WO2023149294A1 - Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure - Google Patents

Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2023149294A1
WO2023149294A1 PCT/JP2023/002209 JP2023002209W WO2023149294A1 WO 2023149294 A1 WO2023149294 A1 WO 2023149294A1 JP 2023002209 W JP2023002209 W JP 2023002209W WO 2023149294 A1 WO2023149294 A1 WO 2023149294A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
conductive
particles
conductive particles
protrusions
Prior art date
Application number
PCT/JP2023/002209
Other languages
French (fr)
Japanese (ja)
Inventor
厚喜 久保
良 栗浦
みのり 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023149294A1 publication Critical patent/WO2023149294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to conductive particles and methods for producing conductive particles.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used to electrically connect electrodes of various members to be connected, such as flexible printed circuit boards (FPC), glass substrates, glass epoxy substrates, and semiconductor chips, to obtain connection structures. ing.
  • FPC flexible printed circuit boards
  • glass substrates glass epoxy substrates
  • semiconductor chips semiconductor chips
  • the contact area between the conductive particles and the electrode is increased by deforming the particles themselves in order to increase the reliability of conduction.
  • it is difficult to sufficiently form a recess (indentation) on the surface of the electrode the contact area between the conductive particles and the electrode becomes small, and the connection resistance of the resulting connection structure increases.
  • an oxide film is often formed on the surface of the electrodes connected by the conductive particles. If an oxide film is formed, the electrode and the conductive particles (conductive layer) cannot sufficiently contact each other, and the oxide film causes an increase in the connection resistance between the electrodes.
  • conductive particles comprising resin particles, composite particles having non-conductive inorganic particles arranged on the surface of the resin particles, and a metal layer covering the composite particles (conductive particles) are disclosed.
  • the metal layer has protrusions on the outer surface of the metal layer with the non-conductive inorganic particles serving as nuclei.
  • conductive electroless plated powder in which relatively high projections are formed on the surface of spherical core particles (base particles) by self-decomposition of a plating solution is disclosed.
  • fine projections of 0.05 ⁇ m to 4 ⁇ m are formed on the surface of the nickel or nickel alloy film (conductive layer).
  • An object of the present invention is to provide conductive particles that can make the conductive layer less likely to crack and that can improve the connection reliability of the resulting connection structure even when mounted at a low pressure, and the conductive particles. It is to provide a manufacturing method. Another object of the present invention is to provide a conductive material and a connection structure using the conductive particles.
  • a substrate particle and a conductive layer having a crystal structure including grain boundaries and having projections on the outer surface thereof are provided, and the conductive layer is formed on the outer surface of the substrate particle.
  • Conductive particles are provided disposed thereon, wherein the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer.
  • the conductive particles do not have a core substance inside the protrusions.
  • the grain boundaries existing in the portion of the conductive layer where the protrusions are located are one end located on the outer surface side of the conductive layer and one end located on the inner surface side of the conductive layer. and the other end of the grain boundary is located at the intersection of the straight line connecting the one end of the grain boundary and the center of the conductive grain and the inner surface of the conductive layer.
  • the grain boundaries are oriented at an angle to the straight line so as to be located inside the protrusions.
  • the outer surface area of the portion having the protrusions is 3% or more of 100% of the outer surface area of the conductive layer.
  • the conductive particles have a compressive elastic modulus of 1000 N/mm 2 or more and 30000 N/mm 2 or less when compressed by 20% at 25°C.
  • the conductive layer contains tin, nickel, copper, palladium, or gold.
  • the conductive particles comprise an insulating material arranged on the outer surface of the conductive layer.
  • a method for producing the conductive particles described above comprising the step of forming the conductive layer on the outer surface of the base particle, comprising: A method for producing conductive particles is provided, in which the protrusions are formed without arranging a core substance.
  • the protrusions are formed without causing decomposition of the plating solution.
  • a broad aspect of the present invention provides a conductive material containing the above-described conductive particles and a binder resin.
  • a first member to be connected having a first electrode on its surface
  • a second member to be connected having a second electrode on its surface
  • the first member to be connected a connecting portion connecting the second member to be connected, wherein the material of the connecting portion contains the above-described conductive particles, and the first electrode and the second electrode are connected to the conductive
  • a connection structure is provided that is electrically connected by the physical particles.
  • a conductive particle according to the present invention comprises a base particle and a conductive layer having a crystal structure including grain boundaries and having projections on the outer surface.
  • the conductive layer is arranged on the outer surface of the substrate particle.
  • the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer. Since the conductive particles according to the present invention have the above configuration, the conductive layer can be made difficult to crack, and the connection reliability of the connection structure obtained even when mounted at low pressure can increase
  • FIG. 1 is a cross-sectional view showing conductive particles according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram for explaining the tilt angle ⁇ of the grain boundary in the conductive layer.
  • FIG. 5 is a cross-sectional view schematically showing a connected structure using conductive particles according to the first embodiment of the present invention.
  • 6 is a transmission electron micrograph of a cross section of the conductive particles obtained in Example 1.
  • FIG. 7 is a transmission electron micrograph of a cross section of the conductive particles obtained in Comparative Example 2.
  • FIG. 8 is a transmission electron micrograph of a cross section of the conductive particles obtained in Comparative Example 3.
  • FIG. 1 is a cross-sectional view showing conductive particles according to a first embodiment of the present invention.
  • a conductive particle according to the present invention comprises a base particle and a conductive layer having a crystal structure including grain boundaries and having projections on the outer surface.
  • the conductive layer is arranged on the outer surface of the substrate particle.
  • the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer.
  • the present inventors have found that by controlling the orientation of the grain boundaries in the conductive layer, it is possible to make the conductive layer less likely to crack, and the connection structure can be obtained even when mounted at a low pressure. It was found that the connection reliability of the body can be enhanced.
  • the conductive layer has a crystal structure including grain boundaries, and the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer, so cracks in the conductive layer are prevented. It can be made difficult to occur, and the connection reliability of the resulting connection structure can be improved even when mounted at a low pressure.
  • the conductive layer has projections on the outer surface, so even when mounted at a low pressure, the projections can favorably form recesses (indentations) on the surface of the electrode, Oxide films can be effectively eliminated. As a result, the connection reliability of the resulting connection structure can be further enhanced.
  • the present inventors have found that the combination of the grain boundaries of the conductive layer having a specific orientation and the protrusions formed on the outer surface of the conductive layer can make cracks in the conductive layer significantly less likely to occur, and can be mounted at low pressure. It has been found that the connection reliability of the resulting connection structure can be remarkably improved even when the Furthermore, since the conductive particles according to the present invention have the above configuration, the gap controllability can be enhanced.
  • the present inventors have found that a combination of grain boundaries of a conductive layer having a specific orientation, protrusions formed on the outer surface of the conductive layer, and a configuration in which the conductive particles do not have a core substance inside the protrusions Furthermore, the inventors have found that cracking of the conductive layer can be made more difficult to occur, and the connection reliability of the resulting connection structure can be significantly improved even when mounted at a low pressure.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • a conductive particle 1 shown in FIG. 1 includes a base particle 2 and a conductive layer 3 having a crystal structure including grain boundaries and having projections 3a on the outer surface.
  • the conductive layer 3 has a crystal structure including grain boundaries.
  • the conductive layer 3 has projections 3a on the outer surface.
  • the conductive particles 1 have protrusions on their outer surfaces.
  • the conductive layer 3 is arranged on the outer surface of the substrate particle 2 and is in contact with the substrate particle 2 .
  • the conductive layer 3 covers the outer surface of the substrate particles 2 .
  • the conductive particles 1 are coated particles in which the outer surface of the substrate particles 2 is coated with the conductive layer 3 .
  • a conductive particle 1 has a conductive layer 3 on its surface.
  • the conductive particles 1 do not have a core substance inside the protrusions 3a. In the conductive particles 1, no core substance is arranged inside the protrusions 3a. In the conductive particles 1 , no core substance is arranged on the outer surface of the substrate particles 2 .
  • the conductive layer may cover the entire outer surface of the base particle, or the conductive layer may cover a part of the outer surface of the base particle.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • a conductive particle 11 shown in FIG. 2 includes a base particle 2 and a conductive layer 13 having projections 13a on the outer surface.
  • conductive layer 13 is arranged on the outer surface of substrate particles 2 .
  • the conductive layer 13 is a two-layered conductive layer.
  • the conductive layer 13 comprises a first conductive layer 13A and a second conductive layer 13B.
  • the first conductive layer 13A is arranged outside the substrate particles 2
  • the second conductive layer 13B is arranged outside the first conductive layer 13A.
  • the first conductive layer 13A is laminated on the outer surface of the substrate particle 2
  • the second conductive layer 13B is laminated on the outer surface of the first conductive layer 13A.
  • the conductive layer 13 includes the first conductive layer 13A having a crystal structure including grain boundaries and protrusions 13Aa on the outer surface, and the first conductive layer 13A having no crystal structure including grain boundaries, and , and a second conductive layer 13B having protrusions 13Ba on its outer surface.
  • first conductive layer 13A has a crystal structure including grain boundaries.
  • second conductive layer 13B does not have a crystal structure including grain boundaries.
  • the conductive layer 13 has projections 13a on the outer surface.
  • the first conductive layer 13A has protrusions 13Aa on its outer surface.
  • the second conductive layer 13B has protrusions 13Ba on its outer surface.
  • the second conductive layer may have a crystal structure including grain boundaries.
  • the first conductive layer does not have a crystal structure including grain boundaries.
  • the outer surface may not have protrusions.
  • the conductive particles 11 do not have a core substance inside the projections 13a.
  • the conductive particles 11 do not have a core material inside the projections 13Aa.
  • the conductive particles 11 do not have a core substance inside the projections 13Ba.
  • no core substance is arranged inside the projections 13a.
  • no core substance is arranged inside the projections 13Aa.
  • no core substance is arranged inside the projections 13Ba.
  • no core substance is arranged on the outer surface of the substrate particles 2 .
  • FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
  • a conductive particle 21 shown in FIG. 3 includes a base particle 2 and a conductive layer 23 having a crystal structure including grain boundaries and having projections 23a on the outer surface.
  • the conductive layer 23 has a crystal structure including grain boundaries.
  • the conductive layer 23 has projections 23a on the outer surface.
  • the conductive particles 21 have protrusions on their outer surfaces.
  • the conductive layer 23 is arranged on the outer surface of the substrate particles 2 and is in contact with the substrate particles 2 .
  • the conductive particles 21 comprise an insulating substance 24 arranged on the outer surface of the conductive layer 23 . At least part of the outer surface of the conductive layer 23 is covered with an insulating material 24 .
  • the insulating substance 24 is made of an insulating material and is an insulating particle.
  • the conductive particles may have an insulating material disposed on the outer surface of the conductive layer.
  • the conductive particles 21 do not have a core material inside the protrusions 23a. In the conductive particles 21, no core substance is arranged inside the protrusions 23a. In the conductive particles 21 , no core substance is arranged on the outer surface of the substrate particles 2 .
  • (meth)acrylate indicates acrylate and methacrylate.
  • (Meth)acryl indicates acryl and methacryl.
  • (Meth)acryloyl indicates acryloyl and methacryloyl.
  • the particle diameter of the conductive particles is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the particle diameter of the conductive particles is the lower limit or more and the upper limit or less, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, In addition, it becomes difficult to form agglomerated conductive particles when forming the conductive layer. Also, the distance between the electrodes connected via the conductive particle main body does not become too large, and the conductive layer is less likely to peel off from the surface of the base particle.
  • the particle size of the conductive particles is preferably the average particle size, and the average particle size indicates the number average particle size.
  • the particle size of the conductive particles can be obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average particle size of each conductive particle, or by laser diffraction particle size distribution. Obtained by performing measurements.
  • the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ /Dn) ⁇ 100 ⁇ : standard deviation of the particle size of the conductive particles Dn: average value of the particle size of the conductive particles
  • the shape of the conductive particles is not particularly limited.
  • the shape of the conductive particles may be spherical, may be other than spherical, or may be flat.
  • the compression elastic modulus (20% K value) when the conductive particles are compressed by 20% at 25° C. is preferably 1000 N/mm 2 or more, more preferably 3000 N/mm 2 or more, and still more preferably 5000 N/mm 2 or more. , preferably 30000 N/mm 2 or less, more preferably 20000 N/mm 2 or less.
  • the 20% K value of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, damage to the member to be connected can be suppressed, and even when mounted at low pressure, the connection resistance is further effectively reduced. can do.
  • the conductive layer is formed on the surface, aggregation can be effectively suppressed, and cracking of the conductive layer can be made difficult to occur.
  • the compression elastic modulus (20% K value) of the conductive particles can be measured as follows.
  • a single conductive particle is compressed at 25°C, a compression rate of 0.3 mN/sec, and a maximum test load of 20 mN with a cylindrical (50 ⁇ m diameter, diamond) smooth indenter end face. do.
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression elastic modulus (20% K value) of the conductive particles can be obtained by the following formula.
  • the microcompression tester for example, "Fischer Scope H-100" manufactured by Fisher Co., Ltd. is used.
  • the compression modulus (20% K value) of the conductive particles is calculated by arithmetically averaging the compression modulus (20% K value) of 50 arbitrarily selected conductive particles. preferable.
  • the compressive modulus described above universally and quantitatively represents the hardness of the conductive particles.
  • the hardness of the conductive particles can be expressed quantitatively and uniquely.
  • the substrate particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles other than metal particles, and more preferably resin particles, inorganic particles other than metal particles, or organic-inorganic hybrid particles.
  • the substrate particles may be core-shell particles comprising a core and a shell arranged on the surface of the core.
  • the core may be an organic core and the shell may be an inorganic shell.
  • Materials for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, and phenol formaldehyde.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene
  • acrylic resins such as polymethyl methacrylate and polymethyl acrylate
  • polycarbonate polyamide
  • phenol formaldehyde phenol formaldehyde
  • Resin melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenolic resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples include polyamideimide, polyetheretherketone, polyethersulfone, and divinylbenzene polymer.
  • the divinylbenzene polymer may be a divinylbenzene copolymer.
  • the divinylbenzene copolymer examples include a divinylbenzene-styrene copolymer and a divinylbenzene-(meth)acrylate copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. is preferred.
  • the polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinking monomer. and crosslinkable monomers.
  • non-crosslinkable monomers examples include styrene and styrene-based monomers such as ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid, and maleic anhydride; methyl ( meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl ( Alkyl (meth)acrylate compounds such as meth)acrylate and isobornyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate, etc.
  • carboxyl group-containing monomers
  • crosslinkable monomer examples include tetramethylolmethane tetra(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa (meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol poly(meth)acrylate, pentaerythritol tetra(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol Polyfunctional (meth)acrylate compounds such as di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol di(meth)acrylate, and 1,4-butanedio
  • the crosslinkable monomers include (poly)ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, penta Erythritol tetra(meth)acrylate or dipentaerythritol poly(meth)acrylate is preferred.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using uncrosslinked seed particles.
  • the substrate particles are inorganic particles excluding metals or organic-inorganic hybrid particles
  • examples of inorganic substances for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is not a metal.
  • the particles formed of silica can be obtained, for example, by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, followed by firing as necessary. particles that can be used.
  • the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. It is preferred that the core is an organic core. Preferably, the shell is an inorganic shell. From the viewpoint of effectively reducing the connection resistance between electrodes, the substrate particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • Examples of the material for the organic core include the materials for the resin particles described above.
  • the material for the inorganic shell examples include the inorganic substances listed above as the material for the substrate particles.
  • the inorganic shell material is preferably silica.
  • the inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material on the surface of the core by a sol-gel method, and then firing the shell-like material.
  • the metal alkoxide is preferably silane alkoxide.
  • the inorganic shell is preferably made of silane alkoxide.
  • the substrate particles are metal particles
  • examples of metals that are materials of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the particle diameter of the substrate particles is preferably 0.5 ⁇ m or more, more preferably 1.5 ⁇ m or more, and preferably 49.95 ⁇ m or less, more preferably 39.95 ⁇ m or less.
  • the particle size of the substrate particles is equal to or more than the lower limit and equal to or less than the upper limit, small conductive particles can be obtained even when the distance between the electrodes is small and the thickness of the conductive layer is increased.
  • the conductive layer is formed on the outer surface of the substrate particles, it becomes difficult to aggregate, and the formation of aggregated conductive particles becomes difficult.
  • the shape of the substrate particles is not particularly limited.
  • the shape of the substrate particles may be spherical, may be other than spherical, or may be flat.
  • the particle size of the substrate particles is preferably the average particle size, and the average particle size is preferably the number average particle size.
  • the particle size of the substrate particles is determined using a particle size distribution analyzer or the like.
  • the particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating the average value. When measuring the particle size of the substrate particles of the conductive particles, it can be measured, for example, as follows.
  • the conductive particles have a crystal structure including grain boundaries and have a conductive layer (hereinafter sometimes referred to as “conductive layer X”) having projections on the outer surface.
  • the conductive layer X is arranged on the outer surface of the substrate particles.
  • the term "grain boundary" indicates a boundary between crystal grains.
  • the grain boundaries and crystal structure of the conductive layer X can be observed by drawing a cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the number of grain boundaries per 1 ⁇ m 2 of the cross-sectional area in the thickness direction of the conductive layer X is preferably 2 or more, more preferably 8 or more, and even more preferably. is 20 or more, preferably 400 or less, more preferably 300 or less, still more preferably 200 or less.
  • the grain boundaries in the conductive layer X are oriented in the thickness direction of the conductive layer X.
  • the grain boundary preferably includes both a grain boundary existing in a portion of the conductive layer X without the protrusion and a grain boundary existing in a portion of the conductive layer X having the protrusion.
  • the grain boundary existing in the portion of the conductive layer X where there is no protrusion has one end located on the outer surface side of the conductive layer X and the other end located on the inner surface side of the conductive layer X.
  • the grain boundary existing in the portion of the conductive layer X without the protrusion is a line tangent to the outer surface of the conductive layer X at the one end of the grain boundary and the above It is preferred that the grain boundaries are orthogonal at the one end.
  • the grain boundary existing in the portion of the conductive layer X where there is no projection is tangent to the inner surface of the conductive layer X at the other end of the grain boundary, It is preferable that the grain boundaries are perpendicular to each other at the other end of the grain boundary.
  • the grain boundary existing in the portion of the conductive layer X without the protrusion is a line tangent to the outer surface of the conductive layer X at the one end of the grain boundary and the above It is preferable that the one end of the grain boundary is orthogonal to the tangent to the inner surface of the conductive layer X at the other end of the grain boundary, and the other end of the grain boundary is orthogonal to the tangent to the inner surface of the conductive layer X.
  • the grain boundaries existing in the portion of the conductive layer X where the protrusions are absent are orthogonal to the outer surface and the inner surface of the conductive layer X.
  • the grain boundary existing in the portion of the conductive layer X without the protrusion is the other end of the grain boundary and the center of the conductive particle (base material particle). It is preferable that it exists on an extension line of a straight line connecting .
  • the grain boundary present in the portion of the conductive layer X where there is no projection is part of a straight line connecting the one end of the grain boundary and the center of the conductive particle (substrate particle). preferable.
  • the grain boundaries perpendicular to the outer surface and the inner surface of the conductive layer X is preferably 30% or more, more preferably 50% or more, still more preferably 80% or more, and most preferably 100% (total amount).
  • the upper limit of the number of grain boundaries perpendicular to the outer surface and the inner surface of the conductive layer X, out of 100% of the number of grain boundaries existing in the portion of the conductive layer X having no protrusion, is not particularly limited.
  • the number of grain boundaries perpendicular to the outer surface and the inner surface of the conductive layer X may be 90% or less, or 80 % or less, or 50% or less.
  • the grain boundary existing in the portion of the conductive layer X where the protrusion is present has one end located on the outer surface side of the conductive layer X and the other end located on the inner surface side of the conductive layer X.
  • the grain boundary existing in the portion of the conductive layer X where the projection is located is perpendicular to the tangent line of the outer surface of the conductive layer X at the one end of the grain boundary. and not perpendicular to the tangent line of the inner surface of the conductive layer X at the other end of the grain boundary.
  • the grain boundary existing in the portion of the conductive layer X where the projection is located is aligned with the straight line connecting the one end of the grain boundary and the center of the conductive particle. It is preferably oriented obliquely. From the viewpoint of making cracking of the conductive layer more difficult to occur, the other end of the grain boundary is a straight line connecting the one end of the grain boundary and the center of the conductive particle, and the inner surface of the conductive layer X. It is preferable that the grain boundary is oriented with an inclination with respect to the straight line so as to be located inside the protrusion from the intersection of the .
  • the boundary between the portion of the conductive layer X with the protrusion and the portion without the protrusion on the outer surface of the conductive layer X is the base of the protrusion.
  • the base of the protrusion is the starting point of the bulge of the conductive layer X.
  • the portion of the conductive layer X without the protrusion is the portion of the conductive layer X located outside the protrusion from the straight line connecting the base of the protrusion and the center of the conductive particle.
  • the portion of the conductive layer X having the projections is the portion of the conductive layer X located inside the projections relative to the straight line connecting the base of the projections and the center of the conductive particles.
  • the grain boundary existing in the portion of the conductive layer X with the protrusion includes a grain boundary having the boundary between the portion of the conductive layer X with the protrusion and the portion without the protrusion as the one end of the grain boundary. It is preferable that the one end of the grain boundary existing in the portion of the conductive layer X where the protrusion is present is located at the base of the protrusion. That is, the grain boundary existing in the portion of the conductive layer X where the protrusion is present includes a grain boundary having the base of the protrusion as one end of the grain boundary.
  • the grain boundary in the conductive layer X is the protrusion of the conductive layer X as a grain boundary existing in a portion of the conductive layer X having the protrusion. It is preferable to include a grain boundary having a boundary between the portion and the portion without the projection (the base of the projection) as the one end of the grain boundary. From the viewpoint of making cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X having the protrusion is the boundary between the portion of the conductive layer X having the protrusion and the portion having no protrusion. It is preferable that the grain boundary is such that (the base of the protrusion) is the one end of the grain boundary.
  • FIG. 4 is a schematic diagram for explaining the inclination angle ⁇ of grain boundaries in the conductive layer X.
  • FIG. FIG. 4 shows part of the conductive particles 1 shown in FIG.
  • grain boundaries K and grain boundaries L in the conductive layer 3 (conductive layer X) are oriented in the thickness direction of the conductive layer 3 .
  • the grain boundary K is a grain boundary existing in a portion of the conductive layer 3 where the protrusion 3a is not present.
  • Grain boundaries K are perpendicular to the outer and inner surfaces of the conductive layer 3 .
  • the grain boundary L is a grain boundary that exists in a portion of the conductive layer 3 where the protrusions 3a are present.
  • the grain boundary L is a grain boundary whose one end is a boundary between a portion of the conductive layer 3 having the protrusion 3a and a portion having no protrusion 3a (the base of the protrusion).
  • the grain boundaries L are oriented so as to be inclined with respect to a straight line (illustrated by a dotted line) connecting one end of the grain boundaries L and the center of the conductive grain.
  • the other end of the grain boundary L is located inside the protrusion 3a from the intersection of the straight line (illustrated by the dotted line) connecting one end of the grain boundary L and the center of the conductive particle and the inner surface of the conductive layer 3.
  • the grain boundary L is oriented obliquely with respect to the straight line.
  • the grain boundary is shown with a straight line for convenience of illustration.
  • grain boundary L When there is a grain boundary (grain boundary L) whose one end of the grain boundary is a boundary between a portion of the conductive layer with the protrusion and a portion without the protrusion (the base of the protrusion), the grain boundary and The angle formed by the one end of the grain boundary and the straight line connecting the center of the conductive particle (substrate particle) (shown by a dotted line in FIG. 4) is the inclination angle ⁇ of the grain boundary in the conductive layer X. do.
  • the inclination angle ⁇ of the grain boundary (grain boundary L) with the base of the protrusion as the one end of the grain boundary is preferably 0° or more, more preferably 3. ° or more, more preferably 5° or more, preferably 90° or less, more preferably 60° or less, still more preferably 40° or less.
  • the inclination angle ⁇ of the grain boundary (grain boundary L) with the base of the protrusion as the one end of the grain boundary is measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM). can be done.
  • TEM transmission electron microscope
  • the conductive layer X preferably contains a metal.
  • the metal forming the conductive layer X is not particularly limited.
  • the above metals include tin, gold, silver, copper, tin, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, ruthenium, germanium, cadmium, and alloys thereof. is mentioned.
  • tin-doped indium oxide (ITO) may be used as the metal. Only one of the above metals may be used, or two or more thereof may be used in combination.
  • the conductive layer X preferably contains tin, nickel, copper, palladium, or gold, more preferably gold or nickel, and even more preferably nickel.
  • the area covered by the conductive layer X (coverage by the conductive layer X) is preferably 80% or more, more preferably 90% or more.
  • the upper limit of the coverage by the conductive layer X is not particularly limited.
  • the coverage of the conductive layer X may be 100%. When the coverage of the conductive layer X is equal to or higher than the lower limit, reliability of conduction can be effectively improved when the electrodes are electrically connected.
  • the thickness of the conductive layer X is preferably 50 nm or more, more preferably 100 nm or more, preferably 300 nm or less, more preferably 250 nm or less, still more preferably 200 nm or less.
  • the thickness of the conductive layer X is equal to or more than the lower limit and equal to or less than the upper limit, the conduction reliability is improved, and the conductive particles are not too hard, and the conductive particles are sufficiently attached when connecting the electrodes. It can be transformed.
  • the thickness of the conductive layer X can be measured, for example, by observing the cross section of the conductive particles using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive layer may be a single conductive layer or multiple conductive layers.
  • the conductive layer may include a plurality of conductive layers X, or may include the conductive layer X and a conductive layer other than the conductive layer X.
  • the conductive particles may have a conductive layer other than the conductive layer X described above.
  • the conductive particles (conductive layer) may have a conductive layer that does not have a crystal structure containing grain boundaries, may have a conductive layer that does not have protrusions on the outer surface, and contains grain boundaries. A conductive layer having no crystal structure and no projections on the outer surface may be provided.
  • the conductive layer other than the conductive layer X may be arranged on the inner surface side of the conductive layer X. It may be arranged on the outer surface side of the layer X.
  • the coating rate of the conductive layer can be increased, and the connection reliability of the resulting connection structure can be further improved. can be significantly increased.
  • the connection reliability of the resulting connection structure can be further enhanced.
  • the conductive particles (conductive layer) include a conductive layer other than the conductive layer X
  • the conductive layer other than the conductive layer X It is preferably arranged on the outer surface of the conductive layer X.
  • the conductive layers other than the conductive layer X preferably contain palladium, nickel, gold, silver, copper, tin or ruthenium. More preferably, it contains gold, more preferably gold, and particularly preferably gold. Further, when the metal constituting the outer surface of the conductive layers other than the conductive layer X is gold, the corrosion resistance is further enhanced.
  • the thickness of the conductive layers other than the conductive layer X is preferably 1.0 nm or more, more preferably 5.0 nm or more, and preferably 100 nm or less, more preferably 80 nm or less, still more preferably 50 nm or less.
  • the thickness of the conductive layer other than the conductive layer X is the lower limit or more and the upper limit or less, the coating rate of the conductive layer can be increased, and when the electrodes are electrically connected, the conduction reliability is improved. can be significantly increased.
  • the conductive layer X has protrusions on its outer surface. It is preferable that the protrusion is plural. In general, an oxide film is often formed on the surface of the electrode that comes into contact with the conductive particles. Since the conductive layer X has projections on the outer surface, the oxide film can be effectively removed by the projections at the time of conductive connection. In addition, the protrusions can favorably form concave portions (indentations) on the surface of the electrode. Therefore, the electrode and the conductive layer are reliably brought into contact with each other, the contact area between the conductive particles and the electrode can be sufficiently increased, and the connection resistance can be effectively reduced.
  • the conductive particles are provided with an insulating substance on the surface, or when the conductive particles are dispersed in a binder and used as a conductive material, the protrusions of the conductive particles cause the gap between the conductive particles and the electrode. Insulating materials or binders can be effectively eliminated. Therefore, the contact area between the conductive particles and the electrode can be sufficiently increased, and the connection resistance can be effectively reduced.
  • the conductive particles do not have a core substance inside the protrusions. It is preferable that the conductive particles do not have a core substance outside the substrate particles. It is preferable that the conductive particles do not have a core substance on the outer surface of the substrate particles.
  • the average height of the plurality of projections is preferably 10 nm or more, more preferably 30 nm or more, preferably 900 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less.
  • the average height of the protrusions can be calculated by the following method. Fifty conductive particles of the present invention are observed with an electron microscope or an optical microscope, and the heights of all protrusions on the peripheral edge of the observed conductive particles are measured. It is obtained by measuring the height of the protrusions with a surface on which no protrusions are formed as a reference surface, and calculating the average value.
  • the outer surface area of the portion where the protrusions are present (protrusion formation rate) in 100% of the surface area of the conductive layer X is preferably 3% or more, more preferably 10% or more, It is preferably 70% or less, more preferably 40% or less.
  • the external surface area (protrusion formation rate) of the portion having the projections in 100% of the external surface area of the conductive layer X is measured by the following method, regardless of whether the conductive particles are spherical or non-spherical. be able to.
  • the area of 100% of a circle with a diameter of 70% of the particle diameter of the conductive particles, the portion with protrusions inside the circle Measure the ratio (%) of the area and calculate the average value.
  • the conductive particles may comprise an insulating material disposed on the outer surface of the conductive layer.
  • the conductive particles are used to connect the electrodes, short-circuiting between adjacent electrodes can be prevented.
  • an insulating material exists between the plurality of electrodes, so short-circuiting between laterally adjacent electrodes can be prevented instead of between the electrodes above and below.
  • the electrodes are connected, the insulating material between the conductive layer of the conductive particles and the electrodes can be easily eliminated by pressing the conductive particles with two electrodes.
  • the insulating material between the conductive layer of the conductive particles and the electrode can be removed more easily.
  • the insulating substance is preferably an insulating resin layer or insulating particles, more preferably insulating particles.
  • the insulating particles are preferably insulating resin particles.
  • the method for producing conductive particles according to the present invention is a method for producing the conductive particles described above.
  • the method for producing conductive particles according to the present invention comprises the step of forming the conductive layer on the outer surface of the substrate particles.
  • the protrusions are formed without arranging the core substance inside the protrusions.
  • connection structure Connection reliability can be improved.
  • a core substance is attached to the outer surface of the base particle, and the conductive particles having the core substance inside the protrusions. may be produced.
  • the grain boundaries tend to be oriented along the boundary between the core substance and the conductive layer, so cracks in the conductive layer tend to occur when the electrodes are electrically connected. As a result, the connection reliability of the resulting connection structure may be low.
  • the strong chemical reaction when the plating solution decomposes creates voids inside the protrusions, which makes the protrusions prone to fragility. I have a problem. As a result, the connection reliability of the resulting connection structure may be low. Furthermore, when the protrusions are formed by decomposing the plating solution, the protrusions are likely to be laminated or connected, so it may be difficult to control the gap between the electrodes of the resulting connection structure. Therefore, in the method for producing conductive particles according to the present invention, it is preferable to form the protrusions without causing decomposition of the plating solution.
  • the method for forming the conductive layer X on the outer surface of the substrate particles includes a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, physical vapor deposition or physical Examples include a method by adsorption, a method of coating the surface of the substrate particles with a metal powder or a paste containing a metal powder and a binder, and the like.
  • the method of forming the conductive layer X is preferably electroless plating, electroplating or physical collision. Methods such as vacuum deposition, ion plating, and ion sputtering can be used as the method by physical vapor deposition.
  • a sheeter composer manufactured by Tokuju Kosakusho
  • Examples of methods for forming projections on the outer surface of the conductive layer X include a method using electroless plating, a method using electroplating, and a method using physical vapor deposition or physical adsorption. From the viewpoint of exhibiting the effects of the present invention more effectively, it is preferable to form protrusions on the outer surface of the conductive layer X by a method using electroless plating.
  • Examples of methods for forming the conductive layer X such that the grain boundaries in the conductive layer X are oriented in the thickness direction of the conductive layer X include electroless plating and electroplating.
  • a method for adjusting the pH of an electroless plating solution A method of adding an arbitrary chemical solution to the electroless plating solution.
  • the electroless plating solution used for forming the conductive layer X and the protrusions preferably contains a metal salt.
  • the metal salt include nickel sulfate, nickel chloride, nickel hydroxide, and nickel carbonate.
  • the metal ion concentration of the electroless plating solution is preferably 0.1 mol/L or more, more preferably 0.3 mol/L or more, and still more preferably 0.5 mol/L. L or more, preferably 10.0 mol/L or less, more preferably 5.0 mol/L or less, still more preferably 2.0 mol/L or less.
  • the pH of the electroless plating solution is preferably 8.0 or higher, more preferably 9.0 or higher, and preferably 12.0 or lower, more preferably 11.0 or lower.
  • the conductive layer X projection
  • the productivity of the conductive particles can be enhanced.
  • the electroless plating solution may contain a complexing agent, a reducing agent, a dispersing agent, or the like.
  • the complexing agent is not particularly limited.
  • the complexing agent include ammonia, trimethylamine, succinic acid, sodium citrate, boric acid, glycine, and the like. From the viewpoint of exhibiting the effects of the present invention more effectively, the complexing agent preferably contains sodium citrate, boric acid, or glycine.
  • the reducing agent is not particularly limited.
  • the reducing agent include sodium borohydride, hydrazine, sodium hypophosphite, and dimethylamine borane.
  • the reducing agent preferably contains sodium hypophosphite or dimethylamine borane.
  • the dispersant is not particularly limited. From the viewpoint of exhibiting the effects of the present invention more effectively, the dispersant is preferably a nonionic dispersant, more preferably polyethylene glycol.
  • the weight average molecular weight of the dispersant is preferably 200 or more, more preferably 1,000 or more, and preferably 200,000 or less, more preferably 10,000 or less.
  • the concentration of the dispersant in the electroless plating solution is preferably 0.01 g/L or more, more preferably 0.1 g/L or more, still more preferably 1.0 g/L or more, and preferably 100 g/L. Below, more preferably 50 g/L or less, still more preferably 10 g/L or less.
  • the productivity of the conductive particles can be enhanced.
  • the conductive layer X protrusions
  • the conductive layer X is effective so that the grain boundaries present in the portions of the conductive layer X where the protrusions are present satisfy the above-described preferred embodiments.
  • the above weight average molecular weight indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the conductive material according to the present invention contains the conductive particles described above and a binder resin.
  • the conductive particles are preferably used by being dispersed in a binder resin, and are preferably used to obtain a conductive material by being dispersed in the binder resin.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a circuit connecting material.
  • the binder resin is not particularly limited.
  • examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. Only one type of the binder resin may be used, or two or more types may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin.
  • examples of the thermoplastic resins include polyolefin resins, ethylene-vinyl acetate copolymers and polyamide resins.
  • examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymers examples include styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, hydrogenated products of styrene-butadiene-styrene block copolymers, and styrene-isoprene. - hydrogenated products of styrene block copolymers;
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a coloring agent, an antioxidant, a heat stabilizer, and a light stabilizer. It may contain various additives such as agents, UV absorbers, lubricants, antistatic agents and flame retardants.
  • the conductive material according to the present invention can be used as a conductive paste, a conductive film, and the like.
  • the conductive material according to the present invention is a conductive film
  • a film containing no conductive particles may be laminated on a conductive film containing conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably 99% by weight. .99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is the lower limit or more and the upper limit or less, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target members connected by the conductive material can be further improved. can.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, and more preferably 20% by weight or less. , more preferably 10% by weight or less.
  • the content of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, reliability of conduction between electrodes can be enhanced.
  • connection structure includes a first connection object member having a first electrode on the surface, a second connection object member having a second electrode on the surface, the first connection object member, and a connecting portion connecting the second connection target member.
  • the material of the connecting portion contains the above-described conductive particles.
  • the first electrode and the second electrode are electrically connected by the conductive particles.
  • FIG. 5 is a cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • a connection structure 51 shown in FIG. 5 includes a first connection target member 52, a second connection target member 53, and a connection portion that connects the first connection target member 52 and the second connection target member 53. 54.
  • the connecting portion 54 is made of a conductive material containing the conductive particles 1 .
  • the connecting portion 54 is preferably formed by curing a conductive material containing a plurality of conductive particles 1 .
  • the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, conductive particles 11 or conductive particles 21 may be used.
  • the first connection object member 52 has a plurality of first electrodes 52a on its surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on its surface (lower surface).
  • a first electrode 52 a and a second electrode 53 a are electrically connected by one or more conductive particles 1 . Therefore, the first connection target member 52 and the second connection target member 53 are electrically connected by the conductive particles 1 .
  • the manufacturing method of the connection structure is not particularly limited.
  • the conductive material is arranged between a first member to be connected and a second member to be connected to obtain a laminate, and then the laminate is heated and pressurized. methods (methods of crimping (thermocompression bonding)) and the like.
  • the pressure of the compression bonding (thermocompression bonding) is preferably 5 MPa or more, more preferably 10 MPa or more, and preferably 90 MPa or less, more preferably 70 MPa or less.
  • the heating temperature for the compression bonding (thermocompression bonding) is preferably 80° C. or higher, more preferably 100° C. or higher, and preferably 140° C. or lower, more preferably 120° C.
  • connection reliability can be further enhanced.
  • connection reliability can be sufficiently improved even when the pressure of the compression bonding is equal to or less than the upper limit. It is preferable that the conductive particles are used by pressing at a pressure equal to or lower than the upper limit, and preferably at a pressure equal to or higher than the lower limit and equal to or lower than the upper limit.
  • the first member to be connected and the second member to be connected are not particularly limited.
  • the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, as well as resin films, printed circuit boards, flexible Examples include electronic components such as circuit boards such as printed boards, flexible flat cables, rigid flexible boards, glass epoxy boards and glass boards.
  • the first member to be connected and the second member to be connected are preferably electronic components. As connection target members become more flexible, there is a demand for mounting at a lower pressure when manufacturing a connection structure in order to prevent damage to the connection target members.
  • the conductive particles are preferably used for conductive connection of a flexible printed circuit board. At least one of the first member to be connected and the second member to be connected is preferably a flexible printed circuit board.
  • the electrodes provided on the connection target members include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode When the electrode is an aluminum electrode, it may be an electrode made of only aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • materials for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal elements include Sn, Al and Ga.
  • Substrate particles Base particles A (divinylbenzene copolymer resin particles, manufactured by Sekisui Chemical Co., Ltd. "Micropearl SP-20375, particle size 3.75 ⁇ m) Base particles B (divinylbenzene copolymer resin particles, manufactured by Sekisui Chemical Co., Ltd. "Micropearl EX-0015, particle size 1.5 ⁇ m) Base material particles C (divinylbenzene copolymer resin particles, manufactured by Sekisui Chemical Co., Ltd. "Micropearl SP-230, particle size 30 ⁇ m) Base particles D (organic-inorganic hybrid particles, particle diameter 3.75 ⁇ m)
  • Example 1 (1) Preparation of conductive particles After dispersing 10 parts by weight of base particles A in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution with an ultrasonic disperser, the solution is filtered to obtain base particles. I took out A. Next, the substrate particles A were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the substrate particles A. After sufficiently washing the surface-activated substrate particles A with water, they were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (1A).
  • This conductive particle is a conductive particle that does not have a core substance inside the protrusions.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolac type epoxy resin
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), followed by defoaming and stirring for 3 minutes.
  • a printed circuit board was prepared on which an Au electrode pattern (first electrode, electrode: Ni/Au thin film on Cu) with L/S of 200 ⁇ m/200 ⁇ m was formed on the upper surface. Also, a flexible printed circuit board was prepared on the bottom surface of which an Au electrode pattern (second electrode, electrode: Ni/Au thin film on Cu) with L/S of 200 ⁇ m/200 ⁇ m was formed.
  • the obtained anisotropic conductive paste was applied onto the printed circuit board so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the flexible printed circuit board was laminated on the anisotropic conductive paste layer so that the electrodes faced each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., a pressure heating head is placed on the upper surface of the flexible printed circuit board, and a pressure of 40 MPa is applied to the anisotropic conductive paste. The layer was cured at 100° C. to obtain a connected structure.
  • Example 2 The outer surface of the conductive particles of Example 1 was plated with gold to form a second conductive layer (thickness: 30 nm) on the outer surface of the conductive layer (first conductive layer). A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
  • Example 3 The outer surface of the conductive particles of Example 1 was plated with palladium to form a second conductive layer (thickness: 30 nm) on the outer surface of the conductive layer (first conductive layer). A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
  • Example 4 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that substrate particles A were changed to substrate particles B.
  • Example 5 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that substrate particles A were changed to substrate particles C.
  • Nickel plating solution (2A) containing nickel sulfate 150 g/L, sodium citrate 70 g/L, boric acid 30 g/L and dimethylamine borane 10 g/L, and polyethylene glycol (weight average molecular weight 1000) 0.1 g/L
  • Nickel plating solution pH 10
  • Example 7 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that substrate particles A were changed to substrate particles D.
  • Nickel plating solution (2A) containing nickel sulfate 150 g/L, sodium citrate 70 g/L, boric acid 30 g/L, sodium hypophosphite 30 g/L, and polyethylene glycol (weight average molecular weight 1000) 10 g/L
  • Nickel plating solution pH 10
  • a first conductive layer-forming nickel plating solution (1B) containing 150 g/L of nickel sulfate, 70 g/L of sodium citrate, 30 g/L of boric acid, and 30 g/L of sodium hypophosphite was prepared. Furthermore, nickel for forming a second conductive layer containing 150 g/L of nickel sulfate, 70 g/L of sodium citrate, 30 g/L of boric acid, 10 g/L of dimethylamine borane, and 1 g/L of polyethylene glycol (weight average molecular weight: 1000) A plating solution (pH 10) (2B) was prepared.
  • Example 2 While stirring the suspension (1A) of Example 1 at 60° C., the first conductive layer-forming nickel plating solution (1B) was gradually added dropwise to perform electroless nickel plating. After that, the mixture was stirred until the pH was stabilized at 7.0, and after confirming that hydrogen bubbling had stopped, a first crystal structure containing no grain boundaries and no projections on the outer surface was obtained. A conductive particle having a conductive layer (thickness of 50 nm) and a suspension (3B) after electroless nickel plating containing the conductive particle were obtained. While stirring the suspension (3B) at 60° C., the nickel plating solution (2B) for forming the second conductive layer was gradually added dropwise to carry out electroless nickel plating to the outer surface of the first conductive layer.
  • a conductive particle was obtained on which a second conductive layer (thickness: 150 nm) having a crystal structure including grain boundaries and projections on the outer surface was formed.
  • a conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
  • Example 10 (1) Preparation of insulating particles After putting the following monomer composition into a 1000 mL separable flask equipped with a 4-neck separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe, the following monomer composition Distilled water was added so that the solid content of 10% by weight, and the mixture was stirred at 200 rpm and polymerized at 60° C. for 24 hours under a nitrogen atmosphere.
  • the above monomer composition contains 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of p-styryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2′-azobis ⁇ 2-[N-(2 -Carboxyethyl)amidino]propane ⁇ 1 mmol.
  • the product was lyophilized to obtain insulating particles (particle diameter: 360 nm) having phosphorus atoms derived from p-styryldiethylphosphine on their surfaces.
  • Example 2 To the suspension (1A) of Example 1, 1 part by weight of a metal nickel slurry (average particle size: 150 nm) was added over 3 minutes to obtain a particle mixed suspension ( 1C) was obtained. A nickel plating solution (pH 7.0) containing 150 g/L of nickel sulfate, 70 g/L of sodium citrate, 30 g/L of boric acid and 10 g/L of dimethylamine borane was prepared.
  • This conductive particle is a conductive particle having a core substance inside the protrusions.
  • a protrusion-forming plating solution (2D) containing 80 g/L of sodium oxide was prepared.
  • the nickel plating solution for forming a conductive layer (1D) is gradually added dropwise to perform electroless nickel plating, and on the outer surface of the substrate particles A conductive layer (thickness: 150 nm) was formed on the substrate, and at the same time, self-decomposition of the nickel plating solution (1D) for forming a conductive layer was generated. Thereafter, the protrusion-forming plating solution (2D) was gradually dropped to form protrusions on the outer surface of the conductive layer. The mixture was stirred until the pH was stabilized, and after confirming that hydrogen bubbling had stopped, a suspension (3D) after electroless nickel plating was obtained.
  • the conductive layer X Presence or absence of the conductive layer X and the inclination angle ⁇ of the grain boundary with the base of the protrusion as one end of the grain boundary
  • the obtained conductive particles were observed with a transmission electron microscope (TEM) for the presence or absence of a conductive layer (conductive layer X) having a crystal structure containing grain boundaries and having protrusions on the outer surface.
  • the tilt angles ⁇ of three grain boundaries, one end of which is the base of the protrusion of the conductive layer X were measured by the method described above, and the average was calculated.
  • the first conductive layer was a conductive layer (conductive layer X) having a crystal structure including grain boundaries and having projections on the outer surface.
  • the second conductive layer was a conductive layer (conductive layer X) having a crystal structure including grain boundaries and having projections on the outer surface.
  • the 20% K value of the conductive particles was measured at 25°C by the method described above using a microcompression tester (Fischer Scope H-100).
  • FIG. 6 is a transmission electron micrograph of the cross section of the conductive particles of Example 1.
  • 7 is a transmission electron micrograph of a cross section of the conductive particles of Comparative Example 2.
  • FIG. 8 is a transmission electron micrograph of a cross section of the conductive particles of Comparative Example 3.
  • FIG. 6 in the conductive particles of Examples 1 to 10, the grain boundary in the conductive layer is oriented in the thickness direction of the conductive layer, and the other end of the grain boundary is electrically conductive with one end of the grain boundary.
  • a grain boundary existing in a portion of the conductive layer where the projection is located is inclined with respect to the straight line so as to be located inside the projection from the intersection of the straight line connecting the center of the grain and the inner surface of the conductive layer.

Abstract

Provided are conductive particles with which is it possible to make a crack in a conductive layer less likely to occur, and enhance the conduction reliability of an obtainable connection structure even when mounted at low pressure. Conductive particle according to the present invention each have a base material particle, and a conductive layer having a crystal structure including grain boundaries, and having protrusions on the outer surface thereof. The conductive layer is disposed on the outer surface of the base material particle, and the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer.

Description

導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体Conductive particles, method for producing conductive particles, conductive material and connection structure
 本発明は、導電性粒子及び導電性粒子の製造方法に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles and methods for producing conductive particles. The present invention also relates to a conductive material and a connection structure using the conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.
 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップ等の様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。近年、接続対象部材の柔軟化に伴い、接続対象部材の損傷を防ぐために、接続構造体の製造時に、より低圧で実装することが要求されている。 The anisotropic conductive material is used to electrically connect electrodes of various members to be connected, such as flexible printed circuit boards (FPC), glass substrates, glass epoxy substrates, and semiconductor chips, to obtain connection structures. ing. In recent years, as connection objects become more flexible, there is a demand for mounting at a lower pressure when manufacturing a connection structure in order to prevent damage to the connection objects.
 従来の導電性粒子では、導通信頼性を高めるために、粒子自体が変形することにより導電性粒子と電極との接触面積を大きくしている。しかしながら、特に低圧での実装においては、電極の表面に凹部(圧痕)が十分に形成され難く、導電性粒子と電極との接触面積が小さくなり、得られる接続構造体の接続抵抗が高くなることがある。 With conventional conductive particles, the contact area between the conductive particles and the electrode is increased by deforming the particles themselves in order to increase the reliability of conduction. However, particularly in mounting at low pressure, it is difficult to sufficiently form a recess (indentation) on the surface of the electrode, the contact area between the conductive particles and the electrode becomes small, and the connection resistance of the resulting connection structure increases. There is
 また、一般に、導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。酸化被膜が形成されていると、電極と導電性粒子(導電層)とが十分に接触することができず、酸化被膜は電極間の接続抵抗が高くなる原因となる。 Also, in general, an oxide film is often formed on the surface of the electrodes connected by the conductive particles. If an oxide film is formed, the electrode and the conductive particles (conductive layer) cannot sufficiently contact each other, and the oxide film causes an increase in the connection resistance between the electrodes.
 得られる接続構造体の接続抵抗を低くし、接続信頼性を高めるために、導電性粒子の外表面に、突起が形成されることがある。 In order to lower the connection resistance of the resulting connection structure and improve the connection reliability, projections are sometimes formed on the outer surface of the conductive particles.
 下記の特許文献1には、樹脂粒子、及び上記樹脂粒子の表面に配置された非導電性無機粒子を有する複合粒子と、前記複合粒子を覆う金属層とを備える導電粒子(導電性粒子)が開示されている。上記導電粒子では、上記金属層は、上記非導電性無機粒子を核として、該金属層の外表面に突起を有する。 In Patent Document 1 below, conductive particles (conductive particles) comprising resin particles, composite particles having non-conductive inorganic particles arranged on the surface of the resin particles, and a metal layer covering the composite particles (conductive particles) are disclosed. disclosed. In the conductive particles, the metal layer has protrusions on the outer surface of the metal layer with the non-conductive inorganic particles serving as nuclei.
 また、下記の特許文献2には、めっき液の自己分解により、球状芯材粒子(基材粒子)の表面上に比較的高い突起が形成された導電性無電解めっき粉体(導電性粒子)が開示されている。該導電性無電解めっき粉体では、ニッケル又はニッケル合金皮膜(導電層)の表面上に、0.05μm~4μmの微小突起が形成されている。 Further, in Patent Document 2 below, conductive electroless plated powder (conductive particles) in which relatively high projections are formed on the surface of spherical core particles (base particles) by self-decomposition of a plating solution is disclosed. In the conductive electroless plated powder, fine projections of 0.05 μm to 4 μm are formed on the surface of the nickel or nickel alloy film (conductive layer).
WO2017/138485A1WO2017/138485A1 特開2000-243132号公報JP-A-2000-243132
 しかしながら、特許文献1に記載のような芯物質(非導電性無機粒子)を用いて形成された突起を有する導電性粒子では、芯物質と導電層との境界に沿って粒界が配向しやすくなるため、電極間を電気的に接続する際に、導電層の割れが生じやすくなる。結果として、電極の表面に凹部(圧痕)が十分に形成されず、得られる接続構造体の接続信頼性が低くなることがある。 However, in conductive particles having protrusions formed using a core substance (non-conductive inorganic particles) as described in Patent Document 1, grain boundaries are easily oriented along the boundary between the core substance and the conductive layer. Therefore, when the electrodes are electrically connected, the conductive layer is likely to crack. As a result, recesses (indentations) are not sufficiently formed on the surface of the electrode, and the connection reliability of the resulting connection structure may be lowered.
 また、特許文献2に記載のようなめっき液を分解させることにより形成された突起を有する導電性粒子では、めっき液が分解する際の激しい化学反応により、突起の内部に空隙が生じるため、突起が脆くなりやすいという課題がある。結果として、得られる接続構造体の接続信頼性が低くなることがある。 In addition, in the conductive particles having protrusions formed by decomposing the plating solution as described in Patent Document 2, voids are generated inside the protrusions due to a violent chemical reaction when the plating solution is decomposed. However, there is a problem that it tends to be brittle. As a result, the connection reliability of the resulting connection structure may be low.
 本発明の目的は、導電層の割れを生じ難くすることができ、かつ、低圧で実装した場合にも、得られる接続構造体の接続信頼性を高めることができる導電性粒子及び導電性粒子の製造方法を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles that can make the conductive layer less likely to crack and that can improve the connection reliability of the resulting connection structure even when mounted at a low pressure, and the conductive particles. It is to provide a manufacturing method. Another object of the present invention is to provide a conductive material and a connection structure using the conductive particles.
 本発明の広い局面によれば、基材粒子と、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層とを備え、前記導電層が、前記基材粒子の外表面上に配置されており、前記導電層における前記粒界が、前記導電層の厚み方向に配向している、導電性粒子が提供される。 According to a broad aspect of the present invention, a substrate particle and a conductive layer having a crystal structure including grain boundaries and having projections on the outer surface thereof are provided, and the conductive layer is formed on the outer surface of the substrate particle. Conductive particles are provided disposed thereon, wherein the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子は、前記突起の内側に芯物質を備えない。 In a specific aspect of the conductive particles according to the present invention, the conductive particles do not have a core substance inside the protrusions.
 本発明に係る導電性粒子のある特定の局面では、前記導電層の前記突起がある部分に存在する粒界が、前記導電層の外表面側に位置する一端と、前記導電層の内表面側に位置する他端とを有し、前記粒界の前記他端が、前記粒界の前記一端と導電性粒子の中心とを結んだ直線と、前記導電層の内表面との交点よりも前記突起の内側に位置するように、前記粒界が、該直線に対して傾斜して配向している。 In a specific aspect of the conductive particles according to the present invention, the grain boundaries existing in the portion of the conductive layer where the protrusions are located are one end located on the outer surface side of the conductive layer and one end located on the inner surface side of the conductive layer. and the other end of the grain boundary is located at the intersection of the straight line connecting the one end of the grain boundary and the center of the conductive grain and the inner surface of the conductive layer. The grain boundaries are oriented at an angle to the straight line so as to be located inside the protrusions.
 本発明に係る導電性粒子のある特定の局面では、前記導電層の外表面積100%中、前記突起がある部分の外表面積が3%以上である。 In a specific aspect of the conductive particles according to the present invention, the outer surface area of the portion having the protrusions is 3% or more of 100% of the outer surface area of the conductive layer.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、25℃で20%圧縮したときの圧縮弾性率が、1000N/mm以上30000N/mm以下である。 In a specific aspect of the conductive particles according to the present invention, the conductive particles have a compressive elastic modulus of 1000 N/mm 2 or more and 30000 N/mm 2 or less when compressed by 20% at 25°C.
 本発明に係る導電性粒子のある特定の局面では、前記導電層が、錫、ニッケル、銅、パラジウム、又は金を含む。 In a specific aspect of the conductive particles according to the present invention, the conductive layer contains tin, nickel, copper, palladium, or gold.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電層の外表面上に配置された絶縁性物質を備える。 In a specific aspect of the conductive particles according to the present invention, the conductive particles comprise an insulating material arranged on the outer surface of the conductive layer.
 本発明の広い局面によれば、上述した導電性粒子を製造する方法であって、前記基材粒子の外表面上に前記導電層を形成する工程を備え、前記基材粒子の外表面上に芯物質を配置せずに前記突起を形成する、導電性粒子の製造方法が提供される。 According to a broad aspect of the present invention, there is provided a method for producing the conductive particles described above, comprising the step of forming the conductive layer on the outer surface of the base particle, comprising: A method for producing conductive particles is provided, in which the protrusions are formed without arranging a core substance.
 本発明に係る導電性粒子の製造方法のある特定の局面では、めっき液の分解を発生させずに前記突起を形成する。 In a specific aspect of the method for producing conductive particles according to the present invention, the protrusions are formed without causing decomposition of the plating solution.
 本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 A broad aspect of the present invention provides a conductive material containing the above-described conductive particles and a binder resin.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電性粒子を含み、前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first member to be connected having a first electrode on its surface, a second member to be connected having a second electrode on its surface, the first member to be connected, a connecting portion connecting the second member to be connected, wherein the material of the connecting portion contains the above-described conductive particles, and the first electrode and the second electrode are connected to the conductive A connection structure is provided that is electrically connected by the physical particles.
 本発明に係る導電性粒子は、基材粒子と、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層とを備える。本発明に係る導電性粒子では、上記導電層が、上記基材粒子の外表面上に配置されている。本発明に係る導電性粒子では、上記導電層における上記粒界が、上記導電層の厚み方向に配向している。本発明に係る導電性粒子では、上記の構成が備えられているので、導電層の割れを生じ難くすることができ、かつ、低圧で実装した場合にも、得られる接続構造体の接続信頼性を高めることができる。 A conductive particle according to the present invention comprises a base particle and a conductive layer having a crystal structure including grain boundaries and having projections on the outer surface. In the conductive particle according to the present invention, the conductive layer is arranged on the outer surface of the substrate particle. In the conductive particles according to the present invention, the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer. Since the conductive particles according to the present invention have the above configuration, the conductive layer can be made difficult to crack, and the connection reliability of the connection structure obtained even when mounted at low pressure can increase
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention. 図4は、導電層における粒界の傾斜角度θを説明するための模式図である。FIG. 4 is a schematic diagram for explaining the tilt angle θ of the grain boundary in the conductive layer. 図5は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a connected structure using conductive particles according to the first embodiment of the present invention. 図6は、実施例1で得られた導電性粒子の断面の透過型電子顕微鏡写真である。6 is a transmission electron micrograph of a cross section of the conductive particles obtained in Example 1. FIG. 図7は、比較例2で得られた導電性粒子の断面の透過型電子顕微鏡写真である。7 is a transmission electron micrograph of a cross section of the conductive particles obtained in Comparative Example 2. FIG. 図8は、比較例3で得られた導電性粒子の断面の透過型電子顕微鏡写真である。8 is a transmission electron micrograph of a cross section of the conductive particles obtained in Comparative Example 3. FIG.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 (導電性粒子)
 本発明に係る導電性粒子は、基材粒子と、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層とを備える。本発明に係る導電性粒子では、上記導電層が、上記基材粒子の外表面上に配置されている。本発明に係る導電性粒子では、上記導電層における上記粒界が、上記導電層の厚み方向に配向している。
(Conductive particles)
A conductive particle according to the present invention comprises a base particle and a conductive layer having a crystal structure including grain boundaries and having projections on the outer surface. In the conductive particle according to the present invention, the conductive layer is arranged on the outer surface of the substrate particle. In the conductive particles according to the present invention, the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer.
 本発明者らは、鋭意検討の結果、導電層における粒界の配向を制御することで、導電層の割れを生じ難くすることができ、かつ、低圧で実装した場合にも、得られる接続構造体の接続信頼性を高めることができることを見出した。本発明に係る導電性粒子では、上記導電層が粒界を含む結晶構造を有し、上記導電層における上記粒界が、上記導電層の厚み方向に配向しているので、導電層の割れを生じ難くすることができ、低圧で実装した場合にも、得られる接続構造体の接続信頼性を高めることができる。また、本発明に係る導電性粒子では、上記導電層は外表面に突起を有するので、低圧で実装した場合にも、突起により電極の表面に凹部(圧痕)を良好に形成することができ、酸化被膜を効果的に排除することができる。結果として、得られる接続構造体の接続信頼性をより一層高めることができる。 As a result of extensive studies, the present inventors have found that by controlling the orientation of the grain boundaries in the conductive layer, it is possible to make the conductive layer less likely to crack, and the connection structure can be obtained even when mounted at a low pressure. It was found that the connection reliability of the body can be enhanced. In the conductive particle according to the present invention, the conductive layer has a crystal structure including grain boundaries, and the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer, so cracks in the conductive layer are prevented. It can be made difficult to occur, and the connection reliability of the resulting connection structure can be improved even when mounted at a low pressure. In addition, in the conductive particles according to the present invention, the conductive layer has projections on the outer surface, so even when mounted at a low pressure, the projections can favorably form recesses (indentations) on the surface of the electrode, Oxide films can be effectively eliminated. As a result, the connection reliability of the resulting connection structure can be further enhanced.
 本発明者らは、特定の配向を有する導電層の粒界と、導電層の外表面に形成された突起との組み合わせによって、導電層の割れを顕著に生じ難くすることができ、低圧で実装した場合にも、得られる接続構造体の接続信頼性を顕著に高めることができることを見出した。さらに、本発明に係る導電性粒子では、上記の構成が備えられているので、ギャップ制御性を高めることができる。 The present inventors have found that the combination of the grain boundaries of the conductive layer having a specific orientation and the protrusions formed on the outer surface of the conductive layer can make cracks in the conductive layer significantly less likely to occur, and can be mounted at low pressure. It has been found that the connection reliability of the resulting connection structure can be remarkably improved even when the Furthermore, since the conductive particles according to the present invention have the above configuration, the gap controllability can be enhanced.
 また、本発明者らは、特定の配向を有する導電層の粒界と、導電層の外表面に形成された突起と、導電性粒子が突起の内側に芯物質を備えない構成との組み合わせによって、導電層の割れをより一層顕著に生じ難くすることができ、低圧で実装した場合にも、得られる接続構造体の接続信頼性をより一層顕著に高めることができることを見出した。 In addition, the present inventors have found that a combination of grain boundaries of a conductive layer having a specific orientation, protrusions formed on the outer surface of the conductive layer, and a configuration in which the conductive particles do not have a core substance inside the protrusions Furthermore, the inventors have found that cracking of the conductive layer can be made more difficult to occur, and the connection reliability of the resulting connection structure can be significantly improved even when mounted at a low pressure.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。なお、図1及び後述する図において、図示の便宜上、各構成要素の大きさ及び厚みは、実際の大きさ及び厚みと異なる場合がある。 Specific embodiments of the present invention will be described below with reference to the drawings. In addition, in FIG. 1 and the figures described later, for convenience of illustration, the size and thickness of each component may differ from the actual size and thickness.
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、基材粒子2と、粒界を含む結晶構造を有し、かつ、外表面に突起3aを有する導電層3とを備える。導電性粒子1では、導電層3が粒界を含む結晶構造を有する。導電性粒子1では、導電層3が外表面に突起3aを有する。導電性粒子1は、外表面に突起を有する。導電性粒子1では、導電層3は、基材粒子2の外表面上に配置されており、基材粒子2に接している。 A conductive particle 1 shown in FIG. 1 includes a base particle 2 and a conductive layer 3 having a crystal structure including grain boundaries and having projections 3a on the outer surface. In the conductive particles 1, the conductive layer 3 has a crystal structure including grain boundaries. In the conductive particles 1, the conductive layer 3 has projections 3a on the outer surface. The conductive particles 1 have protrusions on their outer surfaces. In the conductive particle 1 , the conductive layer 3 is arranged on the outer surface of the substrate particle 2 and is in contact with the substrate particle 2 .
 導電層3は、基材粒子2の外表面を覆っている。導電性粒子1は、基材粒子2の外表面が導電層3により被覆された被覆粒子である。導電性粒子1は、表面に導電層3を有する。 The conductive layer 3 covers the outer surface of the substrate particles 2 . The conductive particles 1 are coated particles in which the outer surface of the substrate particles 2 is coated with the conductive layer 3 . A conductive particle 1 has a conductive layer 3 on its surface.
 導電性粒子1は、突起3aの内側に芯物質を備えない。導電性粒子1では、突起3aの内側に芯物質が配置されていない。導電性粒子1では、基材粒子2の外表面上に芯物質が配置されていない。 The conductive particles 1 do not have a core substance inside the protrusions 3a. In the conductive particles 1, no core substance is arranged inside the protrusions 3a. In the conductive particles 1 , no core substance is arranged on the outer surface of the substrate particles 2 .
 上記導電性粒子では、上記導電層が上記基材粒子の外表面の全体を覆っていてもよく、上記導電層が上記基材粒子の外表面の一部を覆っていてもよい。 In the conductive particles, the conductive layer may cover the entire outer surface of the base particle, or the conductive layer may cover a part of the outer surface of the base particle.
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子11は、基材粒子2と、外表面に突起13aを有する導電層13とを備える。導電性粒子11では、導電層13が、基材粒子2の外表面上に配置されている。導電性粒子11では、導電層13が、2層の導電層である。導電性粒子11では、導電層13は、第1の導電層13Aと、第2の導電層13Bとを備える。導電層13では、第1の導電層13Aが、基材粒子2の外側に配置されており、第2の導電層13Bが、第1の導電層13Aの外側に配置されている。導電層13では、第1の導電層13Aが、基材粒子2の外表面上に積層されており、第2の導電層13Bが、第1の導電層13Aの外表面上に積層されている。 A conductive particle 11 shown in FIG. 2 includes a base particle 2 and a conductive layer 13 having projections 13a on the outer surface. In conductive particles 11 , conductive layer 13 is arranged on the outer surface of substrate particles 2 . In the conductive particles 11, the conductive layer 13 is a two-layered conductive layer. In the conductive particle 11, the conductive layer 13 comprises a first conductive layer 13A and a second conductive layer 13B. In the conductive layer 13, the first conductive layer 13A is arranged outside the substrate particles 2, and the second conductive layer 13B is arranged outside the first conductive layer 13A. In the conductive layer 13, the first conductive layer 13A is laminated on the outer surface of the substrate particle 2, and the second conductive layer 13B is laminated on the outer surface of the first conductive layer 13A. .
 導電性粒子11では、導電層13は、粒界を含む結晶構造を有し、かつ、外表面に突起13Aaを有する第1の導電層13Aと、粒界を含む結晶構造を有さず、かつ、外表面に突起13Baを有する第2の導電層13Bとを備える。導電性粒子11では、第1の導電層13Aが粒界を含む結晶構造を有する。導電性粒子11では、第2の導電層13Bは粒界を含む結晶構造を有さない。導電性粒子11では、導電層13は、外表面に突起13aを有する。第1の導電層13Aは、外表面に突起13Aaを有する。第2の導電層13Bは、外表面に突起13Baを有する。なお、上記第1の導電層が、粒界を含む結晶構造を有し、かつ、外表面に突起を有する場合に、上記第2の導電層は粒界を含む結晶構造を有していてもよく、有していなくてもよい。また、上記第2の導電層が粒界を含む結晶構造を有し、かつ、外表面に突起を有する場合に、上記第1の導電層は粒界を含む結晶構造を有していなくてもよく、外表面に突起を有していなくてもよい。 In the conductive particles 11, the conductive layer 13 includes the first conductive layer 13A having a crystal structure including grain boundaries and protrusions 13Aa on the outer surface, and the first conductive layer 13A having no crystal structure including grain boundaries, and , and a second conductive layer 13B having protrusions 13Ba on its outer surface. In conductive particles 11, first conductive layer 13A has a crystal structure including grain boundaries. In conductive particles 11, second conductive layer 13B does not have a crystal structure including grain boundaries. In the conductive particles 11, the conductive layer 13 has projections 13a on the outer surface. The first conductive layer 13A has protrusions 13Aa on its outer surface. The second conductive layer 13B has protrusions 13Ba on its outer surface. When the first conductive layer has a crystal structure including grain boundaries and has protrusions on the outer surface, the second conductive layer may have a crystal structure including grain boundaries. Well, you don't have to. Further, when the second conductive layer has a crystal structure including grain boundaries and has projections on the outer surface, the first conductive layer does not have a crystal structure including grain boundaries. Alternatively, the outer surface may not have protrusions.
 導電性粒子11は、突起13aの内側に芯物質を備えない。導電性粒子11は、突起13Aaの内側に芯物質を備えない。導電性粒子11は、突起13Baの内側に芯物質を備えない。導電性粒子11では、突起13aの内側に芯物質が配置されていない。導電性粒子11では、突起13Aaの内側に芯物質が配置されていない。導電性粒子11では、突起13Baの内側に芯物質が配置されていない。導電性粒子11では、基材粒子2の外表面上に芯物質が配置されていない。 The conductive particles 11 do not have a core substance inside the projections 13a. The conductive particles 11 do not have a core material inside the projections 13Aa. The conductive particles 11 do not have a core substance inside the projections 13Ba. In the conductive particles 11, no core substance is arranged inside the projections 13a. In the conductive particles 11, no core substance is arranged inside the projections 13Aa. In the conductive particles 11, no core substance is arranged inside the projections 13Ba. In the conductive particles 11 , no core substance is arranged on the outer surface of the substrate particles 2 .
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
 図3に示す導電性粒子21は、基材粒子2と、粒界を含む結晶構造を有し、かつ、外表面に突起23aを有する導電層23とを備える。導電性粒子21では、導電層23が粒界を含む結晶構造を有する。導電性粒子21では、導電層23が外表面に突起23aを有する。導電性粒子21は、外表面に突起を有する。導電性粒子21では、導電層23は、基材粒子2の外表面上に配置されており、基材粒子2に接している。 A conductive particle 21 shown in FIG. 3 includes a base particle 2 and a conductive layer 23 having a crystal structure including grain boundaries and having projections 23a on the outer surface. In the conductive particles 21, the conductive layer 23 has a crystal structure including grain boundaries. In the conductive particles 21, the conductive layer 23 has projections 23a on the outer surface. The conductive particles 21 have protrusions on their outer surfaces. In the conductive particles 21 , the conductive layer 23 is arranged on the outer surface of the substrate particles 2 and is in contact with the substrate particles 2 .
 導電性粒子21は、導電層23の外表面上に配置された絶縁性物質24を備える。導電層23の外表面の少なくとも一部の領域が、絶縁性物質24により被覆されている。絶縁性物質24は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、上記導電性粒子は、導電層の外表面上に配置された絶縁性物質を有していてもよい。 The conductive particles 21 comprise an insulating substance 24 arranged on the outer surface of the conductive layer 23 . At least part of the outer surface of the conductive layer 23 is covered with an insulating material 24 . The insulating substance 24 is made of an insulating material and is an insulating particle. Thus, the conductive particles may have an insulating material disposed on the outer surface of the conductive layer.
 導電性粒子21は、突起23aの内側に芯物質を備えない。導電性粒子21では、突起23aの内側に芯物質が配置されていない。導電性粒子21では、基材粒子2の外表面上に芯物質が配置されていない。 The conductive particles 21 do not have a core material inside the protrusions 23a. In the conductive particles 21, no core substance is arranged inside the protrusions 23a. In the conductive particles 21 , no core substance is arranged on the outer surface of the substrate particles 2 .
 以下、導電性粒子の他の詳細を説明する。 Other details of the conductive particles will be described below.
 なお、本明細書において、「(メタ)アクリレート」は、アクリレートとメタクリレートとを示す。「(メタ)アクリル」は、アクリルとメタクリルとを示す。「(メタ)アクリロイル」は、アクリロイルとメタクリロイルとを示す。 In this specification, "(meth)acrylate" indicates acrylate and methacrylate. "(Meth)acryl" indicates acryl and methacryl. "(Meth)acryloyl" indicates acryloyl and methacryloyl.
 上記導電性粒子の粒子径は、好ましくは1.0μm以上、より好ましくは2.0μm以上であり、好ましくは50μm以下、より好ましくは25μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子本体を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。 The particle diameter of the conductive particles is preferably 1.0 μm or more, more preferably 2.0 μm or more, and preferably 50 μm or less, more preferably 25 μm or less. When the particle diameter of the conductive particles is the lower limit or more and the upper limit or less, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, In addition, it becomes difficult to form agglomerated conductive particles when forming the conductive layer. Also, the distance between the electrodes connected via the conductive particle main body does not become too large, and the conductive layer is less likely to peel off from the surface of the base particle.
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、該平均粒子径は数平均粒子径を示す。上記導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。 The particle size of the conductive particles is preferably the average particle size, and the average particle size indicates the number average particle size. The particle size of the conductive particles can be obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average particle size of each conductive particle, or by laser diffraction particle size distribution. Obtained by performing measurements.
 電極間の導通信頼性を高める観点からは、上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。 From the viewpoint of enhancing reliability of conduction between electrodes, the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ/Dn) × 100
ρ: standard deviation of the particle size of the conductive particles Dn: average value of the particle size of the conductive particles
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。 The shape of the conductive particles is not particularly limited. The shape of the conductive particles may be spherical, may be other than spherical, or may be flat.
 上記導電性粒子を25℃で20%圧縮したときの圧縮弾性率(20%K値)は、好ましくは1000N/mm以上、より好ましくは3000N/mm以上、さらに好ましくは5000N/mm以上であり、好ましくは30000N/mm以下、より好ましくは20000N/mm以下である。上記導電性粒子の20%K値が、上記下限以上及び上記上限以下であると、接続対象部材の損傷を抑えることができ、低圧で実装した場合にも、接続抵抗をより一層効果的に低くすることができる。さらに、表面上に導電層を形成する際に、凝集を効果的に抑制することができ、導電層の割れを生じ難くすることができる。 The compression elastic modulus (20% K value) when the conductive particles are compressed by 20% at 25° C. is preferably 1000 N/mm 2 or more, more preferably 3000 N/mm 2 or more, and still more preferably 5000 N/mm 2 or more. , preferably 30000 N/mm 2 or less, more preferably 20000 N/mm 2 or less. When the 20% K value of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, damage to the member to be connected can be suppressed, and even when mounted at low pressure, the connection resistance is further effectively reduced. can do. Furthermore, when the conductive layer is formed on the surface, aggregation can be effectively suppressed, and cracking of the conductive layer can be made difficult to occur.
 上記導電性粒子における上記圧縮弾性率(20%K値)は、以下のようにして測定できる。 The compression elastic modulus (20% K value) of the conductive particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で1個の導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記導電性粒子の圧縮弾性率(20%K値)を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記導電性粒子における上記圧縮弾性率(20%K値)は、任意に選択された50個の導電性粒子の上記圧縮弾性率(20%K値)を算術平均することにより、算出することが好ましい。 Using a microcompression tester, a single conductive particle is compressed at 25°C, a compression rate of 0.3 mN/sec, and a maximum test load of 20 mN with a cylindrical (50 μm diameter, diamond) smooth indenter end face. do. The load value (N) and compression displacement (mm) at this time are measured. From the measured values obtained, the compression elastic modulus (20% K value) of the conductive particles can be obtained by the following formula. As the microcompression tester, for example, "Fischer Scope H-100" manufactured by Fisher Co., Ltd. is used. The compression modulus (20% K value) of the conductive particles is calculated by arithmetically averaging the compression modulus (20% K value) of 50 arbitrarily selected conductive particles. preferable.
 20%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子が20%圧縮変形したときの荷重値(N)
 S:導電性粒子が20%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子の半径(mm)
20% K value (N/mm 2 ) = (3/2 1/2 ) F S -3/2 R -1/2
F: load value (N) when the conductive particles are compressed and deformed by 20%
S: Compressive displacement (mm) when the conductive particles are compressed and deformed by 20%
R: radius of conductive particles (mm)
 上記圧縮弾性率は、導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、導電性粒子の硬さを定量的かつ一義的に表すことができる。 The compressive modulus described above universally and quantitatively represents the hardness of the conductive particles. By using the compressive modulus, the hardness of the conductive particles can be expressed quantitatively and uniquely.
 <基材粒子>
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
<Base material particles>
Examples of the substrate particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles other than metal particles, and more preferably resin particles, inorganic particles other than metal particles, or organic-inorganic hybrid particles. The substrate particles may be core-shell particles comprising a core and a shell arranged on the surface of the core. The core may be an organic core and the shell may be an inorganic shell.
 上記樹脂粒子の材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及びジビニルベンゼン重合体等が挙げられる。上記ジビニルベンゼン重合体は、ジビニルベンゼン共重合体であってもよい。上記ジビニルベンゼン共重合体としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Materials for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, and phenol formaldehyde. Resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenolic resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples include polyamideimide, polyetheretherketone, polyethersulfone, and divinylbenzene polymer. The divinylbenzene polymer may be a divinylbenzene copolymer. Examples of the divinylbenzene copolymer include a divinylbenzene-styrene copolymer and a divinylbenzene-(meth)acrylate copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. is preferred.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinking monomer. and crosslinkable monomers.
 上記非架橋性の単量体としては、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomers include styrene and styrene-based monomers such as α-methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid, and maleic anhydride; methyl ( meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl ( Alkyl (meth)acrylate compounds such as meth)acrylate and isobornyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate, etc. Oxygen atom-containing (meth)acrylate compounds; nitrile-containing monomers such as (meth)acrylonitrile; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate, etc. acid vinyl ester compounds of; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogens such as trifluoromethyl (meth)acrylate, pentafluoroethyl (meth)acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene A contained monomer etc. are mentioned.
 上記架橋性の単量体としては、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。上記樹脂粒子のガラス転移温度においてもフラックス含有粒子が形状を保つ観点からは、上記架橋性の単量体は、(ポリ)エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、又はジペンタエリスリトールポリ(メタ)アクリレートであることが好ましい。 Examples of the crosslinkable monomer include tetramethylolmethane tetra(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa (meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol poly(meth)acrylate, pentaerythritol tetra(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol Polyfunctional (meth)acrylate compounds such as di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol di(meth)acrylate, and 1,4-butanediol di(meth)acrylate ; triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallyl acrylamide, diallyl ether, and γ-(meth)acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. and silane-containing monomers. From the viewpoint of maintaining the shape of the flux-containing particles even at the glass transition temperature of the resin particles, the crosslinkable monomers include (poly)ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, penta Erythritol tetra(meth)acrylate or dipentaerythritol poly(meth)acrylate is preferred.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using uncrosslinked seed particles.
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the substrate particles are inorganic particles excluding metals or organic-inorganic hybrid particles, examples of inorganic substances for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. Preferably, the inorganic substance is not a metal. The particles formed of silica can be obtained, for example, by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, followed by firing as necessary. particles that can be used. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. It is preferred that the core is an organic core. Preferably, the shell is an inorganic shell. From the viewpoint of effectively reducing the connection resistance between electrodes, the substrate particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 Examples of the material for the organic core include the materials for the resin particles described above.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material for the inorganic shell include the inorganic substances listed above as the material for the substrate particles. The inorganic shell material is preferably silica. The inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material on the surface of the core by a sol-gel method, and then firing the shell-like material. The metal alkoxide is preferably silane alkoxide. The inorganic shell is preferably made of silane alkoxide.
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。 When the substrate particles are metal particles, examples of metals that are materials of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
 上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1.5μm以上であり、好ましくは49.95μm以下、より好ましくは39.95μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。さらに基材粒子の外表面上に導電層を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。 The particle diameter of the substrate particles is preferably 0.5 μm or more, more preferably 1.5 μm or more, and preferably 49.95 μm or less, more preferably 39.95 μm or less. When the particle size of the substrate particles is equal to or more than the lower limit and equal to or less than the upper limit, small conductive particles can be obtained even when the distance between the electrodes is small and the thickness of the conductive layer is increased. Furthermore, when the conductive layer is formed on the outer surface of the substrate particles, it becomes difficult to aggregate, and the formation of aggregated conductive particles becomes difficult.
 上記基材粒子の形状は特に限定されない。上記基材粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。 The shape of the substrate particles is not particularly limited. The shape of the substrate particles may be spherical, may be other than spherical, or may be flat.
 上記基材粒子の粒子径は、平均粒子径であることが好ましく、該平均粒子径は数平均粒子径であることが好ましい。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the substrate particles is preferably the average particle size, and the average particle size is preferably the number average particle size. The particle size of the substrate particles is determined using a particle size distribution analyzer or the like. The particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating the average value. When measuring the particle size of the substrate particles of the conductive particles, it can be measured, for example, as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子を含む検査用埋め込み樹脂体を作製する。上記検査用埋め込み樹脂体中に分散した基材粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 "Technovit 4000" manufactured by Kulzer is added so that the content of the conductive particles is 30% by weight, and dispersed to prepare an embedded resin body for inspection containing the conductive particles. Using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation), a cross section of the conductive particles is cut out so as to pass through the vicinity of the center of the base particles dispersed in the embedding resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), set the image magnification to 25000 times, randomly select 50 conductive particles, and observe the base particles of each conductive particle. do. The particle diameter of the base material particles in each conductive particle is measured, and the arithmetic mean is taken as the particle size of the base material particles.
 <導電層>
 上記導電性粒子は、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層(以下、「導電層X」とすることがある)を備える。上記導電層Xは、上記基材粒子の外表面上に配置されている。なお、本明細書において、「粒界」とは、結晶粒間の境界を示す。
<Conductive layer>
The conductive particles have a crystal structure including grain boundaries and have a conductive layer (hereinafter sometimes referred to as “conductive layer X”) having projections on the outer surface. The conductive layer X is arranged on the outer surface of the substrate particles. In this specification, the term "grain boundary" indicates a boundary between crystal grains.
 上記導電層Xの粒界及び結晶構造は、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を描出することで観察することができる。 The grain boundaries and crystal structure of the conductive layer X can be observed by drawing a cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
 導電層の割れをより一層生じ難くする観点からは、上記導電層Xの厚み方向の断面積1μmあたり、上記粒界の個数は、好ましくは2本以上、より好ましくは8本以上、さらに好ましくは20本以上であり、好ましくは400本以下、より好ましくは300本以下、さらに好ましくは200本以下である。 From the viewpoint of making it more difficult for the conductive layer to crack, the number of grain boundaries per 1 μm 2 of the cross-sectional area in the thickness direction of the conductive layer X is preferably 2 or more, more preferably 8 or more, and even more preferably. is 20 or more, preferably 400 or less, more preferably 300 or less, still more preferably 200 or less.
 上記導電性粒子では、上記導電層Xにおける上記粒界が、上記導電層Xの厚み方向に配向している。上記粒界は、上記導電層Xの上記突起がない部分に存在する粒界と、上記導電層Xの上記突起がある部分に存在する粒界との双方を含むことが好ましい。 In the conductive particles, the grain boundaries in the conductive layer X are oriented in the thickness direction of the conductive layer X. The grain boundary preferably includes both a grain boundary existing in a portion of the conductive layer X without the protrusion and a grain boundary existing in a portion of the conductive layer X having the protrusion.
 上記導電層Xの上記突起がない部分に存在する粒界は、上記導電層Xの外表面側に位置する一端と、上記導電層Xの内表面側に位置する他端とを有する。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がない部分に存在する粒界は、上記粒界の上記一端における上記導電層Xの外表面の接線と、上記粒界の上記一端において直交することが好ましい。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がない部分に存在する粒界は、上記粒界の上記他端における上記導電層Xの内表面の接線と、上記粒界の上記他端において直交することが好ましい。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がない部分に存在する粒界は、上記粒界の上記一端における上記導電層Xの外表面の接線と、上記粒界の上記一端において直交し、かつ、上記粒界の上記他端における上記導電層Xの内表面の接線と、上記粒界の上記他端において直交することが好ましい。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がない部分に存在する粒界は、上記導電層Xの外表面及び内表面と、直交することが好ましい。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がない部分に存在する粒界は、上記粒界の上記他端と上記導電性粒子(基材粒子)の中心とを結んだ直線の、延長線上に存在することが好ましい。また、上記導電層Xの上記突起がない部分に存在する粒界は、上記粒界の上記一端と上記導電性粒子(基材粒子)の中心とを結んだ直線の、一部であることが好ましい。 The grain boundary existing in the portion of the conductive layer X where there is no protrusion has one end located on the outer surface side of the conductive layer X and the other end located on the inner surface side of the conductive layer X. From the viewpoint of making the cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X without the protrusion is a line tangent to the outer surface of the conductive layer X at the one end of the grain boundary and the above It is preferred that the grain boundaries are orthogonal at the one end. From the viewpoint of making cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X where there is no projection is tangent to the inner surface of the conductive layer X at the other end of the grain boundary, It is preferable that the grain boundaries are perpendicular to each other at the other end of the grain boundary. From the viewpoint of making the cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X without the protrusion is a line tangent to the outer surface of the conductive layer X at the one end of the grain boundary and the above It is preferable that the one end of the grain boundary is orthogonal to the tangent to the inner surface of the conductive layer X at the other end of the grain boundary, and the other end of the grain boundary is orthogonal to the tangent to the inner surface of the conductive layer X. From the viewpoint of making cracks in the conductive layer more difficult to occur, it is preferable that the grain boundaries existing in the portion of the conductive layer X where the protrusions are absent are orthogonal to the outer surface and the inner surface of the conductive layer X. From the viewpoint of making the cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X without the protrusion is the other end of the grain boundary and the center of the conductive particle (base material particle). It is preferable that it exists on an extension line of a straight line connecting . In addition, the grain boundary present in the portion of the conductive layer X where there is no projection is part of a straight line connecting the one end of the grain boundary and the center of the conductive particle (substrate particle). preferable.
 導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がない部分に存在する粒界の個数100%中、上記導電層Xの外表面及び内表面と直交する粒界の個数は、好ましくは30%以上、より好ましくは50%以上、さらに好ましくは80%以上、最も好ましくは100%(全量)である。上記導電層Xの上記突起がない部分に存在する粒界の個数100%中、上記導電層Xの外表面及び内表面と直交する粒界の個数の上限は、特に限定されない。上記導電層Xの上記突起がない部分に存在する粒界の個数100%中、上記導電層Xの外表面及び内表面と直交する粒界の個数は、90%以下であってもよく、80%以下であってもよく、50%以下であってもよい。 From the viewpoint of making cracking of the conductive layer more difficult to occur, out of 100% of the number of grain boundaries existing in the portion of the conductive layer X without the protrusion, the grain boundaries perpendicular to the outer surface and the inner surface of the conductive layer X is preferably 30% or more, more preferably 50% or more, still more preferably 80% or more, and most preferably 100% (total amount). The upper limit of the number of grain boundaries perpendicular to the outer surface and the inner surface of the conductive layer X, out of 100% of the number of grain boundaries existing in the portion of the conductive layer X having no protrusion, is not particularly limited. Among 100% of the number of grain boundaries existing in the portion of the conductive layer X without the protrusion, the number of grain boundaries perpendicular to the outer surface and the inner surface of the conductive layer X may be 90% or less, or 80 % or less, or 50% or less.
 また、上記導電層Xの上記突起がある部分に存在する粒界は、上記導電層Xの外表面側に位置する一端と、上記導電層Xの内表面側に位置する他端とを有する。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がある部分に存在する粒界は、上記粒界の上記一端における上記導電層Xの外表面の接線と直交せず、かつ、上記粒界の上記他端における上記導電層Xの内表面の接線と直交しないことが好ましい。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がある部分に存在する粒界は、上記粒界の上記一端と導電性粒子の中心とを結んだ直線に対して、傾斜して配向していることが好ましい。導電層の割れをより一層生じ難くする観点からは、上記粒界の上記他端が、上記粒界の上記一端と導電性粒子の中心とを結んだ直線と、上記導電層Xの内表面との交点より上記突起の内側に位置するように、上記粒界が、該直線に対して傾斜して配向していることが好ましい。 In addition, the grain boundary existing in the portion of the conductive layer X where the protrusion is present has one end located on the outer surface side of the conductive layer X and the other end located on the inner surface side of the conductive layer X. From the viewpoint of making cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X where the projection is located is perpendicular to the tangent line of the outer surface of the conductive layer X at the one end of the grain boundary. and not perpendicular to the tangent line of the inner surface of the conductive layer X at the other end of the grain boundary. From the viewpoint of making the cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X where the projection is located is aligned with the straight line connecting the one end of the grain boundary and the center of the conductive particle. It is preferably oriented obliquely. From the viewpoint of making cracking of the conductive layer more difficult to occur, the other end of the grain boundary is a straight line connecting the one end of the grain boundary and the center of the conductive particle, and the inner surface of the conductive layer X. It is preferable that the grain boundary is oriented with an inclination with respect to the straight line so as to be located inside the protrusion from the intersection of the .
 上記導電層Xの外表面における上記導電層Xの上記突起がある部分と上記突起がない部分との境界は、上記突起の基部である。上記突起の基部は、上記導電層Xの隆起の開始地点である。上記導電層Xの上記突起がない部分は、上記突起の基部と導電性粒子の中心とを結んだ直線よりも上記突起の外側に位置する導電層X部分である。上記導電層Xの上記突起がある部分は、上記突起の基部と導電性粒子の中心とを結んだ直線よりも上記突起の内側に位置する導電層X部分である。上記導電層Xの上記突起がある部分に存在する粒界は、上記導電層Xの上記突起がある部分と上記突起がない部分との境界を上記粒界の上記一端とする粒界を含む。上記導電層Xの上記突起がある部分に存在する粒界の上記一端は、上記突起の基部に位置することが好ましい。すなわち、上記導電層Xの上記突起がある部分に存在する粒界は、上記突起の基部を上記粒界の上記一端とする粒界を含む。導電層の割れをより一層生じ難くする観点からは、上記導電層Xにおける上記粒界は、上記導電層Xの上記突起がある部分に存在する粒界として、上記導電層Xの上記突起がある部分と上記突起がない部分との境界(上記突起の基部)を上記粒界の上記一端とする粒界を含むことが好ましい。導電層の割れをより一層生じ難くする観点からは、上記導電層Xの上記突起がある部分に存在する粒界は、上記導電層Xの上記突起がある部分と上記突起がない部分との境界(上記突起の基部)を上記粒界の上記一端とする粒界であることが好ましい。 The boundary between the portion of the conductive layer X with the protrusion and the portion without the protrusion on the outer surface of the conductive layer X is the base of the protrusion. The base of the protrusion is the starting point of the bulge of the conductive layer X. As shown in FIG. The portion of the conductive layer X without the protrusion is the portion of the conductive layer X located outside the protrusion from the straight line connecting the base of the protrusion and the center of the conductive particle. The portion of the conductive layer X having the projections is the portion of the conductive layer X located inside the projections relative to the straight line connecting the base of the projections and the center of the conductive particles. The grain boundary existing in the portion of the conductive layer X with the protrusion includes a grain boundary having the boundary between the portion of the conductive layer X with the protrusion and the portion without the protrusion as the one end of the grain boundary. It is preferable that the one end of the grain boundary existing in the portion of the conductive layer X where the protrusion is present is located at the base of the protrusion. That is, the grain boundary existing in the portion of the conductive layer X where the protrusion is present includes a grain boundary having the base of the protrusion as one end of the grain boundary. From the viewpoint of making cracking of the conductive layer more difficult to occur, the grain boundary in the conductive layer X is the protrusion of the conductive layer X as a grain boundary existing in a portion of the conductive layer X having the protrusion. It is preferable to include a grain boundary having a boundary between the portion and the portion without the projection (the base of the projection) as the one end of the grain boundary. From the viewpoint of making cracking of the conductive layer more difficult to occur, the grain boundary existing in the portion of the conductive layer X having the protrusion is the boundary between the portion of the conductive layer X having the protrusion and the portion having no protrusion. It is preferable that the grain boundary is such that (the base of the protrusion) is the one end of the grain boundary.
 図4は、導電層Xにおける粒界の傾斜角度θを説明するための模式図である。図4は、図1に示す導電性粒子1の一部を示す。図4では、導電層3(導電層X)における粒界K及び粒界Lが、導電層3の厚み方向に配向している。粒界Kは、導電層3の突起3aがない部分に存在する粒界である。粒界Kは、導電層3の外表面及び内表面と、直交する。また、粒界Lは、導電層3の突起3aがある部分に存在する粒界である。粒界Lは、導電層3の突起3aがある部分と突起3aがない部分との境界(上記突起の基部)を粒界の上記一端とする粒界である。粒界Lは、粒界Lの一端と導電性粒子の中心とを結んだ直線(点線で図示)に対して傾斜して配向している。粒界Lの他端が、粒界Lの一端と導電性粒子の中心とを結んだ直線(点線で図示)と、導電層3の内表面との交点より突起3aの内側に位置するように、粒界Lは、該直線に対して傾斜して配向している。なお、図4では、図示の便宜上、粒界を直線で示している。 FIG. 4 is a schematic diagram for explaining the inclination angle θ of grain boundaries in the conductive layer X. FIG. FIG. 4 shows part of the conductive particles 1 shown in FIG. In FIG. 4 , grain boundaries K and grain boundaries L in the conductive layer 3 (conductive layer X) are oriented in the thickness direction of the conductive layer 3 . The grain boundary K is a grain boundary existing in a portion of the conductive layer 3 where the protrusion 3a is not present. Grain boundaries K are perpendicular to the outer and inner surfaces of the conductive layer 3 . The grain boundary L is a grain boundary that exists in a portion of the conductive layer 3 where the protrusions 3a are present. The grain boundary L is a grain boundary whose one end is a boundary between a portion of the conductive layer 3 having the protrusion 3a and a portion having no protrusion 3a (the base of the protrusion). The grain boundaries L are oriented so as to be inclined with respect to a straight line (illustrated by a dotted line) connecting one end of the grain boundaries L and the center of the conductive grain. The other end of the grain boundary L is located inside the protrusion 3a from the intersection of the straight line (illustrated by the dotted line) connecting one end of the grain boundary L and the center of the conductive particle and the inner surface of the conductive layer 3. , the grain boundary L is oriented obliquely with respect to the straight line. In addition, in FIG. 4, the grain boundary is shown with a straight line for convenience of illustration.
 上記導電層の上記突起がある部分と上記突起がない部分との境界(上記突起の基部)を粒界の上記一端とする粒界(粒界L)が存在するときに、上記粒界と、上記粒界の上記一端と上記導電性粒子(基材粒子)の中心とを結んだ直線(図4では点線で図示)とのなす角度を、上記導電層Xにおける上記粒界の傾斜角度θとする。 When there is a grain boundary (grain boundary L) whose one end of the grain boundary is a boundary between a portion of the conductive layer with the protrusion and a portion without the protrusion (the base of the protrusion), the grain boundary and The angle formed by the one end of the grain boundary and the straight line connecting the center of the conductive particle (substrate particle) (shown by a dotted line in FIG. 4) is the inclination angle θ of the grain boundary in the conductive layer X. do.
 導電層の割れをより一層生じ難くする観点からは、上記突起の基部を上記粒界の上記一端とする粒界(粒界L)の傾斜角度θは、好ましくは0°以上、より好ましくは3°以上、さらに好ましくは5°以上であり、好ましくは90°以下、より好ましくは60°以下、さらに好ましくは40°以下である。 From the viewpoint of making it more difficult for the conductive layer to crack, the inclination angle θ of the grain boundary (grain boundary L) with the base of the protrusion as the one end of the grain boundary is preferably 0° or more, more preferably 3. ° or more, more preferably 5° or more, preferably 90° or less, more preferably 60° or less, still more preferably 40° or less.
 上記突起の基部を粒界の上記一端とする粒界(粒界L)の傾斜角度θは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することで計測することができる。 The inclination angle θ of the grain boundary (grain boundary L) with the base of the protrusion as the one end of the grain boundary is measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM). can be done.
 上記導電層Xは、金属を含むことが好ましい。上記導電層Xを構成する金属は、特に限定されない。上記金属としては、錫、金、銀、銅、錫、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ルテニウム、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The conductive layer X preferably contains a metal. The metal forming the conductive layer X is not particularly limited. The above metals include tin, gold, silver, copper, tin, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, ruthenium, germanium, cadmium, and alloys thereof. is mentioned. Alternatively, tin-doped indium oxide (ITO) may be used as the metal. Only one of the above metals may be used, or two or more thereof may be used in combination.
 導通信頼性を高める観点からは、上記導電層Xは、錫、ニッケル、銅、パラジウム、又は金を含むことが好ましく、金又はニッケルを含むことがより好ましく、ニッケルを含むことがさらに好ましい。 From the viewpoint of enhancing conduction reliability, the conductive layer X preferably contains tin, nickel, copper, palladium, or gold, more preferably gold or nickel, and even more preferably nickel.
 上記基材粒子の外表面積100%中、上記導電層Xにより覆われた面積(導電層Xによる被覆率)は、好ましくは80%以上、より好ましくは90%以上である。上記導電層Xによる被覆率の上限は、特に限定されない。上記導電層Xによる被覆率は、100%であってもよい。上記導電層Xによる被覆率が、上記下限以上であると、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができる。 Within 100% of the outer surface area of the substrate particles, the area covered by the conductive layer X (coverage by the conductive layer X) is preferably 80% or more, more preferably 90% or more. The upper limit of the coverage by the conductive layer X is not particularly limited. The coverage of the conductive layer X may be 100%. When the coverage of the conductive layer X is equal to or higher than the lower limit, reliability of conduction can be effectively improved when the electrodes are electrically connected.
 上記導電層Xの厚みは、好ましくは50nm上、より好ましくは100nm以上であり、好ましくは300nm以下、より好ましくは250nm以下、さらに好ましくは200nm以下である。上記導電層Xの厚みが、上記下限以上及び上記上限以下であると、導通信頼性を高め、かつ、導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。 The thickness of the conductive layer X is preferably 50 nm or more, more preferably 100 nm or more, preferably 300 nm or less, more preferably 250 nm or less, still more preferably 200 nm or less. When the thickness of the conductive layer X is equal to or more than the lower limit and equal to or less than the upper limit, the conduction reliability is improved, and the conductive particles are not too hard, and the conductive particles are sufficiently attached when connecting the electrodes. It can be transformed.
 上記導電層Xの厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive layer X can be measured, for example, by observing the cross section of the conductive particles using a transmission electron microscope (TEM).
 上記導電層は、1層の導電層であってもよく、多層の導電層であってもよい。上記導電層は、複数の上記導電層Xを備えていてもよく、上記導電層Xと、上記導電層X以外の導電層とを備えていてもよい。上記導電性粒子は、上記導電層X以外の導電層を備えていてもよい。上記導電性粒子(導電層)は、粒界を含む結晶構造を有さない導電層を備えていてもよく、外表面に突起を有さない導電層を備えていてもよく、粒界を含む結晶構造を有さず、かつ、外表面に突起を有さない導電層を備えていてもよい。上記導電性粒子(導電層)が上記導電層X以外の導電層を備える場合に、上記導電層X以外の導電層は、上記導電層Xの内表面側に配置されていてもよく、上記導電層Xの外表面側に配置されていてもよい。上記導電層X以外の導電層が、上記導電層Xの内表面側に配置される場合には、導電層の被膜率を高めることができ、得られる接続構造体の接続信頼性をより一層効果的に高めることができる。上記導電層X以外の導電層が、上記導電層Xの外表面側に配置される場合には、得られる接続構造体の接続信頼性をより一層高めることができる。得られる接続構造体の接続信頼性をより一層高める観点からは、上記導電性粒子(導電層)が上記導電層X以外の導電層を備える場合に、上記導電層X以外の導電層は、上記導電層Xの外表面上に配置されることが好ましい。 The conductive layer may be a single conductive layer or multiple conductive layers. The conductive layer may include a plurality of conductive layers X, or may include the conductive layer X and a conductive layer other than the conductive layer X. The conductive particles may have a conductive layer other than the conductive layer X described above. The conductive particles (conductive layer) may have a conductive layer that does not have a crystal structure containing grain boundaries, may have a conductive layer that does not have protrusions on the outer surface, and contains grain boundaries. A conductive layer having no crystal structure and no projections on the outer surface may be provided. When the conductive particles (conductive layer) include a conductive layer other than the conductive layer X, the conductive layer other than the conductive layer X may be arranged on the inner surface side of the conductive layer X. It may be arranged on the outer surface side of the layer X. When a conductive layer other than the conductive layer X is arranged on the inner surface side of the conductive layer X, the coating rate of the conductive layer can be increased, and the connection reliability of the resulting connection structure can be further improved. can be significantly increased. When a conductive layer other than the conductive layer X is arranged on the outer surface side of the conductive layer X, the connection reliability of the resulting connection structure can be further enhanced. From the viewpoint of further improving the connection reliability of the resulting connection structure, when the conductive particles (conductive layer) include a conductive layer other than the conductive layer X, the conductive layer other than the conductive layer X It is preferably arranged on the outer surface of the conductive layer X.
 得られる接続構造体の接続信頼性をより一層高める観点からは、上記導電層X以外の導電層は、パラジウム、ニッケル、金、銀、銅、錫又はルテニウムを含むことが好ましく、パラジウム又は金を含むことがより好ましく、金を含むことがさらに好ましく、金であることが特に好ましい。また、上記導電層X以外の導電層の外表面を構成する金属が金である場合には、耐腐食性がより一層高くなる。 From the viewpoint of further increasing the connection reliability of the resulting connection structure, the conductive layers other than the conductive layer X preferably contain palladium, nickel, gold, silver, copper, tin or ruthenium. More preferably, it contains gold, more preferably gold, and particularly preferably gold. Further, when the metal constituting the outer surface of the conductive layers other than the conductive layer X is gold, the corrosion resistance is further enhanced.
 上記導電層X以外の導電層の厚みは、好ましくは1.0nm以上、より好ましくは5.0nm以上であり、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは50nm以下である。上記導電層X以外の導電層の厚みが、上記下限以上及び上記上限以下であると、導電層による被膜率を高めることができ、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができる。 The thickness of the conductive layers other than the conductive layer X is preferably 1.0 nm or more, more preferably 5.0 nm or more, and preferably 100 nm or less, more preferably 80 nm or less, still more preferably 50 nm or less. When the thickness of the conductive layer other than the conductive layer X is the lower limit or more and the upper limit or less, the coating rate of the conductive layer can be increased, and when the electrodes are electrically connected, the conduction reliability is improved. can be significantly increased.
 上記導電層Xは、外表面に突起を有する。上記突起は、複数であることが好ましい。一般に、導電性粒子と接触する電極の表面には、酸化被膜が形成されていることが多い。上記導電層Xは、外表面に突起を有するので、導電接続時に、突起により上記酸化被膜を効果的に排除できる。また、突起により、電極の表面に凹部(圧痕)を良好に形成することができる。このため、電極と導電層とが確実に接触し、導電性粒子と電極との接触面積を十分に大きくすることができ、接続抵抗を効果的に低くすることができる。さらに、導電性粒子が表面に絶縁性物質を備える場合に、又は導電性粒子がバインダーに分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダーを効果的に排除できる。このため、導電性粒子と電極との接触面積を十分に大きくすることができ、接続抵抗を効果的に低くすることができる。 The conductive layer X has protrusions on its outer surface. It is preferable that the protrusion is plural. In general, an oxide film is often formed on the surface of the electrode that comes into contact with the conductive particles. Since the conductive layer X has projections on the outer surface, the oxide film can be effectively removed by the projections at the time of conductive connection. In addition, the protrusions can favorably form concave portions (indentations) on the surface of the electrode. Therefore, the electrode and the conductive layer are reliably brought into contact with each other, the contact area between the conductive particles and the electrode can be sufficiently increased, and the connection resistance can be effectively reduced. Furthermore, when the conductive particles are provided with an insulating substance on the surface, or when the conductive particles are dispersed in a binder and used as a conductive material, the protrusions of the conductive particles cause the gap between the conductive particles and the electrode. Insulating materials or binders can be effectively eliminated. Therefore, the contact area between the conductive particles and the electrode can be sufficiently increased, and the connection resistance can be effectively reduced.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子は、上記突起の内側に芯物質を備えないことが好ましい。上記導電性粒子は、上記基材粒子の外側に、芯物質を備えないことが好ましい。上記導電性粒子は、上記基材粒子の外表面上に、芯物質を備えないことが好ましい。 From the viewpoint of exhibiting the effects of the present invention more effectively, it is preferable that the conductive particles do not have a core substance inside the protrusions. It is preferable that the conductive particles do not have a core substance outside the substrate particles. It is preferable that the conductive particles do not have a core substance on the outer surface of the substrate particles.
 複数の上記突起の平均高さは、好ましくは10nm以上、より好ましくは30nm以上、好ましくは900nm以下、より好ましくは200nm以下、さらに好ましくは100nm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。なお、上記突起の平均高さは、以下の方法で算出できる。本発明の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、観察された導電性粒子の周縁部の突起全ての高さを測定する。突起が形成されていない面を基準表面として凸部の高さを測定し、平均値を算出することにより求められる。 The average height of the plurality of projections is preferably 10 nm or more, more preferably 30 nm or more, preferably 900 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less. When the average height of the projections is equal to or higher than the lower limit and equal to or lower than the upper limit, the connection resistance between the electrodes can be effectively reduced. The average height of the protrusions can be calculated by the following method. Fifty conductive particles of the present invention are observed with an electron microscope or an optical microscope, and the heights of all protrusions on the peripheral edge of the observed conductive particles are measured. It is obtained by measuring the height of the protrusions with a surface on which no protrusions are formed as a reference surface, and calculating the average value.
 接続信頼性をより一層高める観点からは、上記導電層Xの表面積100%中、上記突起がある部分の外表面積(突起の形成率)は、好ましくは3%以上、より好ましくは10%以上、好ましくは70%以下、より好ましくは40%以下である。 From the viewpoint of further improving the connection reliability, the outer surface area of the portion where the protrusions are present (protrusion formation rate) in 100% of the surface area of the conductive layer X is preferably 3% or more, more preferably 10% or more, It is preferably 70% or less, more preferably 40% or less.
 上記導電層Xの外表面積100%中の上記突起がある部分の外表面積(突起の形成率)は、導電性粒子が球状の場合及び球状以外の場合のいずれにおいても、以下の方法で測定することができる。導電性粒子50個について、電子顕微鏡を用いて平面視したときに、導電性粒子の粒子径の70%の長さを直径とする円の面積100%中、該円の内部における突起がある部分の面積の割合(%)を測定し、平均値を算出する。 The external surface area (protrusion formation rate) of the portion having the projections in 100% of the external surface area of the conductive layer X is measured by the following method, regardless of whether the conductive particles are spherical or non-spherical. be able to. For 50 conductive particles, when viewed from the top using an electron microscope, the area of 100% of a circle with a diameter of 70% of the particle diameter of the conductive particles, the portion with protrusions inside the circle Measure the ratio (%) of the area and calculate the average value.
 (絶縁性物質)
 上記導電性粒子は、上記導電層の外表面上に配置された絶縁性物質を備えていてもよい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁性物質を容易に排除できる。導電性粒子が上記導電層の表面に突起を有する場合には、導電性粒子の導電層と電極との間の絶縁性物質をより一層容易に排除できる。上記絶縁性物質は、絶縁性樹脂層又は絶縁性粒子であることが好ましく、絶縁性粒子であることがより好ましい。上記絶縁性粒子は、絶縁性樹脂粒子であることが好ましい。
(insulating substance)
The conductive particles may comprise an insulating material disposed on the outer surface of the conductive layer. In this case, if the conductive particles are used to connect the electrodes, short-circuiting between adjacent electrodes can be prevented. Specifically, when a plurality of conductive particles are brought into contact with each other, an insulating material exists between the plurality of electrodes, so short-circuiting between laterally adjacent electrodes can be prevented instead of between the electrodes above and below. When the electrodes are connected, the insulating material between the conductive layer of the conductive particles and the electrodes can be easily eliminated by pressing the conductive particles with two electrodes. When the conductive particles have protrusions on the surface of the conductive layer, the insulating material between the conductive layer of the conductive particles and the electrode can be removed more easily. The insulating substance is preferably an insulating resin layer or insulating particles, more preferably insulating particles. The insulating particles are preferably insulating resin particles.
 (導電性粒子の製造方法)
 本発明に係る導電性粒子の製造方法は、上述した導電性粒子を製造する方法である。本発明に係る導電性粒子の製造方法は、上記基材粒子の外表面上に上記導電層を形成する工程を備える。本発明に係る導電性粒子の製造方法では、上記突起の内側に芯物質を配置せずに突起を形成する。本発明に係る導電性粒子の製造方法では、上記突起の内側に芯物質が存在しない状態で、突起を形成することが好ましい。
(Method for producing conductive particles)
The method for producing conductive particles according to the present invention is a method for producing the conductive particles described above. The method for producing conductive particles according to the present invention comprises the step of forming the conductive layer on the outer surface of the substrate particles. In the method for producing conductive particles according to the present invention, the protrusions are formed without arranging the core substance inside the protrusions. In the method for producing conductive particles according to the present invention, it is preferable to form the projections in a state where no core substance exists inside the projections.
 本発明に係る導電性粒子の製造方法では、上記の構成が備えられているので、導電層の割れを生じ難くすることができ、かつ、低圧で実装した場合にも、得られる接続構造体の接続信頼性を高めることができる。 In the method for producing conductive particles according to the present invention, since the above configuration is provided, it is possible to make it difficult for the conductive layer to crack, and even when mounting at a low pressure, the obtained connection structure Connection reliability can be improved.
 従来の導電性粒子の製造方法において、得られる接続構造体の接続信頼性を高めるために、基材粒子の外表面上に芯物質を付着させて、突起の内側に芯物質を有する導電性粒子を作製することがある。しかしながら、このような導電性粒子では、芯物質と導電層との境界に沿って粒界が配向しやすくなるため、電極間を電気的に接続する場合に、導電層の割れが生じやすくなる。結果として、得られる接続構造体の接続信頼性が低くなることがある。 In the conventional method for producing conductive particles, in order to improve the connection reliability of the resulting bonded structure, a core substance is attached to the outer surface of the base particle, and the conductive particles having the core substance inside the protrusions. may be produced. However, in such conductive particles, the grain boundaries tend to be oriented along the boundary between the core substance and the conductive layer, so cracks in the conductive layer tend to occur when the electrodes are electrically connected. As a result, the connection reliability of the resulting connection structure may be low.
 また、めっき液を分解させることにより導電層の外表面に突起を形成する製造方法では、めっき液が分解する際の激しい化学反応により、突起の内部に空隙が生じるため、突起が脆くなりやすいという課題がある。結果として、得られる接続構造体の接続信頼性が低くなることがある。さらに、めっき液を分解させることにより突起を形成した場合には、突起が積層したり、連結したりしやすいため、得られる接続構造体の電極間のギャップを制御することが難しいことがある。したがって、本発明に係る導電性粒子の製造方法では、めっき液の分解を発生させずに突起を形成することが好ましい。 In addition, in the manufacturing method of forming protrusions on the outer surface of the conductive layer by decomposing the plating solution, the strong chemical reaction when the plating solution decomposes creates voids inside the protrusions, which makes the protrusions prone to fragility. I have a problem. As a result, the connection reliability of the resulting connection structure may be low. Furthermore, when the protrusions are formed by decomposing the plating solution, the protrusions are likely to be laminated or connected, so it may be difficult to control the gap between the electrodes of the resulting connection structure. Therefore, in the method for producing conductive particles according to the present invention, it is preferable to form the protrusions without causing decomposition of the plating solution.
 上記基材粒子の外表面上に上記導電層Xを形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電層Xを形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所製)等が用いられる。 The method for forming the conductive layer X on the outer surface of the substrate particles includes a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, physical vapor deposition or physical Examples include a method by adsorption, a method of coating the surface of the substrate particles with a metal powder or a paste containing a metal powder and a binder, and the like. The method of forming the conductive layer X is preferably electroless plating, electroplating or physical collision. Methods such as vacuum deposition, ion plating, and ion sputtering can be used as the method by physical vapor deposition. In addition, in the method using physical collision, for example, a sheeter composer (manufactured by Tokuju Kosakusho) or the like is used.
 上記導電層Xの外表面に突起を形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的蒸着または物理的吸着による方法等が挙げられる。本発明の効果をより一層効果的に発揮する観点からは、無電解めっきによる方法により、上記導電層Xの外表面に突起を形成することが好ましい。 Examples of methods for forming projections on the outer surface of the conductive layer X include a method using electroless plating, a method using electroplating, and a method using physical vapor deposition or physical adsorption. From the viewpoint of exhibiting the effects of the present invention more effectively, it is preferable to form protrusions on the outer surface of the conductive layer X by a method using electroless plating.
 上記導電層Xにおける上記粒界が、上記導電層Xの厚み方向に配向しているように上記導電層Xを形成する方法としては、無電解めっきによる方法、電気めっきによる方法等が挙げられる。 Examples of methods for forming the conductive layer X such that the grain boundaries in the conductive layer X are oriented in the thickness direction of the conductive layer X include electroless plating and electroplating.
 上記導電層Xの上記突起がある部分に存在する粒界が上述した好ましい態様を満足するように、上記導電層X(突起)を形成する方法としては、以下の方法等が挙げられる。無電解めっき液のpHを調整する方法。無電解めっき液に任意の薬液を添加する方法。無電解めっき液のpHを調整し、かつ、上記無電解めっき液に任意の薬液を添加する方法。 As a method for forming the conductive layer X (protrusions) so that the grain boundaries present in the portions of the conductive layer X where the protrusions are present satisfy the above-mentioned preferred aspects, the following methods may be mentioned. A method for adjusting the pH of an electroless plating solution. A method of adding an arbitrary chemical solution to the electroless plating solution. A method of adjusting the pH of an electroless plating solution and adding an arbitrary chemical solution to the electroless plating solution.
 上記導電層X及び上記突起の形成に用いる無電解めっき液は、金属塩を含むことが好ましい。上記金属塩としては、硫酸ニッケル、塩化ニッケル、水酸化ニッケル、及び炭酸ニッケル等が挙げられる。導電層による被覆率を良好にする観点からは、上記無電解めっき液の金属イオン濃度は、好ましくは0.1mol/L以上、より好ましくは0.3mol/L以上、さらに好ましくは0.5mol/L以上であり、好ましくは10.0mol/L以下、より好ましくは5.0mol/L以下、さらに好ましくは2.0mol/L以下である。 The electroless plating solution used for forming the conductive layer X and the protrusions preferably contains a metal salt. Examples of the metal salt include nickel sulfate, nickel chloride, nickel hydroxide, and nickel carbonate. From the viewpoint of improving the coverage with the conductive layer, the metal ion concentration of the electroless plating solution is preferably 0.1 mol/L or more, more preferably 0.3 mol/L or more, and still more preferably 0.5 mol/L. L or more, preferably 10.0 mol/L or less, more preferably 5.0 mol/L or less, still more preferably 2.0 mol/L or less.
 上記無電解めっき液のpHは、好ましくは8.0以上、より好ましくは9.0以上であり、好ましくは12.0以下、より好ましくは11.0以下である。上記無電解めっき液のpHが上記下限以上であると、上記導電層Xの上記突起がある部分に存在する粒界が上述した好ましい態様を満足するように、上記導電層X(突起)を効果的に形成することができる。上記無電解めっき液のpHが上記上限以下であると、導電性粒子の生産性を高めることができる。 The pH of the electroless plating solution is preferably 8.0 or higher, more preferably 9.0 or higher, and preferably 12.0 or lower, more preferably 11.0 or lower. When the pH of the electroless plating solution is equal to or higher than the lower limit, the conductive layer X (projection) is effectively controlled so that the grain boundary present in the portion of the conductive layer X where the projection is present satisfies the above-described preferred embodiment. can be formed When the pH of the electroless plating solution is equal to or lower than the upper limit, the productivity of the conductive particles can be enhanced.
 上記無電解めっき液は、錯化剤、還元剤、又は分散剤等を含んでいてもよい。 The electroless plating solution may contain a complexing agent, a reducing agent, a dispersing agent, or the like.
 上記錯化剤は、特に限定されない。上記錯化剤としては、アンモニア、トリメチルアミン、コハク酸、クエン酸ナトリウム、ホウ酸、及びグリシン等が挙げられる。本発明の効果をより一層効果的に発揮する観点からは、上記錯化剤は、クエン酸ナトリウム、ホウ酸、又はグリシンを含むことが好ましい。 The complexing agent is not particularly limited. Examples of the complexing agent include ammonia, trimethylamine, succinic acid, sodium citrate, boric acid, glycine, and the like. From the viewpoint of exhibiting the effects of the present invention more effectively, the complexing agent preferably contains sodium citrate, boric acid, or glycine.
 上記還元剤は、特に限定されない。上記還元剤としては、水素化ホウ素ナトリウム、ヒドラジン、次亜リン酸ナトリウム、及びジメチルアミンボラン等が挙げられる。上記導電層及び上記突起を良好に形成する観点からは、上記還元剤は、次亜リン酸ナトリウム、又はジメチルアミンボランを含むことが好ましい。 The reducing agent is not particularly limited. Examples of the reducing agent include sodium borohydride, hydrazine, sodium hypophosphite, and dimethylamine borane. From the viewpoint of favorably forming the conductive layer and the protrusions, the reducing agent preferably contains sodium hypophosphite or dimethylamine borane.
 上記分散剤は、特に限定されない。本発明の効果をより一層効果的に発揮する観点からは、上記分散剤は、ノニオン性分散剤であることが好ましく、ポリエチレングリコールであることがより好ましい。上記分散剤の重量平均分子量は、好ましくは200以上、より好ましくは1000以上であり、好ましくは200000以下、より好ましくは10000以下である。上記無電解めっき液中の上記分散剤の濃度は、好ましくは0.01g/L以上、より好ましくは0.1g/L以上、さらに好ましくは1.0g/L以上であり、好ましくは100g/L以下、より好ましくは50g/L以下、さらに好ましくは10g/L以下である。上記分散剤の分子量及び濃度が上記下限以上であると、導電性粒子の生産性を高めることができる。上記分散剤の分子量及び濃度が上記上限以下であると、上記導電層Xの上記突起がある部分に存在する粒界が上述した好ましい態様を満足するように、上記導電層X(突起)を効果的に形成することができる。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算での重量平均分子量を示す。 The dispersant is not particularly limited. From the viewpoint of exhibiting the effects of the present invention more effectively, the dispersant is preferably a nonionic dispersant, more preferably polyethylene glycol. The weight average molecular weight of the dispersant is preferably 200 or more, more preferably 1,000 or more, and preferably 200,000 or less, more preferably 10,000 or less. The concentration of the dispersant in the electroless plating solution is preferably 0.01 g/L or more, more preferably 0.1 g/L or more, still more preferably 1.0 g/L or more, and preferably 100 g/L. Below, more preferably 50 g/L or less, still more preferably 10 g/L or less. When the molecular weight and concentration of the dispersing agent are at least the above lower limits, the productivity of the conductive particles can be enhanced. When the molecular weight and concentration of the dispersant are equal to or less than the above upper limits, the conductive layer X (protrusions) is effective so that the grain boundaries present in the portions of the conductive layer X where the protrusions are present satisfy the above-described preferred embodiments. can be formed The above weight average molecular weight indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散されて用いられることが好ましく、バインダー樹脂中に分散されて導電材料を得るために用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は、回路接続材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention contains the conductive particles described above and a binder resin. The conductive particles are preferably used by being dispersed in a binder resin, and are preferably used to obtain a conductive material by being dispersed in the binder resin. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a circuit connecting material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. Only one type of the binder resin may be used, or two or more types may be used in combination.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin. Examples of the thermoplastic resins include polyolefin resins, ethylene-vinyl acetate copolymers and polyamide resins. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymers include styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, hydrogenated products of styrene-butadiene-styrene block copolymers, and styrene-isoprene. - hydrogenated products of styrene block copolymers; Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a coloring agent, an antioxidant, a heat stabilizer, and a light stabilizer. It may contain various additives such as agents, UV absorbers, lubricants, antistatic agents and flame retardants.
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material according to the present invention can be used as a conductive paste, a conductive film, and the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on a conductive film containing conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性をより一層高めることができる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably 99% by weight. .99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is the lower limit or more and the upper limit or less, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target members connected by the conductive material can be further improved. can.
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性を高めることができる。 The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, and more preferably 20% by weight or less. , more preferably 10% by weight or less. When the content of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, reliability of conduction between electrodes can be enhanced.
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材を接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電性粒子を含む。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記導電性粒子により電気的に接続されている。
(connection structure)
A connection structure according to the present invention includes a first connection object member having a first electrode on the surface, a second connection object member having a second electrode on the surface, the first connection object member, and a connecting portion connecting the second connection target member. In the bonded structure according to the present invention, the material of the connecting portion contains the above-described conductive particles. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by the conductive particles.
 図5は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
 図5に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52及び第2の接続対象部材53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料により形成されている。接続部54は、導電性粒子1を複数含む導電材料を硬化させることにより形成されていることが好ましい。なお、図5では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1に代えて、導電性粒子11又は導電性粒子21が用いられてもよい。 A connection structure 51 shown in FIG. 5 includes a first connection target member 52, a second connection target member 53, and a connection portion that connects the first connection target member 52 and the second connection target member 53. 54. The connecting portion 54 is made of a conductive material containing the conductive particles 1 . The connecting portion 54 is preferably formed by curing a conductive material containing a plurality of conductive particles 1 . In addition, in FIG. 5, the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, conductive particles 11 or conductive particles 21 may be used.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1の接続対象部材52及び第2の接続対象部材53が導電性粒子1により電気的に接続されている。 The first connection object member 52 has a plurality of first electrodes 52a on its surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on its surface (lower surface). A first electrode 52 a and a second electrode 53 a are electrically connected by one or more conductive particles 1 . Therefore, the first connection target member 52 and the second connection target member 53 are electrically connected by the conductive particles 1 .
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法(圧着(熱圧着)する方法)等が挙げられる。上記圧着(熱圧着)の圧力は好ましくは5MPa以上、より好ましくは10MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記圧着(熱圧着)の加熱の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。上記圧着(熱圧着)の圧力及び加熱の温度が、上記下限以上及び上記上限以下であると、接続信頼性をより一層高めることができる。また、本発明に係る導電性粒子の使用により、上記圧着の圧力が上記上限以下であっても、接続信頼性を十分に高めることができる。上記導電性粒子は、上記上限以下の圧力で圧着して用いられることが好ましく、上記下限以上及び上記上限以下の圧力で圧着して用いられることが好ましい。 The manufacturing method of the connection structure is not particularly limited. As an example of a method for manufacturing a connected structure, the conductive material is arranged between a first member to be connected and a second member to be connected to obtain a laminate, and then the laminate is heated and pressurized. methods (methods of crimping (thermocompression bonding)) and the like. The pressure of the compression bonding (thermocompression bonding) is preferably 5 MPa or more, more preferably 10 MPa or more, and preferably 90 MPa or less, more preferably 70 MPa or less. The heating temperature for the compression bonding (thermocompression bonding) is preferably 80° C. or higher, more preferably 100° C. or higher, and preferably 140° C. or lower, more preferably 120° C. or lower. When the pressure and heating temperature of the compression bonding (thermocompression bonding) are equal to or higher than the lower limit and equal to or lower than the upper limit, the connection reliability can be further enhanced. Moreover, by using the conductive particles according to the present invention, connection reliability can be sufficiently improved even when the pressure of the compression bonding is equal to or less than the upper limit. It is preferable that the conductive particles are used by pressing at a pressure equal to or lower than the upper limit, and preferably at a pressure equal to or higher than the lower limit and equal to or lower than the upper limit.
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。接続対象部材の柔軟化に伴い、接続対象部材の損傷を防ぐために、接続構造体の製造時に、より低圧で実装することが要求されている。本発明に係る導電性粒子の使用により、より低圧での実装が可能であるので、上記導電性粒子は、フレキシブルプリント基板の導電接続に用いられることが好ましい。上記第1の接続対象部材及び第2の接続対象部材の内の少なくとも一方は、フレキシブルプリント基板であることが好ましい。 The first member to be connected and the second member to be connected are not particularly limited. Specifically, the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, as well as resin films, printed circuit boards, flexible Examples include electronic components such as circuit boards such as printed boards, flexible flat cables, rigid flexible boards, glass epoxy boards and glass boards. The first member to be connected and the second member to be connected are preferably electronic components. As connection target members become more flexible, there is a demand for mounting at a lower pressure when manufacturing a connection structure in order to prevent damage to the connection target members. Since the use of the conductive particles according to the present invention enables mounting at a lower pressure, the conductive particles are preferably used for conductive connection of a flexible printed circuit board. At least one of the first member to be connected and the second member to be connected is preferably a flexible printed circuit board.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target members include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the member to be connected is a flexible printed circuit board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode made of only aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of materials for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal elements include Sn, Al and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 The present invention will be specifically described below with reference to examples and comparative examples. The invention is not limited only to the following examples.
 以下の材料を用意した。 "I prepared the following materials."
 基材粒子:
 基材粒子A(ジビニルベンゼン共重合体樹脂粒子、積水化学工業社製「ミクロパールSP-20375、粒子径3.75μm)
 基材粒子B(ジビニルベンゼン共重合体樹脂粒子、積水化学工業社製「ミクロパールEX-0015、粒子径1.5μm)
 基材粒子C(ジビニルベンゼン共重合体樹脂粒子、積水化学工業社製「ミクロパールSP-230、粒子径30μm)
 基材粒子D(有機無機ハイブリッド粒子、粒子径3.75μm)
Substrate particles:
Base particles A (divinylbenzene copolymer resin particles, manufactured by Sekisui Chemical Co., Ltd. "Micropearl SP-20375, particle size 3.75 μm)
Base particles B (divinylbenzene copolymer resin particles, manufactured by Sekisui Chemical Co., Ltd. "Micropearl EX-0015, particle size 1.5 μm)
Base material particles C (divinylbenzene copolymer resin particles, manufactured by Sekisui Chemical Co., Ltd. "Micropearl SP-230, particle size 30 μm)
Base particles D (organic-inorganic hybrid particles, particle diameter 3.75 μm)
 (実施例1)
 (1)導電性粒子の作製
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子A10重量部を超音波分散器により分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(1A)を得た。
(Example 1)
(1) Preparation of conductive particles After dispersing 10 parts by weight of base particles A in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution with an ultrasonic disperser, the solution is filtered to obtain base particles. I took out A. Next, the substrate particles A were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the substrate particles A. After sufficiently washing the surface-activated substrate particles A with water, they were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (1A).
 また、硫酸ニッケル150g/L、クエン酸ナトリウム70g/L、ホウ酸30g/L及びジメチルアミンボラン10g/L、及びポリエチレングリコール(重量平均分子量1000)1g/Lを含むニッケルめっき液(2A)(pH10)を用意した。 In addition, nickel plating solution (2A) (pH 10 ) was prepared.
 懸濁液(1A)を60℃にて撹拌しながら、上記ニッケルめっき液(2A)を徐々に滴下し、無電解純ニッケルめっきを行った。その後、pHが安定するまで撹拌し、水素の発泡が停止するのを確認し、無電解ニッケルめっき後の懸濁液(3A)を得た。 While stirring the suspension (1A) at 60°C, the nickel plating solution (2A) was gradually added dropwise to perform electroless pure nickel plating. After that, the mixture was stirred until the pH was stabilized, and after confirming that the bubbling of hydrogen stopped, a suspension (3A) after electroless nickel plating was obtained.
 その後、懸濁液(3A)をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、外表面に突起を有する導電層(厚み150nm)が形成された導電性粒子を得た。この導電性粒子は、突起の内側に芯物質を備えない導電性粒子である。 After that, by filtering the suspension (3A), the particles were taken out, washed with water, and dried to obtain conductive particles having a conductive layer (thickness of 150 nm) having projections on the outer surface. This conductive particle is a conductive particle that does not have a core substance inside the protrusions.
 (2)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び撹拌することで、導電材料(異方性導電ペースト)を得た。
(2) Preparation of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolac type epoxy resin A conductive material (anisotropic conductive paste) was obtained by blending parts by weight and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), followed by defoaming and stirring for 3 minutes.
 (3)接続構造体の作製
 L/Sが200μm/200μmであるAu電極パターン(第1の電極、電極:Cu上にNi/Au薄膜)が上面に形成されたプリント基板を用意した。また、L/Sが200μm/200μmであるAu電極パターン(第2の電極、電極:Cu上にNi/Au薄膜)が下面に形成されたフレキシブルプリント基板を用意した。
(3) Fabrication of Connection Structure A printed circuit board was prepared on which an Au electrode pattern (first electrode, electrode: Ni/Au thin film on Cu) with L/S of 200 μm/200 μm was formed on the upper surface. Also, a flexible printed circuit board was prepared on the bottom surface of which an Au electrode pattern (second electrode, electrode: Ni/Au thin film on Cu) with L/S of 200 μm/200 μm was formed.
 上記プリント基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記フレキシブルプリント基板を、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、上記フレキシブルプリント基板の上面に加圧加熱ヘッドを載せ、40MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。 The obtained anisotropic conductive paste was applied onto the printed circuit board so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the flexible printed circuit board was laminated on the anisotropic conductive paste layer so that the electrodes faced each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., a pressure heating head is placed on the upper surface of the flexible printed circuit board, and a pressure of 40 MPa is applied to the anisotropic conductive paste. The layer was cured at 100° C. to obtain a connected structure.
 (実施例2)
 実施例1の導電性粒子の外表面に、金めっきを行い、導電層(第1の導電層)の外表面上に第2の導電層(厚み30nm)を形成した。得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Example 2)
The outer surface of the conductive particles of Example 1 was plated with gold to form a second conductive layer (thickness: 30 nm) on the outer surface of the conductive layer (first conductive layer). A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (実施例3)
 実施例1の導電性粒子の外表面に、パラジウムめっきを行い、導電層(第1の導電層)の外表面上に第2の導電層(厚み30nm)を形成した。得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Example 3)
The outer surface of the conductive particles of Example 1 was plated with palladium to form a second conductive layer (thickness: 30 nm) on the outer surface of the conductive layer (first conductive layer). A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (実施例4)
 基材粒子Aを基材粒子Bに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 4)
Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that substrate particles A were changed to substrate particles B.
 (実施例5)
 基材粒子Aを基材粒子Cに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 5)
Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that substrate particles A were changed to substrate particles C.
 (実施例6)
 ニッケルめっき液(2A)を、硫酸ニッケル150g/L、クエン酸ナトリウム70g/L、ホウ酸30g/L及びジメチルアミンボラン10g/L、及びポリエチレングリコール(重量平均分子量1000)0.1g/Lを含むニッケルめっき液(pH10)に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 6)
Nickel plating solution (2A) containing nickel sulfate 150 g/L, sodium citrate 70 g/L, boric acid 30 g/L and dimethylamine borane 10 g/L, and polyethylene glycol (weight average molecular weight 1000) 0.1 g/L Conductive particles, a conductive material and a connection structure were obtained in the same manner as in Example 1, except that the nickel plating solution (pH 10) was used.
 (実施例7)
 基材粒子Aを基材粒子Dに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 7)
Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that substrate particles A were changed to substrate particles D.
 (実施例8)
 ニッケルめっき液(2A)を、硫酸ニッケル150g/L、クエン酸ナトリウム70g/L、ホウ酸30g/L、次亜リン酸ナトリウム30g/L、及びポリエチレングリコール(重量平均分子量1000)10g/Lを含むニッケルめっき液(pH10)に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 8)
Nickel plating solution (2A) containing nickel sulfate 150 g/L, sodium citrate 70 g/L, boric acid 30 g/L, sodium hypophosphite 30 g/L, and polyethylene glycol (weight average molecular weight 1000) 10 g/L Conductive particles, a conductive material and a connection structure were obtained in the same manner as in Example 1, except that the nickel plating solution (pH 10) was used.
 (実施例9)
 硫酸ニッケル150g/L、クエン酸ナトリウム70g/L、ホウ酸30g/L及び次亜リン酸ナトリウム30g/Lを含む第1の導電層形成用ニッケルめっき液(1B)を用意した。さらに、硫酸ニッケル150g/L、クエン酸ナトリウム70g/L、ホウ酸30g/L、ジメチルアミンボラン10g/L、及びポリエチレングリコール(重量平均分子量1000)1g/Lを含む第2の導電層形成用ニッケルめっき液(pH10)(2B)を用意した。実施例1の懸濁液(1A)を60℃にて撹拌しながら、上記第1の導電層形成用ニッケルめっき液(1B)を徐々に滴下し、無電解ニッケルめっきを行った。その後、pHが7.0に安定するまで撹拌し、水素の発泡が停止するのを確認して、粒界を含む結晶構造を有さず、かつ、外表面に突起を有さない第1の導電層(厚み50nm)が形成された導電性粒子、及び、該導電性粒子を含む無電解ニッケルめっき後の懸濁液(3B)を得た。懸濁液(3B)を60℃にて撹拌しながら、上記第2の導電層形成用ニッケルめっき液(2B)を徐々に滴下し、無電解ニッケルめっきを行い、第1の導電層の外表面上に、粒界を含む結晶構造を有し、かつ、外表面に突起を有する第2の導電層(厚み150nm)が形成された導電性粒子を得た。得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Example 9)
A first conductive layer-forming nickel plating solution (1B) containing 150 g/L of nickel sulfate, 70 g/L of sodium citrate, 30 g/L of boric acid, and 30 g/L of sodium hypophosphite was prepared. Furthermore, nickel for forming a second conductive layer containing 150 g/L of nickel sulfate, 70 g/L of sodium citrate, 30 g/L of boric acid, 10 g/L of dimethylamine borane, and 1 g/L of polyethylene glycol (weight average molecular weight: 1000) A plating solution (pH 10) (2B) was prepared. While stirring the suspension (1A) of Example 1 at 60° C., the first conductive layer-forming nickel plating solution (1B) was gradually added dropwise to perform electroless nickel plating. After that, the mixture was stirred until the pH was stabilized at 7.0, and after confirming that hydrogen bubbling had stopped, a first crystal structure containing no grain boundaries and no projections on the outer surface was obtained. A conductive particle having a conductive layer (thickness of 50 nm) and a suspension (3B) after electroless nickel plating containing the conductive particle were obtained. While stirring the suspension (3B) at 60° C., the nickel plating solution (2B) for forming the second conductive layer was gradually added dropwise to carry out electroless nickel plating to the outer surface of the first conductive layer. A conductive particle was obtained on which a second conductive layer (thickness: 150 nm) having a crystal structure including grain boundaries and projections on the outer surface was formed. A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (実施例10)
 (1)絶縁性粒子の作製
 4つ口セパラブルカバー、撹拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記のモノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで撹拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
(Example 10)
(1) Preparation of insulating particles After putting the following monomer composition into a 1000 mL separable flask equipped with a 4-neck separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe, the following monomer composition Distilled water was added so that the solid content of 10% by weight, and the mixture was stirred at 200 rpm and polymerized at 60° C. for 24 hours under a nitrogen atmosphere. The above monomer composition contains 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of p-styryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2′-azobis{2-[N-(2 -Carboxyethyl)amidino]propane} 1 mmol. After completion of the reaction, the product was lyophilized to obtain insulating particles (particle diameter: 360 nm) having phosphorus atoms derived from p-styryldiethylphosphine on their surfaces.
 (2)絶縁性粒子付き導電性粒子の作製
 上記(1)で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。実施例8で得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間撹拌した。3μmのメッシュフィルターでろ過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。得られた絶縁性粒子付き導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(2) Production of conductive particles with insulating particles The insulating particles obtained in (1) above were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles. 10 g of the conductive particles obtained in Example 8 were dispersed in 500 mL of distilled water, 1 g of a 10% by weight aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles with insulating particles. A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles with insulating particles were used.
 (比較例1)
 導電層の外表面に突起を形成しなかったこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Comparative example 1)
Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that projections were not formed on the outer surface of the conductive layer.
 (比較例2)
 実施例1の懸濁液(1A)に、金属ニッケルスラリー(平均粒子径150nm)1重量部を3分間かけて添加し、芯物質が付着された基材粒子Aを含む粒子混合懸濁液(1C)を得た。硫酸ニッケル150g/L、クエン酸ナトリウム70g/L、ホウ酸30g/L及びジメチルアミンボラン10g/Lを含むニッケルめっき液(pH7.0)を用意した。
(Comparative example 2)
To the suspension (1A) of Example 1, 1 part by weight of a metal nickel slurry (average particle size: 150 nm) was added over 3 minutes to obtain a particle mixed suspension ( 1C) was obtained. A nickel plating solution (pH 7.0) containing 150 g/L of nickel sulfate, 70 g/L of sodium citrate, 30 g/L of boric acid and 10 g/L of dimethylamine borane was prepared.
 懸濁液(1C)を60℃にて撹拌しながら、上記ニッケルめっき液を徐々に滴下し、無電解純ニッケルめっきを行った。その後、pHが7.0に安定するまで撹拌し、水素の発泡が停止するのを確認し、無電解純ニッケルめっき後の懸濁液(2C)を得た。 While stirring the suspension (1C) at 60°C, the nickel plating solution was gradually added dropwise to perform electroless pure nickel plating. After that, the mixture was stirred until the pH was stabilized at 7.0, and it was confirmed that the bubbling of hydrogen stopped to obtain a suspension (2C) after electroless pure nickel plating.
 その後、懸濁液(2C)をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、外表面に突起を有する導電層(厚み150nm)が形成された導電性粒子を得た。この導電性粒子は、突起の内側に芯物質を備える導電性粒子である。 After that, by filtering the suspension (2C), the particles were taken out, washed with water, and dried to obtain conductive particles having a conductive layer (thickness of 150 nm) having projections on the outer surface. This conductive particle is a conductive particle having a core substance inside the protrusions.
 (比較例3)
 硫酸ニッケル150g/L、酒石酸ナトリウム30g/L及び次亜リン酸ナトリウム10g/Lを含む導電層形成用ニッケルめっき液(1D)と、硫酸ニッケル150g/L、次亜リン酸ナトリウム150g/L及び水酸化ナトリウム80g/Lを含む突起形成用めっき液(2D)とを用意した。実施例1の懸濁液(1A)を60℃にて撹拌しながら、上記導電層形成用ニッケルめっき液(1D)を徐々に滴下し、無電解ニッケルめっきを行い、基材粒子の外表面上に導電層(厚み150nm)を形成し、同時に、上記導電層形成用ニッケルめっき液(1D)の自己分解を発生させた。その後、上記突起形成用めっき液(2D)を徐々に滴下し、導電層の外表面上に突起を形成した。pHが安定するまで撹拌し、水素の発泡が停止するのを確認し、無電解ニッケルめっき後の懸濁液(3D)を得た。その後、懸濁液(3D)をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、めっき液の分解により形成した突起を外表面に有する導電層(厚み150nm)が形成された導電性粒子を得た。得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Comparative Example 3)
A nickel plating solution (1D) for forming a conductive layer containing 150 g/L of nickel sulfate, 30 g/L of sodium tartrate and 10 g/L of sodium hypophosphite, 150 g/L of nickel sulfate, 150 g/L of sodium hypophosphite and water A protrusion-forming plating solution (2D) containing 80 g/L of sodium oxide was prepared. While stirring the suspension (1A) of Example 1 at 60 ° C., the nickel plating solution for forming a conductive layer (1D) is gradually added dropwise to perform electroless nickel plating, and on the outer surface of the substrate particles A conductive layer (thickness: 150 nm) was formed on the substrate, and at the same time, self-decomposition of the nickel plating solution (1D) for forming a conductive layer was generated. Thereafter, the protrusion-forming plating solution (2D) was gradually dropped to form protrusions on the outer surface of the conductive layer. The mixture was stirred until the pH was stabilized, and after confirming that hydrogen bubbling had stopped, a suspension (3D) after electroless nickel plating was obtained. After that, by filtering the suspension (3D), the particles are taken out, washed with water, and dried to form a conductive layer (thickness 150 nm) having protrusions formed by decomposition of the plating solution on the outer surface. We obtained the chromogenic particles. A conductive material and a connection structure were obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (評価)
 (1)導電性粒子の粒子径、第1の導電層及び第2の導電層の厚み、突起の高さ
 得られた導電性粒子について、導電性粒子の粒子径、第1の導電層及び第2の導電層の厚み、及び突起の高さを、上述した方法で測定し、平均を算出した。
(evaluation)
(1) Particle diameter of conductive particles, thickness of first conductive layer and second conductive layer, height of protrusion The thickness of the conductive layer of No. 2 and the height of the protrusions were measured by the method described above, and the average was calculated.
 (2)導電層Xの有無及び突起の基部を粒界の一端とする粒界の傾斜角度θ
 得られた導電性粒子について、透過型電子顕微鏡(TEM)を用いて、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層(導電層X)の有無を観察した。また、導電層Xの突起の基部を粒界の一端とする粒界3個について、傾斜角度θを上述した方法で測定し、平均を算出した。なお、実施例2,3においては、第1の導電層が、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層(導電層X)であった。実施例9においては、第2の導電層が、粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層(導電層X)であった。
(2) Presence or absence of the conductive layer X and the inclination angle θ of the grain boundary with the base of the protrusion as one end of the grain boundary
The obtained conductive particles were observed with a transmission electron microscope (TEM) for the presence or absence of a conductive layer (conductive layer X) having a crystal structure containing grain boundaries and having protrusions on the outer surface. In addition, the tilt angles θ of three grain boundaries, one end of which is the base of the protrusion of the conductive layer X, were measured by the method described above, and the average was calculated. In Examples 2 and 3, the first conductive layer was a conductive layer (conductive layer X) having a crystal structure including grain boundaries and having projections on the outer surface. In Example 9, the second conductive layer was a conductive layer (conductive layer X) having a crystal structure including grain boundaries and having projections on the outer surface.
 (3)突起の形成率
 得られた導電性粒子について、上述した方法で、導電層X(比較例2,3については第1の導電層)の外表面積100%中、突起がある部分の外表面積(突起の形成率)を求めた。
(3) Formation rate of projections The obtained conductive particles were subjected to the above-described method, and out of 100% of the external surface area of the conductive layer X (the first conductive layer for Comparative Examples 2 and 3), The surface area (protrusion formation rate) was determined.
 (4)20%K値
 導電性粒子の20%K値を、25℃の条件で、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
(4) 20% K value The 20% K value of the conductive particles was measured at 25°C by the method described above using a microcompression tester (Fischer Scope H-100).
 (5)導電層の割れ
 得られた接続構造体において、透過型電子顕微鏡(TEM)を用いて、導電性粒子の導電層(第1の導電層及び第2の導電層)に割れがあるか否かを評価した。導電層の割れを、下記の基準で判定した。
(5) Cracking of conductive layer In the obtained connection structure, using a transmission electron microscope (TEM), whether there is a crack in the conductive layer (first conductive layer and second conductive layer) of the conductive particles. evaluated whether or not Cracking of the conductive layer was determined according to the following criteria.
 [導電層の割れの判定基準]
 ○○:導電層の割れが生じた導電性粒子の個数の割合が、30%未満
 〇:導電層の割れが生じた導電性粒子の個数の割合が、30%以上60%未満
 ×:導電層の割れが生じた導電性粒子の個数の割合が、60%以上
[Criteria for Cracking of Conductive Layer]
○○: The percentage of the number of conductive particles with cracks in the conductive layer is less than 30%. ○: The percentage of the number of conductive particles with cracks in the conductive layer is 30% or more and less than 60%. ×: Conductive layer The percentage of the number of conductive particles with cracks is 60% or more
 (6)接続信頼性
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続信頼性を下記の基準で判定した。
(6) Connection Reliability The connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-probe method. An average value of connection resistance was calculated. From the relationship of voltage=current×resistance, the connection resistance can be obtained by measuring the voltage when a constant current flows. Connection reliability was judged according to the following criteria.
 [接続信頼性の判定基準]
 ○○:接続抵抗の平均値が2.0Ω以下
 ○:接続抵抗の平均値が2.0Ωを超え5.0Ω以下
 △:接続抵抗の平均値が5.0Ωを超え10.0Ω以下
 ×:接続抵抗の平均値が10.0Ωを超える
[Connection Reliability Judgment Criteria]
○○: Average connection resistance is 2.0 Ω or less ○: Average connection resistance is over 2.0 Ω and 5.0 Ω or less △: Average connection resistance is over 5.0 Ω and 10.0 Ω or less ×: Connection The average value of resistance exceeds 10.0Ω
 結果を下記の表1~3に示す。 The results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、図6は、実施例1の導電性粒子の断面の透過型電子顕微鏡写真である。図7は、比較例2の導電性粒子の断面の透過型電子顕微鏡写真である。図8は、比較例3の導電性粒子の断面の透過型電子顕微鏡写真である。図6に示すように、実施例1~10の導電性粒子では、導電層における粒界が、導電層の厚み方向に配向し、かつ、粒界の他端が、粒界の一端と導電性粒子の中心とを結んだ直線と、導電層の内表面との交点より突起の内側に位置するように、導電層の突起がある部分に存在する粒界が、該直線に対して傾斜して配向していた。図7に示すように、比較例2の導電性粒子では、導電層における粒界は、芯物質と導電層との境界に沿って配向していた。図8に示すように、比較例3の導電性粒子では、導電層における粒界の方向は一様ではなく、導電層及び突起の内部に空隙が生じていた。 Note that FIG. 6 is a transmission electron micrograph of the cross section of the conductive particles of Example 1. 7 is a transmission electron micrograph of a cross section of the conductive particles of Comparative Example 2. FIG. 8 is a transmission electron micrograph of a cross section of the conductive particles of Comparative Example 3. FIG. As shown in FIG. 6, in the conductive particles of Examples 1 to 10, the grain boundary in the conductive layer is oriented in the thickness direction of the conductive layer, and the other end of the grain boundary is electrically conductive with one end of the grain boundary. A grain boundary existing in a portion of the conductive layer where the projection is located is inclined with respect to the straight line so as to be located inside the projection from the intersection of the straight line connecting the center of the grain and the inner surface of the conductive layer. was oriented. As shown in FIG. 7, in the conductive particles of Comparative Example 2, the grain boundaries in the conductive layer were oriented along the boundary between the core substance and the conductive layer. As shown in FIG. 8, in the conductive particles of Comparative Example 3, the directions of the grain boundaries in the conductive layer were not uniform, and voids were generated inside the conductive layer and the protrusions.
 1…導電性粒子
 2…基材粒子
 3…導電層
 3a…突起
 11…導電性粒子
 13…導電層
 13A…第1の導電層
 13B…第2の導電層
 13a,13Aa,13Ba…突起
 21…導電性粒子
 23…導電層
 23a…突起
 24…絶縁性物質
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
DESCRIPTION OF SYMBOLS 1... Conductive particle 2... Base material particle 3... Conductive layer 3a... Protrusion 11... Conductive particle 13... Conductive layer 13A... First conductive layer 13B... Second conductive layer 13a, 13Aa, 13Ba... Protrusion 21... Conductivity Particle 23 Conductive layer 23a Projection 24 Insulating substance 51 Connection structure 52 First connection target member 52a First electrode 53 Second connection target member 53a Second electrode 54 Connection Department

Claims (11)

  1.  基材粒子と、
     粒界を含む結晶構造を有し、かつ、外表面に突起を有する導電層とを備え、
     前記導電層が、前記基材粒子の外表面上に配置されており、
     前記導電層における前記粒界が、前記導電層の厚み方向に配向している、導電性粒子。
    substrate particles;
    A conductive layer having a crystal structure including grain boundaries and having protrusions on the outer surface,
    The conductive layer is disposed on the outer surface of the substrate particles,
    The conductive particles, wherein the grain boundaries in the conductive layer are oriented in the thickness direction of the conductive layer.
  2.  前記突起の内側に芯物質を備えない、請求項1に記載の導電性粒子。 The conductive particles according to claim 1, which do not have a core substance inside the protrusions.
  3.  前記導電層の前記突起がある部分に存在する粒界が、前記導電層の外表面側に位置する一端と、前記導電層の内表面側に位置する他端とを有し、
     前記粒界の前記他端が、前記粒界の前記一端と導電性粒子の中心とを結んだ直線と、前記導電層の内表面との交点よりも前記突起の内側に位置するように、前記粒界が、該直線に対して傾斜して配向している、請求項1又は2に記載の導電性粒子。
    a grain boundary existing in a portion of the conductive layer where the protrusion is located has one end located on the outer surface side of the conductive layer and the other end located on the inner surface side of the conductive layer;
    The other end of the grain boundary is located inside the protrusion from the intersection of the straight line connecting the one end of the grain boundary and the center of the conductive particle and the inner surface of the conductive layer. 3. Conductive particles according to claim 1 or 2, wherein grain boundaries are oriented obliquely with respect to said straight line.
  4.  前記導電層の外表面積100%中、前記突起がある部分の外表面積が3%以上である、請求項1~3のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 3, wherein the outer surface area of the portion having the protrusions is 3% or more in 100% of the outer surface area of the conductive layer.
  5.  25℃で20%圧縮したときの圧縮弾性率が、1000N/mm以上30000N/mm以下である、請求項1~4のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 4, which have a compression modulus of 1000 N/mm 2 or more and 30000 N/mm 2 or less when compressed by 20% at 25°C.
  6.  前記導電層が、錫、ニッケル、銅、パラジウム、又は金を含む、請求項1~5のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 5, wherein the conductive layer contains tin, nickel, copper, palladium, or gold.
  7.  前記導電層の外表面上に配置された絶縁性物質を備える、請求項1~6のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 6, comprising an insulating substance arranged on the outer surface of the conductive layer.
  8.  請求項1~7のいずれか1項に記載の導電性粒子の製造方法であって、
     前記基材粒子の外表面上に前記導電層を形成する工程を備え、
     前記基材粒子の外表面上に芯物質を配置せずに前記突起を形成する、導電性粒子の製造方法。
    A method for producing conductive particles according to any one of claims 1 to 7,
    A step of forming the conductive layer on the outer surface of the base particle,
    A method for producing conductive particles, wherein the protrusions are formed without arranging the core substance on the outer surface of the substrate particles.
  9.  めっき液の分解を発生させずに前記突起を形成する、請求項8に記載の導電性粒子の製造方法。 The method for producing conductive particles according to claim 8, wherein the protrusions are formed without causing decomposition of the plating solution.
  10.  請求項1~7のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles according to any one of claims 1 to 7 and a binder resin.
  11.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~7のいずれか1項に記載の導電性粒子を含み、
     前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている、接続構造体。
    a first connection target member having a first electrode on its surface;
    a second connection target member having a second electrode on its surface;
    A connecting portion that connects the first connection target member and the second connection target member,
    The material of the connection portion contains the conductive particles according to any one of claims 1 to 7,
    A connection structure, wherein the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2023/002209 2022-02-03 2023-01-25 Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure WO2023149294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015792 2022-02-03
JP2022015792 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149294A1 true WO2023149294A1 (en) 2023-08-10

Family

ID=87552239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002209 WO2023149294A1 (en) 2022-02-03 2023-01-25 Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure

Country Status (1)

Country Link
WO (1) WO2023149294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131801A (en) * 2002-10-10 2004-04-30 Nippon Chem Ind Co Ltd Conductive electroless plating powder and method for manufacturing the same
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
WO2018181546A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Conductive particle sorting method, circuit connection material, connection structure body and manufacturing method therefor, and conductive particle
JP2020057612A (en) * 2014-08-18 2020-04-09 積水化学工業株式会社 Conductive particle, conductive material, and connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131801A (en) * 2002-10-10 2004-04-30 Nippon Chem Ind Co Ltd Conductive electroless plating powder and method for manufacturing the same
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
JP2020057612A (en) * 2014-08-18 2020-04-09 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
WO2018181546A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Conductive particle sorting method, circuit connection material, connection structure body and manufacturing method therefor, and conductive particle

Similar Documents

Publication Publication Date Title
JP5719483B1 (en) Conductive particles, conductive materials, and connection structures
KR20130122730A (en) Conductive particles, anisotropic conductive material and connection structure
JP6668075B2 (en) Conductive particles, conductive material and connection structure
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP2017069191A (en) Conductive particle, conductive material and connection structure
JPWO2019194135A1 (en) Conductive particles with insulating particles, conductive materials and connecting structures
JP6267067B2 (en) Connection structure
JP2014026971A (en) Conductive particle, conductive material, and connection structure
WO2023149294A1 (en) Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure
JP7381547B2 (en) Conductive particles, conductive materials and connected structures
JP2016154139A (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
JP6200318B2 (en) Conductive particles, conductive materials, and connection structures
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
WO2023145664A1 (en) Conductive particles, conductive material, and connection structure
JP6457743B2 (en) Connection structure
JP7132112B2 (en) Conductive film and connection structure
JP7288487B2 (en) Conductive particles, method for producing conductive particles, conductive material and connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP7235611B2 (en) Conductive materials and connecting structures
JP7132274B2 (en) Conductive particles, conductive materials and connecting structures
WO2022260158A1 (en) Coated particles, resin composition, and connection structure
JP6333624B2 (en) Connection structure
JP6801984B2 (en) Conductive particles, conductive materials and connecting structures
KR20200140808A (en) Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023510352

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749610

Country of ref document: EP

Kind code of ref document: A1