electromigration.

接着剤には接着後の応力を低減するため、あるいは接着性を向上するために、ブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等を混合することができる。   In order to reduce the stress after bonding or to improve the adhesiveness, butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber, or the like can be mixed in the adhesive.

また、接着剤としてはペースト状またはフィルム状のものが用いられる。フィルム状にするためには、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂を配合することが効果的である。これらのフィルム形成性高分子は、反応性樹脂の硬化時の応力緩和にも効果がある。特に、フィルム形成性高分子が、水酸基等の官能基を有する場合、接着性が向上するためより好ましい。フィルム形成は、これら少なくともエポキシ樹脂、アクリルゴム、潜在性硬化剤からなる接着組成物を有機溶剤に溶解あるいは分散により、液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。   Further, as the adhesive, a paste or film is used. In order to form a film, it is effective to blend a thermoplastic resin such as a phenoxy resin, a polyester resin, or a polyamide resin. These film-forming polymers are also effective in stress relaxation when the reactive resin is cured. In particular, when the film-forming polymer has a functional group such as a hydroxyl group, the adhesiveness is improved, which is more preferable. For film formation, an adhesive composition comprising at least an epoxy resin, acrylic rubber, and a latent curing agent is liquefied by dissolving or dispersing in an organic solvent, applied onto a peelable substrate, and below the activation temperature of the curing agent. This is done by removing the solvent. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved.

異方導電性接着剤の厚みは導電性粒子の粒径及び異方導電性接着剤の特性を考慮して相対的に決定されるが、1〜100μmの厚みが好ましい。1μm未満では充分な接着性が得られず、100μmを超えると導電性を得るために多量の導電粒子を必要とするために現実的ではない。同様の理由から、更に好ましい厚みは3〜50μmである。   The thickness of the anisotropic conductive adhesive is relatively determined in consideration of the particle diameter of the conductive particles and the characteristics of the anisotropic conductive adhesive, but a thickness of 1 to 100 μm is preferable. If it is less than 1 μm, sufficient adhesion cannot be obtained, and if it exceeds 100 μm, a large amount of conductive particles are required to obtain conductivity, which is not realistic. For the same reason, a more preferable thickness is 3 to 50 μm.

このようにして作製した異方導電性接着剤を用いた接続構造体の作製方法について、図1を参照して説明する。   A method for producing a connection structure using the anisotropic conductive adhesive thus produced will be described with reference to FIG.

図1(a)は絶縁被覆導電粒子を接着剤3に分散した異方導電性接着剤である。絶縁被覆導電粒子は導電粒子2と絶縁性子粒子1より成る。次に図1(b)に示すように第一の基板4と第二の基板6を準備し、異方導電性接着剤をその間に配置する。このとき、第一の電極5と第二の電極7が対抗するようにする。次に図3(c)に示すように第一の基板4と第二の基板6を加圧加熱しつつ積層する。ここでいう基板とは、ガラス基板やポリイミド等のテープ基板、ドライバーIC等のベアチップ、リジット型のパッケージ基板等が挙げられる。   FIG. 1A shows an anisotropic conductive adhesive in which insulating coated conductive particles are dispersed in an adhesive 3. The insulating coated conductive particles are composed of conductive particles 2 and insulator particles 1. Next, as shown in FIG.1 (b), the 1st board | substrate 4 and the 2nd board | substrate 6 are prepared, and an anisotropic conductive adhesive is arrange | positioned among them. At this time, the first electrode 5 and the second electrode 7 are opposed to each other. Next, as shown in FIG. 3C, the first substrate 4 and the second substrate 6 are stacked while being heated under pressure. Examples of the substrate include a glass substrate, a tape substrate such as polyimide, a bare chip such as a driver IC, and a rigid package substrate.

このようにして接続構造体を作製すると、縦方向は絶縁子粒子が剥離して第一の電極5と第二の電極7は導通し、横方向は導電粒子間に絶縁性子粒子1が介在することで絶縁性が維持される。   When the connection structure is produced in this way, the insulator particles are peeled off in the vertical direction, the first electrode 5 and the second electrode 7 are conducted, and the insulator particles 1 are interposed between the conductive particles in the horizontal direction. Insulating properties are maintained.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

(導電粒子1)
平均粒径3.8μmの架橋ポリスチレン粒子10gをパラジウム触媒であるアトテックネネオガント834(アトテックジャパン株式会社製:商品名)を8重量%含有するパラジウム触媒化液100mLに添加し、30℃で30分攪拌した後、φ3μmのメンブレンフィルタ(ミリポア社製)で濾過し、水洗を行った。その後、樹脂微粒子をpH6.0に調整された0.5重量%ジメチルアミンボラン液に添加し、表面が活性化された樹脂微粒子を得た。
その後、蒸留水に表面が活性化された樹脂微粒子を浸漬し、超音波分散した。その後、懸濁液を50℃で攪拌しながら還元剤であるホルマリンと硫酸銅5水和物、水酸化ナトリウム、銅イオンに対する錯形成剤、を主成分とするCUST1610(日立化成工業株式会社製:商品名)を用いて、40℃の条件にてめっき液添加法により約500Åの銅めっき厚を有する導電粒子を得た。
水洗と濾過を行った後、置換パラジウムめっき液であるMCA(株式会社ワールドメタル製:商品名)25℃に導電粒子を浸漬し、約200Åのパラジウム層を形成した。
その後、置換金めっきであるHGS−100(日立化成工業株式会社製:商品名)85℃に導電粒子を浸漬し、約200Åの金層を形成し、導電粒子1を作製した。
(Conductive particles 1)
10 g of crosslinked polystyrene particles having an average particle size of 3.8 μm were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of Atotech Neneogant 834 (manufactured by Atotech Japan Co., Ltd., a trade name), which is a palladium catalyst. After stirring for a minute, it was filtered through a membrane filter of φ3 μm (manufactured by Millipore) and washed with water. Thereafter, the resin fine particles were added to a 0.5 wt% dimethylamine borane solution adjusted to pH 6.0 to obtain resin fine particles whose surface was activated.
Thereafter, resin fine particles whose surface was activated were immersed in distilled water and ultrasonically dispersed. Then, while stirring the suspension at 50 ° C., CUST1610 (manufactured by Hitachi Chemical Co., Ltd.) containing, as main components, formalin as a reducing agent, copper sulfate pentahydrate, sodium hydroxide, and a complexing agent for copper ions. Using a product name), conductive particles having a copper plating thickness of about 500 mm were obtained by a plating solution addition method at 40 ° C.
After washing with water and filtration, the conductive particles were immersed in MCA (made by World Metal Co., Ltd .: trade name) 25 ° C., which is a substituted palladium plating solution, to form a palladium layer of about 200 mm.
Thereafter, conductive particles were immersed in HGS-100 (made by Hitachi Chemical Co., Ltd .: trade name) 85 ° C., which is a displacement gold plating, to form a gold layer of about 200 mm, and conductive particles 1 were produced.

(導電粒子2)
銅めっき液の滴下量を調整し、銅めっき厚を300Åとした以外は導電粒子1と同様の方法で導電粒子2を作製した。
(Conductive particles 2)
Conductive particles 2 were prepared in the same manner as the conductive particles 1 except that the amount of copper plating solution dropped was adjusted and the copper plating thickness was 300 mm.

(導電粒子3)
置換パラジウムめっきへの浸漬時間を変更し、約100Åのパラジウム層を形成した以外は導電粒子1と同様の方法で導電粒子3を作製した。
(Conductive particles 3)
The conductive particles 3 were produced in the same manner as the conductive particles 1 except that the immersion time in the displacement palladium plating was changed and a palladium layer of about 100 mm was formed.

(導電粒子4)
最外層の金めっきを行わなかったこと以外は導電粒子1と同様の方法で導電粒子4を作製した。
(Conductive particles 4)
Conductive particles 4 were produced in the same manner as the conductive particles 1 except that the outermost layer was not plated with gold.

(導電粒子5)
最外層の金めっきを行わなかったこと以外は導電粒子3と同様の方法で導電粒子5を作製した。
(Conductive particles 5)
Conductive particles 5 were produced in the same manner as the conductive particles 3 except that the outermost layer was not plated with gold.

(導電粒子6)
置換パラジウムめっきの代わりに還元型無電解パラジウムめっき液であるAPP(石原薬品工業株式会社製:商品名)を用いて、50℃の条件にてめっき添加法により約200Åのパラジウム層を形成した以外は導電粒子1と同様の方法で導電粒子6を作製した。
(Conductive particles 6)
Apart from forming a palladium layer of about 200 mm by plating addition method at 50 ° C. using APP (Ishihara Pharmaceutical Co., Ltd. product name) which is a reduced electroless palladium plating solution instead of substitutional palladium plating. Produced conductive particles 6 in the same manner as conductive particles 1.

(導電粒子7)
置換金めっきの代わりに還元型無電解金めっきであるHSG−2000(日立化成工業株式会社製:商品名)を用い、65℃の条件にてめっき液添加法により約200Åの金層を形成した以外は導電粒子1と同様の方法で導電粒子7を作製した。
(Conductive particles 7)
Using HSG-2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a reduction type electroless gold plating, instead of displacement gold plating, a gold layer of about 200 mm was formed by a plating solution addition method at 65 ° C. Except for the above, conductive particles 7 were produced in the same manner as conductive particles 1.

(導電粒子8)
平均粒径3.8μmの架橋ポリスチレン粒子を用いる代わりに平均粒径3.0μmの架橋ポリスチレン粒子を用いたこと以外は導電粒子1と同様の方法で導電粒子8を作製した。
(Conductive particles 8)
Conductive particles 8 were prepared in the same manner as the conductive particles 1 except that crosslinked polystyrene particles having an average particle size of 3.0 μm were used instead of using crosslinked polystyrene particles having an average particle size of 3.8 μm.

(導電粒子9)
平均粒径3.8μmの架橋ポリスチレン粒子を用いる代わりに平均粒径5.0μmの架橋ポリスチレン粒子を用いたこと以外は導電粒子1と同様の方法で導電粒子9を作製した。
(Conductive particles 9)
Conductive particles 9 were produced in the same manner as the conductive particles 1 except that crosslinked polystyrene particles having an average particle diameter of 5.0 μm were used instead of using crosslinked polystyrene particles having an average particle diameter of 3.8 μm.

(導電粒子10)
パラジウムめっきを行わなかったこと以外は導電粒子1と同様の方法で導電粒子10を作製した。
(Conductive particles 10)
Conductive particles 10 were produced in the same manner as the conductive particles 1 except that palladium plating was not performed.

(導電粒子11)
パラジウムめっき厚を70Åとしたこと以外は導電粒子1と同様の方法で導電粒子11を作製した。
(Conductive particles 11)
Conductive particles 11 were produced in the same manner as the conductive particles 1 except that the palladium plating thickness was 70 mm.

(導電粒子12)
パラジウムめっきを行う代わりに、無電解ニッケルめっきであるNIPS−100(日立化成工業株式会社製:商品名)を用いて、25℃の条件にてめっき添加法により約200Åのニッケル層を形成した以外は導電粒子1と同様の方法で導電粒子12を作製した。
(Conductive particles 12)
Instead of performing palladium plating, a nickel layer of about 200 mm was formed by plating addition method at 25 ° C. using NIPS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is electroless nickel plating. Produced conductive particles 12 in the same manner as conductive particles 1.

(導電粒子13)
パラジウムめっきを行う代わりに、無電解ニッケルめっきであるNIPS−100(日立化成工業株式会社製:商品名)を用いて、25℃の条件にてめっき添加法により約200Åのニッケル層を形成した以外は導電粒子4と同様の方法で導電粒子13を作製した。
(Conductive particles 13)
Instead of performing palladium plating, a nickel layer of about 200 mm was formed by plating addition method at 25 ° C. using NIPS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is electroless nickel plating. Produced conductive particles 13 in the same manner as conductive particles 4.

(導電粒子14)
銅めっき液の滴下量を調整し、銅めっき厚を200Åとした以外は導電粒子1と同様の方法で導電粒子14を作製した。
(Conductive particles 14)
The conductive particles 14 were produced in the same manner as the conductive particles 1 except that the dropping amount of the copper plating solution was adjusted and the copper plating thickness was 200 mm.

(導電粒子15)
樹脂コア粒子のまわりにニッケル/金めっきを施したブライト22GNR3.8HT(日本化学工業株式会社製:商品名)を用いた。
(Conductive particles 15)
Bright 22GNR3.8HT (manufactured by Nippon Chemical Industry Co., Ltd .: trade name) in which nickel / gold plating was applied around the resin core particles was used.

次に導電粒子1〜14を用いて絶縁被覆粒子を作製した。   Next, insulating coating particles were produced using the conductive particles 1-14.

(絶縁被覆導電粒子1)
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を作製した。次に導電粒子1を10g上記反応液に加え、室温で2時間スリーワンモーターと直径45mmの攪拌羽で攪拌した。メタノールで洗浄後、φ3μmのメンブレンフィルタ(ミリポア社製)で導電粒子を濾過することで表面にカルボキシル基を有する導電粒子10gを得た。
次に分子量70000の30%ポリエチレンイミン水溶液(和光純薬社製)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得た。前記カルボキシル基を有する導電粒子10gを0.3重量%ポリエチレンイミン水溶液に加え、室温で15分攪拌した。次にφ3μmのメンブレンフィルタ(ミリポア社製)で導電粒子をろ過し、超純水200gに入れて室温で5分攪拌した。更にφ3μmのメンブレンフィルタ(ミリポア社製)で導電粒子をろ過し、前記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、吸着していないポリエチレンイミンを除去した。
次にコロイダルシリカ分散液(質量濃度20%、扶桑化学工業社製、製品名クオートロンPL−7、平均粒子径70nm)を超純水で希釈して0.1重量%シリカ溶液を得た。前記ポリエチレンイミン処理済の導電粒子を0.1重量%シリカ溶液に入れて室温で15分攪拌した。次にφ3μmのメンブレンフィルタ(ミリポア社製)で導電粒子をろ過し、超純水200gに入れて室温で5分攪拌した。更にφ3μmのメンブレンフィルタ(ミリポア社製)で導電粒子をろ過し、前記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、吸着していないシリカを除去した。その後80℃30分の条件で乾燥を行い、120℃1時間加熱乾燥行うことで絶縁被覆導電粒子1を作製した。
(Insulation coated conductive particles 1)
A reaction liquid was prepared by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol. Next, 10 g of the conductive particles 1 was added to the reaction solution, and the mixture was stirred at room temperature for 2 hours with a three-one motor and a stirring blade having a diameter of 45 mm. After washing with methanol, the conductive particles were filtered through a membrane filter (manufactured by Millipore) having a diameter of 3 μm to obtain 10 g of conductive particles having a carboxyl group on the surface.
Next, a 30% polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 70,000 was diluted with ultrapure water to obtain a 0.3 wt% polyethyleneimine aqueous solution. 10 g of the conductive particles having a carboxyl group were added to a 0.3% by weight polyethyleneimine aqueous solution and stirred at room temperature for 15 minutes. Next, the conductive particles were filtered through a membrane filter (manufactured by Millipore) with a diameter of 3 μm, put in 200 g of ultrapure water, and stirred at room temperature for 5 minutes. Further, the conductive particles were filtered with a membrane filter (manufactured by Millipore) having a diameter of 3 μm, and washed with 200 g of ultrapure water on the membrane filter to remove unimsorbed polyethyleneimine.
Next, a colloidal silica dispersion (mass concentration 20%, manufactured by Fuso Chemical Industries, product name Quatron PL-7, average particle size 70 nm) was diluted with ultrapure water to obtain a 0.1 wt% silica solution. The polyethyleneimine-treated conductive particles were placed in a 0.1 wt% silica solution and stirred at room temperature for 15 minutes. Next, the conductive particles were filtered through a membrane filter (manufactured by Millipore) with a diameter of 3 μm, put in 200 g of ultrapure water, and stirred at room temperature for 5 minutes. Furthermore, the conductive particles were filtered with a membrane filter (manufactured by Millipore) having a diameter of 3 μm, and the adsorbed silica was removed by washing twice with 200 g of ultrapure water on the membrane filter. Thereafter, drying was performed under the conditions of 80 ° C. for 30 minutes, and the insulating coated conductive particles 1 were produced by heating and drying at 120 ° C. for 1 hour.

(絶縁被覆導電粒子2)
導電粒子1の代わりに導電粒子2を用いて絶縁被覆導電粒子2を作製した。
(Insulation coated conductive particles 2)
Insulating coated conductive particles 2 were produced using the conductive particles 2 instead of the conductive particles 1.

(絶縁被覆導電粒子3)
導電粒子1の代わりに導電粒子3を用いて絶縁被覆導電粒子3を作製した。
(Insulation coated conductive particles 3)
Insulating coated conductive particles 3 were produced using the conductive particles 3 instead of the conductive particles 1.

(絶縁被覆導電粒子4)
導電粒子1の代わりに導電粒子4を用いて絶縁被覆導電粒子4を作製した。
(Insulation coated conductive particles 4)
Insulating coated conductive particles 4 were produced using the conductive particles 4 instead of the conductive particles 1.

(絶縁被覆導電粒子5)
導電粒子1の代わりに導電粒子5を用いて絶縁被覆導電粒子5を作製した。
(Insulation coating conductive particles 5)
Insulating coated conductive particles 5 were produced using the conductive particles 5 instead of the conductive particles 1.

(絶縁被覆導電粒子6)
導電粒子1の代わりに導電粒子6を用いて絶縁被覆導電粒子6を作製した。
(Insulation coated conductive particles 6)
Insulating coated conductive particles 6 were produced using the conductive particles 6 instead of the conductive particles 1.

(絶縁被覆導電粒子7)
導電粒子1の代わりに導電粒子7を用いて絶縁被覆導電粒子7を作製した。
(Insulation coating conductive particles 7)
Insulating coated conductive particles 7 were produced using the conductive particles 7 instead of the conductive particles 1.

(絶縁被覆導電粒子8)
導電粒子1の代わりに導電粒子8を用いて絶縁被覆導電粒子8を作製した。
(Insulation coated conductive particles 8)
Insulating coated conductive particles 8 were produced using the conductive particles 8 instead of the conductive particles 1.

(絶縁被覆導電粒子9)
導電粒子1の代わりに導電粒子9を用いて絶縁被覆導電粒子9を作製した。
(Insulation coated conductive particles 9)
Insulating coated conductive particles 9 were produced using the conductive particles 9 instead of the conductive particles 1.

(絶縁被覆導電粒子10)
導電粒子1の代わりに導電粒子10を用いて絶縁被覆導電粒子10を作製した。
(Insulation coated conductive particles 10)
Insulating coated conductive particles 10 were produced using the conductive particles 10 instead of the conductive particles 1.

(絶縁被覆導電粒子11)
導電粒子1の代わりに導電粒子11を用いて絶縁被覆導電粒子11を作製した。
(Insulation coated conductive particles 11)
Insulating coated conductive particles 11 were produced using the conductive particles 11 instead of the conductive particles 1.

(絶縁被覆導電粒子12)
導電粒子1の代わりに導電粒子12を用いて絶縁被覆導電粒子12を作製した。
(Insulation coated conductive particles 12)
Insulating coated conductive particles 12 were produced using the conductive particles 12 instead of the conductive particles 1.

(絶縁被覆導電粒子13)
導電粒子1の代わりに導電粒子13を用いて絶縁被覆導電粒子13を作製した。
(Insulation coated conductive particles 13)
Insulating coated conductive particles 13 were produced using the conductive particles 13 instead of the conductive particles 1.

(絶縁被覆導電粒子14)
導電粒子1の代わりに導電粒子14を用いて絶縁被覆導電粒子14を作製した。
(Insulation coating conductive particles 14)
Insulating coated conductive particles 14 were produced using the conductive particles 14 instead of the conductive particles 1.

(絶縁被覆導電粒子15)
導電粒子1の代わりに導電粒子15を用いて絶縁被覆導電粒子15を作製した。
(Insulation coating conductive particles 15)
Insulating coated conductive particles 15 were produced using the conductive particles 15 instead of the conductive particles 1.

(実施例1)
接着剤溶液の作製:フェノキシ樹脂(ユニオンカーバイド社製商品名、PKHC)100gと、アクリルゴム(ブチルアクリレート40部、エチルアクリレート30部、アクリロニトリル30部、グリシジルメタクリレート3部の共重合体、分子量:85万)75gを酢酸エチル300gに溶解し、30重量%溶液を得た。
次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エボキシ当量185、旭化成エポキシ株式会社製、ノバキュアHX−3941)300gをこの溶液に加え、撹拌して接着剤溶液を作製した。
絶縁被覆粒子の超音波分散:先に書いた方法で作製した絶縁被覆導電粒子1、4gを酢酸エチル10g中に超音波分散した。超音波分散の条件は38kHZ400W20L(試験装置:US107藤本科学商品名)にビーカー浸漬したサンプルを入れて1分攪拌した。
上記粒子分散液を接着剤溶液に分散(導電粒子が接着剤に対して21体積%となるように)し、この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚み40μm)にロールコータで塗布し、90℃、10分乾燥し厚み25μmの異方導電接着剤フィルムを作製した。
次に、作製した異方導電接着フィルムを用いて、金バンプ(面積:30×90μm、スペース10μm、高さ:15μm、バンブ数362)付きチップ(1.7×1.7mm、厚み:0.5μm)とAl回路付きガラス基板(厚み:0.7mm)の接続を、以下に示すように行った。
異方導電接着フィルム(2×19mm)をAl回路付きガラス基板に80℃、0.98MPa(10kgf/cm2)で貼り付けた後、セパレータを剥離し、チップのバンプとAl回路付きガラス基板の位置合わせを行った。
次いで、190℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。
Example 1
Preparation of adhesive solution: copolymer of 100 g of phenoxy resin (trade name, PKHC, manufactured by Union Carbide) and acrylic rubber (40 parts of butyl acrylate, 30 parts of ethyl acrylate, 30 parts of acrylonitrile, 3 parts of glycidyl methacrylate, molecular weight: 85 10) was dissolved in 300 g of ethyl acetate to obtain a 30 wt% solution.
Next, 300 g of a liquid epoxy (Eboxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., NovaCure HX-3941) containing a microcapsule-type latent curing agent was added to this solution and stirred to prepare an adhesive solution.
Ultrasonic dispersion of insulating coating particles: 1, 4 g of insulating coating conductive particles prepared by the method described above were ultrasonically dispersed in 10 g of ethyl acetate. The condition for ultrasonic dispersion was a sample immersed in a beaker in 38 kHZ400W20L (test apparatus: US107 Fujimoto Kagaku brand name) and stirred for 1 minute.
The particle dispersion is dispersed in an adhesive solution (so that the conductive particles are 21% by volume with respect to the adhesive), and this solution is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater. The anisotropic conductive adhesive film having a thickness of 25 μm was dried at 90 ° C. for 10 minutes.
Next, using the produced anisotropic conductive adhesive film, a chip (1.7 × 1.7 mm, thickness: 0.7 mm) with gold bumps (area: 30 × 90 μm, space: 10 μm, height: 15 μm, bump number: 362). 5 μm) and a glass substrate with an Al circuit (thickness: 0.7 mm) were connected as shown below.
An anisotropic conductive adhesive film (2 × 19 mm) was attached to a glass substrate with an Al circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2), then the separator was peeled off, and the bumps of the chip and the position of the glass substrate with the Al circuit Combined.
Next, the main connection was performed by heating and pressing from above the chip under the conditions of 190 ° C., 40 g / bump, and 10 seconds.

(実施例2)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子2を用いた以外は実施例1と同様にサンプルを作製した。
(Example 2)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 2 were used instead of the insulating coated conductive particles 1.

(実施例3)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子3を用いた以外は実施例1と同様にサンプルを作製した。
(Example 3)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 3 were used instead of the insulating coated conductive particles 1.

(実施例4)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子4を用いた以外は実施例1と同様にサンプルを作製した。
Example 4
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 4 were used instead of the insulating coated conductive particles 1.

(実施例5)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子5を用いた以外は実施例1と同様にサンプルを作製した。
(Example 5)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 5 were used instead of the insulating coated conductive particles 1.

(実施例6)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子6を用いた以外は実施例1と同様にサンプルを作製した。
(Example 6)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 6 were used instead of the insulating coated conductive particles 1.

(実施例7)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子7を用いた以外は実施例1と同様にサンプルを作製した。
(Example 7)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 7 were used instead of the insulating coated conductive particles 1.

(実施例8)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子8を用いた以外は実施例1と同様にサンプルを作製した。
(Example 8)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 8 were used instead of the insulating coated conductive particles 1.

(実施例9)
絶縁被覆導電粒子1の代わりに導電粒子1を用いた以外は実施例1と同様にサンプルを作製した。
Example 9
A sample was prepared in the same manner as in Example 1 except that the conductive particles 1 were used instead of the insulating coating conductive particles 1.

(実施例10)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子9を用いた以外は実施例1と同様にサンプルを作製した。
(Example 10)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 9 were used instead of the insulating coated conductive particles 1.

(比較例1)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子10を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 1)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 10 were used instead of the insulating coated conductive particles 1.

(比較例2)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子11を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 2)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 11 were used instead of the insulating coated conductive particles 1.

(比較例3)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子12を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 3)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 12 were used instead of the insulating coated conductive particles 1.

(比較例4)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子13を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 4)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 13 were used instead of the insulating coated conductive particles 1.

(比較例5)
絶縁被覆導電粒子1の代わりに導電粒子10を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 5)
A sample was prepared in the same manner as in Example 1 except that the conductive particles 10 were used instead of the insulating coating conductive particles 1.

(比較例6)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子14を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 6)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 14 were used instead of the insulating coated conductive particles 1.

(比較例7)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子15を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 7)
A sample was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 15 were used instead of the insulating coated conductive particles 1.

(金、銅、パラジウムの膜厚測定)
金、銅、パラジウムの膜厚測定は、試料を50vol%王水に溶解させた後、樹脂をφ3μmのメンブレンフィルタ(ミリポア社製)で濾別して取り除き、原子吸光で測定した後に厚み換算した。
(Measurement of film thickness of gold, copper and palladium)
The thickness of gold, copper, and palladium was measured by dissolving the sample in 50 vol% aqua regia, removing the resin by filtration with a φ3 μm membrane filter (manufactured by Millipore), and measuring the thickness by atomic absorption.

(XPSによる導電粒子表面のCu/(Pd+Au)の割合)
導電粒子1〜15を導電テープ上に敷き詰め、Φ1.1mmの円内の導電粒子表面の成分比をXPSにより測定した。測定粒子数は1万個以上とした。XPSの測定条件は上記表1の通りとした。XPSで導電粒子を測定した場合、銅、金、パラジウム以外にも炭素や酸素といった成分が検出された。CやOは空気中での有機物汚染であり、無視して考え、Cu/(Pd+Au)比を求めた。
(Ratio of Cu / (Pd + Au) on the surface of conductive particles by XPS)
Conductive particles 1 to 15 were spread on a conductive tape, and the component ratio of the surface of the conductive particles in a circle of Φ1.1 mm was measured by XPS. The number of measured particles was 10,000 or more. The XPS measurement conditions were as shown in Table 1 above. When conducting particles were measured by XPS, components such as carbon and oxygen were detected in addition to copper, gold and palladium. C and O are organic contaminants in the air, so they were ignored and the Cu / (Pd + Au) ratio was determined.

(子粒子剥離の確認)
サンプル作製の際、酢酸エチル中に絶縁被覆導電粒子を超音波分散する時に絶縁性子粒子が導電粒子から剥離する場合がある。そこで超音波分散前後の子粒子被覆率をSEMの画像解析により確認した。被覆率の計算は、絶縁被覆導電粒子の直径の半分の大きさを直径とする円をSEM画像に描き、円内の子粒子の被覆率(即ち絶縁性子粒子の投影面積×絶縁性子粒子の数/測定範囲の絶縁被覆導電粒子の表面積)を測定した。
(Confirmation of child particle peeling)
During sample preparation, the insulator particles may be peeled off from the conductive particles when the insulating coated conductive particles are ultrasonically dispersed in ethyl acetate. Then, the child particle coverage before and after ultrasonic dispersion was confirmed by image analysis of SEM. To calculate the coverage, a circle having a diameter half the diameter of the insulating coated conductive particles is drawn on the SEM image, and the coverage of the child particles in the circle (that is, the projected area of the insulating particles × the number of the insulating particles) / Surface area of the insulating coated conductive particles in the measurement range).

(絶縁抵抗試験及び導通抵抗試験)
実施例、比較例で作製したサンプルの絶縁抵抗試験及び導通抵抗試験を行った。異方導電接着フィルムはチップ電極間の絶縁抵抗が高く、チップ電極/ガラス電極間の導通抵抗が低いことが重要である。チップ電極間の絶縁抵抗は20サンプルを測定し、その最小値を測定した。更に導通抵抗>10(Ω)を良品とした場合の歩留まりを算出した。また、20Vの電圧を加えた状態で60℃湿度90%の条件で72時間放置した後に絶縁抵抗の値を測定した。
また、チップ電極/ガラス電極間の導通抵抗に関しては14サンプルの平均値を測定した。導通抵抗は初期値と吸湿耐熱試験(気温85℃、湿度85%の条件で1000時間放置)後の値を測定した。
(Insulation resistance test and conduction resistance test)
The insulation resistance test and conduction resistance test of the samples produced in the examples and comparative examples were performed. It is important that the anisotropic conductive adhesive film has high insulation resistance between the chip electrodes and low conduction resistance between the chip electrode / glass electrode. The insulation resistance between the chip electrodes was measured for 20 samples, and the minimum value was measured. Further, the yield was calculated when the conduction resistance> 10 9 (Ω) was a non-defective product. Further, the insulation resistance value was measured after being left for 72 hours at 60 ° C. and 90% humidity with a voltage of 20V applied.
Moreover, the average value of 14 samples was measured regarding the conduction | electrical_connection resistance between a chip electrode / glass electrode. The conduction resistance was measured as an initial value and a value after a hygroscopic heat resistance test (left for 1000 hours under conditions of an air temperature of 85 ° C. and a humidity of 85%).

実施例、比較例で作製したサンプルの詳細を表2に、上記の測定及び試験の結果を表3に、それぞれ示す。表3に示した様に、従来のニッケル/金めっき(比較例7)に比べて実施例1〜10により作製したサンプルは導通抵抗が優れることが分かった。これは従来のニッケルに比べて銅の方が導電性に優れるためである。銅の厚みが300Å未満(比較例6)だと吸湿試験後の導通抵抗平均が5Ω以上になってしまうことが分かった。従って、銅めっき厚みは300Å以上が好ましいと言える。また、銅のマイグレーションストップ層であるPdを用いなかった場合、導電粒子(実施例9と比較例5の比較)、絶縁被覆導電粒子(実施例1と比較例1の比較)共に吸湿により絶縁性が低下する。従って、銅を用いた場合はマイグレーションストップ層としてパラジウム層を有することで信頼性が向上する。また、従来技術の様に、マイグレーションストップ層としてニッケルを用いた場合、金の有無により差があるものの小粒子被覆率が低下して絶縁性が低下する(比較例3と比較例4)。また、パラジウム層が厚いとマイグレーション防止効果が大きい(実施例1と実施例3と比較例2の比較)。実用面からは100Å以上の厚みがあれば、十分である。導電粒子の径を比較すると(実施例1と実施例8と実施例10の比較)、導電粒子径は4μm以下であることが好ましい。また、置換めっきに比べて還元型の無電解パラジウムめっき(実施例1と実施例6の比較)や還元型の無電解金めっき(実施例1と実施例7の比較)はCu/(Pd+Au)比が小さく、絶縁抵抗の低下率が少なく、より好ましい。金めっきはあった方が絶縁抵抗の低下率が少なく、より好ましい(実施例1と実施例4の比較、実施例3と実施例5の比較)。   Details of the samples prepared in Examples and Comparative Examples are shown in Table 2, and the results of the above measurements and tests are shown in Table 3, respectively. As shown in Table 3, it was found that the samples produced according to Examples 1 to 10 were superior in conduction resistance as compared with the conventional nickel / gold plating (Comparative Example 7). This is because copper is more conductive than conventional nickel. It was found that when the copper thickness was less than 300 mm (Comparative Example 6), the average conduction resistance after the moisture absorption test was 5Ω or more. Therefore, it can be said that the copper plating thickness is preferably 300 mm or more. Moreover, when Pd which is a copper migration stop layer was not used, both the conductive particles (comparison of Example 9 and Comparative Example 5) and the insulating coated conductive particles (comparison of Example 1 and Comparative Example 1) were both insulated by moisture absorption. Decreases. Therefore, when copper is used, reliability is improved by having a palladium layer as a migration stop layer. In addition, when nickel is used as the migration stop layer as in the prior art, the small particle coverage is reduced depending on the presence or absence of gold, and the insulation is reduced (Comparative Example 3 and Comparative Example 4). Further, when the palladium layer is thick, the effect of preventing migration is large (comparison between Example 1, Example 3 and Comparative Example 2). From a practical aspect, a thickness of 100 mm or more is sufficient. When the diameters of the conductive particles are compared (comparison between Example 1, Example 8 and Example 10), the conductive particle diameter is preferably 4 μm or less. Further, compared to displacement plating, reduced electroless palladium plating (comparison between Example 1 and Example 6) and reduced electroless gold plating (comparison between Example 1 and Example 7) are Cu / (Pd + Au). The ratio is small, and the rate of decrease in insulation resistance is small, which is more preferable. It is more preferable that gold plating is present because the rate of decrease in insulation resistance is small (comparison between Example 1 and Example 4, comparison between Example 3 and Example 5).

Figure 0005472369
Figure 0005472369

Figure 0005472369
Figure 0005472369

1:高分子電解質
2:導電性粒子
3:接着剤
4:第一の基板
5:第一の電極
6:第二の基板
7:第二の電極
1: Polymer electrolyte 2: Conductive particles 3: Adhesive 4: First substrate 5: First electrode 6: Second substrate 7: Second electrode

Claims (9)

樹脂粒子と、該樹脂粒子の表面に設けられた金属層と、を備え、
前記金属層が、前記樹脂粒子に近い順に、銅又は銅合金を含有する第1の層と、パラジウムを含有する第2の層とが積層された構造を有し、
前記金属層における銅/(金+パラジウム)比が重量比で0.4以下であることを特徴とする導電粒子。
Resin particles and a metal layer provided on the surface of the resin particles,
The metal layer has a structure in which a first layer containing copper or a copper alloy and a second layer containing palladium are stacked in the order closer to the resin particles,
Conductive particles, wherein the copper / (gold + palladium) ratio in the metal layer is 0.4 or less by weight .
前記第2の層が還元めっき型のパラジウム層であることを特徴とする請求項に記載の導電粒子。 The conductive particles according to claim 1 , wherein the second layer is a reduction plating type palladium layer. 前記第1の層の厚みが300Å以上であることを特徴とする請求項1又は2に記載の導電粒子。 The conductive particles according to claim 1 or 2 , wherein the thickness of the first layer is 300 mm or more. 前記第2の層の厚さが100Å以上であることを特徴とする請求項1〜のいずれか1項に記載の導電粒子。 Conductive particles according to any one of claims 1 to 3, wherein the thickness of said second layer is 100Å or more. 前記導電粒子の平均粒径が2〜4μmであることを特徴とする請求項1〜のいずれか1項に記載の導電粒子。 The conductive particles according to claim 1, wherein the conductive particles have an average particle size of 2 to 4 μm. 請求項1〜のいずれか1項に記載の導電粒子の前記金属層表面の少なくとも一部が絶縁性子粒子により被覆されてなることを特徴とする絶縁被覆導電粒子。 Insulation-coated conductive particles, wherein at least a part of the surface of the metal layer of the conductive particles according to any one of claims 1 to 5 is coated with insulator particles. 請求項1〜のいずれか1項に記載の導電粒子の前記金属層表面の少なくとも一部が高分子電解質により被覆されてなり、前記高分子電解質により被覆された前記金属層の表面が絶縁性子粒子により更に被覆されてなることを特徴とする絶縁被覆導電粒子。 At least a portion is coated with a polymer electrolyte, the surface of the metal layer coated with the polymer electrolyte is insulative child of the metal layer surface of the conductive particles according to any one of claims 1 to 5 Insulated coated conductive particles, further coated with particles. 請求項1〜のいずれか1項に記載の導電粒子を接着剤に分散してなる異方導電性接着剤。 An anisotropic conductive adhesive obtained by dispersing the conductive particles according to any one of claims 1 to 5 in an adhesive. 請求項又はに記載の絶縁被覆導電粒子を接着剤に分散してなる異方導電性接着剤。 Anisotropic conductive adhesive having dispersed in an adhesive insulating coating conductive particle according to claim 6 or 7.
JP2012101185A 2007-11-01 2012-04-26 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive Active JP5472369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101185A JP5472369B2 (en) 2007-11-01 2012-04-26 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007285025 2007-11-01
JP2007285025 2007-11-01
JP2012101185A JP5472369B2 (en) 2007-11-01 2012-04-26 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008262012A Division JP5024260B2 (en) 2007-11-01 2008-10-08 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Publications (2)

Publication Number Publication Date
JP2012190806A JP2012190806A (en) 2012-10-04
JP5472369B2 true JP5472369B2 (en) 2014-04-16

Family

ID=40866754

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008262012A Active JP5024260B2 (en) 2007-11-01 2008-10-08 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP2012101185A Active JP5472369B2 (en) 2007-11-01 2012-04-26 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP2012101187A Active JP5440645B2 (en) 2007-11-01 2012-04-26 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008262012A Active JP5024260B2 (en) 2007-11-01 2008-10-08 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012101187A Active JP5440645B2 (en) 2007-11-01 2012-04-26 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Country Status (1)

Country Link
JP (3) JP5024260B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222375B1 (en) * 2009-09-08 2013-01-15 세키스이가가쿠 고교가부시키가이샤 Conductive particles with attached insulating particles, method for producing conductive particles with attached insulating particles, anisotropic conductive material, and connection structure
JP5589361B2 (en) * 2009-11-16 2014-09-17 日立化成株式会社 Conductive particles and method for producing the same
JP5534891B2 (en) * 2010-03-26 2014-07-02 積水化学工業株式会社 Conductive particle, method for producing conductive particle, anisotropic conductive material, and connection structure
JP5837738B2 (en) * 2010-03-26 2015-12-24 積水化学工業株式会社 Conductive particle, anisotropic conductive material, connection structure, and method for producing conductive particle
JP5583572B2 (en) * 2010-12-28 2014-09-03 株式会社日本触媒 Conductive fine particles
CN103329217B (en) * 2011-01-25 2016-06-29 株式会社日本触媒 Electrically conductive microparticle and resin particle and employ their anisotropic conductive material
TWI602198B (en) * 2012-01-11 2017-10-11 日立化成股份有限公司 Conductive particle, insulation coating conductive particle, and anisotropic conductive adhesive
JP6438186B2 (en) * 2012-09-06 2018-12-12 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JPWO2016063941A1 (en) * 2014-10-22 2017-08-03 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR101768282B1 (en) * 2014-10-30 2017-08-14 삼성에스디아이 주식회사 Anisotropic conductive film and the semiconductor device using thereof
JP6500583B2 (en) * 2015-05-11 2019-04-17 日立化成株式会社 Conductive particle and semiconductor package using conductive particle
JP2015195217A (en) * 2015-06-18 2015-11-05 積水化学工業株式会社 Anisotropic conductive material and connecting structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103816A (en) * 1992-09-18 1994-04-15 Mitsubishi Materials Corp Conductive filler consisting of palladium-coated metal powder
TW557237B (en) * 2001-09-14 2003-10-11 Sekisui Chemical Co Ltd Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP4254995B2 (en) * 2002-04-26 2009-04-15 日立化成工業株式会社 Anisotropic conductive adhesive and circuit board
JP5247968B2 (en) * 2003-12-02 2013-07-24 日立化成株式会社 Circuit connection material and circuit member connection structure using the same

Also Published As

Publication number Publication date
JP2012190807A (en) 2012-10-04
JP2009135086A (en) 2009-06-18
JP5024260B2 (en) 2012-09-12
JP5440645B2 (en) 2014-03-12
JP2012190806A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5472369B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP5151920B2 (en) Conductive particles and method for producing conductive particles
JP4784713B1 (en) Method for producing coated particles
KR101261184B1 (en) Coated conductive particles and method for producing same
JP5472332B2 (en) Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP5549069B2 (en) Particulate conductive material for anisotropic conductive adhesive, method for producing the same, and anisotropic conductive adhesive
JP4640532B2 (en) Coated conductive particles
JP4640531B2 (en) Conductive particles
WO2011002084A1 (en) Conductive particle
JP4715969B1 (en) Conductive particles
JP6507551B2 (en) Conductive particles
KR101151072B1 (en) Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
JP5626288B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure
JP6507552B2 (en) Conductive particles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5472369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350