JP4261973B2 - Method for producing conductive electroless plating powder - Google Patents
Method for producing conductive electroless plating powder Download PDFInfo
- Publication number
- JP4261973B2 JP4261973B2 JP2003124442A JP2003124442A JP4261973B2 JP 4261973 B2 JP4261973 B2 JP 4261973B2 JP 2003124442 A JP2003124442 A JP 2003124442A JP 2003124442 A JP2003124442 A JP 2003124442A JP 4261973 B2 JP4261973 B2 JP 4261973B2
- Authority
- JP
- Japan
- Prior art keywords
- gold
- powder
- copper
- plating
- core material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Conductive Materials (AREA)
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、銅からなる芯材粒子の表面に無電解金めっき被覆層が形成されてなる導電性無電解めっき粉体の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
銅芯材の表面に、金からなる無電解めっき層が形成されてなる導電性無電解めっき粉体が知られている。例えば、金で被覆された90%以上が平均粒径100μm以下であり、平均アスペクト比が5以上のフレーク状であり、金の被覆量が30〜50重量%である銅芯材からなる導電性無電解めっき粉体が知られている(特許文献1参照)。このめっき粉体は、従来金やパラジウムの粉体が用いられていた導電性フィラーと同等の導電性を有し、また低コストであることから、金やパラジウムの導電性フィラーの代替物として用いられる。しかし、銅芯材の表面全体が金めっき層で被覆されていないことから、めっき粉体の表面には銅が露出している。銅は耐食性が低いことから、信頼性が非常に要求される用途にこのめっき粉体を用いることはできない。
【0003】
また銅はマイグレーションを起こしやすいことからその防止を目的として、銅芯材の表面にニッケルめっきのバリア層を形成し、その上に金めっき層を形成することが行われている。しかしニッケルは銅と比較して比抵抗が高いため、ニッケル層が銅芯材に存在すると、銅の低抵抗の特徴が発現しにくくなる。また、ニッケルは無電解めっきの工程で凝集を起こしやすいことから、得られためっき粉体に対して機械的な分散処理を施してめっき粉体の分散性を高める必要がある。銅は金属の中では比較的に柔らかい部類に属する材料なので、機械的な分散処理によって銅芯材が変形しやすく、それによって金めっき層も損傷を受けやすい。なお機械的な分散処理には例えば気流式粉砕機、水流式粉砕機、ボールミル、ビースミル、その他機械的粉砕機が一般に使用される。
【0004】
【特許文献1】
特開平6−108102号公報
【0005】
従って本発明は、導電性や耐食性が高く、高信頼性を有し、分散性が良好な導電性無電解めっき粉体の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、D 50 値が0.5〜1000μmの球状であり、かつ銅からなる芯材粒子の表面に金からなる無電解めっき層が直接形成されてなり、該銅芯材と該めっき層との間には何らの層も介在しておらず、該めっき層は5〜1000nmの厚みで該芯材粒子の全面を均一に連続的に被覆しており、めっき粉体の表面に金及び銅が単独で微粒子状態で析出していない導電性無電解めっき粉体の製造方法であって、
0.001〜2モル/リットルの錯化剤、0.0005〜0.025モル/リットルのエリソルビン酸又はその塩及び0.0015〜0.046モル/リットルのシアン化カリウムを含み、pHが3.5〜7.0である水溶液中に、銅からなる芯材粒子を投入し分散させ、得られた分散液中に金イオンを添加しこれを置換型無電解めっきのみによって還元析出させて、該芯材粒子の表面に金からなる無電解めっき層を直接形成することを特徴とする導電性無電解めっき粉体の製造方法を提供するものである。
【0008】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基づき説明する。本発明のめっき粉体は、銅からなる芯材粒子(以下、銅芯材という)の表面に、金からなる無電解めっき層(以下、金めっき層という)を直接形成してなるものである。つまり、銅芯材と金めっき層との間には何らの層も介在していない。金めっき層は銅芯材の全面を均一に被覆している。従って本発明のめっき粉体においては、その表面に銅が露出していない。「均一に被覆」とは、金めっき層がある一定の厚みの範囲内で銅芯材を連続的に被覆しており、且つめっき粉体の表面に金や銅が単独で微粒子状態で析出していないことを意味する。
【0009】
図1(a)及び(b)には本発明のめっき粉体の一例の反射電子組成像が示されている。このめっき粉体は後述する実施例6の方法によって製造されたものである。反射電子組成像では、測定対象物に含まれる元素の原子番号に対応したコントラストが得られる。平均原子番号の大きな元素を含む部位は明るく写り、平均原子番号の小さな元素を含む部位は暗く写る。従って銅および金を含む測定対象物を観察すると、被写物の組成によって異なるが、銅は金と比較して黒く暗く写り、金は銅と比較して白く明るく写る。図1中の背景の黒い部分はカーボンテープであり、炭素が銅や金よりも原子番号が小さいことから黒色に写る。この場合、銅は灰色、金は白色に見える(以下に説明する図2〜図4についても同様である)。図1から明らかなように、めっき粉体はその全体が白く写っていることが判る。このことは、銅芯材の表面全域が金めっき層で被覆されていることを意味する。まためっき粉体の表面には、金や銅が単独で析出した微粒子も観察されない。金めっき層がこのような状態で形成されていることを、本発明では金めっき層が銅芯材を均一に被覆していると呼んでいる。
【0010】
これに対して図2(a)及び(b)並びに図3(a)及び(b)に示すめっき粉体の反射電子組成像では、白く写っている金めっき層は不連続でまばらな状態になっており、灰色に写っている銅がめっき粉体の表面に露出していることが判る。また図4(a)及び(b)に示すめっき粉体の反射電子組成像では、一部の粉体は白く写っている金めっき層で表面全域が覆われているものの、金めっき層の表面に金が単独で析出した微粒子が数多く観察される。また粉体の中には金めっき層が全く形成されておらず、灰色に写っている銅芯材のままの状態にあるものも観察される。これら図2〜図4に示す状態の金めっき層は、本発明にいう「金めっき層が銅芯材を均一に被覆している」状態には含まれない。なお図2〜図4のめっき粉体は、後述する比較例2〜4の方法によってそれぞれ製造されたものである。
【0011】
本発明のめっき粉体における銅芯材は、ほぼ球形のものや、フレーク状、針状のものなど、その形状に特に制限はない。銅芯材の大きさは本発明のめっき粉体の具体的用途に応じて適切に選択される。例えば、本発明のめっき粉体を電子回路接続用の電子材料として用いる場合には銅芯材はD50値が0.5〜1000μm、特に1〜200μm程度の球状粒子であることが好ましい。あるいは、アスペクト比の平均(長径と厚みの比の平均)が1〜100000、特に3〜2000程度であって、長軸径の平均が、1〜10000μm、特に3〜1000μm程度であるフレーク状粒子であることが好ましい。
【0012】
金めっき層の厚みは信頼性試験結果に少なからず影響する。厚みが小さすぎると、めっき粉体を60℃・95%RH環境下で保存した時に体積固有抵抗値が上昇し、所望の導電性が得られにくくなる。一方、金めっき層の厚みが大きすぎると、所望の導電性は得られるものの経済性に乏しくなる。これらの観点から金めっき層の厚みは5〜1000nm、特に5〜800nmであることが好ましい。金めっき層の厚みは、金イオンの添加量や化学分析から算出することができる。
【0013】
本発明のめっき粉体は、先に説明した図1に示すように銅芯材の表面全域が金めっき層で均一に被覆されており、銅が実質的に表面に露出していないので、耐食性が高く高信頼性を有するものである。従って本発明のめっき粉体は、例えば自動車に搭載される電子部品の導電性材料のように、非常に優れた信頼性が要求される用途に特に適している。しかも本発明のめっき粉体は、金やパラジウム単独の粉末からなる導電性材料に比べて低コストであるという利点もある。
【0014】
次に本発明のめっき粉体の好ましい製造方法について説明する。めっき粉体の製造方法は(1)金めっき工程および(2)分散処理工程に大別される。(1)の金めっき工程では、錯化剤を含む水溶液に銅芯材を投入して混合分散させ、得られた分散液に金イオンを添加して金を銅芯材の表面に置換析出させる。つまり、錯化剤及び金イオンを含む水溶液に銅芯材を投入するのではなく、銅芯材の投入と金イオンの添加をこの順で逐次に行うのである。(2)の分散処理工程においては、(1)の金めっき工程で得られためっき粉体(このめっき粉体は凝集の程度が高いことがある)を含む分散液と、該めっき粉体に含まれる金属のイオンと錯形成可能な化合物とを混合して、該めっき粉体を単分散させる。以下それぞれの工程について詳述する。
【0015】
(1)金めっき工程
本製造方法においてもっとも特徴となるのがこの金めっき工程である。具体的には、先に述べた通り錯化剤及び金イオンを含む水溶液に銅芯材を投入するのではなく、銅芯材の投入と金イオンの添加をこの順で逐次に行う点に特徴がある。これによって、銅芯材の表面全域を金めっき層で均一に被覆することが初めて可能になる。
【0016】
錯化剤を含む水溶液中に銅芯材を投入する前に、前もって銅芯材を単分散化させておくと金が均一に析出しやすくなるので好ましい(これを予備分散という)。予備分散には例えば超音波と撹拌とを併用することができる。但し銅芯材に損傷を与えないように穏やかな条件で行う。銅芯材を予備分散させるに際し、例えば界面活性剤等の分散剤を必要に応じて用いることができる。
【0017】
銅芯材の表面に酸化膜が存在していると金の析出が不均一になるので、予備分散と共に酸化膜を除去する処理を行ってもよい。酸化膜を除去するためには、例えば銅と錯形成可能な錯化剤や無機酸を添加すればよい。錯化剤としては、例えば後述する錯化剤と同様のものを用いることができる。また無機酸としては例えば塩酸、硝酸、硫酸等を用いることができる。これら錯化剤や無機酸の濃度は、酸化膜を除去でき且つ過剰の銅が溶出しないような濃度とする。
【0018】
銅芯材を予備分散させ、また必要に応じて酸化膜を除去した後、銅芯材を濾別、洗浄する。次いで銅芯材を、錯化剤を含む水溶液中に投入して分散液を得る。錯化剤はとしては、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸グルコン酸、コハク酸、フタル酸、フマル酸、マレイン酸、マロン酸またはそのアルカリ金属塩やアンモニウム塩などの各種カルボン酸又はその塩、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン類、アンモニウム塩、EDTA、ピロリン酸又はその塩など、金イオンや溶出する銅イオンと錯形成可能な化合物が使用される。これらの錯化剤は1種又は2種類以上を用いることができる。
【0019】
銅芯材を投入する前における前記水溶液中の錯化剤の濃度は、使用する錯化剤にもよるが、銅表面に形成される酸化膜を除去し、金を均一に析出させる点から、0.001〜2モル/リットルであり、好ましくは0.005〜1モル/リットルである。
【0020】
銅芯材の表面全域を金めっき層で均一に被覆する観点から、前記水溶液中に、エリソルビン酸又はその塩を含有させる。
【0021】
エリソルビン酸は、L−アスコルビン酸の立体異性体であり、イソアスコルビン酸やアラボアスコルビン酸などの別名で呼ばれることもある。本発明者らの検討の結果、無電解めっきにおいて、しばしば用いられているL−アスコルビン酸とエリソルビン酸とでは、還元力の相違があり、それに起因してエリソルビン酸は過剰な銅の溶解を十分に抑制でき、銅芯材表面の酸化を効果的に防止できることが判明した。エリソルビン酸の濃度(銅芯材を投入する前での前記水溶液中における濃度)は、0.0005〜0.025モル/リットルであり、好ましくは0.005〜0.015モル/リットルである。この濃度範囲であれば、上述の効果が得られ易く、さらに、銅材料からなる被めっき芯材の表面全域を金めっき層で一層均一に被覆することができる。エリソルビン酸の塩としてはナトリウム塩等が挙げられる。
【0022】
前述したエリソルビン酸又はその塩に加えて、シアン化カリウムを前記水溶液に添加すると、溶出した銅イオンがマスクされて、金をより均一に析出させることができ、銅芯材の表面全域を金めっき層でより均一に被覆できることが判明した。シアン化カリウムの濃度(銅芯材を投入する前での前記水溶液中における濃度)は、0.0015〜0.046モル/リットルとする。シアン化カリウムの添加はもちろん必須ではないが、金の均一析出を考慮すると添加することが望ましい。
【0023】
次に、銅芯材を分散させた分散液に金イオンを含むめっき液を添加して置換型無電解めっきを行う。これによって銅芯材の表面に金を置換析出させる。錯化剤を含む水溶液に金イオンを予め添加しておくと、銅芯材を投入した時に、投入の時間差によって、金の置換析出にばらつきが生じることがしばしばある(後述する比較例2参照)。また前述したように、銅芯材の表面に酸化膜が存在している場合、金の置換反応が始まりにくくなり、金の析出にばらつきが生じることもしばしばある。これに対して銅芯材を分散させた分散液に金イオンを添加することでそのような不都合を回避し得ることが本発明者らの検討によって判明した。特に、錯化剤によって銅芯材の表面に存在している酸化膜を除去できることが判明した。但し銅を溶解させ過ぎると、不溶性の銅化合物が液中に蓄積することから、過度に酸化膜が形成されている銅芯材の場合は、先に述べた予備分散工程において酸化膜を予め除去しておくことが好ましい。
【0024】
めっき液における金イオンの濃度は0.05〜1.5モル/リットル、特に0.1〜1.0モル/リットルであることが好ましい。金イオン源としては、シアン化金カリウム、シアン化金ナトリウム、塩化金酸、亜硫酸金、チオ硫酸金などが用いられる。めっき液に、金イオンと錯体を形成するとされる錯化剤を添加しておいても良い。そのような錯化剤は、例えば先に述べた錯化剤の中から選択できる。錯化剤は1種又は2種以上を用いることができる。
【0025】
本製造方法においては、自己触媒型無電解めっきは行わずに、置換型無電解めっきのみによって金イオンを還元させる。つまり還元剤を用いずに金イオンを還元させる。
【0026】
金イオンの添加速度は金の析出速度を制御するのに有効である。金の析出速度は均一な金の析出に影響を及ぼす。従って、金の析出速度はめっき液の添加速度を調整することによって、1〜300ナノメーター/分、特に5〜100ナノメーター/分に制御することが好ましい。金の析出速度は金イオンの添加速度から計算によって求めることができる。
【0027】
銅芯材を投入する前の錯化剤水溶液、銅芯材を投入した後の分散液及びめっき液のpHは金の析出状態に影響する。pHが低すぎると、銅芯材から溶出した銅イオンに由来する水酸化銅が形成されやすくなって、得られるめっき粉体が凝集しやすくなる。pHが高すぎると金の析出が粗くなる。これらの観点から、各液のpHは3.5〜7.0、特に4.0〜6.0であることが好ましい。pH調整剤としては水酸化ナトリウム、水酸化カリウム、アンモニア水、塩酸、硫酸、硝酸、リン酸等が挙げられる。
【0028】
めっき液を分散液に添加するときの温度も金の析出に影響する。温度が低すぎると、置換析出の反応速度が遅くなり、且つ析出が粗くなる。一方、温度が高すぎると、反応速度が速くなりすぎて金の析出にばらつきが生じる。また、めっき液が不安定となり分解を引き起こす場合もある。これらの観点から、めっき液が添加されている間での分散液の温度は50〜95℃、特に65〜90℃であることが好ましい。
【0029】
(2)分散処理工程
(1)の金めっき工程で得られためっき粉体は、その凝集が顕著ではなく十分に分散している状態であれば、分散液からこれを濾別し乾燥させることで最終製品とすることができる。一方めっき粉体の凝集状態が高い場合には、これを分散処理工程に付して単分散化させる。単分散化させるために、(1)の金めっき工程で得られためっき粉体を含む分散液と、該めっき粉体に含まれる金属のイオンと錯形成可能な化合物とを混合する。本発明者らの検討の結果、(1)の金めっき工程で得られためっき粉体凝集の一因は、該めっき粉体に含まれる金属のイオン、例えば銅芯材から溶出した銅イオンが水不溶性の化合物を形成し、該水不溶性の化合物がめっき粉体どうしを結合させることにあることが判明した。そこで本発明においては、凝集しているめっき粉体と、該めっき粉体に含まれる金属のイオンと錯形成可能な化合物とを混合することで、前記水不溶性の化合物を錯体に変化させて、凝集状態にあるめっき粉体を単分散化している。この分散方法は、ミルや粉砕機を用いた機械的な分散方法に比べてめっき粉体に損傷を与えにくいという利点がある。特に銅芯材のように柔らかい材料を用いる場合には、その変形が起こらず、従って金めっき層も損傷を受けないので極めて有効である。本分散処理工程は、めっき粉体に対する悪影響が少ないので、所望の分散状態が得られるまで数回繰り返すこともできる。
【0030】
めっき粉体に含まれる金属のイオンと錯形成可能な化合物としては、特に銅イオンと錯形成可能な化合物を用いることが好ましい。該化合物の例としては、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸、コハク酸、フタル酸、フマル酸、マレイン酸、マロン酸又はそのアルカリ金属塩やアンモニウム塩などの各種カルボン酸又はその塩、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン類、アンモニウム塩、EDTA、ピロリン酸又はその塩などが挙げられる。これらの化合物は1種又は2種類以上を用いることができる。またこれらの化合物を、塩酸や硝酸、硫酸、リン酸などの無機酸と併用することができる。
【0031】
前記化合物は一般に水溶液の形でめっき粉体と混合される。この水溶液の濃度(めっき粉体と混合する前の濃度)は、使用する化合物の種類にもよるが、一般に0.005〜6モル/リットル、特に0.01〜3モル/リットルであることが好ましい。この水溶液のpHは、化合物の種類にもよるが一般に3.5〜14、特に5〜12.5であることが好ましい。pHの調整には、水酸化ナトリウム、水酸化カリウム、アンモニア水、塩酸、硫酸、硝酸などが用いられる。
【0032】
分散処理の温度は5〜60℃、特に10〜35℃であることが好ましい。この温度範囲であれば、銅芯材の溶解を生ずることなく比較的短時間で所望の分散状態となる。
【0033】
分散処理工程においては補助的に超音波を用いたり、分散液を撹拌してもよい。但し、めっき粉体に損傷を与えないような穏やかな条件で行う。
【0034】
分散処理が完了したら、分散液からめっき粉体を濾別し乾燥させることで最終製品が得られる。
【0035】
本発明は前記実施形態に制限されない。例えば前述しためっき粉体の製造方法においては、金めっき工程の後に分散処理工程を行ったが、金めっき工程で得られためっき粉体の分散性が良好であれば、分散処理工程を行わなくてもよい(後述する実施例2、4及び6参照)。
【0036】
【実施例】
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。
【0037】
〔実施例1〕
(1)金めっき工程
D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。銅粉43.5gを水200mlに分散させ、超音波を併用しながら常温で5分攪拌しスラリーを得た。0.027モル/リットルのEDTA−4Na及び0.038モル/リットルのクエン酸三ナトリウムを含み、水酸化ナトリウム及びリン酸によりpH5に調整された水溶液2リットル中へ、このスラリーを投入して分散液を得た。この分散液を15分攪拌した。次いで0.41モル/リットルのシアン化金カリウムを含むめっき液50ミリリットルを、10ミリリットル/分の添加速度で、この分散液に添加した。分散液の温度は80℃に維持した。分散液を10分間攪拌して銅粉の表面に金を置換析出させ、金めっき粉体を得た。
【0038】
(2)分散処理工程
得られた金めっき粉体を濾別し、次いで金めっき粉体に水を加えて500ミリリットルのスラリーにした。このスラリーに0.044モルのEDTA−4Naを加え、超音波を併用しながら20℃で30分間攪拌を続けた。この工程を3回繰り返し、金めっき粉体を分散処理した。次いで金めっき粉体を濾別し、3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。金イオンの添加量から算出した金めっき層の厚さは35nmであった。得られた金めっき粉体の反射電子組成像を観察したところ、金めっき層が銅芯材の全面を均一に被覆していることが確認された。
【0039】
〔実施例2〕
実施例1において金めっき工程で得られた金めっき粉体を濾別し、3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。また分散処理工程は行わなかった。これら以外は実施例1と同様にして金めっき粉体を得た。得られた金めっき粉体の反射電子組成像を観察したところ、金めっき層が銅芯材の全面を均一に被覆していることが確認された。
【0040】
〔実施例3〕
(1)金めっき工程
D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。銅粉43.5gを水200mlに分散させ、超音波を併用しながら常温で5分攪拌しスラリーを得た。0.30モル/リットルのマロン酸、5.0×10-3モル/リットルのエリソルビン酸ナトリウム及び7.7×10-3モル/リットルのシアン化カリウムを含み、水酸化カリウム及びリン酸によりpH5に調整された水溶液2リットル中へ、このスラリーを投入して分散液を得た。この分散液を15分攪拌した。次いで0.41モル/リットルのシアン化金カリウムを含むめっき液50ミリリットルを、10ミリリットル/分の添加速度でこの分散液に添加した。分散液の温度は80℃に維持した。分散液を10分間攪拌して銅粉の表面に金を置換析出させ、金めっき粉体を得た。
【0041】
(2)分散処理工程
得られた金めっき粉体を濾別し、実施例1と同様にして金めっき粉体の分散処理を行った。金イオンの添加量から算出した金めっき層の厚さは35nmであった。得られた金めっき粉体の反射電子組成像を観察したところ、金めっき層が銅芯材の全面を均一に被覆していることが確認された。
【0042】
〔実施例4〕
実施例3において金めっき工程で得られた金めっき粉体を濾別し、3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。また分散処理工程は行わなかった。これら以外は実施例3と同様にして金めっき粉体を得た。得られた金めっき粉体の反射電子組成像を観察したところ、金めっき層が銅芯材の全面を均一に被覆していることが確認された。
【0043】
〔実施例5〕
(1)金めっき工程
D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。銅粉43.5gを水200mlに分散させ、超音波を併用しながら常温で5分攪拌しスラリーを得た。0.10モル/リットルのクエン酸カリウム、5.0×10-3モル/リットルのエリソルビン酸ナトリウム及び7.7×10-3モル/リットルのシアン化カリウムを含み、水酸化カリウム及びリン酸によりpH5に調整された水溶液2リットル中へ、このスラリーを投入して分散液を得た。この分散液を15分攪拌した。次いで0.41モル/リットルのシアン化金カリウムを含むめっき液50ミリリットルを、10ミリリットル/分の添加速度でこの分散液に添加した。分散液の温度は80℃に維持した。分散液を10分間攪拌して銅粉の表面に金を置換析出させ、金めっき粉体を得た。
【0044】
(2)分散処理工程
得られた金めっき粉体を濾別し、実施例1と同様にして金めっき粉体の分散処理を行った。金イオンの添加量から算出した金めっき層の厚さは35nmであった。得られた金めっき粉体の反射電子組成像を観察したところ、金めっき層が銅芯材の全面を均一に被覆していることが確認された。
【0045】
〔実施例6〕
実施例5において金めっき工程で得られた金めっき粉体を濾別し、3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。また分散処理工程は行わなかった。これら以外は実施例5と同様にして金めっき粉体を得た。得られた金めっき粉体の反射電子組成像を観察したところ、図1(a)及び(b)に示すように金めっき層が銅芯材の全面を均一に被覆していることが確認された。
【0046】
〔比較例1〕
(1)触媒化工程
D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。銅粉50gを超音波を併用してスラリー攪拌しながら0.11モル/リットルの塩化パラジウム水溶液2ミリリットルを添加した。そのままの攪拌状態を5分間維持させ、銅粉の表面にパラジウムイオンを捕捉させる活性化処理を行った。次いでスラリーをろ過し、1回リパルプ湯洗した銅粉を200ミリリットルのスラリーにした。得られたスラリーを、0.087モル/リットルの酒石酸ナトリウム水溶液中に攪拌しながら添加して水性懸濁体となした。酒石酸水溶液は75℃に加温されており、液量は1.8リットルであった。
【0047】
(2)ニッケルめっき工程
触媒化工程で得られた水性懸濁体に、0.86モル/リットルの硫酸ニッケルと0.17モル/リットルの酒石酸ナトリウムとからなるニッケルイオン含有液及び2.75モル/リットルの次亜リン酸ナトリウムと2.6モル/リットルの水酸化ナトリウムとからなる還元剤含有液の2液を、それぞれ7ミリリットル/分の添加速度で添加した。添加量はそれぞれ120ミリリットルであった。2液の添加後すぐに水素の発生が認められ、めっき反応の開始が確認された。2液の添加が完了した後、水素の発泡が停止するまで75℃の温度を保持しながら攪拌を続けた。次いで水性懸濁体をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有するめっき粉体を得た。ニッケルイオンの添加量から算出したニッケルめっき層の厚さは100nmであった。
【0048】
(3)金めっき工程
金めっき用の置換めっき液を2リットル調製した。置換めっき液は、0.027モル/リットルのEDTA−4Na、0.038モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化金カリウムを含み、水酸化ナトリウム水溶液及びリン酸水溶液によってpHが6に調整されたものであった。液温60℃の無電解めっき液を撹拌しながら、該めっき液に前記ニッケルめっき粉体54gを添加し、20分間金めっき処理をした。次いで液をろ過し、ろ過物を3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。これによりニッケル皮膜上に金置換めっき層が形成されためっき粉体が得られた。金イオンの添加量から算出した金めっき層の厚さは35nmであった。得られた金めっき粉体の反射電子組成像を観察したところ、金めっき層がニッケル皮膜上を均一に被覆していることが確認された。
【0049】
〔比較例2〕
D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。0.013モル/リットルのシアン化金カリウム、0.1モル/リットルのシアン化カリウム及び0.03モル/リットルのクエン酸ナトリウムを含む一般的な金置換めっき液を2リットル調製した。銅粉43.5gを水200ミリリットルに分散させ、超音波を与えながら常温で5分攪拌してスラリーを得た。液温85℃の金置換めっき液を攪拌しながら前記スラリーを投入し、5分間金めっき処理をした。次いでめっき液をろ過し、ろ過物を3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。これにより銅粉の表面に金めっき層が形成された金めっき粉体が得られた。金イオンの添加量から算出した金めっき層の厚さは35nmであった。得られた金めっき粉体の反射電子組成像を観察したところ、図2(a)及び(b)に示すように、金めっき層は銅芯材の表面を不連続にまばらな状態で被覆しており、銅が表面に露出していることが確認された。
【0050】
〔比較例3〕
本比較例は、特開平6−108102号公報(前述の特許文献1)の実施例1に対応するものである。D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。銅粉104gを、メタノール250ミリリットル、硫酸50ミリリットル及び水200ミリリットルからなる水溶液に分散浸漬し1時間攪拌した。これを中性になるまでデカンテーションにより洗浄し、濾別して500ミリリットルの水に再び分散浸漬した。これを攪拌しながら塩化金ナトリウム5×10-3モル/リットル及び塩酸10ミリリットル/リットルの水溶液20リットルを加え10分攪拌して銅粉の表面に金を置換析出させた。これを中性になるまでデカンテーションにより洗浄を行った。次いで2.4×10-2モル/リットルのシアン化金カリウム、0.22モル/リットルの水酸化カリウム及び5.5×10-2モル/リットルのEDTA−4Naからなる金めっき液2リットルに分散浸漬し50℃に保った。更に0.68モル/リットルのジメチルアミンボラン及び2.7モル/リットルのアンモニア水からなる還元剤500ミリリットルを一時間かけて滴下した。金イオンの添加量から算出した金めっき層の厚さは35nmであった。めっき終了後デカンテーションにより中性になるまで洗浄を行い、濾別して80℃で乾燥した。得られた金めっき粉体の反射電子組成像を観察したところ、図3(a)及び(b)に示すように、金めっき層は銅芯材の表面を不連続にまばらな状態で被覆しており、銅が表面に露出していることが確認された。
【0051】
〔比較例4〕
D50値が5μmの銅粉〔三井金属鉱業(株)製 商品名"1500YM"〕を芯材粉体に用いた。銅粉43.5gを水200ミリリットルに分散させ、超音波を与えながら常温で5分攪拌してスラリーを得た。0.027モル/リットルのEDTA−4Na及び0.038モル/リットルのクエン酸ナトリウムを含み、水酸化ナトリウムによりpH6に調整された水溶液2リットル中へ、このスラリーを投入して分散液を得た。次いで0.035モル/リットルのシアン化金カリウム、0.027モル/リットルのEDTA−4Na及び0.038モル/リットルのクエン酸三ナトリウムからなる金属塩液と、0.79モル/リットルの水素化ホウ素ナトリウム及び1.5モル/リットルの水酸化ナトリウムからなる還元液とを、送液ポンプを通して個別かつ同時に30ミリリットル/分の添加速度でこの分散液に滴下した。滴下した液量は各々585ミリリットルであった。滴下終了後、めっき液をろ過し、ろ過物を3回リパルプ洗浄した後、80℃の真空乾燥機で乾燥させた。これにより銅粉の表面に金めっき層が形成された金めっき粉体が得られた。金イオンの添加量から算出した金めっき層の厚さは35nmであった。得られた金めっき粉体の反射電子組成像を観察したところ、図4(a)及び(b)に示すように、銅粉の表面に金めっき層が形成されている粉体と、金めっき層が全く形成されていない銅粉とが観察された。また、金が単独で析出した微粒子が数多く観察された。
【0052】
〔性能評価〕
実施例1〜6及び比較例1〜4で得られた金めっき粉体について以下の方法で体積固有抵抗値を測定し、また信頼性試験後の金めっき粉体の体積固有抵抗値を測定した。更に粒度分布を測定した。それらの結果を以下の表1に示す。
【0053】
〔体積固有抵抗値の測定〕
垂直に立てた内径10mmの樹脂製円筒内に、金めっき粉体1.0gを入れ、10kgの荷重をかけた状態で上下電極間の電気抵抗を測定し、体積固有抵抗値を求めた。
【0054】
〔信頼性試験〕
金めっき粉体を60℃・95%RHの環境下に250時間及び500時間それぞれ保存した後の体積固有抵抗値を測定した。
【0055】
〔粒度分布〕
レーザー回折・散乱法による粒度分布測定装置(マイクロトラック HRA X100(商品名))により測定した。
【0056】
【表1】
【0057】
表1に示す結果から明らかなように、各実施例の金めっき粉体(本発明品)は、金の析出が均一で、電気抵抗値が十分に低い上に、信頼性が高く、また分散性にも優れていることが判る。一方、各比較例のめっき粉末は金の析出がばらついており、電気抵抗値が高く、信頼性が低く、更に分散状態が良好でないことが判る。
【0058】
【発明の効果】
以上詳述した通り本発明によれば、銅芯材上へ直接金めっき層を形成することにより、電気抵抗が低く、耐食性があり、高温高湿環境下に長時間保存しても抵抗値の上昇が少なく、且つ分散性に優れた導電性無電解めっき粉体が得られる。
【図面の簡単な説明】
【図1】本発明の導電性無電解めっき粉体の一例の反射電子組成像であり、図1(a)は倍率1万倍、図1(b)は倍率1000倍である。
【図2】比較例2で得られた導電性無電解めっき粉体の反射電子組成像であり、図2(a)は倍率1万倍、図2(b)は倍率1000倍である。
【図3】比較例3で得られた導電性無電解めっき粉体の反射電子組成像であり、図3(a)は倍率1万倍、図3(b)は倍率1000倍である。
【図4】比較例4で得られた導電性無電解めっき粉体の反射電子組成像であり、図4(a)は倍率1万倍、図4(b)は倍率1000倍である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a conductive electroless plating powder in which an electroless gold plating coating layer is formed on the surface of core material particles made of copper.
[0002]
[Prior art and problems to be solved by the invention]
A conductive electroless plating powder is known in which an electroless plating layer made of gold is formed on the surface of a copper core material. For example, 90% or more coated with gold has a mean particle size of 100 μm or less, is in the form of flakes having an average aspect ratio of 5 or more, and consists of a copper core material with a gold coating amount of 30 to 50% by weight. An electroless plating powder is known (see Patent Document 1). This plating powder has the same conductivity as the conductive fillers conventionally used for gold and palladium powders and is low in cost, so it can be used as an alternative to gold and palladium conductive fillers. It is done. However, since the entire surface of the copper core material is not covered with the gold plating layer, copper is exposed on the surface of the plating powder. Since copper has low corrosion resistance, this plating powder cannot be used for applications that require extremely high reliability.
[0003]
Further, since copper is likely to cause migration, a nickel plating barrier layer is formed on the surface of the copper core material and a gold plating layer is formed thereon for the purpose of preventing the migration. However, since nickel has a higher specific resistance than copper, if the nickel layer is present in the copper core material, the low resistance characteristics of copper are less likely to appear. In addition, since nickel tends to agglomerate in the electroless plating process, it is necessary to increase the dispersibility of the plating powder by subjecting the obtained plating powder to a mechanical dispersion treatment. Since copper is a material belonging to a relatively soft class among metals, the copper core material is easily deformed by mechanical dispersion treatment, and the gold plating layer is also easily damaged. For mechanical dispersion treatment, for example, an airflow pulverizer, a waterflow pulverizer, a ball mill, a beads mill, or other mechanical pulverizer is generally used.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-108102
Accordingly, an object of the present invention is to provide a method for producing a conductive electroless plating powder having high conductivity and corrosion resistance, high reliability, and good dispersibility.
[0007]
[Means for Solving the Problems]
The present invention is a spherical shape having a D 50 value of 0.5 to 1000 μm, and an electroless plating layer made of gold is directly formed on the surface of core material particles made of copper, and the copper core material and the plating layer There is no intervening layer, and the plating layer uniformly and continuously covers the entire surface of the core material particles with a thickness of 5 to 1000 nm. A method for producing a conductive electroless plating powder in which copper is not deposited in the form of fine particles alone,
Containing 0.001 to 2 mol / liter complexing agent, 0.0005 to 0.025 mol / liter erythorbic acid or a salt thereof and 0.0015 to 0.046 mol / liter potassium cyanide; Into an aqueous solution of ˜7.0, core material particles made of copper are added and dispersed, gold ions are added to the obtained dispersion, and this is reduced and precipitated only by substitutional electroless plating. An electroless plating layer made of gold is directly formed on the surface of material particles, and a method for producing a conductive electroless plating powder is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments thereof. The plating powder of the present invention is obtained by directly forming an electroless plating layer (hereinafter referred to as a gold plating layer) made of gold on the surface of core material particles (hereinafter referred to as a copper core material) made of copper. . That is, no layer is interposed between the copper core material and the gold plating layer. The gold plating layer uniformly covers the entire surface of the copper core material. Therefore, copper is not exposed on the surface of the plating powder of the present invention. “Uniformly coated” means that the gold plating layer is continuously coated within a certain thickness range, and the surface of the plating powder is separated by gold or copper alone in the form of fine particles. Means not.
[0009]
FIGS. 1A and 1B show reflected electron composition images of an example of the plated powder of the present invention. This plating powder is manufactured by the method of Example 6 described later. In the reflected electron composition image, a contrast corresponding to the atomic number of the element contained in the measurement object is obtained. Sites containing elements with a high average atomic number appear bright, and sites containing elements with a low average atomic number appear dark. Therefore, when an object to be measured including copper and gold is observed, copper appears darker and darker than gold, and gold appears brighter and brighter than copper, depending on the composition of the object. The black part of the background in FIG. 1 is a carbon tape, which appears black because carbon has a smaller atomic number than copper or gold. In this case, copper appears gray and gold appears white (the same applies to FIGS. 2 to 4 described below). As is apparent from FIG. 1, it can be seen that the whole of the plating powder is white. This means that the entire surface of the copper core material is covered with the gold plating layer. Further, fine particles in which gold or copper is deposited alone are not observed on the surface of the plating powder. In the present invention, the fact that the gold plating layer is formed in such a state is called that the gold plating layer uniformly coats the copper core material.
[0010]
In contrast, in the reflected electron composition image of the plating powder shown in FIGS. 2A and 2B and FIGS. 3A and 3B, the gold plating layer appearing white is discontinuous and sparse. It can be seen that the copper reflected in gray is exposed on the surface of the plating powder. Further, in the reflected electron composition image of the plating powder shown in FIGS. 4A and 4B, the surface of the gold plating layer is partially covered with a gold plating layer in which some of the powder is white. Many fine particles in which gold is precipitated alone are observed. In addition, some of the powder is not formed with a gold plating layer and is still in the state of a copper core that is reflected in gray. The gold plating layer in the state shown in FIGS. 2 to 4 is not included in the “the gold plating layer uniformly covers the copper core material” according to the present invention. 2 to 4 are respectively produced by the methods of Comparative Examples 2 to 4 described later.
[0011]
The shape of the copper core material in the plating powder of the present invention is not particularly limited, such as a substantially spherical shape, flake shape, or needle shape. The magnitude | size of a copper core material is suitably selected according to the specific use of the plating powder of this invention. For example, when the plating powder of the present invention is used as an electronic material for connecting an electronic circuit, the copper core material is preferably a spherical particle having a D 50 value of 0.5 to 1000 μm, particularly about 1 to 200 μm. Alternatively, flake-shaped particles having an average aspect ratio (average ratio of major axis to thickness) of 1 to 100,000, particularly about 3 to 2000, and an average major axis diameter of about 1 to 10,000 μm, particularly about 3 to 1000 μm. It is preferable that
[0012]
The thickness of the gold plating layer has a considerable influence on the reliability test results. If the thickness is too small, the volume resistivity increases when the plating powder is stored in an environment of 60 ° C. and 95% RH, making it difficult to obtain desired conductivity. On the other hand, if the thickness of the gold plating layer is too large, the desired conductivity can be obtained, but the economy is poor. From these viewpoints, the thickness of the gold plating layer is preferably 5 to 1000 nm, particularly preferably 5 to 800 nm. The thickness of the gold plating layer can be calculated from the amount of gold ions added and chemical analysis.
[0013]
In the plating powder of the present invention, as shown in FIG. 1 described above, the entire surface of the copper core is uniformly coated with a gold plating layer, and copper is not substantially exposed to the surface, so that the corrosion resistance Is high and highly reliable. Therefore, the plating powder of the present invention is particularly suitable for applications that require extremely high reliability, such as conductive materials for electronic components mounted on automobiles. In addition, the plating powder of the present invention has an advantage that it is less expensive than a conductive material made of gold or palladium alone.
[0014]
Next, the preferable manufacturing method of the plating powder of this invention is demonstrated. The method for producing the plating powder is roughly divided into (1) a gold plating step and (2) a dispersion treatment step. In the gold plating step of (1), a copper core material is added to an aqueous solution containing a complexing agent and mixed and dispersed, and gold ions are added to the obtained dispersion to displace and deposit gold on the surface of the copper core material. . That is, the copper core material is not charged into the aqueous solution containing the complexing agent and gold ions, but the copper core material and the gold ions are sequentially added in this order. In the dispersion treatment step (2), a dispersion liquid containing the plating powder obtained in the gold plating step (1) (this plating powder may have a high degree of aggregation), and the plating powder A metal ion and a compound capable of complex formation are mixed to monodisperse the plating powder. Each step will be described in detail below.
[0015]
(1) Gold plating process This gold plating process is the most characteristic in this manufacturing method. Specifically, as described above, the copper core material is not added to the aqueous solution containing the complexing agent and gold ions, but the copper core material and the addition of gold ions are sequentially performed in this order. There is. This makes it possible for the first time to uniformly coat the entire surface of the copper core material with the gold plating layer.
[0016]
It is preferable to monodisperse the copper core material in advance before introducing the copper core material into the aqueous solution containing the complexing agent because gold tends to precipitate uniformly (this is referred to as preliminary dispersion). For the preliminary dispersion, for example, ultrasonic waves and stirring can be used in combination. However, it should be performed under mild conditions so as not to damage the copper core material. When the copper core material is predispersed, for example, a dispersant such as a surfactant can be used as necessary.
[0017]
If an oxide film is present on the surface of the copper core material, the gold deposition becomes non-uniform. Therefore, the oxide film may be removed together with the preliminary dispersion. In order to remove the oxide film, for example, a complexing agent capable of complexing with copper or an inorganic acid may be added. As the complexing agent, for example, the same complexing agent as described later can be used. As the inorganic acid, for example, hydrochloric acid, nitric acid, sulfuric acid and the like can be used. The concentration of these complexing agent and inorganic acid is set such that the oxide film can be removed and excess copper is not eluted.
[0018]
After the copper core material is predispersed and the oxide film is removed as required, the copper core material is filtered and washed. Next, the copper core material is put into an aqueous solution containing a complexing agent to obtain a dispersion. Examples of complexing agents include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid gluconic acid, succinic acid, phthalic acid, fumaric acid, maleic acid, malonic acid, and various carboxylic acids such as alkali metal salts and ammonium salts thereof. Alternatively, compounds capable of complexing with gold ions or eluting copper ions, such as salts thereof, amino acids such as glycine, amines such as ethylenediamine and alkylamine, ammonium salts, EDTA, pyrophosphoric acid or salts thereof are used. These complexing agents can be used alone or in combination of two or more.
[0019]
The concentration of the complexing agent in the aqueous solution before adding the copper core material depends on the complexing agent used, but from the point of removing the oxide film formed on the copper surface and depositing gold uniformly, 0.001 to 2 mol / liter, preferably 0.005 to 1 mol / liter.
[0020]
The entire surface of the copper core material from the viewpoint of uniformly coated with gold plating layer, in the aqueous solution, Ru is contained erythorbic acid or a salt thereof.
[0021]
Erythorbic acid is a stereoisomer of L-ascorbic acid and is sometimes called by another name such as isoascorbic acid or araboascorbic acid. As a result of the study by the present inventors, there is a difference in reducing power between L-ascorbic acid and erythorbic acid, which are often used in electroless plating, and erythorbic acid sufficiently dissolves excess copper. It was found that the oxidation of the copper core material surface can be effectively prevented. The concentration of erythorbic acid (concentration in the aqueous solution before adding the copper core material) is 0.0005 to 0.025 mol / liter , preferably 0.005 to 0.015 mol / liter . Within this concentration range, the above-described effects can be easily obtained, and the entire surface of the plated core material made of a copper material can be more uniformly covered with the gold plating layer. Examples of the salt of erythorbic acid include sodium salt.
[0022]
When potassium cyanide is added to the aqueous solution in addition to the aforementioned erythorbic acid or a salt thereof, the eluted copper ions are masked and gold can be deposited more uniformly, and the entire surface of the copper core material is covered with a gold plating layer. It has been found that a more uniform coating is possible. The concentration of potassium cyanide (concentration in the aqueous solution before adding the copper core material) is 0.0015 to 0.046 mol / liter . The addition of potassium cyanide is not essential, but it is desirable to add it in consideration of the uniform precipitation of gold.
[0023]
Next, substitutional electroless plating is performed by adding a plating solution containing gold ions to the dispersion in which the copper core material is dispersed. Thereby, gold is substituted and deposited on the surface of the copper core material. When gold ions are added in advance to an aqueous solution containing a complexing agent, when the copper core material is introduced, there is often a variation in gold substitutional precipitation due to the time difference of the introduction (see Comparative Example 2 described later). . Further, as described above, when an oxide film is present on the surface of the copper core material, the gold substitution reaction is difficult to start, and the gold deposition often varies. In contrast, the inventors have found that such inconvenience can be avoided by adding gold ions to a dispersion in which a copper core material is dispersed. In particular, it has been found that the oxide film present on the surface of the copper core material can be removed by the complexing agent. However, if copper is dissolved too much, insoluble copper compounds accumulate in the liquid, so in the case of a copper core material on which an oxide film is excessively formed, the oxide film is previously removed in the preliminary dispersion step described above. It is preferable to keep it.
[0024]
The concentration of gold ions in the plating solution is preferably 0.05 to 1.5 mol / liter, particularly 0.1 to 1.0 mol / liter. As the gold ion source, potassium gold cyanide, sodium gold cyanide, chloroauric acid, gold sulfite, gold thiosulfate and the like are used. A complexing agent capable of forming a complex with gold ions may be added to the plating solution. Such a complexing agent can be selected, for example, from the complexing agents described above. One or more complexing agents can be used.
[0025]
In this manufacturing method, without the autocatalytic electroless plating, Ru was reduced gold ions only by substitution type electroless plating. That Ru gold ions are reduced without using a reducing agent.
[0026]
The addition rate of gold ions is effective in controlling the deposition rate of gold. Gold deposition rate affects uniform gold deposition. Accordingly, the gold deposition rate is preferably controlled to 1 to 300 nanometers / minute, particularly 5 to 100 nanometers / minute, by adjusting the plating solution addition rate. The deposition rate of gold can be calculated from the rate of gold ion addition.
[0027]
The aqueous solution of the complexing agent before adding the copper core material, the pH of the dispersion and the plating solution after adding the copper core material influence the gold deposition state. If the pH is too low, copper hydroxide derived from copper ions eluted from the copper core material is likely to be formed, and the resulting plating powder tends to aggregate. If the pH is too high, gold deposition becomes coarse. From these viewpoints, the pH of each solution is preferably 3.5 to 7.0, particularly 4.0 to 6.0. Examples of the pH adjuster include sodium hydroxide, potassium hydroxide, aqueous ammonia, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like.
[0028]
The temperature at which the plating solution is added to the dispersion also affects the gold deposition. If the temperature is too low, the reaction rate of substitutional precipitation becomes slow and the precipitation becomes rough. On the other hand, if the temperature is too high, the reaction rate becomes too fast and the gold deposition varies. In addition, the plating solution may become unstable and cause decomposition. From these viewpoints, the temperature of the dispersion during addition of the plating solution is preferably 50 to 95 ° C, particularly 65 to 90 ° C.
[0029]
(2) The plating powder obtained in the gold plating step of the dispersion treatment step (1) is filtered and dried from the dispersion if the aggregation is not remarkable and is sufficiently dispersed. Can be the final product. On the other hand, when the agglomerated state of the plating powder is high, it is subjected to a dispersion treatment step to be monodispersed. In order to monodisperse, a dispersion containing the plating powder obtained in the gold plating step (1) and a compound capable of complexing with metal ions contained in the plating powder are mixed. As a result of the study by the present inventors, one cause of the plating powder aggregation obtained in the gold plating step (1) is that metal ions contained in the plating powder, for example, copper ions eluted from the copper core material It has been found that a water-insoluble compound is formed and the water-insoluble compound binds the plating powders. Therefore, in the present invention, the water-insoluble compound is changed into a complex by mixing the agglomerated plating powder and a compound capable of complexing with metal ions contained in the plating powder, The plating powder in an agglomerated state is monodispersed. This dispersion method has an advantage that the plating powder is less likely to be damaged than a mechanical dispersion method using a mill or a pulverizer. In particular, when a soft material such as a copper core material is used, the deformation does not occur, and therefore the gold plating layer is not damaged, which is very effective. Since this dispersion treatment step has little adverse effect on the plating powder, it can be repeated several times until a desired dispersion state is obtained.
[0030]
As the compound capable of complexing with metal ions contained in the plating powder, it is particularly preferable to use a compound capable of complexing with copper ions. Examples of such compounds include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid, succinic acid, phthalic acid, fumaric acid, maleic acid, malonic acid or various carboxylic acids such as alkali metal salts and ammonium salts thereof. Alternatively, salts thereof, amino acids such as glycine, amines such as ethylenediamine and alkylamine, ammonium salts, EDTA, pyrophosphoric acid or salts thereof can be used. These compounds can be used alone or in combination of two or more. These compounds can be used in combination with inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid.
[0031]
The compound is generally mixed with the plating powder in the form of an aqueous solution. The concentration of this aqueous solution (concentration before mixing with the plating powder) is generally 0.005 to 6 mol / liter, particularly 0.01 to 3 mol / liter, although it depends on the type of compound used. preferable. The pH of this aqueous solution is generally 3.5 to 14, particularly preferably 5 to 12.5, although it depends on the type of compound. For adjusting the pH, sodium hydroxide, potassium hydroxide, aqueous ammonia, hydrochloric acid, sulfuric acid, nitric acid and the like are used.
[0032]
The temperature of the dispersion treatment is preferably 5 to 60 ° C, particularly 10 to 35 ° C. If it is this temperature range, it will be in a desired dispersion | distribution state in a comparatively short time, without producing melt | dissolution of a copper core material.
[0033]
In the dispersion treatment step, ultrasonic waves may be supplementarily used, or the dispersion may be stirred. However, it is performed under mild conditions so as not to damage the plating powder.
[0034]
When the dispersion treatment is completed, the final product is obtained by filtering the plating powder from the dispersion and drying it.
[0035]
The present invention is not limited to the embodiment. For example, in the plating powder manufacturing method described above, the dispersion treatment step is performed after the gold plating step. However, if the dispersibility of the plating powder obtained in the gold plating step is good, the dispersion treatment step is not performed. (See Examples 2, 4 and 6 described later).
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
[0037]
[Example 1]
(1) Gold plating step D A copper powder having a 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core powder. 43.5 g of copper powder was dispersed in 200 ml of water, and stirred for 5 minutes at room temperature while using ultrasonic waves to obtain a slurry. Dispersion of this slurry in 2 liters of an aqueous solution containing 0.027 mol / liter EDTA-4Na and 0.038 mol / liter trisodium citrate and adjusted to pH 5 with sodium hydroxide and phosphoric acid A liquid was obtained. This dispersion was stirred for 15 minutes. Next, 50 ml of a plating solution containing 0.41 mol / liter of potassium gold cyanide was added to this dispersion at an addition rate of 10 ml / min. The temperature of the dispersion was maintained at 80 ° C. The dispersion was stirred for 10 minutes to deposit gold on the surface of the copper powder to obtain a gold-plated powder.
[0038]
(2) Dispersion treatment step The obtained gold plating powder was separated by filtration, and then water was added to the gold plating powder to form a slurry of 500 ml. 0.044 mol of EDTA-4Na was added to this slurry, and stirring was continued at 20 ° C. for 30 minutes while using ultrasonic waves. This process was repeated three times to disperse the gold plating powder. Subsequently, the gold plating powder was separated by filtration, washed with repulp 3 times, and then dried with a vacuum dryer at 80 ° C. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. When the reflection electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly covered the entire surface of the copper core material.
[0039]
[Example 2]
The gold-plated powder obtained in the gold-plating step in Example 1 was separated by filtration, washed three times with repulp, and then dried with an 80 ° C. vacuum dryer. Moreover, the dispersion treatment process was not performed. Except these, it carried out similarly to Example 1, and obtained the gold plating powder. When the reflection electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly covered the entire surface of the copper core material.
[0040]
Example 3
(1) Gold plating step D A copper powder having a 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core powder. 43.5 g of copper powder was dispersed in 200 ml of water, and stirred for 5 minutes at room temperature while using ultrasonic waves to obtain a slurry. Contains 0.30 mol / liter malonic acid, 5.0 × 10 −3 mol / liter sodium erythorbate and 7.7 × 10 −3 mol / liter potassium cyanide, adjusted to pH 5 with potassium hydroxide and phosphoric acid This slurry was put into 2 liters of the resulting aqueous solution to obtain a dispersion. This dispersion was stirred for 15 minutes. Subsequently, 50 ml of a plating solution containing 0.41 mol / liter of potassium gold cyanide was added to this dispersion at an addition rate of 10 ml / min. The temperature of the dispersion was maintained at 80 ° C. The dispersion was stirred for 10 minutes to deposit gold on the surface of the copper powder to obtain a gold-plated powder.
[0041]
(2) Dispersion treatment step The obtained gold plating powder was filtered off and the gold plating powder was dispersed in the same manner as in Example 1. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. When the reflection electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly covered the entire surface of the copper core material.
[0042]
Example 4
In Example 3, the gold plating powder obtained in the gold plating step was separated by filtration, washed 3 times with repulp, and then dried with a vacuum dryer at 80 ° C. Moreover, the dispersion treatment process was not performed. Except these, it carried out similarly to Example 3, and obtained the gold plating powder. When the reflection electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly covered the entire surface of the copper core material.
[0043]
Example 5
(1) Gold plating step D A copper powder having a 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core powder. 43.5 g of copper powder was dispersed in 200 ml of water, and stirred for 5 minutes at room temperature while using ultrasonic waves to obtain a slurry. Contains 0.10 mol / liter potassium citrate, 5.0 × 10 −3 mol / liter sodium erythorbate and 7.7 × 10 −3 mol / liter potassium cyanide to pH 5 with potassium hydroxide and phosphoric acid. This slurry was put into 2 liters of the adjusted aqueous solution to obtain a dispersion. This dispersion was stirred for 15 minutes. Subsequently, 50 ml of a plating solution containing 0.41 mol / liter of potassium gold cyanide was added to this dispersion at an addition rate of 10 ml / min. The temperature of the dispersion was maintained at 80 ° C. The dispersion was stirred for 10 minutes to deposit gold on the surface of the copper powder to obtain a gold-plated powder.
[0044]
(2) Dispersion treatment step The obtained gold plating powder was filtered off and the gold plating powder was dispersed in the same manner as in Example 1. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. When the reflection electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly covered the entire surface of the copper core material.
[0045]
Example 6
In Example 5, the gold-plated powder obtained in the gold-plating step was separated by filtration, washed three times with repulp, and then dried with a vacuum dryer at 80 ° C. Moreover, the dispersion treatment process was not performed. A gold-plated powder was obtained in the same manner as Example 5 except for these. When the reflected electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly covered the entire surface of the copper core material as shown in FIGS. 1 (a) and (b). It was.
[0046]
[Comparative Example 1]
(1) Catalytic Step D Copper powder having a 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core powder. 2 milliliters of 0.11 mol / liter palladium chloride aqueous solution was added while stirring the slurry of 50 g of copper powder using ultrasonic waves. The stirring state as it was was maintained for 5 minutes, and an activation treatment for capturing palladium ions on the surface of the copper powder was performed. The slurry was then filtered, and the copper powder washed once with repulp water was made into 200 ml slurry. The resulting slurry was added to a 0.087 mol / liter aqueous sodium tartrate solution with stirring to form an aqueous suspension. The aqueous tartaric acid solution was heated to 75 ° C., and the liquid volume was 1.8 liters.
[0047]
(2) Nickel plating step To the aqueous suspension obtained in the catalyzing step, a nickel ion-containing liquid composed of 0.86 mol / liter nickel sulfate and 0.17 mol / liter sodium tartrate and 2.75 mol Two solutions of a reducing agent-containing liquid consisting of 1 / liter sodium hypophosphite and 2.6 mol / liter sodium hydroxide were added at an addition rate of 7 ml / min. The amount added was 120 ml each. Generation of hydrogen was observed immediately after the addition of the two liquids, confirming the start of the plating reaction. After the addition of the two liquids was completed, stirring was continued while maintaining the temperature at 75 ° C. until hydrogen bubbling stopped. Subsequently, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 110 ° C. Thereby, the plating powder which has a nickel- phosphorus alloy plating film was obtained. The thickness of the nickel plating layer calculated from the added amount of nickel ions was 100 nm.
[0048]
(3) Gold plating step 2 liters of a displacement plating solution for gold plating was prepared. The displacement plating solution contains 0.027 mol / liter EDTA-4Na, 0.038 mol / liter trisodium citrate and 0.01 mol / liter potassium gold cyanide, and includes an aqueous sodium hydroxide solution and an aqueous phosphoric acid solution. The pH was adjusted to 6. While stirring the electroless plating solution at a liquid temperature of 60 ° C., 54 g of the nickel plating powder was added to the plating solution, and gold plating was performed for 20 minutes. Next, the liquid was filtered, and the filtrate was washed with repulp three times and then dried with an 80 ° C. vacuum dryer. As a result, a plating powder in which a gold displacement plating layer was formed on the nickel film was obtained. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. When the reflection electron composition image of the obtained gold plating powder was observed, it was confirmed that the gold plating layer uniformly coats the nickel film.
[0049]
[Comparative Example 2]
Copper powder having a D 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core material powder. Two liters of a general gold displacement plating solution containing 0.013 mol / liter potassium gold cyanide, 0.1 mol / liter potassium cyanide and 0.03 mol / liter sodium citrate was prepared. 43.5 g of copper powder was dispersed in 200 ml of water and stirred for 5 minutes at room temperature while applying ultrasonic waves to obtain a slurry. The slurry was added while stirring the gold displacement plating solution at a liquid temperature of 85 ° C., and gold plating was performed for 5 minutes. Next, the plating solution was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 80 ° C. Thereby, a gold plating powder having a gold plating layer formed on the surface of the copper powder was obtained. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. When the reflection electron composition image of the obtained gold plating powder was observed, as shown in FIGS. 2 (a) and (b), the gold plating layer covered the surface of the copper core material in a discontinuous and sparse state. It was confirmed that copper was exposed on the surface.
[0050]
[Comparative Example 3]
This comparative example corresponds to Example 1 of JP-A-6-108102 (the above-mentioned Patent Document 1). Copper powder having a D 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core material powder. 104 g of copper powder was dispersed and immersed in an aqueous solution consisting of 250 ml of methanol, 50 ml of sulfuric acid and 200 ml of water and stirred for 1 hour. This was washed by decantation until neutral, filtered, and immersed again in 500 ml of water. While stirring this, 20 liters of an aqueous solution containing 5 × 10 −3 mol / liter of sodium gold chloride and 10 ml / liter of hydrochloric acid was added and stirred for 10 minutes to deposit gold on the surface of the copper powder. This was washed by decantation until neutral. Then, 2 liters of gold plating solution consisting of 2.4 × 10 −2 mol / liter potassium gold cyanide, 0.22 mol / liter potassium hydroxide and 5.5 × 10 −2 mol / liter EDTA-4Na It was immersed in dispersion and kept at 50 ° C. Further, 500 ml of a reducing agent composed of 0.68 mol / liter dimethylamine borane and 2.7 mol / liter ammonia water was added dropwise over one hour. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. After the completion of plating, washing was carried out until neutrality by decantation, followed by filtration and drying at 80 ° C. When the reflection electron composition image of the obtained gold plating powder was observed, as shown in FIGS. 3A and 3B, the gold plating layer covered the surface of the copper core material in a discontinuous and sparse state. It was confirmed that copper was exposed on the surface.
[0051]
[Comparative Example 4]
Copper powder having a D 50 value of 5 μm [trade name “1500YM” manufactured by Mitsui Kinzoku Mining Co., Ltd.] was used as the core material powder. 43.5 g of copper powder was dispersed in 200 ml of water and stirred for 5 minutes at room temperature while applying ultrasonic waves to obtain a slurry. The slurry was poured into 2 liters of an aqueous solution containing 0.027 mol / liter EDTA-4Na and 0.038 mol / liter sodium citrate and adjusted to pH 6 with sodium hydroxide to obtain a dispersion. . Then a metal salt solution consisting of 0.035 mol / liter potassium gold cyanide, 0.027 mol / liter EDTA-4Na and 0.038 mol / liter trisodium citrate, and 0.79 mol / liter hydrogen. A reducing liquid consisting of sodium borohydride and 1.5 mol / liter sodium hydroxide was added dropwise to the dispersion individually and simultaneously through a feed pump at an addition rate of 30 ml / min. The amount of liquid dropped was 585 ml each. After completion of dropping, the plating solution was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 80 ° C. Thereby, a gold plating powder having a gold plating layer formed on the surface of the copper powder was obtained. The thickness of the gold plating layer calculated from the added amount of gold ions was 35 nm. When the reflection electron composition image of the obtained gold plating powder was observed, as shown in FIGS. 4A and 4B, a powder having a gold plating layer formed on the surface of the copper powder, and gold plating Copper powder with no layer formed was observed. In addition, many fine particles in which gold was precipitated alone were observed.
[0052]
[Performance evaluation]
About the gold plating powder obtained in Examples 1-6 and Comparative Examples 1-4, the volume resistivity value was measured with the following method, and the volume resistivity value of the gold plating powder after a reliability test was measured. . Further, the particle size distribution was measured. The results are shown in Table 1 below.
[0053]
[Measurement of volume resistivity]
An electric resistance between upper and lower electrodes was measured in a state in which 1.0 g of gold plating powder was put into a vertically standing resin cylinder having an inner diameter of 10 mm and a load of 10 kg was applied, and a volume specific resistance value was obtained.
[0054]
〔Reliability test〕
Volume resistivity values were measured after the gold plating powder was stored in an environment of 60 ° C. and 95% RH for 250 hours and 500 hours, respectively.
[0055]
[Particle size distribution]
It was measured with a particle size distribution measuring apparatus (Microtrac HRA X100 (trade name)) by a laser diffraction / scattering method.
[0056]
[Table 1]
[0057]
As is clear from the results shown in Table 1, the gold-plated powder of each example (product of the present invention) has a uniform gold deposition, a sufficiently low electrical resistance value, high reliability, and dispersion. It turns out that it is excellent also in property. On the other hand, it can be seen that the plating powders of the respective comparative examples vary in gold deposition, have high electrical resistance values, low reliability, and are not well dispersed.
[0058]
【The invention's effect】
As described in detail above, according to the present invention, by forming a gold plating layer directly on a copper core material, the electrical resistance is low, the corrosion resistance is high, and the resistance value is maintained even when stored in a high temperature and high humidity environment for a long time. A conductive electroless plating powder with little rise and excellent dispersibility can be obtained.
[Brief description of the drawings]
FIG. 1 is a reflection electron composition image of an example of a conductive electroless plating powder of the present invention. FIG. 1 (a) is a magnification of 10,000 times, and FIG. 1 (b) is a magnification of 1000 times.
2 is a reflection electron composition image of the electroless electroless plating powder obtained in Comparative Example 2. FIG. 2 (a) is 10,000 times and FIG. 2 (b) is 1000 times.
FIGS. 3A and 3B are reflection electron composition images of conductive electroless plating powder obtained in Comparative Example 3. FIG. 3A is a magnification of 10,000 times, and FIG. 3B is a magnification of 1000 times.
4 is a reflection electron composition image of a conductive electroless plating powder obtained in Comparative Example 4, FIG. 4 (a) is a magnification of 10,000 times, and FIG. 4 (b) is a magnification of 1000 times.
Claims (2)
0.001〜2モル/リットルの錯化剤、0.0005〜0.025モル/リットルのエリソルビン酸又はその塩及び0.0015〜0.046モル/リットルのシアン化カリウムを含み、pHが3.5〜7.0である水溶液中に、銅からなる芯材粒子を投入し分散させ、得られた分散液中に金イオンを添加しこれを置換型無電解めっきのみによって還元析出させて、該芯材粒子の表面に金からなる無電解めっき層を直接形成することを特徴とする導電性無電解めっき粉体の製造方法。Containing 0.001 to 2 mol / liter complexing agent, 0.0005 to 0.025 mol / liter erythorbic acid or a salt thereof and 0.0015 to 0.046 mol / liter potassium cyanide; Into an aqueous solution of ˜7.0, core material particles made of copper are added and dispersed, gold ions are added to the obtained dispersion, and this is reduced and precipitated only by substitutional electroless plating. A method for producing a conductive electroless plating powder, wherein an electroless plating layer made of gold is directly formed on the surface of material particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003124442A JP4261973B2 (en) | 2003-04-28 | 2003-04-28 | Method for producing conductive electroless plating powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003124442A JP4261973B2 (en) | 2003-04-28 | 2003-04-28 | Method for producing conductive electroless plating powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004323962A JP2004323962A (en) | 2004-11-18 |
JP4261973B2 true JP4261973B2 (en) | 2009-05-13 |
Family
ID=33502028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003124442A Expired - Lifetime JP4261973B2 (en) | 2003-04-28 | 2003-04-28 | Method for producing conductive electroless plating powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4261973B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006080288A1 (en) * | 2005-01-25 | 2008-06-19 | 積水化学工業株式会社 | Conductive fine particles and anisotropic conductive material |
JP2006216343A (en) * | 2005-02-03 | 2006-08-17 | Alps Electric Co Ltd | Conductive material |
JP5912663B2 (en) * | 2012-02-29 | 2016-04-27 | Jx金属株式会社 | Cobalt-plated copper fine powder, conductive paste produced using cobalt-plated copper fine powder, and method for producing cobalt-plated copper fine powder |
JP6567921B2 (en) * | 2014-08-29 | 2019-08-28 | Dowaエレクトロニクス株式会社 | Silver-coated copper powder and method for producing the same |
JP6679312B2 (en) * | 2015-01-13 | 2020-04-15 | Dowaエレクトロニクス株式会社 | Silver-coated copper powder and method for producing the same |
CN117300147B (en) * | 2023-11-28 | 2024-03-01 | 长春黄金研究院有限公司 | Superfine gold powder and preparation method thereof |
-
2003
- 2003-04-28 JP JP2003124442A patent/JP4261973B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004323962A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5080731B2 (en) | Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder | |
US20060073335A1 (en) | Conductive electrolessly plated powder and method for making same | |
JP5973257B2 (en) | Conductive particles and conductive material containing the same | |
CN109414764A (en) | There is the method for the copper nano-wire of the silver coating of core-shell structure using chemical reduction method manufacture | |
US20170253750A1 (en) | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder | |
JP5941328B2 (en) | Conductive particles and conductive material containing the same | |
JPH07118866A (en) | Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production | |
JP3832938B2 (en) | Electroless silver plating powder and method for producing the same | |
JPH0696771B2 (en) | Electroless plating powder, conductive filler and method for producing the same | |
JP4223754B2 (en) | Silver-coated copper powder and method for producing the same | |
JP2012167337A (en) | Method of manufacturing silver coated flake copper powder | |
JP4261973B2 (en) | Method for producing conductive electroless plating powder | |
JPH09241709A (en) | Production of copper powder | |
JP6263228B2 (en) | Conductive particles and conductive material containing the same | |
JP3905014B2 (en) | Conductive electroless plating powder and manufacturing method thereof | |
JP4247039B2 (en) | Method for producing conductive electroless plating powder | |
JP2003342621A (en) | Method for manufacturing copper powder and copper powder obtained thereby | |
JP2004197160A (en) | Conductive electroless-plated powder and manufacturing method therefor | |
JP3905013B2 (en) | Conductive electroless plating powder and manufacturing method thereof | |
JP4485174B2 (en) | Composite metal fine particle dispersion and method for producing the same | |
JP2602495B2 (en) | Manufacturing method of nickel plating material | |
US20050227073A1 (en) | Conductive electrolessly plated powder and method for making same | |
JP5707247B2 (en) | Method for producing conductive particles | |
JP3028972B2 (en) | Aluminum-based electroless plating powder, conductive filler and method for producing the same | |
JP2619266B2 (en) | Colored electroless plating powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070806 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080703 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4261973 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |