JP3905014B2 - Conductive electroless plating powder and manufacturing method thereof - Google Patents

Conductive electroless plating powder and manufacturing method thereof Download PDF

Info

Publication number
JP3905014B2
JP3905014B2 JP2002297902A JP2002297902A JP3905014B2 JP 3905014 B2 JP3905014 B2 JP 3905014B2 JP 2002297902 A JP2002297902 A JP 2002297902A JP 2002297902 A JP2002297902 A JP 2002297902A JP 3905014 B2 JP3905014 B2 JP 3905014B2
Authority
JP
Japan
Prior art keywords
powder
nickel
electroless plating
aqueous suspension
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002297902A
Other languages
Japanese (ja)
Other versions
JP2004131801A (en
Inventor
雅明 小山田
真二 阿部
徹拓 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002297902A priority Critical patent/JP3905014B2/en
Publication of JP2004131801A publication Critical patent/JP2004131801A/en
Application granted granted Critical
Publication of JP3905014B2 publication Critical patent/JP3905014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、導電性無電解めっき粉体及びその製造方法に関するものであり、更に詳しくは耐熱性が向上したニッケル皮膜を有する導電性無電解めっき粉体及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
本出願人は先に、合成樹脂の芯材粉体に無電解めっきを行う方法として、合成樹脂の芯材粉体に貴金属捕捉性表面処理剤を用いて貴金属イオンを坦持させた後に、めっき液中に投入して無電解めっき処理を行う方法を提案した(特許文献1参照)。この方法はいわゆる建浴方式とよばれるものであり、めっき液には金属塩、還元剤、錯化剤、緩衝剤、安定剤などが含まれる。この方法によればめっき皮膜と芯材粉体との密着性が向上するという利点がある。密着性を更に向上させるべく、本出願人は前記無電解めっき方法を更に改良した方法も提案している(特許文献2参照)。
【0003】
しかし、無電解めっき粉末に要求される各種性能は日増しに厳しくなり、近年では密着性の他に高温での安定性が要求されている。
【0004】
【特許文献1】
特開昭61−64882号公報
【特許文献2】
特開平1−242782号公報
【0005】
従って、本発明は、耐熱性が向上しためっき皮膜を有する導電性無電解めっき粉体及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、前記特許文献1に記載されてるめっき皮膜の構造、即ち微細な金属粒子が濃密で実質的な連続皮膜を呈している構造とは異なる構造の皮膜を形成することによって前記目的が達成されることを知見した。
【0007】
本発明は、芯材粒子表面上に無電解めっき法によってニッケル皮膜を形成した導電性無電解めっき粉体において、前記ニッケル皮膜中の粒界が、該ニッケル皮膜の主として厚さ方向に配向していることを特徴とする導電性無電解めっき粉体を提供することにより前記目的を達成したものである。
【0008】
また本発明は、前記導電性無電解めっき粉体の好ましい製造方法として、
貴金属イオンの捕捉能を有するか又は表面処理によって貴金属イオンの捕捉能を付与した前記芯材粉体に貴金属イオンを捕捉させた後、これを還元して前記貴金属を前記芯材粉体の表面に担持させ、
次いで該芯材粉体を、ニッケルイオン、還元剤及びアミン化合物からなる錯化剤を含む初期薄膜形成液に分散混合させ、ニッケルイオンを還元させて該芯材粉体の表面にニッケルの初期薄膜を形成し、
然る後、該初期薄膜が形成された該芯材粉体及び該錯化剤を含む水性懸濁体に該錯化剤と同種の錯化剤を含有するニッケルイオン含有液及び還元剤含有液の2液を個別かつ同時に添加して無電解めっき反応を行わせることを特徴とする導電性無電解めっき粉体の製造方法を提供することにより前記目的を達成したものである。
【0009】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。本発明の導電性無電解めっき粉体(以下、単にめっき粉体ともいう)は、芯材粉体の表面に無電解めっき法によってニッケル皮膜が形成されてなるものである。
【0010】
芯材粉体の表面に形成されるニッケル皮膜は、該ニッケル皮膜中の粒界が、該ニッケル皮膜の主として厚さ方向に配向しているものである。つまり、ニッケル皮膜中の結晶は、主として該皮膜の厚さ方向に延びる柱状構造となっている。ニッケル皮膜の粒界が、皮膜の厚さ方向に配向しているか否かは、走査型電子顕微鏡(以下、SEMともいう)観察によって視覚的にとらえることができる。具体的には、SEMによって100000倍迄の拡大倍率でニッケル皮膜の厚さ方向断面を観察したときに、該皮膜の厚さ方向に延びる柱状構造が観察される場合には、結晶粒界が厚さ方向に主として配向していると言うことができる。
【0011】
図1には、本発明のめっき粉体の一例を示すSEM写真が示されている。拡大倍率は50000倍である。図1から明らかなように、めっき粉体におけるニッケル皮膜は、ニッケル皮膜の厚さ方向に延びる多数の柱状構造から構成されている。図1では、各柱状構造は、その高さの方がその幅よりも大きくなっているが、ニッケル皮膜の形成方法によっては、柱状構造の高さと幅がほぼ同じ場合や、高さよりも幅の方が大きい場合もある。更に、截頭錐体形状やその倒立形状であり得る場合もある。一方、従来品である図2に示す無電解ニッケルめっき粉体のSEM写真(拡大倍率は50000倍)においては、ニッケル皮膜の厚さ方向断面に、瘤形状の結晶粒界が観察される。
【0012】
図1から明らかなように、本発明のめっき粉体におけるニッケル皮膜は、その厚さ方向に延びる多数の柱状構造が隙間なくびっしりと集合して、緻密かつ均質な連続膜を形成している。一方、従来品である図2に示すめっき粉体におけるニッケル皮膜は結晶粒子が粗く且つ不均質となっている。後述する実施例から明らかなように、図1に示すような柱状構造を有するニッケル皮膜は、耐熱性が高く、高温条件下でもめっき粉体の導電性が低下しづらいことが本発明者らの検討によって判明した。
【0013】
めっき粉体におけるニッケル皮膜の断面をSEM観察する手順の一例は次の通りである。めっき粉体50重量部、エピコート815(ジャパンエポキシレジン株式会社製)100重量部、エピキュア(ジャパンエポキシレジン株式会社製)5重量部を混練し、110℃の乾燥機で10分硬化させて、10mm×l0mm×2mmの試料を成型する。得られた試料を折り曲げ破断させて、めっき皮膜の破断面が現れている部位をSEM観察する。
【0014】
本発明者らがX線回折測定を行った結果、本発明のめっき粉体におけるニッケル皮膜は、結晶質の部分のほか一部非晶質の部分もあり、結晶質と非晶質とが混在している状態が一般的であることが判明した。尤も、ニッケル皮膜の結晶形態は本発明において臨界的なものではなく、柱状構造を有していれば、該ニッケル皮膜が結晶質であると非晶質であるとを問わず所望の耐熱性が発現する。
【0015】
ニッケル皮膜の厚さはその密着性や耐熱性に少なからず影響し、皮膜が厚すぎると芯材粉体からの落剥が起こって導電性が低下しやすい傾向にある。逆に、皮膜が薄すぎても所望の導電性が得られなくなる。これらの観点から、ニッケル皮膜の厚さは0.005〜10μm、特に0.01〜2μm程度であることが好ましい。ニッケル皮膜の厚さは例えばSEM観察から実測できるほか、ニッケルイオンの添加量や化学分析から算出することもできる。
【0016】
尚、ニッケル皮膜を無電解めっきによって形成する際に用いられる還元剤の種類によっては、ニッケル皮膜がニッケルと他の元素との合金となっている場合がある。例えば還元剤として次亜リン酸ナトリウムを用いる場合には、得られるニッケル皮膜はニッケル−リン合金となっている。しかし、本発明においては、このようなニッケル合金の皮膜も広義のニッケル皮膜と呼ぶ。
【0017】
本発明のめっき粉体は、芯材粉体の表面に前述のニッケル皮膜が形成されてなるものであるが、該めっき粉体の導電性を一層向上させる観点から、最表面に薄層の金めっき層が形成されていてもよい。金めっき層は、ニッケル皮膜と同様に無電解めっきによって形成される。金めっき層の厚さは一般に0.001〜0.5μm程度である。金めっき層の厚さは、金イオンの添加量や化学分析から算出することができる。
【0018】
ニッケル皮膜が形成される芯材粉体の種類に特に制限はなく、有機物粉体及び無機物粉体の何れもが用いられる。後述する無電解めっき法を考慮すると、芯材粉体は水に分散可能なものであることが好ましい。従って芯材粉体は、好ましくは水に実質的に不溶性のものであり、更に好ましくは酸やアルカリに対しても溶解または変質しないものである。水に分散可能とは、攪拌等の通常の分散手段によって、ニッケル皮膜が芯材粉体の表面に形成し得る程度に、水中に実質的に分散した懸濁体を形成し得ることをいう。
【0019】
芯材粉体の形状に特に制限はない。一般に芯材粉体は粉粒状であり得るが、それ以外の形状、例えば繊維状、中空状、板状、針状であってもよく、或いは不定形であってもよい。芯材粉体の大きさは、本発明のめっき粉体の具体的用途に応じて適切な大きさが選択される。例えば本発明のめっき粉体を電子回路接続用の導電材料として用いる場合には、芯材粉体は平均粒径0.5〜1000μm程度の球状粒子であることが好ましい。
【0020】
芯材粉体の具体例としては、無機物として、金属(合金も含む)、ガラス、セラミックス、シリカ、カーボン、金属または非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素などが挙げられる。有機物としては、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステルなどの熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂またはジアリルフタレート樹脂などが挙げられる。これらは単独でも使用でき又は2種以上の混合物として使用してもよい。
【0021】
芯材粉体は、その表面が貴金属イオンの捕捉能を有するか、又は貴金属イオンの捕捉能を有するように表面改質されることが好ましい。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオンの捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることをいう。例えば芯材粉体の表面に、アミノ基、イミノ基、アミド基、イミド基、シアノ基、水酸基、ニトリル基、カルボキシル基などが存在する場合には、該芯材粉体の表面は貴金属イオンの捕捉能を有する。貴金属イオンの捕捉能を有するように表面改質する場合には、例えば特開昭61−64882号公報記載の方法を用いることができる。
【0022】
次に、本発明のめっき粉体の好ましい製造方法について説明する。めっき粉体の製造方法は、(1)触媒化処理工程と、(2)初期薄膜形成工程と、(3)無電解めっき工程とに大別される。(1)の触媒化処理工程においては、貴金属イオンの捕捉能を有するか又は表面処理によって貴金属イオンの捕捉能を付与した芯材粉体に貴金属イオンを捕捉させた後、これを還元して前記貴金属を前記芯材粉体の表面に担持させる。(2)の初期薄膜形成工程においては、貴金属が坦持された芯材粉体を、ニッケルイオン、還元剤及びアミン化合物からなる錯化剤を含む初期薄膜形成液に分散混合させ、ニッケルイオンを還元させて該芯材粉体の表面にニッケルの初期薄膜を形成する。(3)の無電解めっき工程においては、ニッケルの初期薄膜が形成された芯材粉体及び前記錯化剤を含む水性懸濁体に、該錯化剤と同種のアミン化合物からなる錯化剤を含有するニッケルイオン含有液及び還元剤含有液の2液を個別かつ同時に添加して無電解めっき反応を行わせる。以下、それぞれの工程について詳述する。
【0023】
(1)触媒化処理工程
芯材粉体自体が貴金属イオンの捕捉能を有する場合は、直接触媒化処理を行う。そうでない場合は表面改質処理を行う。表面改質処理は、表面処理剤を溶解した水又は有機溶媒に芯材粉体を加えて充分に攪拌して分散させた後、該粉体を分離し乾燥させる。表面処理剤の量は、芯材粉体の種類に応じ、粉体の表面積1m2当り0.3〜100mgの範囲で調整することで、均一な改質効果が得られる。
【0024】
次に、芯材粉体を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させる。これによって貴金属イオンを粉体表面に捕捉させる。貴金属塩濃度は粉体の表面積1m2当り1×10-7〜1×10-2モルの範囲で充分である。貴金属イオンが捕捉された芯材粉体は系から分離され水洗される。引き続き、芯材粉体を水に懸濁させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによって芯材粉体の表面に貴金属を坦持させる。還元剤としては、例えば次亜リン酸ナトリウム、水素化ほう素ナトリウム、水素化ほう素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等が用いられる。
【0025】
貴金属イオンを芯材粉体の表面に捕捉させる前に、錫イオンを粉体表面に吸着させる感受性化処理を施してもよい。錫イオンを粉体表面に吸着させるには、例えば表面改質処理された芯材粉体を塩化第一錫の水溶液に投入し所定時間撹拌すればよい。
【0026】
(2)初期薄膜形成工程
初期薄膜形成工程は、芯材粉体へのニッケルの均一析出及び芯材粉体の表面を平滑化する目的で行われる。初期薄膜形成工程においては、先ず、貴金属が坦持された芯材粉体を十分に水に分散させる。分散にはコロイドミルやホモジナイザーのような剪断分散装置などを用いることができる。芯材粉体を分散させるに際し、例えば界面活性剤等の分散剤を必要に応じて用いることができる。このようにして得られた水性懸濁体を、ニッケルイオン、還元剤及びアミン化合物からなる錯化剤を含む初期薄膜形成液に分散混合させる。これによって、ニッケルイオンの還元反応が開始され、芯材粉体の表面にニッケルの初期薄膜が形成される。先に述べた通り、初期薄膜形成工程は均一析出及び芯材粉体の表面を平滑化する目的で行われるから、形成されるニッケルの初期薄膜は、芯材粉体の表面を平滑にし得る程度に薄いものであればよい。この観点から、初期薄膜の厚さは0.001〜2μm、特に0.005〜1μmであることが好ましい。初期薄膜の厚さは、ニッケルイオンの添加量や化学分析から算出することができる。尚、ニッケルイオンの還元によっては錯化剤は消費されない。
【0027】
前述した厚さの初期薄膜を形成させる観点から、初期薄膜形成液におけるニッケルイオンの濃度は2.0×10-4〜1.0モル/リットル、特に1.0×10-3〜0.1モル/リットルであることが好ましい。ニッケルイオン源としては、硫酸ニッケルや塩化ニッケルのような水溶性ニッケル塩が用いられる。同様の観点から、初期薄膜形成液における還元剤の濃度は4×10-4〜2.0モル/リットル、特に2.0×10-3〜0.2モル/リットルであることが好ましい。還元剤としては、先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができる。
【0028】
初期薄膜形成液には錯化剤を含有させておくことが重要である。このことと、後述するニッケルイオン含有液に錯化剤を含有させておくこととで、柱状構造を有するニッケル皮膜を容易に形成させることができる。錯化剤は、めっきの対象となる金属イオンに対して錯体形成作用のある化合物である。本発明においては錯化剤としてアミン化合物、例えばグリシン、アラニン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミンなどのアミノ基を有する化合物を用いる。これらの錯化剤は1種または2種類以上用いることができる。これらの錯化剤のうち、特にグリシン又はエチレンジアミンを用いると、柱状構造を有するニッケル皮膜を一層容易に形成させることができるので好ましい。錯化剤の濃度は、柱状構造を有するニッケル皮膜の形成に影響を及ぼす。この観点及び錯化剤の溶解度の観点から、初期薄膜形成液における錯化剤の量は0.003〜10モル/リットル、特に0.006〜4モル/リットルであることが好ましい。
【0029】
初期薄膜を容易に形成し得る点から、水性懸濁体における芯材粉体の濃度は0.1〜500g/リットル、特に0.5〜300g/リットルであることが好ましい。
【0030】
芯材粉体を含む水性懸濁体と初期薄膜形成液とを混合して得られた水性懸濁体は、次いで後述する無電解めっき工程に付される。無電解めっき工程に付される前における水性懸濁体においては、該水性懸濁体の体積に対する該水性懸濁体に含まれる該芯材粉体の表面積の総和の割合(この割合は一般に負荷量と呼ばれる)が0.1〜15m2/リットル、特に1〜10m2/リットルであることが、柱状構造を有するニッケル皮膜を容易に形成し得る点から好ましい。負荷量が高すぎると、後述する無電解めっき工程において、液相でのニッケルイオンの還元が甚だしくなり、ニッケルの微粒子が液相に多量に発生し、これが芯材粉体の表面に付着してしまい、均一なニッケル皮膜を形成することが困難となる。
【0031】
(3)無電解めっき工程
無電解めっき工程においては、(a)初期薄膜が形成された芯材粉体及び前記錯化剤を含む水性懸濁体、(b)ニッケルイオン含有液及び(c)還元剤含有液の3液を使用する。(a)の水性懸濁体は、先に述べた初期薄膜形成工程で得られたものをそのまま用いればよい。
【0032】
(a)の水性懸濁体とは別に、(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を調製しておく。ニッケルイオン含有液は、ニッケルイオン源である硫酸ニッケルや塩化ニッケルのような水溶性ニッケル塩の水溶液である。ニッケルイオンの濃度は、0.1〜1.2モル/リットル、特に0.5〜1.0モル/リットルであることが、柱状構造を有するニッケル皮膜を容易に形成させることができることから好ましい。
【0033】
ニッケルイオン含有液には、水性懸濁体に含有されている錯化剤と同種の錯化剤を含有させておくことが重要である。つまり(a)の水性懸濁体及び(b)のニッケルイオン含有液の双方に同種の錯化剤を含有させておくことが重要である。これによって柱状構造を有するニッケル皮膜を容易に形成させることができる。この理由は明確ではないが、(a)の水性懸濁体及び(b)のニッケルイオン含有液の双方に錯化剤を含有させておくことで、ニッケルイオンが安定化し、その還元反応が急激に進行することが妨げられるからであると推測される。
【0034】
(b)のニッケルイオン含有液における錯化剤の濃度も、(a)の水性懸濁体における錯化剤の濃度と同様にニッケル皮膜の形成に影響を及ぼす。この観点及び錯化剤の溶解度の観点から、ニッケルイオン含有液における錯化剤の量は0.006〜12モル/リットル、特に0.012〜8モル/リットルであることが好ましい。
【0035】
(c)の還元剤含有液は、一般に還元剤の水溶液である。還元剤としては、先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができる。特に次亜リン酸ナトリウムを用いることが好ましい。還元剤の濃度は、ニッケルイオンの還元状態に影響を及ぼすことから、0.1〜20モル/リットル、特に1〜10モル/リットルの範囲に調整することが好ましい。
【0036】
尚、(a)の水性懸濁体及び(b)のニッケルイオン含有液には、前述したアミン化合物からなる錯化剤に加えて、他の種類の錯化剤を加えておいてもよい。そのような錯化剤としては、有機カルボン酸又はその塩、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸若しくはグルコン酸又はそのアルカリ金属塩やアンモニウム塩などが挙げられる。他の種類の錯化剤を併用する場合には、アミン化合物からなる錯化剤と同様に、(a)の水性懸濁体及び(b)のニッケルイオン含有液に同種のものを加えておくことが好ましい。
【0037】
(a)の水性懸濁体に、(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を個別かつ同時に添加する。これによってニッケルイオンが還元されて、芯材粉体の表面にニッケルが析出しその皮膜が形成される。ニッケルイオン含有液と還元剤含有液の添加速度は、ニッケルの析出速度を制御するのに有効である。ニッケルの析出速度は、柱状構造を有するニッケル皮膜の形成に影響を及ぼす。従って、ニッケルの析出速度は、両液の添加速度を調整することによって1〜10000ナノメーター/時、特に5〜300ナノメーター/時に制御することが好ましい。ニッケルの析出速度は、ニッケルイオン含有液の添加速度から計算によって求めることができる。
【0038】
2液を水性懸濁体に添加している間、該水性懸濁体における錯化剤の濃度は一定ではなく、2液の添加による水性懸濁体の液量の増加及びニッケルイオン含有液に含まれている錯化剤の添加に起因して変化している。本製造方法においては、錯化剤の溶解度も考慮した上で、2液の添加過程において、水性懸濁体中の錯化剤の濃度が0.003〜10モル/リットル、特に0.006〜4モル/リットルの範囲に保たれるようにすることが特に有利であることが本発明者らの検討によって判明した。2液の添加過程における水性懸濁体中の錯化剤の濃度を前記範囲内に保つことで、柱状構造を有するニッケル皮膜を一層容易に形成させることができる。水性懸濁体中の錯化剤の濃度を前記範囲内に保つためには、ニッケルイオン含有液及び還元剤含有液の添加速度(ニッケルの析出速度)、又は水性懸濁体中の錯化剤の初期濃度若しくはニッケルイオン含有液中の錯化剤の濃度を調整すればよい。これらの値については前述した通りである。
【0039】
2液を水性懸濁体に添加している間、先に述べた負荷量を0.1〜15m2/リットル、特に1〜10m2/リットルの範囲に保つことが好ましい。これによって、ニッケルが均一に析出すると共に柱状構造を有するニッケル皮膜を一層容易に形成させることができる。同様の理由から、2液の添加が終わりニッケルイオンの還元が完了した時点での負荷量がこの範囲であることも好ましい。
【0040】
このようにして、芯材粉体の表面にニッケル皮膜が形成されてなるめっき粉体が得られる。そしてこのめっき粉体におけるニッケル皮膜中の粒界は、該ニッケル皮膜の厚さ方向に主として配向しているものとなる。
【0041】
用いる還元剤の種類にもよるが、ニッケルイオンの還元反応中、水性懸濁体のpHは3〜13、特に4〜11の範囲に保たれていることが、ニッケルの水不溶性沈殿物の生成を防止する点から好ましい。pHを調整するには、例えば、還元剤含有液中に水酸化ナトリウムなどのpH調整剤を所定量添加しておけばよい。
【0042】
得られためっき粉体は、ろ過及び水洗が数度繰り返された後に分離される。更に付加工程として、ニッケル皮膜上に最上層としての金めっき層の形成工程を行ってもよい。金めっき層の形成は、従来公知の無電解めっき法に従い行うことができる。例えば、めっき粉体の水性懸濁体に、エチレンジアミン四酢酸四ナトリウム、クエン酸三ナトリウム及びシアン化金カリウムを含み、水酸化ナトリウムでpHが調整された無電解めっき液を添加することで、ニッケル皮膜上に金めっき層が形成される。
【0043】
このようにして得られためっき粉体は、例えば異方導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電材料などとして好適に使用される。
【0044】
本発明は前記実施形態に制限されない。例えば前記実施形態においては、芯材粉体の表面に、柱状構造を有するニッケル皮膜が形成されたが、これに代えて、芯材粉体の表面に他の金属の皮膜が形成された粉体の該皮膜の表面に、柱状構造を有するニッケル皮膜が形成されていてもよい。また本発明のめっき粉体の製造方法は前述の方法に制限されない。
【0045】
【実施例】
以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されるものではない。
【0046】
〔実施例1〜4〕
(1)触媒化処理工程
平均粒径12μm、真比重2.23の球状シリカを芯材粉体として用いた。その40gを、400ミリリットルのコンディショナー水溶液(シプレイ製の「クリーナーコンディショナー231」)に攪拌しながら投入した。コンディショナー水溶液の濃度は40ミリリットル/リットルであった。引き続き、液温60℃で超音波を与えながら30分間攪拌して芯材粉体の表面改質及び分散処理を行った。水溶液をろ過し、一回リパルプ水洗した芯材粉体を200ミリリットルのスラリーにした。このスラリーへ塩化第一錫水溶液200ミリリットルを投入した。この水溶液の濃度は5×10-3モル/リットルであった。常温で5分攪拌し、錫イオンを芯材粉体の表面に吸着させる感受性化処理を行った。引き続き水溶液をろ過し、1回リパルプ水洗した。次いで、芯材粉体を400ミリリットルのスラリーにし、60℃に維持した。超音波を併用してスラリー攪拌しながら、0.11モルg/リットルの塩化パラジウム水溶液2ミリリットルを添加した。そのままの攪拌状態を5分間維持させ、芯材粉体の表面にパラジウムイオンを捕捉させる活性化処理を行った。次いで水溶液をろ過し、1回リパルプ湯洗した芯材粉体を200ミリリットルのスラリーにした。超音波を併用しながらこのスラリーを攪拌し、そこへ、0.017モル/リットルのジメチルアミンボランと0.16モル/リットルのホウ酸との混合水溶液20ミリリットルを加えた。常温で超音波を併用しながら2分間攪拌してパラジウムイオンの還元処理を行った。
【0047】
(2)初期薄膜形成工程
(1)の工程で得られた200ミリリットルのスラリーを、表1に示す(a)の初期薄膜形成液に攪拌しながら添加して水性懸濁体となした。初期薄膜形成液は75℃に加温されており、液量は1.8リットルであった。スラリー投入後、直ぐに水素の発生が認められ、初期薄膜形成の開始を確認した。1分後に、0.063モルの次亜リン酸ナトリウムを投入し、さらに1分間攪拌を続けた。水性懸濁体の負荷量は4.5m2/リットルであった。
【0048】
(3)無電解めっき工程
初期薄膜形成工程で得られた水性懸濁体に表1に示す(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を、それぞれ表1に示す添加速度で添加した。添加量はそれぞれ870ミリリットルであった。2液の添加後すぐに水素の発生が認められ、めっき反応の開始が確認された。2液の添加が完了するまでの間、水性懸濁体におけるアミノ基を有する錯化剤の濃度は表1に示す濃度に保たれていた。2液の添加が完了した後、水素の発泡が停止するまで75℃の温度を保持しながら攪拌を続けた。2液の添加終了後の負荷量は2.4m2/リットルであった。次いで水性懸濁体をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有するめっき粉体を得た。得られためっき粉体のめっき皮膜の断面を、拡大倍率50000倍のSEMで観察したところ、図1と同様に、皮膜の粒界が、該皮膜の厚さ方向断面に主として配向していた。ニッケルイオンの添加量から算出しためっき皮膜の厚さは0.54μmであった。
【0049】
〔実施例5〜8〕
金めっき用の無電解めっき液を1リットル調製した。無電解めっき液は、0.027モル/リットルのエチレンジアミン四酢酸四ナトリウム、0.038モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化金カリウムを含み、水酸化ナトリウム水溶液によってpHが6に調整されたものであった。液温60℃の無電解めっき液を撹拌しながら、該めっき液に実施例1〜4で得られためっき粉体それぞれ33gを添加し、20分間金めっき処理をした。次いで液をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の乾燥機で乾燥させた。これによりニッケル皮膜上に金無電解めっき層が形成されためっき粉体が得られた。金イオンの添加量から算出した金めっき層の厚さは0.025μmであった。
【0050】
〔実施例9〕
(1)触媒化処理工程
平均粒径14μm、真比重1.39の球状ベンゾグアナミン−メラミン−ホルマリン樹脂〔(株)日本触媒製、商品名“エポスター”〕を芯材粉体として用いた。その30gを400ミリリットルのスラリーにし、60℃に維持した。超音波を併用してスラリー攪拌しながら、0.11モル/リットルの塩化パラジウム水溶液2ミリリットルを添加した。そのままの攪拌状態を5分間維持させ、芯材粉体の表面にパラジウムイオンを捕捉させる活性化処理を行った。次いで水溶液をろ過し、1回リパルプ湯洗した芯材粉体を200ミリリットルのスラリーにした。超音波を併用しながらこのスラリーを攪拌し、そこへ、0.017モル/リットルのジメチルアミンボランと0.16モル/リットルのホウ酸との混合水溶液20ミリリットルを加えた。常温で超音波を併用しながら2分攪拌してパラジウムイオンの還元処理を行った。
【0051】
(2)初期薄膜形成工程
(1)の工程で得られた200ミリリットルのスラリーを、表1に示す(a)の初期薄膜形成液に攪拌しながら添加して水性懸濁体となした。初期薄膜形成液は75℃に加温されており、液量は1.8リットルであった。スラリー投入後、直ぐに水素の発生が認められ、初期薄膜形成の開始を確認した。1分後に、0.042モルの次亜リン酸ナトリウムを投入し、さらに1分間攪拌を続けた。水性懸濁体の負荷量は4.6m2/リットルであった。
【0052】
(3)無電解めっき工程
初期薄膜形成工程で得られた水性懸濁体に表1に示す(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を、それぞれ表1に示す添加速度で添加した。添加量はそれぞれ409ミリリットルであった。2液の添加後すぐに水素の発生が認められ、めっき反応の開始が確認された。2液の添加が完了するまでの間、水性懸濁体におけるアミノ基を有する錯化剤の濃度は表1に示す濃度に保たれていた。2液の添加が完了した後、水素の発泡が停止するまで75℃の温度を保持しながら攪拌を続けた。2液の添加終了後の負荷量は3.3m2/リットルであった。次いで水性懸濁体をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有する粉体を得た。得られためっき粉体のめっき皮膜の断面を、拡大倍率50000倍のSEMで観察したところ、図1と同様に、皮膜の粒界が、該皮膜の厚さ方向断面に主として配向していた。ニッケルイオンの添加量から算出しためっき皮膜の厚さは0.26μmであった。
【0053】
〔実施例10〕
実施例9で得られためっき粉体21.36gを用いる以外は実施例5と同様にしてニッケル皮膜上に金無電解めっき層が形成されためっき粉体を得た。金イオンの添加量から算出した金めっき層の厚さは0.025μmであった。
【0054】
〔実施例11〕
(1)触媒化処理工程
平均粒径10μm、真比重1.33の球状アクリル樹脂を芯材粉体として用いた。その20gを、200ミリリットルのスラリーにし、該スラリーへ塩化第一錫水溶液200ミリリットルを投入した。この水溶液の濃度は5×10-3モル/リットルであった。常温で5分攪拌し、錫イオンを芯材粉体の表面に吸着させる感受性化処理を行った。引き続き水溶液をろ過し、1回リパルプ水洗した。次いで、芯材粉体を400ミリリットルのスラリーにし、60℃に維持した。超音波を併用してスラリー攪拌しながら、0.11モル/リットルの塩化パラジウム水溶液2ミリリットルを添加した。そのままの攪拌状態を5分間維持させ、芯材粉体の表面にパラジウムイオンを捕捉させる活性化処理を行った。次いで水溶液をろ過し、1回リパルプ湯洗した芯材粉体を200ミリリットルのスラリーにした。超音波を併用しながらこのスラリーを攪拌し、そこへ、0.017モル/リットルのジメチルアミンボランと0.16モル/リットルのホウ酸との混合水溶液20ミリリットルを加えた。常温で超音波を併用しながら2分攪拌してパラジウムイオンの還元処理を行った。
【0055】
(2)初期薄膜形成工程
(1)の工程で得られた200ミリリットルのスラリーを、表1に示す(a)の初期薄膜形成液に攪拌しながら添加して水性懸濁体となした。初期薄膜形成液は75℃に加温されており、液量は1.8リットルであった。スラリー投入後、直ぐに水素の発生が認められ、めっき反応の開始を確認した。1分後に、0.042モルgの次亜リン酸ナトリウムを投入し、さらに1分間攪拌を続けた。水性懸濁体の負荷量は4.5m2/リットルであった。
【0056】
(3)無電解めっき工程
初期薄膜形成工程で得られた水性懸濁体に表1に示す(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を、それぞれ表1に示す添加速度で添加した。添加量はそれぞれ404ミリリットルであった。2液の添加後すぐに水素の発生が認められ、めっき反応の開始が確認された。2液の添加が完了するまでの間、水性懸濁体におけるアミノ基を有する錯化剤の濃度は表1に示す濃度に保たれていた。2液の添加終了後の負荷量は3.2m2/リットルであった。2液の添加が完了した後、水素の発泡が停止するまで75℃の温度を保持しながら攪拌を続けた。次いで水性懸濁体をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有する粉体を得た。得られためっき粉体のめっき皮膜の断面を、拡大倍率50000倍のSEMで観察したところ、図1と同様に、皮膜の粒界が、該皮膜の厚さ方向断面に主として配向していた。ニッケルイオンの添加量から算出しためっき皮膜の厚さは0.26μmであった。
【0057】
〔実施例12〕
実施例11で得られためっき粉体17.0gを用いる以外は実施例5と同様にしてニッケル皮膜上に金無電解めっき層が形成されためっき粉体を得た。金イオンの添加量から算出した金めっき層の厚さは0.025μmであった。
【0058】
〔比較例1〕
本比較例では、従来行われている無電解めっき建浴方式を採用した。触媒化処理工程までは実施例1と同様とした。無電解めっき液として、0.11モル/リットルの硫酸ニッケル、0.24モル/リットルの次亜リン酸ナトリウム、0.26モル/リットルのリンゴ酸ナトリウム、0.18モル/リットルの酢酸ナトリウム及び2×10-6モル/リットルの酢酸鉛を含み、pHが5に調整されたものを用いた。6リットルの無電解めっき液を75℃に加温して建浴し、その浴に触媒化処理を施された芯材粉体を投入して攪拌分散させ、ニッケルの還元反応を開始させた。pH自動調節装置を用い、5モル/リットル水酸化ナトリウム水溶液の添加により、還元反応中の液のpHを5に維持した。また、途中反応が停止したら、2モル/リットルの次亜リン酸ナトリウム水溶液を少量ずつ加えて反応を継続させた。次亜リン酸ナトリウム水溶液を加えても液が発泡しなくなったら、すべての添加を止め、液をろ過し、ろ過物を3回リパルプ洗浄した後110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有する粉体を得た。得られためっき粉体のめっき皮膜の断面を、拡大倍率50000倍のSEMで観察したところ、図2と同様に、皮膜の厚さ方向断面に瘤形状の結晶粒界が観察された。このめっき粉体は従来行われている無電解めっき方式で製造したものなので、微細なニッケル分解物が混入しており実用に供し得なかった。
【0059】
〔比較例2〕
実施例1と同様にして得られた触媒化処理後の芯材粉体を200ミリリットルスラリーにして、これに表1に示す(a)の初期薄膜形成液に攪拌しながら添加して水性懸濁体となした。初期薄膜形成液は75℃に加温されており、液量は1.8リットルであった。スラリー投入後、直ぐに水素の発生が認められ、初期薄膜形成の開始を確認した。1分後に、0.063モルの次亜リン酸ナトリウムを投入し、さらに1分間攪拌を続けた。この水性懸濁体に表1に示す(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を、それぞれ表1に示す添加速度で添加した。添加量はそれぞれ870ミリリットルであった。2液の添加後すぐに水素の発生が認められ、めっき反応の開始が確認された。2液の添加が完了した後、水素の発泡が停止するまで75℃の温度を保持しながら攪拌を続けた。次いで水性懸濁体をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有する粉体を得た。得られためっき粉体のめっき皮膜の断面を、拡大倍率50000倍のSEMで観察したところ、図2と同様に、皮膜の厚さ方向断面に瘤形状の結晶粒界が観察された。ニッケルイオンの添加量から算出しためっき皮膜の厚さは0.54μmであった。
【0060】
〔比較例3〕
比較例2で得られためっき粉体33gを用いる以外は実施例5と同様にしてニッケル皮膜上に金無電解めっき層が形成されためっき粉体を得た。金イオンの添加量から算出した金めっき層の厚さは0.025μmであった。
【0061】
〔性能評価〕
実施例1〜12及び比較例1〜3で得られためっき粉体について以下の方法で体積固有抵抗値を測定し、また耐熱性を評価した。それらの結果を以下の表2に示す。
【0062】
〔体積固有抵抗値の測定〕
垂直に立てた内径10mmの樹脂製円筒内に、めっき粉末1.0gを入れ、10kgの荷重をかけた状態で上下電極間の電気抵抗を測定し、体積固有抵抗値を求めた。
【0063】
〔めっき皮膜の耐熱性の評価〕
めっき粉末を200℃の酸化性雰囲気下に24時間、48時間、72時間、96時間、及び120時間それぞれ保存した。保存後のめっき粉体について前述の方法によって体積固有抵抗値を測定し、その抵抗値を耐熱性の尺度とした。
【0064】
【表1】

Figure 0003905014
【0065】
【表2】
Figure 0003905014
【0066】
表2に示す結果から明らかなように、各実施例のめっき粉末(本発明品)は電気抵抗が十分に低い上に、高温で長時間保存しても電気抵抗の増加が小さく耐熱性が十分に高いことが判る。これに対して比較例のめっき粉末は、電気抵抗は低いものの、長時間の保存によって電気抵抗が増加し耐熱性が低いものであることが判る。
【0067】
【発明の効果】
以上、詳述した通り、本発明によれば、導電性無電解めっき粉体の耐熱性が向上し、高温で長時間保存しても電気抵抗の増加が小さくなる。
【図面の簡単な説明】
【図1】本発明の導電性無電解めっき粉体のめっき皮膜の断面の一例を示す走査型電子顕微鏡写真である。
【図2】従来の導電性無電解めっき粉体のめっき皮膜の断面の一例を示す走査型電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive electroless plating powder and a method for producing the same, and more particularly to a conductive electroless plated powder having a nickel film with improved heat resistance and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
As a method of performing electroless plating on a synthetic resin core material powder, the present applicant previously carried a precious metal ion on a synthetic resin core powder using a noble metal-trapping surface treatment agent, and then plated. A method has been proposed in which the electroless plating process is performed by putting it in a liquid (see Patent Document 1). This method is called a so-called bathing method, and the plating solution contains a metal salt, a reducing agent, a complexing agent, a buffering agent, a stabilizer and the like. This method has the advantage that the adhesion between the plating film and the core powder is improved. In order to further improve the adhesion, the present applicant has also proposed a method in which the electroless plating method is further improved (see Patent Document 2).
[0003]
However, various performances required for electroless plating powders are becoming stricter every day. In recent years, stability at high temperature is required in addition to adhesion.
[0004]
[Patent Document 1]
JP 61-64882 A
[Patent Document 2]
Japanese Unexamined Patent Publication No. 1-224282
[0005]
Accordingly, an object of the present invention is to provide a conductive electroless plating powder having a plating film with improved heat resistance and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the inventors of the present invention form a film having a structure different from the structure of the plating film described in Patent Document 1, that is, a structure in which fine metal particles are dense and exhibit a substantially continuous film. It has been found that the above object can be achieved.
[0007]
The present invention relates to a conductive electroless plating powder in which a nickel film is formed on the surface of core material particles by an electroless plating method, and grain boundaries in the nickel film are oriented mainly in the thickness direction of the nickel film. The above object is achieved by providing a conductive electroless plating powder characterized by
[0008]
Further, the present invention provides a preferable method for producing the conductive electroless plating powder,
After capturing the noble metal ions in the core material powder having the ability to capture noble metal ions or imparting the ability to capture noble metal ions by surface treatment, the core material powder is reduced to reduce the noble metal ions on the surface of the core material powder. Carry,
Next, the core material powder is dispersed and mixed in an initial thin film forming liquid containing a complexing agent composed of nickel ions, a reducing agent and an amine compound, and nickel ions are reduced to form an initial nickel thin film on the surface of the core material powder. Form the
Thereafter, a nickel ion-containing liquid and a reducing agent-containing liquid containing a complexing agent of the same type as the complexing agent in an aqueous suspension containing the core material powder and the complexing agent on which the initial thin film is formed. These objects are achieved by providing a method for producing a conductive electroless plating powder characterized in that the two liquids are added individually and simultaneously to cause electroless plating reaction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on preferred embodiments with reference to the drawings. The conductive electroless plating powder of the present invention (hereinafter also simply referred to as plating powder) is obtained by forming a nickel film on the surface of a core material powder by an electroless plating method.
[0010]
The nickel coating formed on the surface of the core powder is one in which grain boundaries in the nickel coating are oriented mainly in the thickness direction of the nickel coating. That is, the crystal in the nickel film has a columnar structure mainly extending in the thickness direction of the film. Whether or not the grain boundaries of the nickel coating are oriented in the thickness direction of the coating can be visually grasped by observation with a scanning electron microscope (hereinafter also referred to as SEM). Specifically, when a cross-sectional structure extending in the thickness direction of the coating film is observed when the cross section in the thickness direction of the nickel coating film is observed with an SEM at an enlargement magnification of up to 100000 times, the grain boundary is thick. It can be said that it is mainly oriented in the vertical direction.
[0011]
FIG. 1 shows an SEM photograph showing an example of the plating powder of the present invention. The magnification is 50000 times. As is apparent from FIG. 1, the nickel coating on the plating powder is composed of a number of columnar structures extending in the thickness direction of the nickel coating. In FIG. 1, each columnar structure has a height that is greater than its width, but depending on the method of forming the nickel coating, the columnar structure may have a width that is substantially the same as the height or width. Sometimes it is bigger. Furthermore, it may be a truncated cone shape or its inverted shape. On the other hand, in the SEM photograph (magnification is 50000 times) of the electroless nickel plating powder shown in FIG. 2 which is a conventional product, a bump-shaped crystal grain boundary is observed in the cross section in the thickness direction of the nickel film.
[0012]
As is clear from FIG. 1, the nickel film in the plating powder of the present invention forms a dense and homogeneous continuous film by gathering a large number of columnar structures extending in the thickness direction without gaps. On the other hand, the nickel film in the plating powder shown in FIG. 2, which is a conventional product, has coarse crystal grains and is inhomogeneous. As is clear from the examples described later, the nickel coating having a columnar structure as shown in FIG. 1 has high heat resistance, and it is difficult for the inventors to reduce the conductivity of the plating powder even under high temperature conditions. It became clear by examination.
[0013]
An example of the procedure for SEM observation of the cross section of the nickel coating in the plating powder is as follows. 50 parts by weight of the plating powder, 100 parts by weight of Epicoat 815 (manufactured by Japan Epoxy Resin Co., Ltd.) and 5 parts by weight of EpiCure (manufactured by Japan Epoxy Resin Co., Ltd.) are kneaded and cured for 10 minutes with a dryer at 110 ° C. A sample of × 10 mm × 2 mm is molded. The obtained sample is bent and fractured, and the part where the fracture surface of the plating film appears is observed by SEM.
[0014]
As a result of the X-ray diffraction measurement by the present inventors, the nickel film in the plating powder of the present invention has a crystalline part as well as a part of the amorphous part. It has been found that the situation is common. However, the crystal form of the nickel film is not critical in the present invention. If the nickel film has a columnar structure, the nickel film has a desired heat resistance regardless of whether it is crystalline or amorphous. To express.
[0015]
The thickness of the nickel film has a considerable influence on its adhesion and heat resistance, and if the film is too thick, it tends to fall from the core powder and the conductivity tends to decrease. On the contrary, even if the film is too thin, desired conductivity cannot be obtained. From these viewpoints, the thickness of the nickel coating is preferably about 0.005 to 10 μm, particularly about 0.01 to 2 μm. The thickness of the nickel film can be measured, for example, by SEM observation, or can be calculated from the amount of nickel ions added or chemical analysis.
[0016]
Depending on the type of reducing agent used when forming the nickel film by electroless plating, the nickel film may be an alloy of nickel and another element. For example, when sodium hypophosphite is used as the reducing agent, the resulting nickel film is a nickel-phosphorus alloy. However, in the present invention, such a nickel alloy film is also called a nickel film in a broad sense.
[0017]
The plated powder of the present invention is formed by forming the above-mentioned nickel film on the surface of the core powder. From the viewpoint of further improving the conductivity of the plated powder, a thin layer of gold is formed on the outermost surface. A plating layer may be formed. The gold plating layer is formed by electroless plating similarly to the nickel film. The thickness of the gold plating layer is generally about 0.001 to 0.5 μm. The thickness of the gold plating layer can be calculated from the amount of gold ions added and chemical analysis.
[0018]
There is no particular limitation on the type of core material powder on which the nickel film is formed, and both organic powder and inorganic powder are used. Considering the electroless plating method described later, the core material powder is preferably dispersible in water. Therefore, the core powder is preferably substantially insoluble in water, and more preferably does not dissolve or change in acid or alkali. "Dispersible in water" means that a suspension substantially dispersed in water can be formed to such an extent that a nickel coating can be formed on the surface of the core powder by a normal dispersing means such as stirring.
[0019]
There is no restriction | limiting in particular in the shape of core material powder. In general, the core material powder may be in the form of a powder, but may have other shapes, for example, a fiber shape, a hollow shape, a plate shape, a needle shape, or an indefinite shape. As the size of the core material powder, an appropriate size is selected according to the specific application of the plating powder of the present invention. For example, when the plating powder of the present invention is used as a conductive material for connecting an electronic circuit, the core powder is preferably spherical particles having an average particle diameter of about 0.5 to 1000 μm.
[0020]
Specific examples of the core powder include metal (including alloys), glass, ceramics, silica, carbon, metal or non-metal oxides (including hydrates), and metal silicates including aluminosilicates as inorganic materials. Metal carbide, metal nitride, metal carbonate, metal sulfate, metal phosphate, metal sulfide, metal acid salt, metal halide and carbon. Organic materials include natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, polyester and other thermoplastic resins, alkyd resins, phenol resins, Examples include urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, or diallyl phthalate resin. These may be used alone or in a mixture of two or more.
[0021]
It is preferable that the surface of the core material powder is modified so that the surface thereof has a precious metal ion capturing ability or a precious metal ion capturing ability. The noble metal ions are preferably palladium or silver ions. Having a precious metal ion scavenging ability means that the precious metal ion can be captured as a chelate or salt. For example, when an amino group, imino group, amide group, imide group, cyano group, hydroxyl group, nitrile group, carboxyl group, etc. are present on the surface of the core material powder, the surface of the core material powder is made of noble metal ions. Has capture ability. In the case of modifying the surface so as to have the ability to trap noble metal ions, for example, a method described in JP-A-61-64882 can be used.
[0022]
Next, the preferable manufacturing method of the plating powder of this invention is demonstrated. The method for producing the plating powder is roughly divided into (1) a catalytic treatment process, (2) an initial thin film forming process, and (3) an electroless plating process. In the catalytic treatment step of (1), noble metal ions are captured by the core powder having the ability to capture noble metal ions or provided with the ability to capture noble metal ions by surface treatment, and then reduced to reduce the above-mentioned A noble metal is supported on the surface of the core material powder. In the initial thin film forming step (2), the core material powder carrying the noble metal is dispersed and mixed in an initial thin film forming liquid containing a complexing agent composed of nickel ions, a reducing agent and an amine compound, and nickel ions are mixed. An initial thin film of nickel is formed on the surface of the core material powder by reduction. In the electroless plating step of (3), a complexing agent comprising a core material powder on which an initial thin film of nickel is formed and an aqueous suspension containing the complexing agent and the same kind of amine compound as the complexing agent. Two liquids, a nickel ion-containing liquid and a reducing agent-containing liquid, are added individually and simultaneously to cause electroless plating reaction. Hereinafter, each process is explained in full detail.
[0023]
(1) Catalytic treatment process
When the core powder itself has the ability to capture noble metal ions, a direct catalytic treatment is performed. If not, surface modification treatment is performed. In the surface modification treatment, the core material powder is added to water or an organic solvent in which the surface treatment agent is dissolved and sufficiently stirred and dispersed, and then the powder is separated and dried. The amount of the surface treatment agent depends on the type of the core powder, and the surface area of the powder is 1 m. 2 By adjusting in the range of 0.3 to 100 mg per unit, a uniform reforming effect can be obtained.
[0024]
Next, the core powder is dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. As a result, noble metal ions are trapped on the powder surface. Noble metal salt concentration is 1m of powder surface area 2 1 × 10 per -7 ~ 1x10 -2 A molar range is sufficient. The core powder with the precious metal ions captured is separated from the system and washed with water. Subsequently, the core material powder is suspended in water, and a reducing agent is added thereto to reduce the noble metal ions. As a result, the noble metal is supported on the surface of the core powder. Examples of the reducing agent include sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin and the like.
[0025]
Before capturing the noble metal ions on the surface of the core powder, a sensitization treatment for adsorbing tin ions on the powder surface may be performed. In order to adsorb tin ions on the powder surface, for example, the surface-modified core material powder may be put into an aqueous solution of stannous chloride and stirred for a predetermined time.
[0026]
(2) Initial thin film formation process
The initial thin film forming step is performed for the purpose of uniformly depositing nickel on the core material powder and smoothing the surface of the core material powder. In the initial thin film forming step, first, the core material powder carrying the noble metal is sufficiently dispersed in water. For the dispersion, a shearing dispersion device such as a colloid mill or a homogenizer can be used. In dispersing the core powder, for example, a dispersant such as a surfactant can be used as necessary. The aqueous suspension thus obtained is dispersed and mixed in an initial thin film forming liquid containing a complexing agent composed of nickel ions, a reducing agent and an amine compound. Thereby, the reduction reaction of nickel ions is started, and an initial thin film of nickel is formed on the surface of the core material powder. As described above, the initial thin film formation step is performed for the purpose of uniform precipitation and smoothing the surface of the core powder, so that the formed initial thin film of nickel can smooth the surface of the core powder. As long as it is thin. From this viewpoint, the thickness of the initial thin film is preferably 0.001 to 2 μm, particularly preferably 0.005 to 1 μm. The thickness of the initial thin film can be calculated from the amount of nickel ions added and chemical analysis. The complexing agent is not consumed by the reduction of nickel ions.
[0027]
From the viewpoint of forming the initial thin film having the thickness described above, the concentration of nickel ions in the initial thin film forming liquid is 2.0 × 10. -Four ~ 1.0 mol / liter, especially 1.0 x 10 -3 It is preferable that it is -0.1 mol / liter. As the nickel ion source, a water-soluble nickel salt such as nickel sulfate or nickel chloride is used. From the same viewpoint, the concentration of the reducing agent in the initial thin film forming solution is 4 × 10. -Four ~ 2.0 mol / liter, especially 2.0 x 10 -3 It is preferable that it is -0.2 mol / liter. As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used.
[0028]
It is important that the initial thin film forming liquid contains a complexing agent. A nickel film having a columnar structure can be easily formed by adding a complexing agent to the nickel ion-containing liquid described later. The complexing agent is a compound having a complex forming action on the metal ion to be plated. In the present invention, an amine compound such as glycine, alanine, ethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine or the like is used as a complexing agent. These complexing agents can be used alone or in combination of two or more. Among these complexing agents, it is preferable to use glycine or ethylenediamine in particular because a nickel film having a columnar structure can be formed more easily. The concentration of the complexing agent affects the formation of a nickel film having a columnar structure. From this viewpoint and the viewpoint of the solubility of the complexing agent, the amount of the complexing agent in the initial thin film-forming solution is preferably 0.003 to 10 mol / liter, particularly 0.006 to 4 mol / liter.
[0029]
From the viewpoint that an initial thin film can be easily formed, the concentration of the core material powder in the aqueous suspension is preferably 0.1 to 500 g / liter, particularly preferably 0.5 to 300 g / liter.
[0030]
The aqueous suspension obtained by mixing the aqueous suspension containing the core powder and the initial thin film forming liquid is then subjected to an electroless plating process described later. In the aqueous suspension before being subjected to the electroless plating step, the ratio of the total surface area of the core powder contained in the aqueous suspension to the volume of the aqueous suspension (this ratio is generally a load). Is called 0.1-15m) 2 / Liter, especially 1-10m 2 / Liter is preferable from the viewpoint that a nickel film having a columnar structure can be easily formed. If the load is too high, the reduction of nickel ions in the liquid phase will be significant in the electroless plating process described later, and a large amount of nickel fine particles will be generated in the liquid phase, which will adhere to the surface of the core powder. Therefore, it becomes difficult to form a uniform nickel film.
[0031]
(3) Electroless plating process
In the electroless plating process, (a) a core material powder on which an initial thin film is formed and an aqueous suspension containing the complexing agent, (b) a nickel ion-containing liquid, and (c) a reducing agent-containing liquid. Is used. As the aqueous suspension (a), the aqueous suspension obtained in the above-described initial thin film formation step may be used as it is.
[0032]
Separately from the aqueous suspension of (a), two liquids, a nickel ion-containing liquid (b) and a reducing agent-containing liquid (c), are prepared. The nickel ion-containing liquid is an aqueous solution of a water-soluble nickel salt such as nickel sulfate or nickel chloride, which is a nickel ion source. The concentration of nickel ions is preferably 0.1 to 1.2 mol / liter, particularly 0.5 to 1.0 mol / liter because a nickel film having a columnar structure can be easily formed.
[0033]
It is important that the nickel ion-containing liquid contains a complexing agent of the same type as the complexing agent contained in the aqueous suspension. That is, it is important to contain the same kind of complexing agent in both the aqueous suspension (a) and the nickel ion-containing liquid (b). Thereby, a nickel film having a columnar structure can be easily formed. The reason for this is not clear, but by adding a complexing agent to both the aqueous suspension (a) and the nickel ion-containing liquid (b), the nickel ions are stabilized, and the reduction reaction is rapid. It is presumed that this is hindered from proceeding to the next stage.
[0034]
The concentration of the complexing agent in the nickel ion-containing liquid (b) affects the formation of the nickel film in the same manner as the concentration of the complexing agent in the aqueous suspension (a). From this viewpoint and the viewpoint of the solubility of the complexing agent, the amount of the complexing agent in the nickel ion-containing liquid is preferably 0.006 to 12 mol / liter, particularly 0.012 to 8 mol / liter.
[0035]
The reducing agent-containing liquid (c) is generally an aqueous solution of a reducing agent. As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used. It is particularly preferable to use sodium hypophosphite. Since the concentration of the reducing agent affects the reduction state of nickel ions, it is preferably adjusted to a range of 0.1 to 20 mol / liter, particularly 1 to 10 mol / liter.
[0036]
In addition to the complexing agent comprising the amine compound described above, other types of complexing agents may be added to the aqueous suspension (a) and the nickel ion-containing liquid (b). Examples of such a complexing agent include organic carboxylic acids or salts thereof such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid or gluconic acid, or alkali metal salts and ammonium salts thereof. When other types of complexing agents are used in combination, the same type is added to the aqueous suspension (a) and the nickel ion-containing solution (b) in the same manner as the complexing agent comprising an amine compound. It is preferable.
[0037]
Two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c), are added individually and simultaneously to the aqueous suspension (a). As a result, nickel ions are reduced, and nickel is deposited on the surface of the core powder to form a film. The addition rate of the nickel ion-containing liquid and the reducing agent-containing liquid is effective in controlling the nickel deposition rate. The deposition rate of nickel affects the formation of a nickel film having a columnar structure. Therefore, it is preferable to control the deposition rate of nickel by adjusting the addition rate of both solutions to 1 to 10,000 nanometers / hour, particularly 5 to 300 nanometers / hour. The deposition rate of nickel can be obtained by calculation from the addition rate of the nickel ion-containing liquid.
[0038]
While the two liquids are added to the aqueous suspension, the concentration of the complexing agent in the aqueous suspension is not constant, and the addition of the two liquids increases the amount of the aqueous suspension and increases the nickel ion-containing liquid. It changes due to the addition of the complexing agent contained. In this production method, in consideration of the solubility of the complexing agent, the concentration of the complexing agent in the aqueous suspension is 0.003 to 10 mol / liter, particularly 0.006 to It has been found by the present inventors that it is particularly advantageous to keep it in the range of 4 mol / liter. By maintaining the concentration of the complexing agent in the aqueous suspension in the addition process of the two liquids within the above range, a nickel film having a columnar structure can be formed more easily. In order to keep the concentration of the complexing agent in the aqueous suspension within the above range, the addition rate of the nickel ion-containing liquid and the reducing agent-containing liquid (nickel deposition rate), or the complexing agent in the aqueous suspension What is necessary is just to adjust the initial concentration or the concentration of the complexing agent in the nickel ion-containing liquid. These values are as described above.
[0039]
While adding the two liquids to the aqueous suspension, the load described above is 0.1-15 m. 2 / Liter, especially 1-10m 2 / Liter is preferable. As a result, nickel is deposited uniformly. Has a columnar structure A nickel film can be formed more easily. For the same reason, it is also preferable that the loading amount at the time when the addition of the two liquids is completed and the reduction of nickel ions is completed is within this range.
[0040]
In this way, a plated powder is obtained in which a nickel film is formed on the surface of the core powder. And the grain boundary in the nickel film in this plating powder is mainly oriented in the thickness direction of the nickel film.
[0041]
Depending on the type of reducing agent used, during the nickel ion reduction reaction, the pH of the aqueous suspension is maintained in the range of 3 to 13, particularly 4 to 11, in order to form a water-insoluble precipitate of nickel. It is preferable from the point which prevents. In order to adjust the pH, for example, a predetermined amount of a pH adjusting agent such as sodium hydroxide may be added to the reducing agent-containing liquid.
[0042]
The obtained plating powder is separated after filtration and water washing are repeated several times. Further, as an additional process, a gold plating layer as the uppermost layer may be formed on the nickel film. The gold plating layer can be formed according to a conventionally known electroless plating method. For example, by adding an electroless plating solution containing tetrasodium ethylenediaminetetraacetate, trisodium citrate and potassium gold cyanide and adjusted to pH with sodium hydroxide to an aqueous suspension of plating powder, A gold plating layer is formed on the film.
[0043]
The plated powder thus obtained is used as, for example, an anisotropic conductive film (ACF), a heat seal connector (HSC), a conductive material for connecting electrodes of a liquid crystal display panel to a circuit board of a driving LSI chip, and the like. Preferably used.
[0044]
The present invention is not limited to the embodiment. For example, in the above-described embodiment, the nickel film having the columnar structure is formed on the surface of the core material powder, but instead, the powder in which the film of another metal is formed on the surface of the core material powder. A nickel film having a columnar structure may be formed on the surface of the film. Moreover, the manufacturing method of the plating powder of this invention is not restrict | limited to the above-mentioned method.
[0045]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
[0046]
[Examples 1 to 4]
(1) Catalytic treatment process
Spherical silica having an average particle size of 12 μm and a true specific gravity of 2.23 was used as the core material powder. 40 g of the solution was added to 400 ml of an aqueous conditioner solution (“Cleaner Conditioner 231” manufactured by Shipley) with stirring. The concentration of the aqueous conditioner solution was 40 ml / liter. Subsequently, the core material powder was subjected to surface modification and dispersion treatment by stirring for 30 minutes while applying ultrasonic waves at a liquid temperature of 60 ° C. The aqueous solution was filtered and the core powder washed once with repulp water was made into 200 ml slurry. 200 ml of stannous chloride aqueous solution was added to this slurry. The concentration of this aqueous solution is 5 × 10 -3 Mol / liter. The mixture was stirred at room temperature for 5 minutes, and sensitization treatment was performed to adsorb tin ions on the surface of the core material powder. Subsequently, the aqueous solution was filtered and washed once with repulp water. Next, the core powder was made into 400 ml slurry and maintained at 60 ° C. While stirring the slurry in combination with ultrasonic waves, 2 ml of a 0.11 mol / liter palladium chloride aqueous solution was added. The state of stirring as it was was maintained for 5 minutes, and an activation treatment for trapping palladium ions on the surface of the core powder was performed. Next, the aqueous solution was filtered, and the core material powder washed once with repulp hot water was made into 200 ml of slurry. The slurry was stirred while using ultrasonic waves, and 20 ml of a mixed aqueous solution of 0.017 mol / liter dimethylamine borane and 0.16 mol / liter boric acid was added thereto. The mixture was stirred for 2 minutes while using ultrasonic waves at room temperature to reduce palladium ions.
[0047]
(2) Initial thin film formation process
200 milliliters of the slurry obtained in the step (1) was added to the initial thin film forming solution (a) shown in Table 1 with stirring to form an aqueous suspension. The initial thin film forming liquid was heated to 75 ° C., and the liquid volume was 1.8 liters. Immediately after the slurry was introduced, hydrogen generation was observed, confirming the start of initial thin film formation. One minute later, 0.063 mol of sodium hypophosphite was added, and stirring was continued for another minute. The load of aqueous suspension is 4.5m 2 / Liter.
[0048]
(3) Electroless plating process
Two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c) shown in Table 1, were added to the aqueous suspension obtained in the initial thin film forming step at the addition rates shown in Table 1, respectively. The amount added was 870 ml each. Generation of hydrogen was observed immediately after the addition of the two liquids, confirming the start of the plating reaction. Until the addition of the two liquids was completed, the concentration of the complexing agent having an amino group in the aqueous suspension was maintained at the concentration shown in Table 1. After the addition of the two liquids was completed, stirring was continued while maintaining the temperature at 75 ° C. until hydrogen bubbling stopped. The load after the addition of the two liquids is 2.4m 2 / Liter. Subsequently, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 110 ° C. Thereby, the plating powder which has a nickel- phosphorus alloy plating film was obtained. When the cross section of the plating film of the obtained plating powder was observed with an SEM at an enlargement magnification of 50000 times, the grain boundaries of the film were mainly oriented in the cross section in the thickness direction of the film as in FIG. The thickness of the plating film calculated from the amount of nickel ion added was 0.54 μm.
[0049]
[Examples 5 to 8]
1 liter of electroless plating solution for gold plating was prepared. The electroless plating solution contains 0.027 mol / liter tetrasodium ethylenediaminetetraacetate, 0.038 mol / liter trisodium citrate and 0.01 mol / liter potassium gold cyanide, The pH was adjusted to 6. While stirring the electroless plating solution at a liquid temperature of 60 ° C., 33 g of each of the plating powders obtained in Examples 1 to 4 was added to the plating solution, and gold plating was performed for 20 minutes. Next, the liquid was filtered, and the filtrate was washed with repulp three times and then dried with a dryer at 110 ° C. As a result, a plating powder in which a gold electroless plating layer was formed on the nickel film was obtained. The thickness of the gold plating layer calculated from the added amount of gold ions was 0.025 μm.
[0050]
Example 9
(1) Catalytic treatment process
Spherical benzoguanamine-melamine-formalin resin (trade name “Eposter” manufactured by Nippon Shokubai Co., Ltd.) having an average particle size of 14 μm and a true specific gravity of 1.39 was used as the core powder. 30 g of that was made into 400 ml slurry and maintained at 60 ° C. While stirring the slurry using ultrasonic waves, 2 ml of a 0.11 mol / liter palladium chloride aqueous solution was added. The state of stirring as it was was maintained for 5 minutes, and an activation treatment for trapping palladium ions on the surface of the core powder was performed. Next, the aqueous solution was filtered, and the core material powder washed once with repulp hot water was made into 200 ml of slurry. The slurry was stirred while using ultrasonic waves, and 20 ml of a mixed aqueous solution of 0.017 mol / liter dimethylamine borane and 0.16 mol / liter boric acid was added thereto. While using ultrasonic waves at room temperature, the mixture was stirred for 2 minutes to reduce palladium ions.
[0051]
(2) Initial thin film formation process
200 milliliters of the slurry obtained in the step (1) was added to the initial thin film forming solution (a) shown in Table 1 with stirring to form an aqueous suspension. The initial thin film forming liquid was heated to 75 ° C., and the liquid volume was 1.8 liters. Immediately after the slurry was introduced, hydrogen generation was observed, confirming the start of initial thin film formation. After 1 minute, 0.042 moles of sodium hypophosphite was added and stirring was continued for an additional minute. The load of aqueous suspension is 4.6m 2 / Liter.
[0052]
(3) Electroless plating process
Two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c) shown in Table 1, were added to the aqueous suspension obtained in the initial thin film forming step at the addition rates shown in Table 1, respectively. The amount added was 409 ml each. Generation of hydrogen was observed immediately after the addition of the two liquids, confirming the start of the plating reaction. Until the addition of the two liquids was completed, the concentration of the complexing agent having an amino group in the aqueous suspension was maintained at the concentration shown in Table 1. After the addition of the two liquids was completed, stirring was continued while maintaining the temperature at 75 ° C. until hydrogen bubbling stopped. The load after the addition of the two liquids is 3.3m 2 / Liter. Subsequently, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 110 ° C. Thereby, the powder which has a nickel- phosphorus alloy plating film was obtained. When the cross section of the plating film of the obtained plating powder was observed with an SEM at an enlargement magnification of 50000 times, the grain boundaries of the film were mainly oriented in the cross section in the thickness direction of the film as in FIG. The thickness of the plating film calculated from the amount of nickel ion added was 0.26 μm.
[0053]
Example 10
A plating powder having a gold electroless plating layer formed on a nickel film was obtained in the same manner as in Example 5 except that 21.36 g of the plating powder obtained in Example 9 was used. The thickness of the gold plating layer calculated from the added amount of gold ions was 0.025 μm.
[0054]
Example 11
(1) Catalytic treatment process
A spherical acrylic resin having an average particle size of 10 μm and a true specific gravity of 1.33 was used as the core material powder. 20 g of that was made into 200 ml of slurry, and 200 ml of stannous chloride aqueous solution was added to the slurry. The concentration of this aqueous solution is 5 × 10 -3 Mol / liter. The mixture was stirred at room temperature for 5 minutes, and sensitization treatment was performed to adsorb tin ions on the surface of the core material powder. Subsequently, the aqueous solution was filtered and washed once with repulp water. Next, the core powder was made into 400 ml slurry and maintained at 60 ° C. While stirring the slurry using ultrasonic waves, 2 ml of a 0.11 mol / liter palladium chloride aqueous solution was added. The state of stirring as it was was maintained for 5 minutes, and an activation treatment for trapping palladium ions on the surface of the core powder was performed. Next, the aqueous solution was filtered, and the core material powder washed once with repulp hot water was made into 200 ml of slurry. The slurry was stirred while using ultrasonic waves, and 20 ml of a mixed aqueous solution of 0.017 mol / liter dimethylamine borane and 0.16 mol / liter boric acid was added thereto. While using ultrasonic waves at room temperature, the mixture was stirred for 2 minutes to reduce palladium ions.
[0055]
(2) Initial thin film formation process
200 milliliters of the slurry obtained in the step (1) was added to the initial thin film forming solution (a) shown in Table 1 with stirring to form an aqueous suspension. The initial thin film forming liquid was heated to 75 ° C., and the liquid volume was 1.8 liters. Immediately after the slurry was introduced, hydrogen generation was observed, confirming the start of the plating reaction. One minute later, 0.042 mol g of sodium hypophosphite was added, and stirring was continued for another minute. The load of aqueous suspension is 4.5m 2 / Liter.
[0056]
(3) Electroless plating process
Two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c) shown in Table 1, were added to the aqueous suspension obtained in the initial thin film forming step at the addition rates shown in Table 1, respectively. The amount added was 404 ml each. Generation of hydrogen was observed immediately after the addition of the two liquids, confirming the start of the plating reaction. Until the addition of the two liquids was completed, the concentration of the complexing agent having an amino group in the aqueous suspension was maintained at the concentration shown in Table 1. The load after the addition of the two liquids is 3.2 m 2 / Liter. After the addition of the two liquids was completed, stirring was continued while maintaining the temperature at 75 ° C. until hydrogen bubbling stopped. Subsequently, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 110 ° C. Thereby, the powder which has a nickel- phosphorus alloy plating film was obtained. When the cross section of the plating film of the obtained plating powder was observed with an SEM at an enlargement magnification of 50000 times, the grain boundaries of the film were mainly oriented in the cross section in the thickness direction of the film as in FIG. The thickness of the plating film calculated from the amount of nickel ion added was 0.26 μm.
[0057]
Example 12
A plating powder having a gold electroless plating layer formed on a nickel film was obtained in the same manner as in Example 5 except that 17.0 g of the plating powder obtained in Example 11 was used. The thickness of the gold plating layer calculated from the added amount of gold ions was 0.025 μm.
[0058]
[Comparative Example 1]
In this comparative example, a conventional electroless plating bath method was adopted. The steps up to the catalyst treatment step were the same as in Example 1. As electroless plating solution, 0.11 mol / liter nickel sulfate, 0.24 mol / liter sodium hypophosphite, 0.26 mol / liter sodium malate, 0.18 mol / liter sodium acetate and 2 × 10 -6 A solution containing mol / liter of lead acetate and having a pH adjusted to 5 was used. A 6 liter electroless plating solution was heated to 75 ° C. to build a bath, and the core material powder subjected to the catalyst treatment was put into the bath and dispersed by stirring to initiate a nickel reduction reaction. Using an automatic pH adjuster, the pH of the solution during the reduction reaction was maintained at 5 by adding a 5 mol / liter aqueous sodium hydroxide solution. When the reaction stopped halfway, a 2 mol / liter sodium hypophosphite aqueous solution was added little by little to continue the reaction. When the liquid no longer foamed even when sodium hypophosphite aqueous solution was added, all additions were stopped, the liquid was filtered, the filtrate was washed with repulp three times, and dried in a vacuum dryer at 110 ° C. Thereby, the powder which has a nickel- phosphorus alloy plating film was obtained. When the cross section of the plating film of the obtained plating powder was observed with an SEM at an enlargement magnification of 50000 times, a lump-shaped crystal grain boundary was observed in the cross section in the thickness direction of the film as in FIG. Since this plating powder was manufactured by a conventional electroless plating method, a fine nickel decomposition product was mixed therein and could not be put to practical use.
[0059]
[Comparative Example 2]
The catalyzed core material powder obtained in the same manner as in Example 1 was made into a 200 milliliter slurry, and added to the initial thin film forming liquid of (a) shown in Table 1 with stirring to form an aqueous suspension. It became a body. The initial thin film forming liquid was heated to 75 ° C., and the liquid volume was 1.8 liters. Immediately after the slurry was introduced, hydrogen generation was observed, confirming the start of initial thin film formation. One minute later, 0.063 mol of sodium hypophosphite was added, and stirring was continued for another minute. Two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c) shown in Table 1, were added to the aqueous suspension at the addition rates shown in Table 1, respectively. The amount added was 870 ml each. Generation of hydrogen was observed immediately after the addition of the two liquids, confirming the start of the plating reaction. After the addition of the two liquids was completed, stirring was continued while maintaining the temperature at 75 ° C. until hydrogen bubbling stopped. Subsequently, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 110 ° C. Thereby, the powder which has a nickel- phosphorus alloy plating film was obtained. When the cross section of the plating film of the obtained plating powder was observed with a SEM at an enlargement magnification of 50000 times, a lump-shaped crystal grain boundary was observed in the cross section in the thickness direction of the film as in FIG. The thickness of the plating film calculated from the amount of nickel ion added was 0.54 μm.
[0060]
[Comparative Example 3]
A plating powder in which a gold electroless plating layer was formed on a nickel film was obtained in the same manner as in Example 5 except that 33 g of the plating powder obtained in Comparative Example 2 was used. The thickness of the gold plating layer calculated from the added amount of gold ions was 0.025 μm.
[0061]
[Performance evaluation]
About the plating powder obtained in Examples 1-12 and Comparative Examples 1-3, the volume specific resistance value was measured with the following method, and heat resistance was evaluated. The results are shown in Table 2 below.
[0062]
[Measurement of volume resistivity]
In a resin cylinder with an inner diameter of 10 mm standing vertically, 1.0 g of plating powder was put, and the electric resistance between the upper and lower electrodes was measured in a state where a load of 10 kg was applied to determine the volume resistivity value.
[0063]
[Evaluation of heat resistance of plating film]
The plating powder was stored in an oxidizing atmosphere at 200 ° C. for 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours, respectively. A volume specific resistance value of the plated powder after storage was measured by the above-described method, and the resistance value was used as a measure of heat resistance.
[0064]
[Table 1]
Figure 0003905014
[0065]
[Table 2]
Figure 0003905014
[0066]
As is clear from the results shown in Table 2, the plating powder of each example (product of the present invention) has a sufficiently low electrical resistance, and has a small increase in electrical resistance even when stored at a high temperature for a long time, and has sufficient heat resistance. It can be seen that it is expensive. On the other hand, although the plating powder of the comparative example has a low electric resistance, it can be seen that the electric resistance increases and the heat resistance is low by long-term storage.
[0067]
【The invention's effect】
As described above in detail, according to the present invention, the heat resistance of the electroless electroless plating powder is improved, and the increase in electrical resistance is reduced even when stored at a high temperature for a long time.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph showing an example of a cross section of a plating film of a conductive electroless plating powder of the present invention.
FIG. 2 is a scanning electron micrograph showing an example of a cross section of a plating film of a conventional conductive electroless plating powder.

Claims (6)

芯材粒子表面上に無電解めっき法によってニッケル皮膜を形成した導電性無電解めっき粉体において、前記ニッケル皮膜中の粒界が、該ニッケル皮膜の主として厚さ方向に配向していることを特徴とする導電性無電解めっき粉体。In a conductive electroless plating powder in which a nickel film is formed on the surface of core material particles by an electroless plating method, grain boundaries in the nickel film are oriented mainly in the thickness direction of the nickel film. Conductive electroless plating powder. 最表面に金の無電解めっき層が形成されている請求項1記載の導電性無電解めっき粉体。The conductive electroless plating powder according to claim 1, wherein a gold electroless plating layer is formed on the outermost surface. 請求項1記載の導電性無電解めっき粉体の製造方法であって、
貴金属イオンの捕捉能を有するか又は表面処理によって貴金属イオンの捕捉能を付与した前記芯材粉体に貴金属イオンを捕捉させた後、これを還元して前記貴金属を前記芯材粉体の表面に担持させ、
次いで該芯材粉体を、ニッケルイオン、還元剤及びアミン化合物からなる錯化剤を含む初期薄膜形成液に分散混合させ、ニッケルイオンを還元させて該芯材粉体の表面にニッケルの初期薄膜を形成し、
然る後、該初期薄膜が形成された該芯材粉体及び該錯化剤を含む水性懸濁体に該錯化剤と同種の錯化剤を含有するニッケルイオン含有液及び還元剤含有液の2液を個別かつ同時に添加して無電解めっき反応を行わせることを特徴とする導電性無電解めっき粉体の製造方法。
A method for producing a conductive electroless plating powder according to claim 1,
After capturing the noble metal ions in the core material powder having the ability to capture noble metal ions or imparting the ability to capture noble metal ions by surface treatment, the core material powder is reduced to reduce the noble metal ions on the surface of the core material powder. Carry,
Next, the core material powder is dispersed and mixed in an initial thin film forming liquid containing a complexing agent composed of nickel ions, a reducing agent and an amine compound, and nickel ions are reduced to form an initial nickel thin film on the surface of the core material powder. Form the
Thereafter, a nickel ion-containing liquid and a reducing agent-containing liquid containing a complexing agent of the same type as the complexing agent in an aqueous suspension containing the core material powder and the complexing agent on which the initial thin film is formed. A method for producing a conductive electroless plating powder, wherein the two liquids are added individually and simultaneously to cause an electroless plating reaction.
前記芯材粉体を含む水性懸濁体に前記ニッケルイオン含有液及び前記還元剤含有液を添加する過程において、該水性懸濁体中の前記錯化剤の濃度が0.003〜10モル/リットルの範囲に保たれるように、該ニッケルイオン含有液及び該還元剤含有液の添加量、又は該水性懸濁体中の該錯化剤の初期濃度若しくは該ニッケルイオン含有液中の該錯化剤の濃度を調整する請求項3記載の導電性無電解めっき粉体の製造方法。In the process of adding the nickel ion-containing liquid and the reducing agent-containing liquid to the aqueous suspension containing the core powder, the concentration of the complexing agent in the aqueous suspension is 0.003 to 10 mol / The amount of the nickel ion-containing liquid and the reducing agent-containing liquid added, or the initial concentration of the complexing agent in the aqueous suspension or the complex in the nickel ion-containing liquid The method for producing a conductive electroless plating powder according to claim 3, wherein the concentration of the agent is adjusted. 前記錯化剤がグリシン又はエチレンジアミンである請求項3又は4記載の導電性無電解めっき粉体の製造方法。The method for producing a conductive electroless plating powder according to claim 3 or 4, wherein the complexing agent is glycine or ethylenediamine. 前記芯材粉体を含む水性懸濁体に前記ニッケルイオン含有液及び前記還元剤含有液を添加する前における、該水性懸濁体の体積に対する該水性懸濁体に含まれる該芯材粉体の表面積の総和の割合が0.1〜15m2/リットルである請求項3〜5の何れかに記載の導電性無電解めっき粉体の製造方法。The core powder contained in the aqueous suspension with respect to the volume of the aqueous suspension before adding the nickel ion-containing liquid and the reducing agent-containing liquid to the aqueous suspension containing the core powder. The method for producing a conductive electroless-plated powder according to any one of claims 3 to 5, wherein the ratio of the total surface area is 0.1 to 15 m 2 / liter.
JP2002297902A 2002-10-10 2002-10-10 Conductive electroless plating powder and manufacturing method thereof Expired - Lifetime JP3905014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297902A JP3905014B2 (en) 2002-10-10 2002-10-10 Conductive electroless plating powder and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297902A JP3905014B2 (en) 2002-10-10 2002-10-10 Conductive electroless plating powder and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004131801A JP2004131801A (en) 2004-04-30
JP3905014B2 true JP3905014B2 (en) 2007-04-18

Family

ID=32287476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297902A Expired - Lifetime JP3905014B2 (en) 2002-10-10 2002-10-10 Conductive electroless plating powder and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3905014B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
JP5344416B2 (en) * 2006-03-09 2013-11-20 奥野製薬工業株式会社 Bending resistance improver for self-catalyzed electroless nickel plating solution and self-catalyzed electroless nickel plating solution
JP4975344B2 (en) * 2006-03-15 2012-07-11 大和電機工業株式会社 Plating method
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
EP2211354B1 (en) 2007-10-22 2020-12-16 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP5667541B2 (en) * 2011-09-26 2015-02-12 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
JP5917318B2 (en) * 2012-07-02 2016-05-11 株式会社日本触媒 Conductive fine particles
JP6431805B2 (en) * 2015-03-31 2018-11-28 住友理工株式会社 Heating member and manufacturing method thereof
CN114730646B (en) * 2019-11-15 2024-03-19 日本化学工业株式会社 Conductive particle, method for producing same, and conductive material containing conductive particle
WO2023149294A1 (en) * 2022-02-03 2023-08-10 積水化学工業株式会社 Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure

Also Published As

Publication number Publication date
JP2004131801A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
JP5512306B2 (en) Method for producing conductive particles
JP5973257B2 (en) Conductive particles and conductive material containing the same
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
KR102411476B1 (en) Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connecting structure, and method for producing conductive particle
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JP2007184115A (en) Manufacturing method of conductive fine particle
JP4849930B2 (en) Conductive electroless plating powder and method for producing the same
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2003034879A (en) Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
JP2016096031A (en) Silver coated particle and manufacturing method therefor
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JP5342114B2 (en) Method for producing conductive particles and conductive particles
JP2006241499A (en) Method for producing powder electroless-plated with electroconductive substance
JP2602495B2 (en) Manufacturing method of nickel plating material
JP4261973B2 (en) Method for producing conductive electroless plating powder
KR100547605B1 (en) Conductive electroless plating powder and manufacturing method thereof
JP3417699B2 (en) Conductive electroless plating powder
KR100547606B1 (en) Conductive electroless plating powder and manufacturing method thereof
JP5707247B2 (en) Method for producing conductive particles
KR101599104B1 (en) Method for manufacturing metal particles with core-shell structure
CN1667157B (en) Chemically plated conductive powder and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Ref document number: 3905014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term