WO2018181546A1 - Conductive particle sorting method, circuit connection material, connection structure body and manufacturing method therefor, and conductive particle - Google Patents

Conductive particle sorting method, circuit connection material, connection structure body and manufacturing method therefor, and conductive particle Download PDF

Info

Publication number
WO2018181546A1
WO2018181546A1 PCT/JP2018/012922 JP2018012922W WO2018181546A1 WO 2018181546 A1 WO2018181546 A1 WO 2018181546A1 JP 2018012922 W JP2018012922 W JP 2018012922W WO 2018181546 A1 WO2018181546 A1 WO 2018181546A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
connection
conductive particles
condition
conductive
Prior art date
Application number
PCT/JP2018/012922
Other languages
French (fr)
Japanese (ja)
Inventor
智樹 森尻
光晴 松沢
伊澤 弘行
田中 勝
松田 和也
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019510018A priority Critical patent/JP7341886B2/en
Priority to CN201880021662.3A priority patent/CN110494930B/en
Priority to KR1020197030922A priority patent/KR102596306B1/en
Publication of WO2018181546A1 publication Critical patent/WO2018181546A1/en
Priority to JP2022133658A priority patent/JP2022173198A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present disclosure relates to a method for selecting conductive particles, a circuit connection material, a connection structure and a manufacturing method thereof, and conductive particles.
  • a driving IC is mounted on a glass panel for liquid crystal and OLED (Organic Light-Emitting Diode) display.
  • the system can be broadly classified into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting.
  • COG Chip-on-Glass
  • COF Chip-on-Flex
  • the driving IC is directly bonded onto the glass panel using an anisotropic conductive adhesive containing conductive particles.
  • COF mounting a driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • Anisotropy here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.
  • An anisotropic conductive adhesive containing conductive particles may be formed in advance in a film shape, and such a film is referred to as an anisotropic conductive film.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • an electrode formed by laminating a plurality of Cu, Al, Ti and the like on a glass panel, and a composite multilayer electrode further formed with ITO or IZO on the outermost surface have been developed. It is necessary to obtain a stable connection resistance for an electrode using such a material having high flatness and high hardness such as Ti.
  • Patent Document 1 discloses a method for producing conductive fine particles which have base material fine particles and a conductive film formed on the surface thereof, and the conductive film has protrusions protruding on the surface. According to this document, conductive fine particles having a conductive film having protrusions are considered to have excellent conductive reliability.
  • Patent Document 2 discloses conductive particles having substrate particles and a nickel-boron conductive layer provided on the surface thereof. According to this document, since the nickel-boron conductive layer has an appropriate hardness, the oxide film on the surface of the electrode and the conductive particles can be sufficiently eliminated when the member to be connected between the electrodes, and the connection resistance is reduced. It is supposed to be possible.
  • Patent Document 3 discloses conductive particles having resin particles, an electroless metal plating layer covering the surface thereof, and a metal sputter layer excluding Au forming the outermost layer. According to this document, by coating the surface of the resin particles with electroless metal plating, the adhesion with the surface of the resin particles is improved, and by using the outermost layer as a metal sputter layer, good connection reliability can be obtained. It is said that.
  • the conductive particles used in the manufacturing process of the display or the anisotropic conductive film including the conductive particles panel manufacturers have selected and used a variety of materials suitable for the electrode surface material.
  • titanium oxide is formed on the outermost surface of a circuit used for organic EL displays and the like, titanium oxide is formed on the outermost surface, so that conductive particles having a harder plating layer than conventional ones are used.
  • the conductive particles pass through the outermost non-conductive film and come into contact with the conductor portion inside the electrode, thereby realizing low resistance.
  • the conductive particles improved by such a physical technique are applied to, for example, an electrode of an ITO film, there is a problem that the conductive particles before the improvement are less versatile, for example, the resistance may be lower. there were.
  • the electrode circuit of the liquid crystal display and the organic EL display is not uniform.
  • an oxide-based transparent conductive film ITO, IZO, IGZO, IGO, ZnO, etc.
  • an electrode material mainly composed of a metal such as titanium, chromium, aluminum, or tantalum is mainly used.
  • the electrode surface is coated with an organic material such as acrylic resin or an inorganic material such as SiNx or SiOx for the purpose of protecting the electrode portion or providing high reliability.
  • electrode circuits other than the display substrate there are FPC (Flexible Printed Circuit), IC (Integrated Circuit), etc., and various metals such as gold, copper, nickel and the like are used for these electrodes.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a method for selecting conductive particles having sufficiently high versatility for circuit electrodes included in circuit members to be connected. Another object of the present disclosure is to provide conductive particles, a circuit connection material using the same, a connection structure, and a manufacturing method thereof.
  • the present disclosure relates to a method for sorting conductive particles.
  • the screening method includes a step of determining whether or not the metal constituting the outermost layer of the conductive particles satisfies the following first condition, and determines whether or not the conductive particles satisfy the following second condition A conductive particle satisfying both the first condition and the second condition is determined to be good.
  • First condition electric conductivity at 20 ° C. of 40 ⁇ 10 6 S / m or less
  • Second condition volume resistivity when load 2 kN is applied is 15 m ⁇ cm or less
  • the second condition is particularly useful for selecting conductive particles that can achieve good connection resistance and have high versatility.
  • the load of 2 kN is presumed to be a state in which the conductive particles are hardly flat. Therefore, it is considered that the resistance value on the surface of the conductive particles can be detected with higher sensitivity than when the load is large.
  • connection portion In an actual connection portion, conductive particles having different flatness ratios are mixed between a pair of facing electrodes due to variations in the particle diameter of the conductive particles or fine irregularities on the electrode surface. That is, some of these conductive particles are not flattened. As described above, even if the conductive particles selected by the method according to the present disclosure have a small flatness, the contribution to the reduction in resistance of the connection portion is large, and a good connection resistance as a whole can be obtained. On the other hand, the conductive particles that do not satisfy one of the first and second conditions have a small contribution to the reduction of the resistance of the connection portion if they are slightly flat. Note that “opposing” in the present specification means that a pair of members are facing each other.
  • a method for selecting conductive particles having sufficiently high versatility for circuit electrodes included in circuit members to be connected Moreover, according to this indication, a conductive particle, a circuit connection material using the same, a connection structure, and a manufacturing method thereof are provided.
  • FIG. 1A is a schematic cross-sectional view showing an enlarged connection portion of a connection structure manufactured using conductive particles selected by the method according to the present disclosure
  • FIG. It is a schematic cross section which expands and shows the connection part of the connection structure manufactured using the electrically-conductive particle which does not satisfy
  • FIG. 2 is a graph showing an example of the measurement result of the volume resistivity.
  • FIG. 3A to FIG. 3C are cross-sectional views schematically showing an example of a method for manufacturing a connection structure.
  • First condition electric conductivity at 20 ° C. of 40 ⁇ 10 6 S / m or less
  • Second condition volume resistivity when load 2 kN is applied is 15 m ⁇ cm or less
  • FIG. 1A is a schematic cross-sectional view showing an enlarged connection portion of a connection structure manufactured using conductive particles selected by the method according to the present embodiment.
  • the conductive particles 1 (conductive particles 1a and 1b) shown in the figure satisfy both the first and second conditions.
  • FIG. 1B is a schematic cross-sectional view showing an enlarged connection portion of a connection structure manufactured using conductive particles 2 (2a, 2b) that do not satisfy one of the first and second conditions. is there.
  • the thickness of the arrow indicates the ease of current flow.
  • the electrical conductivity of the outermost metal layer according to the first condition can be measured using, for example, a conductivity meter (device name: SIGMATEST, manufactured by Nippon Felster Co., Ltd.).
  • a conductivity meter device name: SIGMATEST, manufactured by Nippon Felster Co., Ltd.
  • the element constituting the outermost layer may be analyzed and the electrical conductivity may be specified from the type of the element.
  • the first condition (electrical conductivity at 20 ° C. of the metal layer) may be set to 1 ⁇ 10 6 to 40 ⁇ 10 6 S / m. It may be 10 6 to 40 ⁇ 10 6 S / m.
  • the volume resistivity according to the second condition can be measured using, for example, a powder resistance measurement system (device name: PD51, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Specifically, 2.5 g of conductive particles are charged into a dedicated cell of the device, and the volume resistivity of the conductive particles when a load of 2 kN is applied using the device can be measured. Note that the amount of the conductive particles to be charged may be 0.5 g or more because it is sufficient that the bottom surface of the dedicated cell can be filled. Further, the measurement load can be arbitrarily changed.
  • FIG. 2 is a graph showing an example of the measurement result of the volume resistivity.
  • the results in FIG. 2 are measured every 2 kN from a load of 2 kN to 20 kN.
  • a volume resistivity of 2 kN is used as an index.
  • the second condition volume specific resistance when a load of 2 kN is applied
  • the conductive particles are not particularly limited as long as they have compression characteristics, and examples thereof include core-shell particles having a core particle made of a resin material and a metal layer covering the core particle.
  • the metal layer does not have to cover the entire surface of the core particle, and may be an embodiment in which a part of the surface of the core particle is covered with the metal layer.
  • the metal layer may have a single layer structure or a multilayer structure.
  • the particle size of the conductive particles is generally smaller than the minimum value of the distance between the electrodes of the connected circuit members.
  • the average particle diameter of the conductive particles is preferably larger than the variation in height.
  • the average particle diameter of the conductive particles is preferably 1 to 50 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 10 ⁇ m, and particularly preferably 2 to 6 ⁇ m.
  • “average particle diameter” means a value obtained by observation with a differential scanning electron microscope. That is, one particle is arbitrarily selected, and this is observed with a differential scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle.
  • the particle diameter of 50 arbitrarily selected particles is measured, and the average value thereof is taken to obtain the average particle diameter of the particles.
  • the volume resistivity of the conductive particles to be sorted when a load of 2 kN is applied is 15 m ⁇ cm or less.
  • the volume resistivity is preferably 0.1 to 10 m ⁇ cm, more preferably 0.1 to 7 0.5 m ⁇ cm, and more preferably 0.1 to 5 m ⁇ cm.
  • the compression elastic modulus (20% K value) of the conductive particles when 20% compression displacement is performed at 25 ° C. (20% compression) is preferably 0.5 to 15 GPa, more preferably 1.0 to 10 GPa.
  • the compression hardness K value is an index of the softness of the conductive particles.
  • the 20% K value of the conductive particles is determined by the following method using a Fischer scope H100C (manufactured by Fischer Instrument). One conductive particle spread on the slide glass is compressed at a speed of 0.33 mN / sec. Thus, a stress-strain curve is obtained, and a 20% K value is obtained from this curve.
  • the maximum test load in the compression test is set to 50 mN, for example.
  • the conductive particles in the present embodiment are core-shell type particles and include core particles. Because the conductive particles have core particles, the range of physical property design of the conductive particles themselves is greatly expanded, and the size uniformity of the conductive particles is improved compared to metal powders, etc. It becomes easy to optimize conductive particles.
  • the core particles include various plastic particles.
  • Plastic particles include, for example, acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene, polystyrene resins, polyester resins, polyurethane resins, polyamide resins, and epoxy resins. From at least one resin selected from the group consisting of resins, polyvinyl butyral resins, rosin resins, terpene resins, phenol resins, guanamine resins, melamine resins, oxazoline resins, carbodiimide resins, silicone resins, etc. What is formed is mentioned.
  • the plastic particles may be a composite of these resins and an inorganic material such as silica.
  • plastic particles from the viewpoint of ease of control of compression recovery rate and compression hardness K value, plastic particles made of a resin obtained by polymerizing one kind of polymerizable monomer having an ethylenically unsaturated group, Alternatively, plastic particles made of a resin obtained by copolymerizing two or more polymerizable monomers having an ethylenically unsaturated group can be used.
  • the average particle size of the plastic particles is preferably 1 to 50 ⁇ m. From the viewpoint of high-density mounting, the average particle size of the plastic particles is more preferably 1 to 20 ⁇ m. In addition, when the unevenness of the electrode surface is uneven, the average particle diameter of the plastic particles is more preferably 2 to 10 ⁇ m from the viewpoint of maintaining a stable connection state.
  • the outermost layer of the conductive particles is composed of a metal layer made of a metal having an electric conductivity at 20 ° C. of 40 ⁇ 10 6 S / m or less.
  • the outermost layer here means a range within 50 nm from the surface of the metal layer.
  • the electric conductivity at 20 ° C. of the metal constituting the outermost layer is 40 ⁇ 10 6 S / m or less, preferably 1 ⁇ 10 6 to 40 ⁇ 10 6 S / m, more preferably 5 ⁇ 10 6 to 20 ⁇ 10 6 S / m.
  • the metal layer may be made of a single metal or may be made of an alloy.
  • the metal having an electric conductivity of 40 ⁇ 10 6 S / m or less include Al, Ti, Cr, Fe, Co, Ni, Zn, Zr, Mo, Pd, In, Sn, W, and Pt.
  • the metal layer is, for example, at least one metal selected from the group consisting of Ni, Ni / Au (a mode in which an Au layer is provided on the Ni layer, the same applies hereinafter), Ni / Pd, Ni / W, Cu, and NiB. Preferably it is formed from.
  • the metal layer is formed by a general method such as plating, vapor deposition, or sputtering, and may be a thin film.
  • a metal layer when forming a metal layer by plating with respect to a plastic particle, it is preferable that a metal layer contains Ni, Pd, or W from a viewpoint of the plating property with respect to a plastic. Furthermore, it is preferable to eliminate the resin between the electrode and the particles at the time of pressure bonding, and a lower resistance can be obtained, so that the metal layer preferably contains Ni. In addition to being excellent in resin exclusion at the time of press bonding, Ni is superior in plating and corrosion resistance compared to Au, Cu and Ag, which have high electrical conductivity, and also in terms of supply stability and price. There are advantages.
  • the thickness of the metal layer is preferably 10 to 1000 nm, more preferably 20 to 500 nm, and still more preferably 50 to 250 nm from the viewpoint of achieving a balance between conductivity and price.
  • Conductive particles are formed by attaching an insulating material layer (eg, organic film) or insulating fine particles (eg, organic fine particles or inorganic fine particles) to the outside of the metal layer from the viewpoint of improving insulation between adjacent electrodes.
  • You may have an adhesion layer.
  • the thickness of the adhesion layer is preferably about 50 to 1000 nm.
  • the thicknesses of the metal layer and the adhesion layer can be measured by, for example, a scanning electron microscope (SEM), a transmission electron microscope (TEM), an optical microscope, or the like.
  • the metal layer may have protrusions on the surface. By having protrusions on the metal layer, it is possible to eliminate the resin at the time of crimping, to increase the number of contact points with the electrode, and to further contact the inside of the electrode with the conductive particles. Resistance can be achieved.
  • the circuit connection material is used for bonding circuit members together and electrically connecting circuit electrodes (for example, connection terminals) included in each circuit member.
  • the circuit connecting material includes an adhesive component that is cured by light or heat, and conductive particles dispersed in the adhesive component, and the conductive particles satisfy both the first and second conditions. .
  • the circuit connection material is prepared by dispersing conductive particles in the adhesive component.
  • the paste-like adhesive composition may be used as it is, or an anisotropic conductive film obtained by forming this into a film may be used.
  • the blending amount of the conductive particles is 0.1 to 30 volumes when the total volume of the circuit connecting material is 100 parts by volume from the viewpoint of balancing the conductivity between the counter electrodes and the insulation between the adjacent electrodes in a balanced manner. Part, preferably 0.5 to 15 parts by volume, more preferably 1 to 7.5 parts by volume.
  • the compounding amount of the adhesive component is a circuit connecting material from the viewpoint of maintaining the gap between the electrodes at the time of circuit connection and after connection, and ensuring the strength and elasticity necessary for providing excellent connection reliability.
  • the total mass is 100 parts by mass, it is preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, and still more preferably 30 to 70 parts by mass.
  • the adhesive component is not particularly limited.
  • a composition containing an epoxy resin and an epoxy resin latent curing agent hereinafter referred to as “first composition”
  • first composition a composition containing an epoxy resin and an epoxy resin latent curing agent
  • second composition a composition containing a curing agent that generates water
  • the epoxy resin contained in the first composition is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol.
  • Examples thereof include F novolac type epoxy resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, and aliphatic chain epoxy resins. These epoxy resins may be halogenated or hydrogenated. Two or more of these epoxy resins may be used in combination.
  • the latent curing agent contained in the first composition is not particularly limited as long as it can cure the epoxy resin.
  • latent curing agents include anionic polymerizable catalyst-type curing agents and cationic polymerizable agents. Catalyst-type curing agents, polyaddition-type curing agents, and the like. These can be used alone or as a mixture of two or more. Of these, anionic or cationic polymerizable catalyst-type curing agents are preferred because they are excellent in rapid curability and do not require chemical equivalent considerations.
  • anionic or cationic polymerizable catalyst-type curing agent examples include imidazole curing agent, hydrazide curing agent, boron trifluoride-amine complex, sulfonium salt, amine imide, diaminomaleonitrile, melamine and its derivatives, polyamine salt, dicyandiamide These modifications can also be used.
  • the polyaddition type curing agent examples include polyamines, polymercaptans, polyphenols, and acid anhydrides.
  • the epoxy resin is cured by heating at a medium temperature of about 160 ° C. to 200 ° C. for several tens of seconds to several hours. For this reason, pot life (pot life) can be made relatively long.
  • the cationic polymerizable catalyst-type curing agent for example, photosensitive onium salts (such as aromatic diazonium salts and aromatic sulfonium salts) that cure the epoxy resin by energy ray irradiation are preferable.
  • photosensitive onium salts such as aromatic diazonium salts and aromatic sulfonium salts
  • the blending amount of the latent curing agent contained in the first composition is preferably 20 to 80 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the film forming material to be blended if necessary, and preferably 30 to 70 parts by mass. Part by mass is more preferable.
  • the radical polymerizable substance contained in the second composition is a substance having a functional group that is polymerized by radicals.
  • examples of such radically polymerizable substances include acrylate (including corresponding methacrylates; the same shall apply hereinafter) compounds, acryloxy (including corresponding methacryloxy; the same shall apply hereinafter) compounds, maleimide compounds, citraconic imide resins, nadiimide resins, and the like. It is done.
  • the radically polymerizable substance may be used in a monomer or oligomer state, and the monomer and oligomer may be used in combination.
  • the acrylate compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, 2-hydroxy-1,3- Diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate , Tris (acryloyloxyethyl) isocyanurate, urethane acrylate and the like.
  • the acrylate compound preferably has at least one substituent selected from the group consisting of a dicyclopentenyl group, a tricyclodecanyl group, and a triazine ring.
  • a compound described in International Publication No. 2009/063827 can be preferably used. These are used individually by 1 type or in combination of 2 or more types.
  • radical polymerizable substance having a phosphate ester structure represented by the following formula (I) it is preferable to use a radical polymerizable substance having a phosphate ester structure represented by the following formula (I) in combination with the radical polymerizable substance.
  • a radical polymerizable substance having a phosphate ester structure represented by the following formula (I) since the adhesive strength to the surface of an inorganic material such as metal is improved, it is suitable for bonding circuit electrodes.
  • n an integer of 1 to 3.
  • a radical polymerizable substance having a phosphate ester structure can be obtained by reacting anhydrous phosphoric acid with 2-hydroxyethyl (meth) acrylate.
  • Specific examples of the radical polymerizable substance having a phosphate structure include mono (2-methacryloyloxyethyl) acid phosphate, di (2-methacryloyloxyethyl) acid phosphate, and the like. These can be used alone or in admixture of two or more.
  • the blending amount of the radically polymerizable substance having a phosphate ester structure represented by the above formula (I) is 0.01 to 50 with respect to 100 parts by mass in total of the radically polymerizable substance and the film forming material to be blended if necessary.
  • the amount is preferably part by mass, and more preferably 0.5 to 5 parts by mass.
  • the above radical polymerizable substance can be used in combination with allyl acrylate.
  • the compounding amount of allyl acrylate is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the radical polymerizable substance and the film forming material to be compounded as necessary. More preferable is 5 parts by mass.
  • the curing agent that generates a free radical by heating which is contained in the second composition, is a curing agent that decomposes by heating to generate a free radical.
  • a curing agent examples include peroxides and azo compounds.
  • Such a curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of high reactivity and improvement in pot life, organic peroxides having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less are preferred. An organic peroxide having a temperature of 60 ° C. or higher and a half-life of 1 minute is 170 ° C. or lower is more preferable.
  • the amount of the curing agent is 2 to 10 parts by mass with respect to a total of 100 parts by mass of the radical polymerizable substance and the film-forming material to be blended as necessary.
  • the amount is preferably 4 to 8 parts by mass. Thereby, sufficient reaction rate can be obtained.
  • the compounding amount of the curing agent is 0.05 to 20 parts by mass with respect to 100 parts by mass in total of the radical polymerizable substance and the film forming material to be blended as necessary.
  • the amount is preferably 0.1 to 10 parts by mass.
  • curing agents that generate free radicals upon heating contained in the second composition are diacyl peroxide, peroxydicarbonate, peroxyester peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide. Etc. Further, from the viewpoint of suppressing the corrosion of the circuit electrode, a curing agent having a concentration of chlorine ions and organic acid of 5000 ppm or less is preferable, and a curing agent with less organic acid generated after thermal decomposition is more preferable. Specific examples of such curing agents include peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like, and curing agents selected from peroxyesters that provide high reactivity are more preferable. In addition, the said hardening
  • Peroxyesters include cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, and t-hexyl.
  • curing agents can be used alone or in admixture of two or more, and further, a decomposition accelerator, a decomposition inhibitor and the like may be mixed and used. Further, these curing agents may be coated with a polyurethane-based or polyester-based polymer substance to form microcapsules. A microencapsulated curing agent is preferred because the pot life is extended.
  • a film forming material may be added as necessary.
  • Film-forming material means that when a liquid material is solidified and the composition composition is made into a film shape, it is easy to handle the film in a normal state (normal temperature and normal pressure), and does not easily tear, break or stick. Mechanical properties and the like are imparted to the film.
  • the film forming material include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin and the like.
  • a phenoxy resin is preferable because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
  • the phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol.
  • the phenoxy resin is prepared by reacting, for example, 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in a non-reactive solvent at a temperature of 40 to 120 ° C. in the presence of a catalyst such as an alkali metal hydroxide. Can be obtained.
  • bifunctional epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, biphenyl diglycidyl ether, methyl substituted biphenyl diglycidyl ether, and the like.
  • Bifunctional phenols have two phenolic hydroxyl groups.
  • examples of the bifunctional phenols include hydroquinones, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, bisphenol fluorene, methyl-substituted bisphenol fluorene, bisphenols such as dihydroxybiphenyl and methyl-substituted dihydroxybiphenyl.
  • the phenoxy resin may be modified (for example, epoxy-modified) with a radical polymerizable functional group or other reactive compound.
  • the blending amount of the film forming material is preferably 10 to 90 parts by mass, and more preferably 20 to 60 parts by mass when the total mass of the circuit connecting material is 100 parts by mass.
  • the circuit connection material of this embodiment may further contain a polymer or copolymer containing at least one of acrylic acid, acrylic acid ester, methacrylic acid ester, and acrylonitrile as a monomer component.
  • the circuit connection material since it is excellent in stress relaxation, it is preferable that the circuit connection material includes a glycidyl acrylate-containing copolymer and / or a copolymer acrylic rubber containing glycidyl methacrylate.
  • the weight average molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive composition.
  • the circuit connection material of the present embodiment further includes fine rubber particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins, melamine resins, isocyanates. Etc. can also be contained.
  • the rubber fine particles have an average particle size not more than twice the average particle size of the conductive particles to be blended, and the storage elastic modulus at room temperature (25 ° C.) of the conductive particles and the adhesive composition at room temperature. It is preferable that it is less than 1/2 of the rate.
  • the material of the rubber fine particles is silicone, acrylic emulsion, SBR, NBR or polybutadiene rubber, it is preferable to use them alone or in combination of two or more. These three-dimensionally crosslinked rubber fine particles are excellent in solvent resistance and are easily dispersed in the adhesive composition.
  • the filler can improve the connection reliability of the electrical characteristics between the circuit electrodes.
  • the filler for example, those having an average particle size of 1 ⁇ 2 or less of the average particle size of the conductive particles can be suitably used.
  • grains which do not have electroconductivity if it is below the average particle diameter of the particle
  • the blending amount of the filler is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the adhesive composition. When the blending amount is 60 parts by mass or less, there is a tendency that the effect of improving the connection reliability can be obtained more sufficiently, and when it is 5 parts by mass or more, there is a tendency that the effect of adding the filler can be sufficiently obtained. .
  • a compound containing an amino group, a vinyl group, an acryloyl group, an epoxy group or an isocyanate group is preferable because the adhesiveness is improved.
  • the circuit connection material melts and flows at the time of connection to obtain the connection of the opposing circuit electrodes, and then hardens to maintain the connection.
  • the fluidity of the circuit connection material is an important factor. As an index indicating this, for example, the following can be cited. That is, when a circuit connection material of 5 mm ⁇ 5 mm with a thickness of 35 ⁇ m is sandwiched between two glass plates of 15 mm ⁇ 15 mm with a thickness of 0.7 mm, and heating and pressurization are performed under conditions of 170 ° C., 2 MPa, 10 seconds
  • the value of fluidity (B) / (A) expressed using the area (A) of the main surface of the circuit connecting material before heating and pressing and the area (B) of the main surface after heating and pressing is 1.
  • It is preferably from 3 to 3.0, more preferably from 1.5 to 2.5. If it is 1.3 or more, the fluidity is suitable, and it tends to be easy to obtain a good connection, and if it is 3.0 or less, bubbles tend not to be generated and the reliability tends to be excellent.
  • the elastic modulus at 40 ° C. after curing of the circuit connecting material is preferably 100 to 3000 MPa, and more preferably 500 to 2000 MPa.
  • the elastic modulus of the circuit connection material after curing can be measured using, for example, a dynamic viscoelasticity measuring device (DVE, DMA, etc.).
  • the circuit connection material of this embodiment is COG connection (Chip on Glass), FOB (Flex on Board) connection, FOG (Flex on Glass) connection, FOF (Flex on Flex) connection, FOP (Flex on Polymer) connection, COP. It is suitably used for (Chip on Polymer) connection, COF (Chip on Flex) connection, and the like.
  • COG connection is, for example, a method of connecting an IC to an organic EL panel or an LCD panel, and a circuit electrode formed on the IC and a circuit electrode formed on a glass substrate constituting the organic EL panel or LCD panel.
  • the FOB connection refers to a connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on a printed wiring board, typified by TCP (Tape Carrier Package), COF, and FPC.
  • the FOG connection refers to a connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on a glass substrate constituting an organic EL panel or LCD panel, as typified by TCP, COF, and FPC.
  • the FOF connection refers to a connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on the flexible substrate, typified by TCP, COF, and FPC, for example.
  • FOP connection refers to connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on a polymer substrate constituting an organic EL panel or LCD panel.
  • COP connection refers to connection between a circuit electrode formed on an IC and a circuit electrode formed on a plastic substrate.
  • COF connection refers to connection between a circuit electrode formed on an IC and a circuit electrode formed on a flexible substrate.
  • the circuit connection structure of this embodiment includes a first circuit member having a first circuit electrode, a second circuit member having a second circuit electrode, a first circuit member, and a second circuit member. And a connecting portion made of a cured product of the above-described circuit connecting material.
  • circuit electrode materials include Ti, Al, Mo, Co, Cu, Cr, Sn, Zn, Ga, In, Ni, Au, Ag, V, Sb, Bi, Re, Ta, Nb, W or the like can be used.
  • the thickness of the circuit electrode is preferably 100 to 5000 nm, and more preferably 100 to 2500 nm, from the viewpoint of balancing connection resistance and price. Further, the lower limit can be set to 500 nm.
  • the circuit connection structure of the present embodiment includes a first circuit member having a first circuit electrode and a second circuit member having a second circuit electrode, and the first circuit electrode and the second circuit electrode. Are arranged so as to face each other, a circuit connecting material is interposed between the first circuit electrode and the second circuit electrode which are arranged to face each other, and heated and pressurized to thereby form the first circuit electrode and the second circuit electrode. Are electrically connected to each other.
  • the circuit connection material of this embodiment is useful as a material for bonding electrical circuits.
  • examples of the circuit member include chip parts such as a semiconductor chip, a resistor chip, and a capacitor chip, and a substrate such as a printed board.
  • These circuit members are usually provided with a large number (in some cases a single electrode) of the above-mentioned circuit electrodes.
  • the circuit electrodes arranged to face each other can be electrically connected to each other. Connecting. At this time, the circuit electrodes arranged opposite to each other are electrically connected through conductive particles contained in the circuit connection material, while insulation between adjacent circuit electrodes is maintained.
  • the circuit connection material of this embodiment exhibits anisotropic conductivity.
  • FIGS. 3 (a) to 3 (c) An embodiment of a method of manufacturing a circuit connection structure will be described with reference to FIGS. 3 (a) to 3 (c).
  • 3A is a process cross-sectional view before connecting circuit members
  • FIG. 3B is a process cross-sectional view when connecting circuit members
  • FIG. It is process sectional drawing after connecting.
  • a circuit member 20 having a circuit electrode 21a and a circuit board 21b provided on an organic EL panel 21, and a circuit member 30 having a circuit electrode 31a provided on a substrate 31 are provided.
  • molded by the film form is mounted on the circuit electrode 21a.
  • the substrate 31 on which the circuit electrode 31a is provided is aligned on the circuit connection material 5 while positioning the circuit electrode 21a and the circuit electrode 31a so as to face each other.
  • the circuit connection material 5 is interposed between the circuit electrode 21a and the circuit electrode 31a.
  • the circuit electrodes 21a and 31a have a structure (not shown) in which a plurality of electrodes are arranged in the depth direction. Since the circuit connection material 5 is in the form of a film, it is easy to handle. For this reason, the circuit connection material 5 can be easily interposed between the circuit electrode 21a and the circuit electrode 31a, and the connection work between the circuit member 20 and the circuit member 30 can be facilitated.
  • the circuit connection material 5 is pressed in the direction of the arrow A in FIG. 3B through the organic EL panel 21 and the substrate 31 while being heated to perform a curing process.
  • a circuit connection structure 50 in which the circuit members 20 and 30 are connected to each other via the cured product 5a of the circuit connection material as shown in FIG. 3C is obtained.
  • a method for the curing treatment one or both of heating and light irradiation can be employed depending on the adhesive composition to be used.
  • Conductive Particles Eleven types of conductive particles A to K shown in Table 1 below were prepared. Each of these conductive particles is a core-shell particle composed of a core made of plastic particles and a metal layer (nickel layer) covering the core particle. The electrical conductivity of nickel is 14.5 ⁇ 10 6 S / m. Of the conductive particles A to K, the conductive particles A to E and the conductive particles H and J satisfy both the first and second conditions.
  • phenoxy resin product name: PKHC, manufactured by Union Carbide Co., Ltd., weight average molecular weight 5000
  • connection structure (electrode outermost surface: titanium)
  • An anisotropic conductive film with a PET film was cut into a predetermined size (width 1.5 mm ⁇ length 3 cm).
  • the surface on which the anisotropic conductive film is formed is transferred from the outermost surface onto a glass substrate (thickness 0.7 mm) coated with titanium (film thickness 50 nm) and aluminum (film thickness 250 nm) in this order. did.
  • the transfer conditions were 70 ° C. and 1 MPa for 2 seconds.
  • a flexible circuit board (FPC) having 600 tin-plated copper circuits with a pitch of 50 ⁇ m and a thickness of 8 ⁇ m was temporarily fixed on the anisotropic conductive film. Temporary fixing was performed at 24 ° C. and 0.5 MPa for 1 second. Next, this is installed in the main pressure bonding apparatus, and a 200 ⁇ m-thick silicone rubber sheet is used as a cushioning material. From the FPC side, heat and pressure are applied with a heat tool at 170 ° C. and 3 MPa for 6 seconds to connect over a width of 1.5 mm. did. Thereby, a connection structure was obtained.
  • FPC flexible circuit board
  • connection structure electrode outermost surface: ITO
  • connection structure (electrode outermost surface: IZO) Instead of the glass substrate coated in order of titanium and aluminum from the outermost surface, a glass substrate coated in the order of IZO (film thickness of 100 nm), Cr (film thickness of 50 nm) and aluminum (film thickness of 200 nm) from the outermost surface is used.
  • IZO glass substrate coated in the order of IZO (film thickness of 100 nm), Cr (film thickness of 50 nm) and aluminum (film thickness of 200 nm) from the outermost surface is used.
  • a connection structure was obtained in the same manner as described above except that
  • connection resistance of the obtained two types of connection structures was measured as follows.
  • the resistance value between adjacent circuits of the FPC including the connection part of the connection structure was measured with a multimeter (device name: TR6845, manufactured by Advantest Corporation).
  • 40 resistances between adjacent circuits were measured to obtain an average value, and this was used as a connection resistance.
  • Table 3 shows the results.
  • a method for selecting conductive particles having sufficiently high versatility for circuit electrodes included in circuit members to be connected Moreover, according to this indication, a conductive particle, a circuit connection material using the same, a connection structure, and a manufacturing method thereof are provided.

Abstract

The present disclosure relates to a conductive particle sorting method. The sorting method comprises: a step for determining whether a metal that constitutes an outermost layer of a conductive particle satisfies the following first condition; and a step for determining whether the conductive particle satisfies the following second condition. A conductive particle that satisfies both the first condition and the second condition is determined to be good. First Condition: electrical conductivity at 20°C is 40×106 S/m or less. Second Condition: volume specific resistance during application of a 2 kN load is 15 mΩcm or less.

Description

導電粒子の選別方法、回路接続材料、接続構造体及びその製造方法、並びに導電粒子Selection method of conductive particles, circuit connection material, connection structure and manufacturing method thereof, and conductive particles
 本開示は導電粒子の選別方法、回路接続材料、接続構造体及びその製造方法、並びに導電粒子に関する。 The present disclosure relates to a method for selecting conductive particles, a circuit connection material, a connection structure and a manufacturing method thereof, and conductive particles.
 液晶及びOLED(Organic Light-Emitting Diode)表示用ガラスパネルには駆動用ICが実装されている。その方式は、COG(Chip-on-Glass)実装とCOF(Chip-on-Flex)実装の二種類に大別することができる。COG実装では、導電粒子を含む異方性導電接着剤を用いて駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに駆動用ICを接合し、導電粒子を含む異方性導電接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。導電粒子を含む異方性導電接着剤は予めフィルム状に形成されていてもよく、かかるフィルムは異方導電性フィルムと称される。 A driving IC is mounted on a glass panel for liquid crystal and OLED (Organic Light-Emitting Diode) display. The system can be broadly classified into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In the COG mounting, the driving IC is directly bonded onto the glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. Anisotropy here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction. An anisotropic conductive adhesive containing conductive particles may be formed in advance in a film shape, and such a film is referred to as an anisotropic conductive film.
 これまでは、ガラスパネル上の配線はITO(Indium Tin Oxide)配線が主流であったが、生産性又は平滑性を改善する目的でIZO(Indium Zinc Oxide)に置き換わりつつある。更に近年、ガラスパネル上にCu、Al、Tiなどを複数積層して形成された電極、並びに、最表面にITO又はIZOを更に形成した複合多層電極などが開発されている。このような平坦性が高く、Tiなどの高硬度な材料を用いた電極に対して、安定した接続抵抗を得る必要がある。 Until now, ITO (Indium Tin Oxide) wiring has been the mainstream wiring on glass panels, but it is being replaced by IZO (Indium Zinc Oxide) for the purpose of improving productivity or smoothness. In recent years, an electrode formed by laminating a plurality of Cu, Al, Ti and the like on a glass panel, and a composite multilayer electrode further formed with ITO or IZO on the outermost surface have been developed. It is necessary to obtain a stable connection resistance for an electrode using such a material having high flatness and high hardness such as Ti.
 特許文献1は、基材微粒子と、その表面に形成された導電性膜とを有し、この導電性膜が表面に隆起した突起を有する導電性微粒子の製造方法を開示している。この文献によれば、導電性膜が突起を有する導電性微粒子は導電信頼性に優れるとされている。 Patent Document 1 discloses a method for producing conductive fine particles which have base material fine particles and a conductive film formed on the surface thereof, and the conductive film has protrusions protruding on the surface. According to this document, conductive fine particles having a conductive film having protrusions are considered to have excellent conductive reliability.
 特許文献2は、基材粒子と、その表面に設けられたニッケル-ボロン導電層とを有する導電性粒子を開示している。この文献によれば、ニッケル-ボロン導電層は適度な硬さを有するので、電極間の接続対象部材の際に、電極及び導電性粒子の表面の酸化被膜を十分に排除でき、接続抵抗を低くすることができるとされている。 Patent Document 2 discloses conductive particles having substrate particles and a nickel-boron conductive layer provided on the surface thereof. According to this document, since the nickel-boron conductive layer has an appropriate hardness, the oxide film on the surface of the electrode and the conductive particles can be sufficiently eliminated when the member to be connected between the electrodes, and the connection resistance is reduced. It is supposed to be possible.
 特許文献3は、樹脂粒子と、その表面を被覆する無電解金属めっき層と、最外層を形成するAuを除く金属スパッタ層とを有する導電性粒子を開示している。この文献によれば、樹脂粒子表面に無電解金属めっきを被覆することにより、樹脂粒子表面との密着性を向上させ、最外層を金属スパッタ層とすることにより、良好な接続信頼性が得られるとされている。 Patent Document 3 discloses conductive particles having resin particles, an electroless metal plating layer covering the surface thereof, and a metal sputter layer excluding Au forming the outermost layer. According to this document, by coating the surface of the resin particles with electroless metal plating, the adhesion with the surface of the resin particles is improved, and by using the outermost layer as a metal sputter layer, good connection reliability can be obtained. It is said that.
特許第4563110号公報Japanese Patent No. 4563110 特開2011-243455公報JP 2011-243455 A 特開2012-164454公報JP 2012-164454 A
 ところで、従来、ディスプレイの製造過程で使用される導電粒子又はこれを含む異方導電性フィルムについて、パネルメーカーは電極表面の素材に適したものを多品種の中から選択して使用している。例えば、有機ELディスプレイ等に使用されている、チタンを表面に有する回路は酸化チタンが最表面に形成され不導体化しているため、従来のものに比べて硬いめっき層を有する導電粒子が採用される。これにより、圧着時に導電粒子が最表面の不導体膜を貫通して電極内部の導体部分と接触し、低抵抗が実現される。しかし、このように物理的な手法で改良した導電粒子を例えばITO膜の電極に対して適用すると、改良前の導電粒子の方が低抵抗を示す場合があるなど、汎用性に欠けるという問題があった。 By the way, conventionally, regarding the conductive particles used in the manufacturing process of the display or the anisotropic conductive film including the conductive particles, panel manufacturers have selected and used a variety of materials suitable for the electrode surface material. For example, since titanium oxide is formed on the outermost surface of a circuit used for organic EL displays and the like, titanium oxide is formed on the outermost surface, so that conductive particles having a harder plating layer than conventional ones are used. The Thereby, at the time of pressure bonding, the conductive particles pass through the outermost non-conductive film and come into contact with the conductor portion inside the electrode, thereby realizing low resistance. However, when the conductive particles improved by such a physical technique are applied to, for example, an electrode of an ITO film, there is a problem that the conductive particles before the improvement are less versatile, for example, the resistance may be lower. there were.
 最近、ディスプレイ関連製品の急速なコモディティ化に伴い、パネルメーカー間の競争が激化している。パネルメーカーの中には、コスト競争力を向上させるため、異方導電性フィルムの品種統一を図る取り組みをしているメーカーがある。しかし、以下の理由から、異方導電性フィルムの品種統一が難しいというのが実情である。 Recently, with the rapid commoditization of display related products, competition among panel manufacturers is intensifying. Some panel manufacturers are trying to unify anisotropic conductive film varieties in order to improve cost competitiveness. However, for the following reasons, it is difficult to unify the types of anisotropic conductive films.
 まず、液晶ディスプレイ及び有機ELディスプレイの電極回路は一様ではない。例えば、液晶ディスプレイでは、酸化物系の透明導電膜(ITO、IZO、IGZO、IGO、ZnO等)が主に使用されている。一方、有機ELディスプレイでは、チタン、クロム、アルミ、タンタル等の金属を主成分にした電極材料が主に使用されている。また、電極部分の保護又は高信頼性を目的として、電極表面をアクリル樹脂などの有機材料、SiNx、SiOx等の無機材料でコーティングしている場合もある。更に、ディスプレイ基板以外の電極回路としては、FPC(Flexible Printed Circuit)、IC(Integrated Circuit)等が挙げられ、それらの電極には、金、銅、ニッケル等を多様な金属が使われている。 First, the electrode circuit of the liquid crystal display and the organic EL display is not uniform. For example, in an LCD, an oxide-based transparent conductive film (ITO, IZO, IGZO, IGO, ZnO, etc.) is mainly used. On the other hand, in an organic EL display, an electrode material mainly composed of a metal such as titanium, chromium, aluminum, or tantalum is mainly used. In some cases, the electrode surface is coated with an organic material such as acrylic resin or an inorganic material such as SiNx or SiOx for the purpose of protecting the electrode portion or providing high reliability. Furthermore, as electrode circuits other than the display substrate, there are FPC (Flexible Printed Circuit), IC (Integrated Circuit), etc., and various metals such as gold, copper, nickel and the like are used for these electrodes.
 本開示は上記実情に鑑みてなされたものであり、接続すべき回路部材が有する回路電極に対して十分に汎用性の高い導電粒子を選別する方法を提供することを目的とする。また、本開示は導電粒子、これを用いた回路接続材料、並びに接続構造体及びその製造方法を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a method for selecting conductive particles having sufficiently high versatility for circuit electrodes included in circuit members to be connected. Another object of the present disclosure is to provide conductive particles, a circuit connection material using the same, a connection structure, and a manufacturing method thereof.
 本開示は導電粒子の選別方法に関する。この選別方法は、導電粒子の最外層を構成する金属が以下の第一の条件を満たすか否かを判定する工程と、当該導電粒子が以下の第二の条件を満たすか否かを判定する工程とを含み、第一の条件及び第二の条件の両方を満たす導電粒子を良と判定する。
 第一の条件:20℃における電気伝導率が40×10S/m以下
 第二の条件:荷重2kN印加時の体積固有抵抗が15mΩcm以下
The present disclosure relates to a method for sorting conductive particles. The screening method includes a step of determining whether or not the metal constituting the outermost layer of the conductive particles satisfies the following first condition, and determines whether or not the conductive particles satisfy the following second condition A conductive particle satisfying both the first condition and the second condition is determined to be good.
First condition: electric conductivity at 20 ° C. of 40 × 10 6 S / m or less Second condition: volume resistivity when load 2 kN is applied is 15 mΩcm or less
 第一の条件及び第二の条件の両方を満たす導電粒子を採用することで、種々の表面組成の回路電極(ITO等の酸化物系の透明導電膜及びTi等の金属製電極など)に対し、導電粒子と電極表面の接触界面の抵抗を下げることが可能となり、良好な接続抵抗を得ることができる。本発明者らは、特に第二の条件が良好な接続抵抗を達成でき且つ汎用性が高い導電粒子を選別する上で有用であることを見出した。荷重2kNとは、導電粒子がほとんど扁平していない状態と推察される。そのため、荷重が大きい場合と比べ、導電粒子表面の抵抗値を感度よく検出することができると考えられる。また、実際の接続部においては、導電粒子の粒径のバラツキ又は電極表面の微細な凹凸により、対向する一対の電極の間には、異なる扁平率の導電粒子が混在している。つまり、これらの導電粒子のなかにはほとんど扁平していないものも含まれている。本開示に係る方法によって選別された導電粒子は、上記のとおり、扁平がわずかであっても、接続部の低抵抗化への寄与が大きく、全体として良好な接続抵抗を得ることができる。これに対し、第一及び第二の条件のいずれか一方を満たさない導電粒子は、わずかな扁平では接続部の低抵抗化への寄与が少ない。なお、本明細書でいう「対向」は、一対の部材同士が対面していることを意味する。 By adopting conductive particles that satisfy both the first condition and the second condition, for circuit electrodes with various surface compositions (such as oxide-based transparent conductive films such as ITO and metal electrodes such as Ti) The resistance of the contact interface between the conductive particles and the electrode surface can be lowered, and a good connection resistance can be obtained. The present inventors have found that the second condition is particularly useful for selecting conductive particles that can achieve good connection resistance and have high versatility. The load of 2 kN is presumed to be a state in which the conductive particles are hardly flat. Therefore, it is considered that the resistance value on the surface of the conductive particles can be detected with higher sensitivity than when the load is large. In an actual connection portion, conductive particles having different flatness ratios are mixed between a pair of facing electrodes due to variations in the particle diameter of the conductive particles or fine irregularities on the electrode surface. That is, some of these conductive particles are not flattened. As described above, even if the conductive particles selected by the method according to the present disclosure have a small flatness, the contribution to the reduction in resistance of the connection portion is large, and a good connection resistance as a whole can be obtained. On the other hand, the conductive particles that do not satisfy one of the first and second conditions have a small contribution to the reduction of the resistance of the connection portion if they are slightly flat. Note that “opposing” in the present specification means that a pair of members are facing each other.
 本開示によれば、接続すべき回路部材が有する回路電極に対して十分に汎用性の高い導電粒子を選別する方法が提供される。また、本開示によれば、導電粒子、これを用いた回路接続材料、並びに接続構造体及びその製造方法が提供される。 According to the present disclosure, there is provided a method for selecting conductive particles having sufficiently high versatility for circuit electrodes included in circuit members to be connected. Moreover, according to this indication, a conductive particle, a circuit connection material using the same, a connection structure, and a manufacturing method thereof are provided.
図1(a)は本開示に係る方法によって選別された導電粒子を使用して製造された接続構造体の接続部を拡大して示す模式断面図であり、図1(b)は第一及び第二の条件のいずれか一方を満たさない導電粒子を使用して製造された接続構造体の接続部を拡大して示す模式断面図である。FIG. 1A is a schematic cross-sectional view showing an enlarged connection portion of a connection structure manufactured using conductive particles selected by the method according to the present disclosure, and FIG. It is a schematic cross section which expands and shows the connection part of the connection structure manufactured using the electrically-conductive particle which does not satisfy | fill either one of 2nd conditions. 図2は体積固有抵抗の測定結果の一例を示すグラフである。FIG. 2 is a graph showing an example of the measurement result of the volume resistivity. 図3(a)~図3(c)は接続構造体の製造方法の一例を模式的に示す断面図である。FIG. 3A to FIG. 3C are cross-sectional views schematically showing an example of a method for manufacturing a connection structure.
 以下、本開示の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail. However, the present invention is not limited to the following embodiments.
<導電粒子の選別方法>
 本実施形態に係る導電粒子の選別方法は、導電粒子の最外層を構成する金属が以下の第一の条件を満たすか否かを判定する工程と、当該導電粒子が以下の第二の条件を満たすか否かを判定する工程とを含み、第一の条件及び第二の条件の両方を満たす導電粒子を良と判定する。
 第一の条件:20℃における電気伝導率が40×10S/m以下
 第二の条件:荷重2kN印加時の体積固有抵抗が15mΩcm以下
<Selection method of conductive particles>
In the method for sorting conductive particles according to the present embodiment, the step of determining whether or not the metal constituting the outermost layer of the conductive particles satisfies the following first condition, and the conductive particles satisfy the following second condition: A step of determining whether or not the condition is satisfied, and determining that the conductive particles satisfying both the first condition and the second condition are good.
First condition: electric conductivity at 20 ° C. of 40 × 10 6 S / m or less Second condition: volume resistivity when load 2 kN is applied is 15 mΩcm or less
 第一の条件及び第二の条件の両方を満たす導電粒子を採用することで、種々の表面組成の回路電極(ITO等の酸化物系の透明導電膜及びTi等の金属製電極など)に対し、導電粒子と電極表面の接触界面の抵抗を下げることが可能となり、良好な接続抵抗を得ることができる。 By adopting conductive particles that satisfy both the first condition and the second condition, for circuit electrodes with various surface compositions (such as oxide-based transparent conductive films such as ITO and metal electrodes such as Ti) The resistance of the contact interface between the conductive particles and the electrode surface can be lowered, and a good connection resistance can be obtained.
 図1(a)は、本実施形態に係る方法によって選別された導電粒子を使用して製造された接続構造体の接続部を拡大して示す模式断面図である。同図に示す導電粒子1(導電粒子1a,1b)は第一及び第二の条件の両方を満たすものである。図1(b)は第一及び第二の条件のいずれか一方を満たさない導電粒子2(2a,2b)を使用して製造された接続構造体の接続部を拡大して示す模式断面図である。これらの図においては矢印の太さは電流の流れやすさを示す。 FIG. 1A is a schematic cross-sectional view showing an enlarged connection portion of a connection structure manufactured using conductive particles selected by the method according to the present embodiment. The conductive particles 1 ( conductive particles 1a and 1b) shown in the figure satisfy both the first and second conditions. FIG. 1B is a schematic cross-sectional view showing an enlarged connection portion of a connection structure manufactured using conductive particles 2 (2a, 2b) that do not satisfy one of the first and second conditions. is there. In these figures, the thickness of the arrow indicates the ease of current flow.
 図1(a)に示すように、接続構造体10の接続部においては、導電粒子1の粒径のバラツキにより、対向する一対の回路部材3,4がそれぞれ有する回路電極3a,4aの間には、異なる扁平率の導電粒子1が混在している。図1(a)に模式的に示したとおり、三つの導電粒子1a,1b,1aのうち、二つの導電粒子1a,1aはほとんど扁平していない。導電粒子1(導電粒子1a,1b)は、扁平がわずかな場合であっても、接続部の低抵抗化への寄与が大きいため、全体として良好な接続抵抗を得ることができる。これに対し、図1(b)に示す導電粒子2(2a,2b)は、わずかな扁平では接続部の低抵抗化への寄与が少ない。なお、ここでは導電粒子の粒径のバラツキに起因して扁平率が異なる導電粒子が混在する場合を例示したが、導電粒子の粒径が十分に均一であっても回路電極3a,4aの表面の凹凸によって導電粒子の扁平率の程度が変わり得る。 As shown in FIG. 1 (a), at the connection portion of the connection structure 10, due to the variation in the particle size of the conductive particles 1, between the circuit electrodes 3a and 4a included in the pair of circuit members 3 and 4 facing each other. Are mixed with conductive particles 1 having different flatness ratios. As schematically shown in FIG. 1A, among the three conductive particles 1a, 1b, 1a, the two conductive particles 1a, 1a are hardly flat. Even when the conductive particles 1 ( conductive particles 1a and 1b) are slightly flat, since the contribution to the reduction of the resistance of the connection portion is large, a good connection resistance as a whole can be obtained. On the other hand, the conductive particles 2 (2a, 2b) shown in FIG. 1 (b) have a small contribution to the reduction in resistance of the connection portion when they are slightly flat. Here, the case where conductive particles having different flatness ratios are mixed due to the variation in the particle size of the conductive particles is exemplified, but the surface of the circuit electrodes 3a and 4a is obtained even when the particle size of the conductive particles is sufficiently uniform. The degree of flatness of the conductive particles can vary depending on the unevenness.
 第一の条件に係る最外層の金属の電気伝導率は例えば導電率測定器(装置名:SIGMATEST、日本フェルスター株式会社製)を用いて測定することができる。しかしながら、導電粒子は一般的に微小であり、同装置で測定することは困難である。そのため、このような装置を用いて電気伝導率を実測する代わりに、最外層を構成する元素を分析し、その元素の種類から電気伝導率を特定してもよい。接続構造体の接続部における接続抵抗をより低くする観点から、第一の条件(金属層の20℃における電気伝導率)を1×10~40×10S/mとしてもよく、5×10~40×10S/mとしてもよい。 The electrical conductivity of the outermost metal layer according to the first condition can be measured using, for example, a conductivity meter (device name: SIGMATEST, manufactured by Nippon Felster Co., Ltd.). However, conductive particles are generally very small and are difficult to measure with the same apparatus. Therefore, instead of actually measuring the electrical conductivity using such an apparatus, the element constituting the outermost layer may be analyzed and the electrical conductivity may be specified from the type of the element. From the viewpoint of lowering the connection resistance at the connection portion of the connection structure, the first condition (electrical conductivity at 20 ° C. of the metal layer) may be set to 1 × 10 6 to 40 × 10 6 S / m. It may be 10 6 to 40 × 10 6 S / m.
 第二の条件に係る体積固有抵抗は例えば粉体抵抗測定システム(装置名:PD51、株式会社三菱化学アナリテック製)を用いて測定することができる。具体的には、上記装置の専用のセルに導電粒子を2.5g投入し、上記装置を使用して荷重2kNを印加した際の導電粒子の体積固有抵抗を測定することができる。なお、導電粒子の投入量は専用セルの底面が充填できればよいため、0.5g以上であればよい。また、測定荷重は任意で変更が可能である。 The volume resistivity according to the second condition can be measured using, for example, a powder resistance measurement system (device name: PD51, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Specifically, 2.5 g of conductive particles are charged into a dedicated cell of the device, and the volume resistivity of the conductive particles when a load of 2 kN is applied using the device can be measured. Note that the amount of the conductive particles to be charged may be 0.5 g or more because it is sufficient that the bottom surface of the dedicated cell can be filled. Further, the measurement load can be arbitrarily changed.
 図2は体積固有抵抗の測定結果の一例を示すグラフである。図2の結果は、荷重2kN~20kNまで、2kN毎に測定したものである。本実施形態においては、2kNの体積固有抵抗を指標としている。接続構造体の接続部における接続抵抗をより低くし且つより汎用性の高い回路接続材料を得る観点から、第二の条件(荷重2kN印加時の体積固有抵抗)を10mΩcm以下としてもよく、7.5mΩcm以下又5mΩcm以下としてもよい。 FIG. 2 is a graph showing an example of the measurement result of the volume resistivity. The results in FIG. 2 are measured every 2 kN from a load of 2 kN to 20 kN. In the present embodiment, a volume resistivity of 2 kN is used as an index. From the viewpoint of lowering the connection resistance at the connection portion of the connection structure and obtaining a more versatile circuit connection material, the second condition (volume specific resistance when a load of 2 kN is applied) may be 10 mΩcm or less. It may be 5 mΩcm or less or 5 mΩcm or less.
<導電粒子>
 導電粒子としては、圧縮特性を有するものであれば特に限定されないが、例えば、樹脂材料からなるコア粒子と、これを被覆する金属層とを有するコアシェル粒子が挙げられる。金属層は、コア粒子の表面を全て被覆している必要はなく、コア粒子の表面の一部が金属層で被覆された態様であってもよい。また、金属層は単層構造であっても多層構造であってもよい。
<Conductive particles>
The conductive particles are not particularly limited as long as they have compression characteristics, and examples thereof include core-shell particles having a core particle made of a resin material and a metal layer covering the core particle. The metal layer does not have to cover the entire surface of the core particle, and may be an embodiment in which a part of the surface of the core particle is covered with the metal layer. The metal layer may have a single layer structure or a multilayer structure.
 導電粒子の粒径は、一般に、接続される回路部材の電極の間隔の最小値よりも小さい。接続される電極の高さにバラツキがある場合、導電粒子の平均粒径は、高さのバラツキよりも大きいことが好ましい。かかる観点から、導電粒子の平均粒径は好ましくは1~50μmであり、より好ましくは1~20μmであり、更に好ましくは2~10μmであり、特に好ましくは2~6μmである。なお、本明細書でいう「平均粒径」は示差走査電子顕微鏡で観察して求めた値を意味する。すなわち、1個の粒子を任意に選択し、これを示差走査電子顕微鏡で観察してその最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。この方法で、任意に選択した粒子50個について粒径を測定し、その平均値をとることで、粒子の平均粒径を求める。 The particle size of the conductive particles is generally smaller than the minimum value of the distance between the electrodes of the connected circuit members. When there is variation in the height of the electrodes to be connected, the average particle diameter of the conductive particles is preferably larger than the variation in height. From this viewpoint, the average particle diameter of the conductive particles is preferably 1 to 50 μm, more preferably 1 to 20 μm, still more preferably 2 to 10 μm, and particularly preferably 2 to 6 μm. As used herein, “average particle diameter” means a value obtained by observation with a differential scanning electron microscope. That is, one particle is arbitrarily selected, and this is observed with a differential scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. By this method, the particle diameter of 50 arbitrarily selected particles is measured, and the average value thereof is taken to obtain the average particle diameter of the particles.
 選別されるべき導電粒子の荷重2kN印加時の体積固有抵抗は上述のとおり15mΩcm以下である。接続構造体の接続部における接続抵抗をより低くし且つより汎用性の高い回路接続材料を得る観点から、上記体積固有抵抗は好ましくは0.1~10mΩcmであり、より好ましくは0.1~7.5mΩcmであり、更に好ましくは0.1~5mΩcm以下である。 As described above, the volume resistivity of the conductive particles to be sorted when a load of 2 kN is applied is 15 mΩcm or less. From the viewpoint of lowering the connection resistance at the connection portion of the connection structure and obtaining a circuit connection material with higher versatility, the volume resistivity is preferably 0.1 to 10 mΩcm, more preferably 0.1 to 7 0.5 mΩcm, and more preferably 0.1 to 5 mΩcm.
 25℃において20%圧縮変位させたとき(20%圧縮時)の導電粒子の圧縮弾性率(20%K値)は好ましくは0.5~15GPaであり、より好ましくは1.0~10GPaである。圧縮硬さK値は導電粒子の柔らかさの指標であり、20%K値が上記範囲であることにより、対向する電極同士を接続する時に導電粒子が電極間で適度に扁平し、電極と粒子との接触面積を確保し易くなるため、接続信頼性を更に向上することができる傾向がある。 The compression elastic modulus (20% K value) of the conductive particles when 20% compression displacement is performed at 25 ° C. (20% compression) is preferably 0.5 to 15 GPa, more preferably 1.0 to 10 GPa. . The compression hardness K value is an index of the softness of the conductive particles. When the 20% K value is in the above range, the conductive particles are appropriately flattened between the electrodes when the electrodes facing each other are connected. As a result, it is easy to secure a contact area between the connection reliability and the connection reliability.
 導電粒子の20%K値は、フィッシャースコープH100C(フィッシャーインスツールメント製)を使用して、以下の方法で求められる。スライドガラス上に散布した導電粒子1個を0.33mN/秒の速度で圧縮する。これにより応力-歪曲線を得て、この曲線から20%K値を求める。具体的には、荷重F(N)、変位S(mm)、粒子の半径R(mm)、弾性率E(Pa)、及びポアソン比σとしたとき弾性球の圧縮式
 F=(21/2/3)×(S3/2)×(E×R1/2)/(1-σ)を用いて、下記式
 K=E/(1-σ)=(3/21/2)×F×(S-3/2)×(R-1/2)より求めることができる。更に、変形率X(%)、球の直径D(μm)とすると次式
 K=3000F/(D×X3/2)×10により任意の変形率におけるK値を求めることができる。変形率Xは、次式
 X=(S/D)×100により計算される。圧縮試験における最大試験荷重は、例えば50mNに設定される。
The 20% K value of the conductive particles is determined by the following method using a Fischer scope H100C (manufactured by Fischer Instrument). One conductive particle spread on the slide glass is compressed at a speed of 0.33 mN / sec. Thus, a stress-strain curve is obtained, and a 20% K value is obtained from this curve. Specifically, when the load F (N), the displacement S (mm), the particle radius R (mm), the elastic modulus E (Pa), and the Poisson's ratio σ, the compression formula of the elastic sphere F = (2 1 / 2/3) × (S 3/2 ) × (E × R 1/2) / (1-σ 2) using the following equation K = E / (1-σ 2) = (3/2 1 / 2 ) × F × (S −3/2 ) × (R −1/2 ). Further, assuming that the deformation rate X (%) and the sphere diameter D (μm), the K value at an arbitrary deformation rate can be obtained by the following equation: K = 3000F / (D 2 × X 3/2 ) × 10 6 . The deformation rate X is calculated by the following formula: X = (S / D) × 100. The maximum test load in the compression test is set to 50 mN, for example.
(コア粒子)
 本実施形態における導電粒子は、上述のとおり、コアシェルタイプの粒子であり、コア粒子を含む。導電粒子がコア粒子を有することで、導電粒子自体の物性設計の範囲が大幅に広がり、また、金属粉等と比べて導電粒子のサイズ均一性も向上するため、さまざまな部材同士の接続において、導電粒子を最適化しやすくなる。
(Core particles)
As described above, the conductive particles in the present embodiment are core-shell type particles and include core particles. Because the conductive particles have core particles, the range of physical property design of the conductive particles themselves is greatly expanded, and the size uniformity of the conductive particles is improved compared to metal powders, etc. It becomes easy to optimize conductive particles.
 コア粒子の具体例として、種々のプラスチック粒子が挙げられる。プラスチック粒子は、例えばポリメチルメタクリレート、ポリメチルアクリレート等のアクリル系樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリビニルブチラール系樹脂、ロジン系樹脂、テルペン系樹脂、フェノール系樹脂、グアナミン系樹脂、メラミン系樹脂、オキサゾリン系樹脂、カルボジイミド系樹脂、シリコーン系樹脂などからなる群より選ばれる少なくとも一種の樹脂から形成されるものが挙げられる。なお、プラスチック粒子としては、これらの樹脂とシリカ等の無機物とを複合化したものでもよい。 Specific examples of the core particles include various plastic particles. Plastic particles include, for example, acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene, polystyrene resins, polyester resins, polyurethane resins, polyamide resins, and epoxy resins. From at least one resin selected from the group consisting of resins, polyvinyl butyral resins, rosin resins, terpene resins, phenol resins, guanamine resins, melamine resins, oxazoline resins, carbodiimide resins, silicone resins, etc. What is formed is mentioned. The plastic particles may be a composite of these resins and an inorganic material such as silica.
 プラスチック粒子としては、圧縮回復率及び圧縮硬さK値の制御の容易さの観点から、エチレン性不飽和基を有する重合性単量体の一種類を重合させて得られる樹脂からなるプラスチック粒子、又は、エチレン性不飽和基を有する重合性単量体の二種類以上を共重合させて得られる樹脂からなるプラスチック粒子を用いることができる。エチレン性不飽和基を有する二種類以上の重合性単量体を共重合させて樹脂を得る場合、非架橋性単量体と架橋性単量体とを併用して、それらの共重合割合、種類を適宜調整することにより、プラスチック粒子の圧縮回復率及び圧縮硬さK値を容易に制御することができる。上記非架橋性単量体及び上記架橋性単量体としては、例えば、特開2004-165019号公報に記載される単量体を使用できる。 As plastic particles, from the viewpoint of ease of control of compression recovery rate and compression hardness K value, plastic particles made of a resin obtained by polymerizing one kind of polymerizable monomer having an ethylenically unsaturated group, Alternatively, plastic particles made of a resin obtained by copolymerizing two or more polymerizable monomers having an ethylenically unsaturated group can be used. When two or more kinds of polymerizable monomers having an ethylenically unsaturated group are copolymerized to obtain a resin, in combination with a non-crosslinkable monomer and a crosslinkable monomer, their copolymerization ratio, By appropriately adjusting the type, the compression recovery rate and the compression hardness K value of the plastic particles can be easily controlled. As the non-crosslinkable monomer and the crosslinkable monomer, for example, monomers described in JP-A No. 2004-165019 can be used.
 プラスチック粒子の平均粒径は1~50μmであることが好ましい。なお、高密度実装の観点からは、プラスチック粒子の平均粒径は1~20μmであることがより好ましい。また、電極表面の凹凸にバラツキがある場合に、より安定して接続状態を維持する観点からは、プラスチック粒子の平均粒径は2~10μmであることが更に好ましい。 The average particle size of the plastic particles is preferably 1 to 50 μm. From the viewpoint of high-density mounting, the average particle size of the plastic particles is more preferably 1 to 20 μm. In addition, when the unevenness of the electrode surface is uneven, the average particle diameter of the plastic particles is more preferably 2 to 10 μm from the viewpoint of maintaining a stable connection state.
(金属層)
 本実施形態においては、導電粒子の最外層は、20℃における電気伝導率が40×10S/m以下の金属からなる金属層で構成されている。かかる構成を採用することにより、良好な接続信頼性得ることができる。なお、ここでいう最外層とは金属層の表面から50nm以内の範囲を意味する。最外層を構成する金属の20℃における電気伝導率は40×10S/m以下であり、好ましくは1×10~40×10S/mであり、より好ましくは5×10~20×10S/mである。
(Metal layer)
In the present embodiment, the outermost layer of the conductive particles is composed of a metal layer made of a metal having an electric conductivity at 20 ° C. of 40 × 10 6 S / m or less. By adopting such a configuration, good connection reliability can be obtained. In addition, the outermost layer here means a range within 50 nm from the surface of the metal layer. The electric conductivity at 20 ° C. of the metal constituting the outermost layer is 40 × 10 6 S / m or less, preferably 1 × 10 6 to 40 × 10 6 S / m, more preferably 5 × 10 6 to 20 × 10 6 S / m.
 金属層は、単一の金属からなるものであってもよく、合金からなるものであってもよい。電気伝導率が40×10S/m以下の金属としては、Al、Ti、Cr、Fe、Co、Ni、Zn、Zr、Mo、Pd、In、Sn、W、Pt等が挙げられる。金属層は、例えば、Ni、Ni/Au(Ni層上にAu層を備えた態様。以下同じ。)、Ni/Pd、Ni/W、Cu、及びNiBからなる群より選ばれる少なくとも一種の金属から形成されることが好ましい。金属層は、めっき、蒸着、スパッタ等の一般的な方法により形成され、薄膜であってもよい。なお、プラスチック粒子に対してめっきによって金属層を形成する場合、プラスチックに対するめっき性の観点から、金属層はNi、Pd又はWを含むことが好ましい。更に、圧着時に電極と粒子間の樹脂の排除が効果的になり、より低抵抗が得られることから、金属層はNiを含むことが好ましい。Niは、圧着時の樹脂排除性に優れることに加え、電気伝導率が高いAu,Cu,Agに比較してめっき性及び耐腐食性に優れ、また供給の安定性及び価格の面でも優れるという利点がある。 The metal layer may be made of a single metal or may be made of an alloy. Examples of the metal having an electric conductivity of 40 × 10 6 S / m or less include Al, Ti, Cr, Fe, Co, Ni, Zn, Zr, Mo, Pd, In, Sn, W, and Pt. The metal layer is, for example, at least one metal selected from the group consisting of Ni, Ni / Au (a mode in which an Au layer is provided on the Ni layer, the same applies hereinafter), Ni / Pd, Ni / W, Cu, and NiB. Preferably it is formed from. The metal layer is formed by a general method such as plating, vapor deposition, or sputtering, and may be a thin film. In addition, when forming a metal layer by plating with respect to a plastic particle, it is preferable that a metal layer contains Ni, Pd, or W from a viewpoint of the plating property with respect to a plastic. Furthermore, it is preferable to eliminate the resin between the electrode and the particles at the time of pressure bonding, and a lower resistance can be obtained, so that the metal layer preferably contains Ni. In addition to being excellent in resin exclusion at the time of press bonding, Ni is superior in plating and corrosion resistance compared to Au, Cu and Ag, which have high electrical conductivity, and also in terms of supply stability and price. There are advantages.
 金属層の厚さは、導通性と価格とのバランスを図る観点から、好ましくは10~1000nmであり、より好ましくは20~500nmであり、更に好ましくは50~250nmである。 The thickness of the metal layer is preferably 10 to 1000 nm, more preferably 20 to 500 nm, and still more preferably 50 to 250 nm from the viewpoint of achieving a balance between conductivity and price.
 導電粒子は、隣接する電極間の絶縁性向上の観点から、金属層の外側に、絶縁性材料の層(例えば有機膜)、あるいは絶縁性微粒子(例えば有機微粒子又は無機微粒子)を付着させて形成される付着層を有してもよい。付着層の厚さは50~1000nm程度であることが好ましい。なお、付着層は第一及び第二の条件を満たしていることを確認された導電粒子に対して形成することが好ましい。金属層及び付着層の厚さは、例えば走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、光学顕微鏡等により測定することができる。更に、金属層は表面に突起が形成されていてもよい。金属層が突起を有することで、圧着時の樹脂排除が効果的になる、電極との接触点が増える、より電極の内部と導電粒子が接触することができるなど等の効果により、更なる低抵抗を達成できる。 Conductive particles are formed by attaching an insulating material layer (eg, organic film) or insulating fine particles (eg, organic fine particles or inorganic fine particles) to the outside of the metal layer from the viewpoint of improving insulation between adjacent electrodes. You may have an adhesion layer. The thickness of the adhesion layer is preferably about 50 to 1000 nm. In addition, it is preferable to form the adhesion layer with respect to the conductive particles that have been confirmed to satisfy the first and second conditions. The thicknesses of the metal layer and the adhesion layer can be measured by, for example, a scanning electron microscope (SEM), a transmission electron microscope (TEM), an optical microscope, or the like. Further, the metal layer may have protrusions on the surface. By having protrusions on the metal layer, it is possible to eliminate the resin at the time of crimping, to increase the number of contact points with the electrode, and to further contact the inside of the electrode with the conductive particles. Resistance can be achieved.
<回路接続材料>
 本実施形態に係る回路接続材料は、回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極(例えば、接続端子)同士を電気的に接続するために用いられるものである。この回路接続材料は、光又は熱により硬化する接着剤成分と、接着剤成分中に分散している導電粒子と、を含み、導電粒子は第一及び第二の条件を両方とも満たすものである。
<Circuit connection material>
The circuit connection material according to the present embodiment is used for bonding circuit members together and electrically connecting circuit electrodes (for example, connection terminals) included in each circuit member. The circuit connecting material includes an adhesive component that is cured by light or heat, and conductive particles dispersed in the adhesive component, and the conductive particles satisfy both the first and second conditions. .
 回路接続材料は、接着剤成分中に導電粒子を分散させることによって調製される。回路接続材料として、ペースト状の接着剤組成物をそのまま使用してもよいし、これをフィルム状に成形して得た異方導電性フィルムを使用してもよい。導電粒子の配合量は、対向電極間の導電性と隣接電極間の絶縁性とをバランスよく両立するという観点から、回路接続材料の全体積を100体積部としたとき、0.1~30体積部であることが好ましく、0.5~15体積部であることがより好ましく、1~7.5体積部であることが更に好ましい。 The circuit connection material is prepared by dispersing conductive particles in the adhesive component. As the circuit connection material, the paste-like adhesive composition may be used as it is, or an anisotropic conductive film obtained by forming this into a film may be used. The blending amount of the conductive particles is 0.1 to 30 volumes when the total volume of the circuit connecting material is 100 parts by volume from the viewpoint of balancing the conductivity between the counter electrodes and the insulation between the adjacent electrodes in a balanced manner. Part, preferably 0.5 to 15 parts by volume, more preferably 1 to 7.5 parts by volume.
 接着剤成分の配合量は、回路接続時、及び接続後に電極間のギャップを保持し、優れた接続信頼性を備えるために必要な強度、弾性率を確保し易くするという観点から、回路接続材料の全質量を100質量部としたとき、10~90質量部であることが好ましく、20~80質量部であることがより好ましく、30~70質量部であることが更に好ましい。 The compounding amount of the adhesive component is a circuit connecting material from the viewpoint of maintaining the gap between the electrodes at the time of circuit connection and after connection, and ensuring the strength and elasticity necessary for providing excellent connection reliability. When the total mass is 100 parts by mass, it is preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, and still more preferably 30 to 70 parts by mass.
 接着剤成分としては特に限定されないが、例えば、エポキシ樹脂とエポキシ樹脂の潜在性硬化剤とを含有する組成物(以下、「第1組成物」という。)、ラジカル重合性物質と加熱により遊離ラジカルを発生する硬化剤とを含有する組成物(以下、「第2組成物」)、又は第1組成物と第2組成物との混合組成物が好ましい。 The adhesive component is not particularly limited. For example, a composition containing an epoxy resin and an epoxy resin latent curing agent (hereinafter referred to as “first composition”), a radical polymerizable substance and a free radical by heating. A composition containing a curing agent that generates water (hereinafter, “second composition”), or a mixed composition of the first composition and the second composition is preferable.
 第1組成物が含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。これらのエポキシ樹脂は、2種以上を併用してもよい。 The epoxy resin contained in the first composition is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol. Examples thereof include F novolac type epoxy resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, and aliphatic chain epoxy resins. These epoxy resins may be halogenated or hydrogenated. Two or more of these epoxy resins may be used in combination.
 第1組成物が含有する潜在性硬化剤としては、エポキシ樹脂を硬化させることができるものであればよく、このような潜在性硬化剤としては、アニオン重合性の触媒型硬化剤、カチオン重合性の触媒型硬化剤、重付加型の硬化剤等が挙げられる。これらは、単独又は2種以上の混合物として使用できる。これらのうち、速硬化性に優れ、化学当量的な考慮が不要である点からは、アニオン又はカチオン重合性の触媒型硬化剤が好ましい。 The latent curing agent contained in the first composition is not particularly limited as long as it can cure the epoxy resin. Examples of such latent curing agents include anionic polymerizable catalyst-type curing agents and cationic polymerizable agents. Catalyst-type curing agents, polyaddition-type curing agents, and the like. These can be used alone or as a mixture of two or more. Of these, anionic or cationic polymerizable catalyst-type curing agents are preferred because they are excellent in rapid curability and do not require chemical equivalent considerations.
 アニオン又はカチオン重合性の触媒型硬化剤としては、イミダゾール系硬化剤、ヒドラジド系硬化剤、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、ジシアンジアミド等が挙げられ、これらの変成物も使用することができる。重付加型の硬化剤としては、ポリアミン類、ポリメルカプタン類、ポリフェノール類、酸無水物等が挙げられる。 Examples of the anionic or cationic polymerizable catalyst-type curing agent include imidazole curing agent, hydrazide curing agent, boron trifluoride-amine complex, sulfonium salt, amine imide, diaminomaleonitrile, melamine and its derivatives, polyamine salt, dicyandiamide These modifications can also be used. Examples of the polyaddition type curing agent include polyamines, polymercaptans, polyphenols, and acid anhydrides.
 アニオン重合性の触媒型硬化剤として第3級アミン類、イミダゾール類等を配合した場合、エポキシ樹脂は160℃~200℃程度の中温で数10秒~数時間程度の加熱により硬化する。このため、可使時間(ポットライフ)を比較的長くすることができる。カチオン重合性の触媒型硬化剤としては、例えば、エネルギー線照射によりエポキシ樹脂を硬化させる感光性オニウム塩(芳香族ジアゾニウム塩、芳香族スルホニウム塩等)が好ましい。また、エネルギー線照射以外に加熱によって活性化しエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩等がある。この種の硬化剤は、速硬化性という特徴を有することから好ましい。 When a tertiary amine, imidazole, or the like is blended as an anionically polymerizable catalyst-type curing agent, the epoxy resin is cured by heating at a medium temperature of about 160 ° C. to 200 ° C. for several tens of seconds to several hours. For this reason, pot life (pot life) can be made relatively long. As the cationic polymerizable catalyst-type curing agent, for example, photosensitive onium salts (such as aromatic diazonium salts and aromatic sulfonium salts) that cure the epoxy resin by energy ray irradiation are preferable. In addition to irradiation with energy rays, there are aliphatic sulfonium salts and the like that are activated by heating to cure the epoxy resin. This type of curing agent is preferable because it has a feature of fast curing.
 これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質、ニッケル、銅等の金属薄膜、ケイ酸カルシウム等の無機物などで被覆してマイクロカプセル化したものは、可使時間が延長できるため好ましい。第1組成物が含有する潜在性硬化剤の配合量は、エポキシ樹脂と必要により配合するフィルム形成材との合計100質量部に対して、20~80質量部であることが好ましく、30~70質量部がより好ましい。 When these latent hardeners are coated with polymer materials such as polyurethane and polyester, metal thin films such as nickel and copper, and inorganic materials such as calcium silicate, the pot life is extended. This is preferable because it is possible. The blending amount of the latent curing agent contained in the first composition is preferably 20 to 80 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the film forming material to be blended if necessary, and preferably 30 to 70 parts by mass. Part by mass is more preferable.
 第2組成物が含有するラジカル重合性物質は、ラジカルにより重合する官能基を有する物質である。このようなラジカル重合性物質としては、アクリレート(対応するメタクリレートも含む。以下同じ。)化合物、アクリロキシ(対応するメタクリロキシも含む。以下同じ。)化合物、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。ラジカル重合性物質は、モノマー又はオリゴマーの状態で用いてもよく、モノマーとオリゴマーとを併用することも可能である。上記アクリレート化合物の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート、ウレタンアクリレート等が挙げられる。これらは単独で又は2種以上を混合して用いることができる。また、必要によりハイドロキノン、メチルエーテルハイドロキノン類等の重合禁止剤を適宜用いてもよい。また更に、耐熱性の向上の観点から、アクリレート化合物がジシクロペンテニル基、トリシクロデカニル基及びトリアジン環からなる群より選ばれる少なくとも1種の置換基を有することが好ましい。上記アクリレート化合物以外のラジカル重合性物質は、例えば、国際公開第2009/063827号に記載の化合物を好適に使用することが可能である。これらは1種を単独で又は2種類以上を組み合わせて使用される。 The radical polymerizable substance contained in the second composition is a substance having a functional group that is polymerized by radicals. Examples of such radically polymerizable substances include acrylate (including corresponding methacrylates; the same shall apply hereinafter) compounds, acryloxy (including corresponding methacryloxy; the same shall apply hereinafter) compounds, maleimide compounds, citraconic imide resins, nadiimide resins, and the like. It is done. The radically polymerizable substance may be used in a monomer or oligomer state, and the monomer and oligomer may be used in combination. Specific examples of the acrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, 2-hydroxy-1,3- Diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate , Tris (acryloyloxyethyl) isocyanurate, urethane acrylate and the like. These can be used alone or in admixture of two or more. Moreover, you may use suitably polymerization inhibitors, such as hydroquinone and methyl ether hydroquinone, as needed. Furthermore, from the viewpoint of improving heat resistance, the acrylate compound preferably has at least one substituent selected from the group consisting of a dicyclopentenyl group, a tricyclodecanyl group, and a triazine ring. As the radical polymerizable substance other than the acrylate compound, for example, a compound described in International Publication No. 2009/063827 can be preferably used. These are used individually by 1 type or in combination of 2 or more types.
 また、上記ラジカル重合性物質に下記式(I)で示されるリン酸エステル構造を有するラジカル重合性物質を併用することが好ましい。この場合、金属等の無機物表面に対する接着強度が向上するため、回路電極同士の接着に好適である。 In addition, it is preferable to use a radical polymerizable substance having a phosphate ester structure represented by the following formula (I) in combination with the radical polymerizable substance. In this case, since the adhesive strength to the surface of an inorganic material such as metal is improved, it is suitable for bonding circuit electrodes.
Figure JPOXMLDOC01-appb-C000001
[式中、nは1~3の整数を示す。]
Figure JPOXMLDOC01-appb-C000001
[Wherein n represents an integer of 1 to 3. ]
 リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2-ヒドロキシエチル(メタ)アクリレートとを反応させることにより得られる。リン酸エステル構造を有するラジカル重合性物質として、具体的には、モノ(2-メタクリロイルオキシエチル)アシッドフォスフェート、ジ(2-メタクリロイルオキシエチル)アシッドフォスフェート等がある。これらは単独で又は2種以上を混合して使用できる。 A radical polymerizable substance having a phosphate ester structure can be obtained by reacting anhydrous phosphoric acid with 2-hydroxyethyl (meth) acrylate. Specific examples of the radical polymerizable substance having a phosphate structure include mono (2-methacryloyloxyethyl) acid phosphate, di (2-methacryloyloxyethyl) acid phosphate, and the like. These can be used alone or in admixture of two or more.
 上記式(I)で示されるリン酸エステル構造を有するラジカル重合性物質の配合量は、ラジカル重合性物質と必要により配合するフィルム形成材との合計100質量部に対して、0.01~50質量部であることが好ましく、0.5~5質量部がより好ましい。 The blending amount of the radically polymerizable substance having a phosphate ester structure represented by the above formula (I) is 0.01 to 50 with respect to 100 parts by mass in total of the radically polymerizable substance and the film forming material to be blended if necessary. The amount is preferably part by mass, and more preferably 0.5 to 5 parts by mass.
 上記ラジカル重合性物質は、アリルアクリレートと併用することもができる。この場合、アリルアクリレートの配合量は、ラジカル重合性物質と、必要により配合されるフィルム形成材との合計100質量部に対して、0.1~10質量部であることが好ましく、0.5~5質量部がより好ましい。 The above radical polymerizable substance can be used in combination with allyl acrylate. In this case, the compounding amount of allyl acrylate is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the radical polymerizable substance and the film forming material to be compounded as necessary. More preferable is 5 parts by mass.
 第2組成物が含有する、加熱により遊離ラジカルを発生する硬化剤とは、加熱により分解して遊離ラジカルを発生する硬化剤である。このような硬化剤としては、過酸化物、アゾ系化合物等が挙げられる。このような硬化剤は、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。高反応性及びポットライフの向上の観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が170℃以下の有機過酸化物がより好ましい。 The curing agent that generates a free radical by heating, which is contained in the second composition, is a curing agent that decomposes by heating to generate a free radical. Examples of such a curing agent include peroxides and azo compounds. Such a curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of high reactivity and improvement in pot life, organic peroxides having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less are preferred. An organic peroxide having a temperature of 60 ° C. or higher and a half-life of 1 minute is 170 ° C. or lower is more preferable.
 上記硬化剤の配合量は、接続時間を25秒以下とする場合、ラジカル重合性物質と必要により配合されるフィルム形成材との合計100質量部に対して、2~10質量部であることが好ましく、4~8質量部であることがより好ましい。これにより、十分な反応率を得ることができる。なお、接続時間を限定しない場合の硬化剤の配合量は、ラジカル重合性物質と必要により配合されるフィルム形成材との合計100質量部に対して、0.05~20質量部であることが好ましく、0.1~10質量部であることがより好ましい。 When the connection time is 25 seconds or less, the amount of the curing agent is 2 to 10 parts by mass with respect to a total of 100 parts by mass of the radical polymerizable substance and the film-forming material to be blended as necessary. The amount is preferably 4 to 8 parts by mass. Thereby, sufficient reaction rate can be obtained. When the connection time is not limited, the compounding amount of the curing agent is 0.05 to 20 parts by mass with respect to 100 parts by mass in total of the radical polymerizable substance and the film forming material to be blended as necessary. The amount is preferably 0.1 to 10 parts by mass.
 第2組成物が含有する、加熱により遊離ラジカルを発生する硬化剤の具体例としては、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルパーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。また、回路電極の腐食を抑えるという観点から、含有される塩素イオン及び有機酸の濃度が5000ppm以下である硬化剤が好ましく、更に、加熱分解後に発生する有機酸が少ない硬化剤がより好ましい。このような硬化剤の具体例としては、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられ、高反応性が得られるパーオキシエステルから選定された硬化剤がより好ましい。なお、上記硬化剤は、適宜混合して用いることができる。 Specific examples of curing agents that generate free radicals upon heating contained in the second composition are diacyl peroxide, peroxydicarbonate, peroxyester peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide. Etc. Further, from the viewpoint of suppressing the corrosion of the circuit electrode, a curing agent having a concentration of chlorine ions and organic acid of 5000 ppm or less is preferable, and a curing agent with less organic acid generated after thermal decomposition is more preferable. Specific examples of such curing agents include peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like, and curing agents selected from peroxyesters that provide high reactivity are more preferable. In addition, the said hardening | curing agent can be mixed and used suitably.
 パーオキシエステルとしては、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノデート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノネート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノネート、t-ヘキシルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート等が挙げられる。上記パーオキシエステル以外の加熱により遊離ラジカルを発生する硬化剤は、例えば、国際公開第2009/063827号に記載の化合物を好適に使用することが可能である。これらは1種を単独で又は2種類以上を組み合わせて使用される。 Peroxyesters include cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, and t-hexyl. Peroxyneodecanodate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethyl) Hexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanate , T-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, -Hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoyl par Oxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like. As the curing agent that generates free radicals by heating other than the peroxyester, for example, the compounds described in International Publication No. 2009/063827 can be suitably used. These are used individually by 1 type or in combination of 2 or more types.
 これらの硬化剤は、単独で又は2種以上を混合して使用することができ、更に分解促進剤、分解抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系又はポリエステル系の高分子物質等で被覆してマイクロカプセル化してもよい。マイクロカプセル化した硬化剤は、可使時間が延長されるために好ましい。 These curing agents can be used alone or in admixture of two or more, and further, a decomposition accelerator, a decomposition inhibitor and the like may be mixed and used. Further, these curing agents may be coated with a polyurethane-based or polyester-based polymer substance to form microcapsules. A microencapsulated curing agent is preferred because the pot life is extended.
 本実施形態の回路接続材料には、必要に応じて、フィルム形成材を添加して用いてもよい。フィルム形成材とは、液状物を固形化し構成組成物をフィルム形状とした場合に、通常の状態(常温常圧)でのフィルムの取扱いを容易とし、容易に裂けたり、割れたり、べたついたりしない機械的特性等をフィルムに付与するものである。フィルム形成材としては、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂等が挙げられる。これらの中でも、接着性、相溶性、耐熱性及び機械的強度に優れることからフェノキシ樹脂が好ましい。 In the circuit connection material of this embodiment, a film forming material may be added as necessary. Film-forming material means that when a liquid material is solidified and the composition composition is made into a film shape, it is easy to handle the film in a normal state (normal temperature and normal pressure), and does not easily tear, break or stick. Mechanical properties and the like are imparted to the film. Examples of the film forming material include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin and the like. Among these, a phenoxy resin is preferable because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
 フェノキシ樹脂は、2官能フェノール類とエピハロヒドリンを高分子化するまで反応させるか、又は2官能エポキシ樹脂と2官能フェノール類とを重付加させることにより得られる樹脂である。フェノキシ樹脂は、例えば2官能フェノール類1モルとエピハロヒドリン0.985~1.015モルとをアルカリ金属水酸化物等の触媒の存在下、非反応性溶媒中で40~120℃の温度で反応させることにより得ることができる。また、フェノキシ樹脂としては、樹脂の機械的特性及び熱的特性の観点からは、特に2官能性エポキシ樹脂と2官能性フェノール類の配合当量比をエポキシ基/フェノール水酸基=1/0.9~1/1.1とし、アルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分が50質量%以下の条件で50~200℃に加熱して重付加反応させて得たものが好ましい。フェノキシ樹脂は、単独で又は2種以上を混合して用いてもよい。 The phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol. The phenoxy resin is prepared by reacting, for example, 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in a non-reactive solvent at a temperature of 40 to 120 ° C. in the presence of a catalyst such as an alkali metal hydroxide. Can be obtained. In addition, as a phenoxy resin, from the viewpoint of the mechanical properties and thermal properties of the resin, the mixing equivalent ratio of the bifunctional epoxy resin and the bifunctional phenols is particularly preferably epoxy group / phenol hydroxyl group = 1 / 0.9˜ 1/1, organic amides, ethers, ketones, lactones, alcohols, etc. having a boiling point of 120 ° C. or higher in the presence of catalysts such as alkali metal compounds, organophosphorus compounds, cyclic amine compounds, etc. What was obtained by carrying out polyaddition reaction by heating to 50 to 200 ° C. under the condition that the reaction solid content is 50% by mass or less in a solvent is preferable. You may use a phenoxy resin individually or in mixture of 2 or more types.
 上記2官能エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルジグリシジルエーテル、メチル置換ビフェニルジグリシジルエーテル等が挙げられる。2官能フェノール類は、2個のフェノール性水酸基を有するものである。2官能フェノール類としては、例えば、ハイドロキノン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールフルオレン、メチル置換ビスフェノールフルオレン、ジヒドロキシビフェニル、メチル置換ジヒドロキシビフェニル等のビスフェノール類などが挙げられる。フェノキシ樹脂は、ラジカル重合性の官能基、又はその他の反応性化合物により変性(例えば、エポキシ変性)されていてもよい。 Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, biphenyl diglycidyl ether, methyl substituted biphenyl diglycidyl ether, and the like. Bifunctional phenols have two phenolic hydroxyl groups. Examples of the bifunctional phenols include hydroquinones, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, bisphenol fluorene, methyl-substituted bisphenol fluorene, bisphenols such as dihydroxybiphenyl and methyl-substituted dihydroxybiphenyl. The phenoxy resin may be modified (for example, epoxy-modified) with a radical polymerizable functional group or other reactive compound.
 フィルム形成材の配合量は、回路接続材料の全質量を100質量部としたとき、10~90質量部であることが好ましく、20~60質量部であることがより好ましい。 The blending amount of the film forming material is preferably 10 to 90 parts by mass, and more preferably 20 to 60 parts by mass when the total mass of the circuit connecting material is 100 parts by mass.
 本実施形態の回路接続材料は、更に、アクリル酸、アクリル酸エステル、メタクリル酸エステル及びアクリロニトリルのうち少なくとも一つをモノマー成分とした重合体又は共重合体を含んでいてもよい。ここで、応力緩和に優れることから、回路接続材料は、グリシジルエーテル基を含有するグリシジルアクリレート及び/又はグリシジルメタクリレートを含む共重合体系アクリルゴム等を併用して含むことが好ましい。これらのアクリルゴムの重量平均分子量は、接着剤組成物の凝集力を高める点から20万以上が好ましい。
 本実施形態の回路接続材料は、更に、ゴム微粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。
The circuit connection material of this embodiment may further contain a polymer or copolymer containing at least one of acrylic acid, acrylic acid ester, methacrylic acid ester, and acrylonitrile as a monomer component. Here, since it is excellent in stress relaxation, it is preferable that the circuit connection material includes a glycidyl acrylate-containing copolymer and / or a copolymer acrylic rubber containing glycidyl methacrylate. The weight average molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive composition.
The circuit connection material of the present embodiment further includes fine rubber particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins, melamine resins, isocyanates. Etc. can also be contained.
 ゴム微粒子は、その平均粒径が、配合する導電粒子の平均粒径の2倍以下であり、且つ室温(25℃)での貯蔵弾性率が導電粒子及び接着剤組成物の室温での貯蔵弾性率の1/2以下であるものであることが好ましい。特に、ゴム微粒子の材質が、シリコーン、アクリルエマルジョン、SBR、NBR又はポリブタジエンゴムである場合は、単独で又は2種以上を混合して用いることが好適である。3次元架橋したこれらゴム微粒子は、耐溶剤性に優れており、接着剤組成物中に容易に分散される。 The rubber fine particles have an average particle size not more than twice the average particle size of the conductive particles to be blended, and the storage elastic modulus at room temperature (25 ° C.) of the conductive particles and the adhesive composition at room temperature. It is preferable that it is less than 1/2 of the rate. In particular, when the material of the rubber fine particles is silicone, acrylic emulsion, SBR, NBR or polybutadiene rubber, it is preferable to use them alone or in combination of two or more. These three-dimensionally crosslinked rubber fine particles are excellent in solvent resistance and are easily dispersed in the adhesive composition.
 充填剤は、回路電極間の電気特性の接続信頼性等を向上させることができる。充填剤としては、例えばその平均粒径が導電粒子の平均粒径の1/2以下であるものを好適に使用できる。また、導電性を持たない粒子を併用する場合には、導電性を持たない粒子の平均粒径以下のものであれば使用できる。充填剤の配合量は、接着剤組成物100質量部に対して5~60質量部であることが好ましい。配合量が60質量部以下であることにより、接続信頼性向上効果をより十分に得られる傾向があり、他方、5質量部以上であることにより充填剤添加の効果を十分に得られる傾向がある。 The filler can improve the connection reliability of the electrical characteristics between the circuit electrodes. As the filler, for example, those having an average particle size of ½ or less of the average particle size of the conductive particles can be suitably used. Moreover, when using together the particle | grains which do not have electroconductivity, if it is below the average particle diameter of the particle | grains which do not have electroconductivity, it can be used. The blending amount of the filler is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the adhesive composition. When the blending amount is 60 parts by mass or less, there is a tendency that the effect of improving the connection reliability can be obtained more sufficiently, and when it is 5 parts by mass or more, there is a tendency that the effect of adding the filler can be sufficiently obtained. .
 カップリング剤としては、アミノ基、ビニル基、アクリロイル基、エポキシ基又はイソシアネート基を含有する化合物が、接着性が向上するので好ましい。 As the coupling agent, a compound containing an amino group, a vinyl group, an acryloyl group, an epoxy group or an isocyanate group is preferable because the adhesiveness is improved.
 回路接続材料は、接続時に溶融流動して相対向する回路電極の接続を得た後、硬化して接続を保持するものであり、回路接続材料の流動性は重要な因子である。このことを示す指標として、例えば次のようなものが挙げられる。すなわち、厚さ0.7mmの15mm×15mmの二枚のガラス板の間に、厚さ35μmの5mm×5mmの回路接続材料を挟み、170℃、2MPa、10秒の条件で加熱加圧を行った場合、加熱加圧前の回路接続材料の主面の面積(A)と加熱加圧後の主面の面積(B)とを用いて表される流動性(B)/(A)の値が1.3~3.0であることが好ましく、1.5~2.5であることがより好ましい。1.3以上であると流動性が好適であり、良好な接続を得易い傾向があり、3.0以下であると、気泡が発生し難く信頼性により優れる傾向がある。 The circuit connection material melts and flows at the time of connection to obtain the connection of the opposing circuit electrodes, and then hardens to maintain the connection. The fluidity of the circuit connection material is an important factor. As an index indicating this, for example, the following can be cited. That is, when a circuit connection material of 5 mm × 5 mm with a thickness of 35 μm is sandwiched between two glass plates of 15 mm × 15 mm with a thickness of 0.7 mm, and heating and pressurization are performed under conditions of 170 ° C., 2 MPa, 10 seconds The value of fluidity (B) / (A) expressed using the area (A) of the main surface of the circuit connecting material before heating and pressing and the area (B) of the main surface after heating and pressing is 1. It is preferably from 3 to 3.0, more preferably from 1.5 to 2.5. If it is 1.3 or more, the fluidity is suitable, and it tends to be easy to obtain a good connection, and if it is 3.0 or less, bubbles tend not to be generated and the reliability tends to be excellent.
 回路接続材料の硬化後の40℃での弾性率は100~3000MPaが好ましく、500~2000MPaがより好ましい。硬化後の回路接続材料の弾性率は、例えば動的粘弾性測定装置(DVE、DMA等)を用いて測定することができる。 The elastic modulus at 40 ° C. after curing of the circuit connecting material is preferably 100 to 3000 MPa, and more preferably 500 to 2000 MPa. The elastic modulus of the circuit connection material after curing can be measured using, for example, a dynamic viscoelasticity measuring device (DVE, DMA, etc.).
 本実施形態の回路接続材料は、COG接続(Chip on Glass)、FOB(Flex on Board)接続、FOG(Flex on Glass)接続、FOF(Flex on Flex)接続、FOP(Flex on Polymer)接続、COP(Chip on Polymer)接続、COF(Chip on Flex)接続等に好適に用いられる。 The circuit connection material of this embodiment is COG connection (Chip on Glass), FOB (Flex on Board) connection, FOG (Flex on Glass) connection, FOF (Flex on Flex) connection, FOP (Flex on Polymer) connection, COP. It is suitably used for (Chip on Polymer) connection, COF (Chip on Flex) connection, and the like.
 COG接続とは、例えば、ICを有機ELパネル又はLCDパネルとを接続する方式であり、ICに形成された回路電極と有機ELパネル又はLCDパネルを構成するガラス基板に形成された回路電極との接続を指す。
FOB接続とは、例えば、TCP(Tape Carrier Package)、COF及びFPCに代表される、フレキシブル基板に形成された回路電極とプリント配線板上に形成された回路電極との接続を指す。FOG接続とは、例えば、TCP、COF及びFPCに代表される、フレキシブル基板に形成された回路電極と有機ELパネル又はLCDパネルを構成するガラス基板に形成された回路電極との接続を指す。FOF接続とは、例えば、TCP、COF及びFPCに代表される、フレキシブル基板に形成された回路電極とフレキシブル基板に形成された回路電極との接続を指す。FOP接続とは、フレキシブル基板に形成された回路電極と有機ELパネル又はLCDパネルを構成するポリマー基板に形成された回路電極との接続を指す。COP接続とは、ICに形成された回路電極とプラスチック基板に形成された回路電極との接続を指す。COF接続とは、ICに形成された回路電極とフレキシブル基板に形成された回路電極との接続を指す。
COG connection is, for example, a method of connecting an IC to an organic EL panel or an LCD panel, and a circuit electrode formed on the IC and a circuit electrode formed on a glass substrate constituting the organic EL panel or LCD panel. Refers to a connection.
The FOB connection refers to a connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on a printed wiring board, typified by TCP (Tape Carrier Package), COF, and FPC. The FOG connection refers to a connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on a glass substrate constituting an organic EL panel or LCD panel, as typified by TCP, COF, and FPC. The FOF connection refers to a connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on the flexible substrate, typified by TCP, COF, and FPC, for example. FOP connection refers to connection between a circuit electrode formed on a flexible substrate and a circuit electrode formed on a polymer substrate constituting an organic EL panel or LCD panel. COP connection refers to connection between a circuit electrode formed on an IC and a circuit electrode formed on a plastic substrate. COF connection refers to connection between a circuit electrode formed on an IC and a circuit electrode formed on a flexible substrate.
<接続構造体>
 本実施形態の回路接続構造体は、第一の回路電極を有する第一の回路部材と、第二の回路電極を有する第二の回路部材と、第一の回路部材と第二の回路部材との間に介在する、上述の回路接続材料の硬化物からなる接続部と、を有している。本実施形態において、回路電極の材料としては、Ti、Al、Mo、Co、Cu、Cr、Sn、Zn、Ga、In、Ni、Au、Ag、V、Sb、Bi、Re、Ta、Nb、W等を用いることができる。回路電極の厚さは、接続抵抗と価格とのバランスを図る観点から、100~5000nmが好ましく、100~2500nmが更に好ましい。また、下限を500nmとすることもできる。
<Connection structure>
The circuit connection structure of this embodiment includes a first circuit member having a first circuit electrode, a second circuit member having a second circuit electrode, a first circuit member, and a second circuit member. And a connecting portion made of a cured product of the above-described circuit connecting material. In the present embodiment, circuit electrode materials include Ti, Al, Mo, Co, Cu, Cr, Sn, Zn, Ga, In, Ni, Au, Ag, V, Sb, Bi, Re, Ta, Nb, W or the like can be used. The thickness of the circuit electrode is preferably 100 to 5000 nm, and more preferably 100 to 2500 nm, from the viewpoint of balancing connection resistance and price. Further, the lower limit can be set to 500 nm.
 本実施形態の回路接続構造体は、第一の回路電極を有する第一の回路部材と第二の回路電極を有する第二の回路部材とを、第一の回路電極と第二の回路電極とが対向するように配置し、対向配置した第一の回路電極と第二の回路電極との間に、回路接続材料を介在させ、加熱加圧して、第一の回路電極と第二の回路電極とを電気的に接続させることにより、作製することができる。このように、本実施形態の回路接続材料は、電気回路相互の接着用の材料として有用である。 The circuit connection structure of the present embodiment includes a first circuit member having a first circuit electrode and a second circuit member having a second circuit electrode, and the first circuit electrode and the second circuit electrode. Are arranged so as to face each other, a circuit connecting material is interposed between the first circuit electrode and the second circuit electrode which are arranged to face each other, and heated and pressurized to thereby form the first circuit electrode and the second circuit electrode. Are electrically connected to each other. Thus, the circuit connection material of this embodiment is useful as a material for bonding electrical circuits.
 より具体的には、回路部材としては、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板などが挙げられる。これらの回路部材には上述の回路電極が通常は多数(場合によっては単数でもよい)設けられている。それらの回路電極の少なくとも一部を対向配置し、対向配置した回路電極間に回路接続材料を介在させ、回路部材の少なくとも1組を加熱加圧することで、対向配置した回路電極同士を電気的に接続する。この際、対向配置した回路電極同士は、回路接続材料に含まれる導電粒子を介して電気的に接続される一方で、隣接する回路電極同士の絶縁は保たれる。このように、本実施形態の回路接続材料は異方導電性を示す。 More specifically, examples of the circuit member include chip parts such as a semiconductor chip, a resistor chip, and a capacitor chip, and a substrate such as a printed board. These circuit members are usually provided with a large number (in some cases a single electrode) of the above-mentioned circuit electrodes. By arranging at least a part of the circuit electrodes to face each other, interposing a circuit connecting material between the circuit electrodes arranged to face each other, and heating and pressing at least one set of circuit members, the circuit electrodes arranged to face each other can be electrically connected to each other. Connecting. At this time, the circuit electrodes arranged opposite to each other are electrically connected through conductive particles contained in the circuit connection material, while insulation between adjacent circuit electrodes is maintained. Thus, the circuit connection material of this embodiment exhibits anisotropic conductivity.
 図3(a)~図3(c)を参照しながら、回路接続構造体の製造方法の一実施形態を説明する。図3(a)は回路部材同士を接続する前の工程断面図であり、図3(b)は回路部材同士を接続する際の工程断面図であり、図3(c)は回路部材同士を接続した後の工程断面図である。 An embodiment of a method of manufacturing a circuit connection structure will be described with reference to FIGS. 3 (a) to 3 (c). 3A is a process cross-sectional view before connecting circuit members, FIG. 3B is a process cross-sectional view when connecting circuit members, and FIG. It is process sectional drawing after connecting.
 まず、図3(a)に示すように、有機ELパネル21上に回路電極21a及び回路基板21bが設けられた回路部材20と、基板31上に回路電極31aが設けられた回路部材30とを準備する。そして、回路電極21aの上に、フィルム状に成形された回路接続材料5を載置する。 First, as shown in FIG. 3A, a circuit member 20 having a circuit electrode 21a and a circuit board 21b provided on an organic EL panel 21, and a circuit member 30 having a circuit electrode 31a provided on a substrate 31 are provided. prepare. And the circuit connection material 5 shape | molded by the film form is mounted on the circuit electrode 21a.
 次に、図3(b)に示すように、回路電極31aが設けられた基板31を、回路電極21aと回路電極31aとが互いに対向するように位置あわせをしながら、回路接続材料5の上に載置して、回路接続材料5を回路電極21aと回路電極31aとの間に介在させる。なお、回路電極21a,31aは奥行き方向に複数の電極が並んだ構造(図示しない)を有している。回路接続材料5はフィルム状であるため取扱いが容易である。このため、回路接続材料5を回路電極21aと回路電極31aとの間に容易に介在させることができ、回路部材20と回路部材30との接続作業を容易にすることができる。 Next, as shown in FIG. 3B, the substrate 31 on which the circuit electrode 31a is provided is aligned on the circuit connection material 5 while positioning the circuit electrode 21a and the circuit electrode 31a so as to face each other. The circuit connection material 5 is interposed between the circuit electrode 21a and the circuit electrode 31a. The circuit electrodes 21a and 31a have a structure (not shown) in which a plurality of electrodes are arranged in the depth direction. Since the circuit connection material 5 is in the form of a film, it is easy to handle. For this reason, the circuit connection material 5 can be easily interposed between the circuit electrode 21a and the circuit electrode 31a, and the connection work between the circuit member 20 and the circuit member 30 can be facilitated.
 次に、加熱しながら有機ELパネル21と基板31とを介して、回路接続材料5を図3(b)の矢印Aの方向に加圧して硬化処理を行う。これによって図3(c)に示すような、回路部材20,30同士が回路接続材料の硬化物5aを介して接続された回路接続構造体50が得られる。硬化処理の方法としては使用する接着剤組成物に応じて、加熱及び光照射の一方又は双方を採用することができる。 Next, the circuit connection material 5 is pressed in the direction of the arrow A in FIG. 3B through the organic EL panel 21 and the substrate 31 while being heated to perform a curing process. As a result, a circuit connection structure 50 in which the circuit members 20 and 30 are connected to each other via the cured product 5a of the circuit connection material as shown in FIG. 3C is obtained. As a method for the curing treatment, one or both of heating and light irradiation can be employed depending on the adhesive composition to be used.
 以下、実施例を挙げて本開示について更に具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(1)導電粒子の準備
 以下の表1に示す11種類の導電粒子A~Kを準備した。これらの導電粒子はいずれもプラスチック粒子からなるコアと、このコア粒子を被覆する金属層(ニッケル層)をシェルとによって構成されるコアシェル粒子である。ニッケルの電気伝導率は14.5×10S/mである。導電粒子A~Kのうち、導電粒子A~E及び導電粒子H,Jが第一及び第二の条件の両方を満たすものであった。
(1) Preparation of Conductive Particles Eleven types of conductive particles A to K shown in Table 1 below were prepared. Each of these conductive particles is a core-shell particle composed of a core made of plastic particles and a metal layer (nickel layer) covering the core particle. The electrical conductivity of nickel is 14.5 × 10 6 S / m. Of the conductive particles A to K, the conductive particles A to E and the conductive particles H and J satisfy both the first and second conditions.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1>
(2)異方導電性フィルムの作製
(フェノキシ樹脂溶液の調製)
 フェノキシ樹脂(製品名:PKHC、ユニオンカーバイド株式会社製、重量平均分子量5000)50gを、トルエン/酢酸エチル=50/50(質量比)の混合溶剤に溶解して、固形分40質量%のフェノキシ樹脂溶液とした。
<Example 1>
(2) Production of anisotropic conductive film (Preparation of phenoxy resin solution)
50 g of phenoxy resin (product name: PKHC, manufactured by Union Carbide Co., Ltd., weight average molecular weight 5000) is dissolved in a mixed solvent of toluene / ethyl acetate = 50/50 (mass ratio) to obtain a phenoxy resin having a solid content of 40% by mass. It was set as the solution.
(ウレタンアクリレートの合成)
 温度計、攪拌機、不活性ガス導入口及び還流冷却器を装着した2L(リットル)の四つ口フラスコに、ポリカーボネートジオール(アルドリッチ社製、数平均分子量Mn=2000)4000質量部と、2-ヒドロキシエチルアクリレート238質量部と、ハイドロキノンモノメチルエーテル0.49質量部と、スズ系触媒4.9質量部とを仕込んで反応液を調製した。70℃に加熱した反応液に対して、イソホロンジイソシアネート(IPDI)666質量部を3時間かけて均一に滴下し、反応させた。滴下完了後、15時間反応を継続し、NCO%(NCO含有量)が0.2質量%以下となった時点を反応終了とみなし、ウレタンアクリレートを得た。NCO%は、電位差自動滴定装置(商品名:AT-510、京都電子工業株式会社製)によって確認した。GPCによる分析の結果、ウレタンアクリレートの重量平均分子量は8500(標準ポリスチレン換算値)であった。GPCの測定条件を表2に示す。
(Synthesis of urethane acrylate)
In a 2 L (liter) four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 4000 parts by mass of polycarbonate diol (manufactured by Aldrich, number average molecular weight Mn = 2000), 2-hydroxy A reaction solution was prepared by charging 238 parts by mass of ethyl acrylate, 0.49 parts by mass of hydroquinone monomethyl ether, and 4.9 parts by mass of a tin-based catalyst. To the reaction liquid heated to 70 ° C., 666 parts by mass of isophorone diisocyanate (IPDI) was uniformly dropped over 3 hours to be reacted. After completion of the dropwise addition, the reaction was continued for 15 hours, and the time when NCO% (NCO content) became 0.2% by mass or less was regarded as the completion of the reaction, and urethane acrylate was obtained. NCO% was confirmed by a potentiometric automatic titrator (trade name: AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.). As a result of analysis by GPC, the weight average molecular weight of urethane acrylate was 8500 (standard polystyrene conversion value). Table 2 shows the GPC measurement conditions.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(接着剤組成物含有液の調製)
 上記フェノキシ樹脂溶液から固形分が50g含まれるように量り取ったフェノキシ樹脂溶液と、上記ウレタンアクリレート30gと、イソシアヌレート型アクリレート(製品名:M-215、東亞合成株式会社製)15gと、リン酸エステル型アクリレート1gと、遊離ラジカル発生剤としてのベンゾイルパーオキサイド(製品名:ナイパーBMT-K40、日油株式会社製)4gを混合して接着剤組成物含有液を調製した。
(Preparation of adhesive composition-containing liquid)
A phenoxy resin solution weighed out from the phenoxy resin solution so as to contain 50 g of solid content, 30 g of the urethane acrylate, 15 g of isocyanurate acrylate (product name: M-215, manufactured by Toagosei Co., Ltd.), phosphoric acid An adhesive composition-containing liquid was prepared by mixing 1 g of ester acrylate and 4 g of benzoyl peroxide (product name: Nyper BMT-K40, manufactured by NOF Corporation) as a free radical generator.
(異方導電性フィルムの作製)
 上記接着剤組成物含有液100質量部に対して導電粒子Aを5質量部分散させて回路接続材料含有液を調製した。この回路接続材料含有液を、片面を表面処理した厚さ50μmのポリエチレンテレフタレート(PET)フィルム上に塗工装置を用いて塗布し、その後、70℃で3分間熱風乾燥させた。これにより、PETフィルム上に厚さが20μmの異方導電性フィルムを得た。この異方導電性フィルムの全質量を100体積部としたとき、接着剤成分及び導電粒子の含有量はそれぞれ97体積部及び3体積部であった。
(Production of anisotropic conductive film)
5 parts by mass of conductive particles A were dispersed with respect to 100 parts by mass of the adhesive composition-containing liquid to prepare a circuit connection material-containing liquid. This circuit connecting material-containing liquid was applied onto a 50 μm-thick polyethylene terephthalate (PET) film having a surface treated on one side, and then dried with hot air at 70 ° C. for 3 minutes. Thereby, an anisotropic conductive film having a thickness of 20 μm was obtained on the PET film. When the total mass of the anisotropic conductive film was 100 parts by volume, the contents of the adhesive component and the conductive particles were 97 parts by volume and 3 parts by volume, respectively.
(3)接続構造体の作製(電極最表面:チタン)
 PETフィルム付きの異方導電性フィルムを所定のサイズ(幅1.5mm×長さ3cm)に裁断した。異方導電性フィルムが形成されている面(接着面)を、最表面からチタン(膜厚50nm)及びアルミニウム(膜厚250nm)の順にコートされたガラス基板(厚さ0.7mm)上に転写した。転写の条件は70℃、1MPaで2秒間とした。PETフィルムを剥離し後、ピッチ50μm、厚さ8μmのすずめっき銅回路を600本有するフレキシブル回路板(FPC)を異方導電性フィルム上に仮固定した。仮固定の条件は24℃、0.5MPaで1秒間とした。次いで、これを本圧着装置に設置し、厚さ200μmのシリコーンゴムシートをクッション材とし、FPC側から、ヒートツールによって170℃、3MPaで6秒間の条件で加熱加圧して幅1.5mmにわたり接続した。これにより、接続構造体を得た。
(3) Preparation of connection structure (electrode outermost surface: titanium)
An anisotropic conductive film with a PET film was cut into a predetermined size (width 1.5 mm × length 3 cm). The surface on which the anisotropic conductive film is formed (adhesion surface) is transferred from the outermost surface onto a glass substrate (thickness 0.7 mm) coated with titanium (film thickness 50 nm) and aluminum (film thickness 250 nm) in this order. did. The transfer conditions were 70 ° C. and 1 MPa for 2 seconds. After peeling off the PET film, a flexible circuit board (FPC) having 600 tin-plated copper circuits with a pitch of 50 μm and a thickness of 8 μm was temporarily fixed on the anisotropic conductive film. Temporary fixing was performed at 24 ° C. and 0.5 MPa for 1 second. Next, this is installed in the main pressure bonding apparatus, and a 200 μm-thick silicone rubber sheet is used as a cushioning material. From the FPC side, heat and pressure are applied with a heat tool at 170 ° C. and 3 MPa for 6 seconds to connect over a width of 1.5 mm. did. Thereby, a connection structure was obtained.
(4)接続構造体の作製(電極最表面:ITO)
 最表面からチタン及びアルミニウムの順にコートされた上記ガラス基板の代わりに、最表面にITO(膜厚100nm)がコートされたガラス基板を用いたことの他は上記と同様にして接続構造体を得た。
(4) Preparation of connection structure (electrode outermost surface: ITO)
A connection structure was obtained in the same manner as above except that instead of the glass substrate coated with titanium and aluminum in this order from the outermost surface, a glass substrate coated with ITO (film thickness 100 nm) on the outermost surface was used. It was.
(5)接続構造体の作製(電極最表面:IZO)
 最表面からチタン及びアルミニウムの順にコートされた上記ガラス基板の代わりに、最表面からIZO(膜厚100nm)、Cr(膜厚50nm)及びアルミニウム(膜厚200nm)の順にコートされたガラス基板を用いたことの他は上記と同様にして接続構造体を得た。
(5) Preparation of connection structure (electrode outermost surface: IZO)
Instead of the glass substrate coated in order of titanium and aluminum from the outermost surface, a glass substrate coated in the order of IZO (film thickness of 100 nm), Cr (film thickness of 50 nm) and aluminum (film thickness of 200 nm) from the outermost surface is used. A connection structure was obtained in the same manner as described above except that
(6)接続抵抗の測定
 得られた上記二種類の接続構造体の接続抵抗を以下のようにして測定した。接続構造体の接続部を含むFPCの隣接回路間の抵抗値をマルチメータ(装置名:TR6845、アドバンテスト株式会社製)で測定した。なお、隣接回路間の抵抗40点を測定して平均値を求め、これを接続抵抗とした。表3に結果を示す。
(6) Measurement of connection resistance The connection resistance of the obtained two types of connection structures was measured as follows. The resistance value between adjacent circuits of the FPC including the connection part of the connection structure was measured with a multimeter (device name: TR6845, manufactured by Advantest Corporation). In addition, 40 resistances between adjacent circuits were measured to obtain an average value, and this was used as a connection resistance. Table 3 shows the results.
<実施例2~5及び比較例1,2>
 導電粒子Aの代わりに導電粒子B~Kをそれぞれ使用したことの他は、実施例1と同様にして、それぞれ三種類の接続構造体を作製し、それらの接続抵抗を測定した。表3に結果を示す。
<Examples 2 to 5 and Comparative Examples 1 and 2>
Three types of connection structures were prepared in the same manner as in Example 1 except that the conductive particles B to K were used instead of the conductive particles A, and their connection resistances were measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本開示によれば、接続すべき回路部材が有する回路電極に対して十分に汎用性の高い導電粒子を選別する方法が提供される。また、本開示によれば、導電粒子、これを用いた回路接続材料、並びに接続構造体及びその製造方法が提供される。 According to the present disclosure, there is provided a method for selecting conductive particles having sufficiently high versatility for circuit electrodes included in circuit members to be connected. Moreover, according to this indication, a conductive particle, a circuit connection material using the same, a connection structure, and a manufacturing method thereof are provided.
1,1a,1b…導電粒子、3,4,20,30…回路部材、3a,4a,21a,31a…回路電極、5…回路接続材料、5a…回路接続材料の硬化物、10,50…接続構造体 DESCRIPTION OF SYMBOLS 1, 1a, 1b ... Conductive particle, 3, 4, 20, 30 ... Circuit member, 3a, 4a, 21a, 31a ... Circuit electrode, 5 ... Circuit connection material, 5a ... Hardened | cured material of circuit connection material, 10, 50 ... Connection structure

Claims (13)

  1.  導電粒子の選別方法であって、
     導電粒子の最外層を構成する金属が以下の第一の条件を満たすか否かを判定する工程と、
     当該導電粒子が以下の第二の条件を満たすか否かを判定する工程と、
    を含み、
     前記第一の条件及び前記第二の条件の両方を満たす導電粒子を良と判定する、導電粒子の選別方法。
     第一の条件:20℃における電気伝導率が40×10S/m以下
     第二の条件:荷重2kN印加時の体積固有抵抗が15mΩcm以下
    A method for sorting conductive particles,
    Determining whether the metal constituting the outermost layer of the conductive particles satisfies the following first condition;
    Determining whether the conductive particles satisfy the following second condition;
    Including
    A method for selecting conductive particles, wherein the conductive particles satisfying both the first condition and the second condition are determined to be good.
    First condition: electric conductivity at 20 ° C. of 40 × 10 6 S / m or less Second condition: volume resistivity when load 2 kN is applied is 15 mΩcm or less
  2.  回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するために用いられる回路接続材料であって、
     光又は熱により硬化する接着剤成分と、
     前記接着剤成分中に分散している導電粒子と、
    を含み、
     前記導電粒子は請求項1に記載の導電粒子の選別方法によって良と判定される導電粒子である、回路接続材料。
    A circuit connecting material used for bonding circuit members together and electrically connecting circuit electrodes of each circuit member,
    An adhesive component that is cured by light or heat;
    Conductive particles dispersed in the adhesive component;
    Including
    The circuit connection material, wherein the conductive particles are conductive particles determined to be good by the conductive particle sorting method according to claim 1.
  3.  フィルム状に形成されたものである、請求項2に記載の回路接続材料。 The circuit connection material according to claim 2, which is formed in a film shape.
  4.  前記接続がCOG接続、FOB接続、FOG接続、FOF接続、FOP接続、COP接続又はCOF接続である、請求項2又は3に記載の回路接続材料。 The circuit connection material according to claim 2 or 3, wherein the connection is a COG connection, an FOB connection, an FOG connection, an FOF connection, an FOP connection, a COP connection, or a COF connection.
  5.  対向配置された一対の回路部材の間に、請求項2~4のいずれか一項に記載の回路接続材料を介在させる工程と、
     加熱及び加圧によって前記回路接続材料の硬化物からなり、前記一対の回路部材の間に介在しそれぞれの前記回路部材が有する回路電極同士が電気的に接続されるように前記回路部材同士を接着する接続部を形成する工程と、
    を含む接続構造体の製造方法。
    A step of interposing the circuit connection material according to any one of claims 2 to 4 between a pair of circuit members disposed opposite to each other;
    The circuit members are bonded to each other so that the circuit electrodes of the circuit members are electrically connected to each other by being interposed between the pair of circuit members by heating and pressing. Forming a connecting portion to be
    A method for manufacturing a connection structure including:
  6.  対向配置された一対の回路部材と、
     請求項2~4のいずれか一項に記載の回路接続材料の硬化物からなり、前記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接着する接続部と、
    を備える接続構造体。
    A pair of circuit members disposed opposite to each other;
    A circuit connection material according to any one of claims 2 to 4, wherein the circuit electrodes are interposed between the pair of circuit members and are electrically connected to each other. A connecting portion for bonding the circuit members together;
    A connection structure comprising:
  7.  20℃における電気伝導率が40×10S/m以下である金属層を備え、
     荷重2kN印加時の体積固有抵抗が15mΩcm以下である導電粒子。
    A metal layer having an electrical conductivity at 20 ° C. of 40 × 10 6 S / m or less,
    Conductive particles having a volume resistivity of 15 mΩcm or less when a load of 2 kN is applied.
  8.  前記金属層がNiを含む、請求項7に記載の導電粒子。 The conductive particle according to claim 7, wherein the metal layer contains Ni.
  9.  樹脂材料からなるコア粒子を更に備え、
     前記コア粒子表面上に前記金属層が形成されている、請求項7又は8に記載の導電粒子。
    It further comprises core particles made of a resin material,
    The conductive particle according to claim 7 or 8, wherein the metal layer is formed on a surface of the core particle.
  10.  前記金属層が突起を有する、請求項7~9のいずれか一項に記載の導電粒子。 The conductive particle according to any one of claims 7 to 9, wherein the metal layer has a protrusion.
  11.  前記金属層の表面に配置された有機膜、有機微粒子又は無機微粒子を更に備える、請求項7~10のいずれか一項に記載の導電粒子。 The conductive particles according to any one of claims 7 to 10, further comprising an organic film, organic fine particles, or inorganic fine particles disposed on the surface of the metal layer.
  12.  平均粒径が1~50μmである、請求項7~11のいずれか一項に記載の導電粒子。 The conductive particles according to any one of claims 7 to 11, having an average particle diameter of 1 to 50 µm.
  13.  20%圧縮時の弾性率が0.1~15GPaである、請求項7~12のいずれか一項に記載の導電粒子。 The conductive particles according to any one of claims 7 to 12, wherein the elastic modulus at 20% compression is 0.1 to 15 GPa.
PCT/JP2018/012922 2017-03-29 2018-03-28 Conductive particle sorting method, circuit connection material, connection structure body and manufacturing method therefor, and conductive particle WO2018181546A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019510018A JP7341886B2 (en) 2017-03-29 2018-03-28 Conductive particle selection method, circuit connection material, connection structure and manufacturing method thereof
CN201880021662.3A CN110494930B (en) 2017-03-29 2018-03-28 Method for sorting conductive particles, circuit connecting material, connection structure and method for producing connection structure, and conductive particles
KR1020197030922A KR102596306B1 (en) 2017-03-29 2018-03-28 Method for selecting conductive particles, circuit connection material, connection structure and manufacturing method thereof, and conductive particles
JP2022133658A JP2022173198A (en) 2017-03-29 2022-08-24 Conductive particle sorting method, circuit connection material, connection structure and manufacturing method therefor, and conductive particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066022 2017-03-29
JP2017-066022 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181546A1 true WO2018181546A1 (en) 2018-10-04

Family

ID=63677389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012922 WO2018181546A1 (en) 2017-03-29 2018-03-28 Conductive particle sorting method, circuit connection material, connection structure body and manufacturing method therefor, and conductive particle

Country Status (5)

Country Link
JP (2) JP7341886B2 (en)
KR (1) KR102596306B1 (en)
CN (2) CN110494930B (en)
TW (1) TW201841169A (en)
WO (1) WO2018181546A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149294A1 (en) * 2022-02-03 2023-08-10 積水化学工業株式会社 Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178913A (en) * 2020-05-13 2021-11-18 昭和電工マテリアルズ株式会社 Conductive adhesive, manufacturing method of circuit connection structure, and circuit connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165019A (en) * 2002-11-13 2004-06-10 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940760B2 (en) 2010-05-19 2016-06-29 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP2012164454A (en) 2011-02-04 2012-08-30 Sony Chemical & Information Device Corp Conductive particle and anisotropic conductive material using the same
JP2014149918A (en) * 2011-06-06 2014-08-21 Hitachi Chemical Co Ltd Film-like circuit connection material and circuit connection structure
JP6379761B2 (en) * 2014-07-09 2018-08-29 日立化成株式会社 Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connection structure, and method for producing conductive particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165019A (en) * 2002-11-13 2004-06-10 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149294A1 (en) * 2022-02-03 2023-08-10 積水化学工業株式会社 Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure

Also Published As

Publication number Publication date
KR20190133023A (en) 2019-11-29
KR102596306B1 (en) 2023-10-30
JP7341886B2 (en) 2023-09-11
CN110494930B (en) 2021-10-01
JPWO2018181546A1 (en) 2020-02-06
CN110494930A (en) 2019-11-22
TW201841169A (en) 2018-11-16
CN113823459A (en) 2021-12-21
JP2022173198A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
JP5737278B2 (en) Circuit connection material, connection body, and method of manufacturing connection body
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP4862944B2 (en) Circuit connection material
JP4752986B1 (en) Adhesive film for circuit connection and circuit connection structure
JP2022173198A (en) Conductive particle sorting method, circuit connection material, connection structure and manufacturing method therefor, and conductive particle
KR101929073B1 (en) Film-shaped circuit connecting material and circuit connecting structure
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP6337630B2 (en) Circuit connection material and circuit connection structure
JP2011012180A (en) Circuit connecting material and circuit connection structure
JP2019065062A (en) Conductive adhesive film
JP4945881B2 (en) Adhesive with support for circuit connection and circuit connection structure using the same
JP7006029B2 (en) Adhesive compositions and structures for circuit connections
JP3937299B2 (en) Adhesive with support and circuit connection structure using the same
WO2021230212A1 (en) Conductive adhesive, method for producing circuit connection structure, and circuit connection structure
JP2012160546A (en) Adhesive film for circuit connection and circuit connection structure
JP2011054988A (en) Circuit connecting material
JP2009289729A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030922

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18776138

Country of ref document: EP

Kind code of ref document: A1