WO2023145664A1 - Conductive particles, conductive material, and connection structure - Google Patents

Conductive particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2023145664A1
WO2023145664A1 PCT/JP2023/001815 JP2023001815W WO2023145664A1 WO 2023145664 A1 WO2023145664 A1 WO 2023145664A1 JP 2023001815 W JP2023001815 W JP 2023001815W WO 2023145664 A1 WO2023145664 A1 WO 2023145664A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
value
particles
conductive particles
compressed
Prior art date
Application number
PCT/JP2023/001815
Other languages
French (fr)
Japanese (ja)
Inventor
翔大 白石
大貴 安倍
良 栗浦
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2023515852A priority Critical patent/JPWO2023145664A1/ja
Priority to CN202380015244.4A priority patent/CN118402017A/en
Priority to KR1020247018697A priority patent/KR20240142404A/en
Publication of WO2023145664A1 publication Critical patent/WO2023145664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to a conductive particle comprising a base particle and a conductive portion arranged on the surface of the base particle.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • anisotropic conductive materials are used to electrically connect electrodes of various members to be connected, such as flexible printed circuit boards (FPC), glass substrates, and semiconductor chips, to obtain connection structures.
  • conductive particles conductive particles having a substrate particle and a conductive portion arranged on the surface of the substrate particle may be used.
  • Patent Document 1 As an example of base particles used for conductive particles, Patent Document 1 below discloses polymer fine particles having a breaking point load of 9.8 mN (1.0 gf) or less. Patent Document 1 describes that the fine polymer particles preferably satisfy the relationship of 10% K value>30% K value>20% K value.
  • an anisotropic conductive material containing conductive particles is placed between the electrodes and heated and pressurized. At that time, the conductive particles are compressed.
  • oxide films are often formed on the surfaces of electrodes connected by conductive particles and on the surfaces of the conductive portions of conductive particles. If an oxide film is formed, the electrode and the conductive particles (conductive portion) cannot sufficiently contact each other, which causes the connection resistance between the electrodes to increase. Therefore, the oxide film is often removed. desirable.
  • a base particle and a conductive portion disposed on the surface of the base particle are provided, and the compression elastic modulus value when compressed by 10% is The value of the elastic modulus or more, and the value of the elastic modulus when compressed by 20% is equal to or higher than the value of the elastic modulus when compressed by 30%, and the value of the elastic modulus when compressed by 10% and 20 Conductive particles are provided, wherein the ratio of the absolute value of the difference between the compression modulus value at 20% compression and the compression modulus value at 20% compression is 0.20 or less.
  • the value of compression modulus when compressed by 10% is 13000 N/mm 2 or more, and the value of compression modulus when compressed by 20% is 13000 N/mm 2 . That is, the value of the compression elastic modulus when compressed by 30% is 13000 N/mm 2 or more.
  • the value of compression modulus when compressed by 10% is 15000 N/mm 2 or more, and the value of compression modulus when compressed by 20% is 15000 N/mm 2 That's it.
  • the value of the compression modulus when compressed by 10% is greater than the value of the compression modulus when compressed by 20%, and when compressed by 20%
  • the value of elastic modulus is greater than the value of compressive elastic modulus when compressed by 30%.
  • the substrate particles are resin particles or organic-inorganic hybrid particles.
  • the substrate particles are organic-inorganic hybrid particles.
  • the particle size of the substrate particles is 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the conductive particles are provided with an insulating substance arranged on the outer surface of the conductive portion.
  • the conductive particles have projections on the outer surface of the conductive portion.
  • a broad aspect of the present invention provides a conductive material containing the above-described conductive particles and a binder resin.
  • a first member to be connected having a first electrode on its surface; a second member to be connected having a second electrode on its surface; a connecting portion connecting a second member to be connected, wherein the material of the connecting portion contains the above-described conductive particles, and the first electrode and the second electrode are connected to the conductive particles
  • a connecting structure is provided which is electrically connected by a.
  • a conductive particle according to the present invention comprises a base particle and a conductive portion arranged on the surface of the base particle.
  • the value of the compression modulus when compressed by 10% is equal to or greater than the value of the compression modulus when compressed by 20%
  • the value of the compression modulus when compressed by 20% is It is equal to or greater than the value of compression elastic modulus when compressed by 30%.
  • the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20%, the compression modulus when compressed by 20% The ratio to value is less than or equal to 0.20. Since the conductive particles according to the present invention have the above configuration, when the conductive particles are used for electrical connection between electrodes, the connection resistance can be reduced and the reliability of conduction can be improved. .
  • FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing conductive particles according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing conductive particles according to a third embodiment of the present invention.
  • 4 is a cross-sectional view schematically showing a connection structure using the conductive particles shown in FIG. 1.
  • a conductive particle according to the present invention comprises a substrate particle and a conductive portion arranged on the surface of the substrate particle.
  • the value of the compression modulus when compressed by 10% is equal to or greater than the value of the compression modulus when compressed by 20%
  • the value of the compression modulus when compressed by 20% is It is equal to or greater than the value of compression elastic modulus when compressed by 30%.
  • the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20%, the compression modulus when compressed by 20% The ratio to value is less than or equal to 0.20.
  • the compression modulus at 10% compression, the compression modulus at 20% compression, and the compression modulus at 30% compression are defined as 10% K value, 20% K value, and 30% K value, respectively.
  • the conductive particles according to the present invention satisfy the following relationships.
  • the "absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20%" is the ratio (the difference between the 10% K value and the 20% K value). absolute value/20% K value).
  • the "absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20%" is "10% It is a value obtained by subtracting the value of the compression modulus when compressed by 20% from the value of the compression modulus when compressed.
  • the conductive particles according to the present invention satisfy the following relationships.
  • the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20%, the compression modulus when compressed by 20% is small compared to conventional conductive particles. That is, in the conductive particles according to the present invention, the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20% is relatively small. Alternatively, the oxide film on the surface of the conductive particles (conductive portion) can be sufficiently removed. As a result, both low connection resistance and high conduction reliability can be achieved when the conductive particles are used for electrical connection between electrodes.
  • organic electroluminescence (organic EL) display elements that have good visibility, can be made thin, and can be driven under a low DC voltage.
  • Titanium electrodes are often used in organic EL display elements. With conventional conductive particles, it is difficult to sufficiently remove the oxide film on the surface of the titanium electrode. In this case as well, the oxide film on the surface of the electrode can be sufficiently removed, and both low connection resistance and high conduction reliability can be achieved.
  • the value of the compression elastic modulus when compressed by 10% is equal to or greater than the value of the compression elastic modulus when compressed by 20%, and the compression elastic modulus when compressed by 20% Since the value is equal to or greater than the value of the compressive elastic modulus when compressed by 30%, the contact area between the electrode and the deformed conductive particles can be increased in the middle and late stages of compression. As a result, both low connection resistance and high conduction reliability can be achieved when the conductive particles are used for electrical connection between electrodes.
  • the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% may be the same.
  • the conductive particles may have the same value of compression modulus when compressed by 20% and the value of compression modulus when compressed by 30%.
  • the conductive particles even if the value of the compression modulus when compressed by 10%, the value of the compression modulus when compressed by 20%, and the value of the compression modulus when compressed by 30% are the same good. From the viewpoint of exhibiting the effects of the present invention more effectively, it is preferable that the conductive particles have a compression modulus value when compressed by 10% that is greater than a compression modulus value when compressed by 20%. preferable.
  • the conductive particles have a compression modulus value when compressed by 20% greater than a compression modulus value when compressed by 30%.
  • the conductive particles have a compression modulus value when compressed by 10% greater than a compression modulus value when compressed by 20%, and , the value of the compression modulus when compressed by 20% is preferably greater than the value of the compression modulus when compressed by 30%.
  • the absolute difference between the compression modulus value when compressed by 10% and the compression modulus value when compressed by 20% in the above conductive particles The ratio of the value to the value of compression modulus at 20% compression is preferably less than 0.20, more preferably 0.15 or less, even more preferably 0.13 or less. From the viewpoint of exhibiting the effect of the present invention more effectively, in the conductive particles, the ratio (absolute value of difference between 10% K value and 20% K value/20% K value) is preferably It is more than 0, more preferably 0.05 or more, and still more preferably 0.10 or more.
  • the compression elastic modulus value (10% K value) when the conductive particles are compressed by 10% is preferably 10000 N/mm 2 or more, more preferably 12000 N/mm 2 or more, still more preferably 13000 N/mm 2 or more, Particularly preferably, it is 15000 N/mm 2 or more.
  • the 10% K value of the conductive particles is preferably 50,000 N/mm 2 or less, more preferably 40,000 N/mm 2 or less, even more preferably 30,000 N/mm 2 or less, and particularly preferably 25,000 N/mm 2 or less.
  • the 10% K value of the conductive particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased to further reduce the connection resistance.
  • the compression elastic modulus value (20% K value) when the conductive particles are compressed by 20% is preferably 10,000 N/mm 2 or more, more preferably 12,000 N/mm 2 or more, and still more preferably 13,000 N/mm 2 or more, Particularly preferably, it is 15000 N/mm 2 or more.
  • the 20% K value of the conductive particles is at least the lower limit, the oxide film on the surface of the electrode or the conductive particles (conductive portion) is more effectively eliminated at the initial stage of compression, and the connection resistance is further reduced. be able to.
  • the 20% K value of the conductive particles is preferably 40,000 N/mm 2 or less, more preferably 30,000 N/mm 2 or less, still more preferably 25,000 N/mm 2 or less, and particularly preferably 20,000 N/mm 2 or less.
  • the 20% K value of the conductive particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased to further reduce the connection resistance.
  • the compression elastic modulus value (30% K value) when the conductive particles are compressed by 30% is preferably 8,000 N/mm 2 or more, more preferably 10,000 N/mm 2 or more, and still more preferably 12,000 N/mm 2 or more, Particularly preferably, it is 13000 N/mm 2 or more.
  • 30% K value of the conductive particles is at least the lower limit, recesses (indentations) in which the conductive particles are pushed into the electrodes are formed in the middle and late stages of compression, and the reliability of conduction between the electrodes is further enhanced. be able to.
  • the 30% K value of the conductive particles is preferably 40,000 N/mm 2 or less, more preferably 30,000 N/mm 2 or less, still more preferably 25,000 N/mm 2 or less, and particularly preferably 20,000 N/mm 2 or less.
  • the 30% K value of the conductive particles is the above upper limit or less, the contact area between the electrode and the deformed conductive particles is increased in the middle and late compression stages, and both low connection resistance and high conduction reliability are achieved. can be more effectively reconciled.
  • the above-described conductive particles have a compressive elastic modulus value (10% K value) when compressed by 20% compared to the value of the elastic modulus when compressed by 10%.
  • (20% K value) is preferably 1.00 or more, more preferably 1.05 or more, still more preferably 1.10 or more.
  • the ratio (10% K value/20% K value) is preferably 1.20 or less, more preferably less than 1.20, and still more preferably 1 0.15 or less, particularly preferably 1.13 or less.
  • the above-described conductive particles have a compression elastic modulus when compressed by 30% compared to the compression elastic modulus value (10% K value) when compressed by 10%.
  • (30% K value) is preferably 1.00 or more, more preferably 1.20 or more, still more preferably 1.30 or more.
  • the ratio (10% K value/30% K value) is preferably 1.80 or less, more preferably 1.70 or less, and still more preferably 1 0.60 or less, particularly preferably 1.50 or less.
  • the above-described conductive particles have a compression elastic modulus when compressed by 30%, which is lower than the compression elastic modulus when compressed by 20% (20% K value).
  • (30% K value) is preferably 1.00 or more, more preferably 1.05 or more, still more preferably 1.10 or more.
  • the ratio (20% K value/30% K value) is preferably 1.60 or less, more preferably 1.50 or less, and still more preferably 1 0.40 or less, particularly preferably 1.30 or less.
  • the 10% K value, 20% K value, and 30% K value of the conductive particles can be measured as follows.
  • the conductive particles are compressed at 25°C with a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) under the conditions of applying a maximum test load of 90 mN over 30 seconds.
  • the load value (N) and compression displacement (mm) at this time are measured. From the obtained measured values, the compression elastic modulus can be obtained by the following formula.
  • the microcompression tester for example, "Fischer Scope H-100" manufactured by Fisher Co., Ltd. is used.
  • K value (N/mm 2 ) (3/2 1/2 ) F S ⁇ 3/2 R ⁇ 1/2 F: Load value (N) when the conductive particles are compressed by 10%, 20%, or 30% S: Compressive displacement (mm) when the conductive particles are compressed by 10%, 20%, or 30% R: radius of conductive particles (mm)
  • a method of controlling the 10% K value, the 20% K value, the 30% K value, and the ratio (the absolute value of the difference between the 10% K value and the 20% K value/20% K value) within a preferable range examples include the following methods.
  • the compression recovery rate of the conductive particles is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, and preferably 95%. Below, more preferably 90% or less, still more preferably 85% or less.
  • the compression recovery rate can be measured as follows.
  • Scatter conductive particles on the sample stage For one dispersed conductive particle, using a microcompression tester, a cylindrical (diameter 100 ⁇ m, made of diamond) smooth indenter end face, at 25 ° C., 30% of the conductive particle in the center direction of the conductive particle. A load (reverse load value) is applied until compression deformation occurs. After that, unloading is performed to the origin load value (0.40 mN). By measuring the load-compression displacement during this period, the compression recovery rate can be obtained from the following formula. Note that the load speed is 0.33 mN/sec. As the microcompression tester, for example, "Fischer Scope H-100" manufactured by Fisher Co., Ltd. is used.
  • Compression recovery rate (%) [L2/L1] x 100
  • L1 Compressive displacement from the origin load value to the reverse load value when the load is applied
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the particle diameter of the conductive particles is at least the lower limit and at most the upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, and the conductive portion It becomes difficult to form agglomerated conductive particles when forming.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portions are less likely to peel off from the surface of the substrate particles.
  • the particle size of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, the conductive particles can be suitably used as a conductive material.
  • the particle size of the conductive particles is preferably an average particle size, more preferably a number average particle size.
  • the particle size of the conductive particles can be obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average particle size of each conductive particle, or by laser diffraction particle size distribution measurement. is obtained by doing In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is obtained as the particle size in circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle size of arbitrary 50 conductive particles in equivalent circle diameter is almost equal to the average particle size in equivalent sphere diameter. In the laser diffraction particle size distribution measurement, the particle size of each conductive particle is obtained as the particle size in terms of equivalent sphere diameter.
  • the particle size of the conductive particles is preferably calculated by laser diffraction particle size distribution measurement.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particles 1 shown in FIG. 1 have base particles 2 and conductive portions 3 .
  • the conductive portion 3 is arranged on the surface of the substrate particle 2 .
  • the conductive portion 3 is in contact with the surface of the substrate particles 2 .
  • the conductive particles 1 are coated particles in which the surfaces of the base particles 2 are coated with the conductive parts 3 .
  • the conductive portion 3 is a single-layer conductive portion (conductive layer).
  • the conductive particles 1 do not have a core substance, unlike the conductive particles 11 and 21 described later.
  • the conductive particles 1 do not have protrusions on their surfaces, and the conductive portions 3 do not have protrusions on their outer surfaces.
  • Conductive particles 1 are spherical.
  • the conductive particles according to the present invention may have no projections on the surface, may have no projections on the outer surface of the conductive portion, and may be spherical. Also, unlike the conductive particles 11 and 21 to be described later, the conductive particles 1 do not have an insulating substance. However, the conductive particles 1 may have an insulating substance arranged on the outer surface of the conductive portion 3 .
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • a conductive particle 11 shown in FIG. 2 has a base particle 2, a conductive portion 12, a plurality of core substances 13, and a plurality of insulating substances 14.
  • the conductive portion 12 is arranged on the surface of the substrate particle 2 so as to be in contact with the substrate particle 2 .
  • the conductive portion 12 is a single-layer conductive portion (conductive layer).
  • the conductive particles 11 have a plurality of protrusions 11a on their surfaces.
  • the conductive portion 12 has a plurality of protrusions 12a on its outer surface.
  • a plurality of core substances 13 are arranged on the surface of the substrate particles 2 .
  • a plurality of core substances 13 are embedded in the conductive portion 12 .
  • the core substance 13 is arranged inside the protrusions 11a and 12a.
  • the conductive portion 12 covers a plurality of core substances 13 .
  • the outer surface of the conductive portion 12 is raised by a plurality of core substances 13 to form projections 11a and 12a.
  • the conductive particles 11 have an insulating substance 14 arranged on the outer surface of the conductive portion 12 . At least a partial region of the outer surface of the conductive portion 12 is covered with an insulating material 14 .
  • the insulating substance 14 is an insulating particle made of an insulating material.
  • the conductive particles according to the present invention may have an insulating material arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention may not necessarily contain an insulating substance.
  • FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
  • a conductive particle 21 shown in FIG. 3 has a base particle 2 , a conductive portion 22 , multiple core substances 13 , and multiple insulating substances 14 .
  • the conductive portion 22 as a whole has a first conductive portion 22A on the substrate particle 2 side and a second conductive portion 22B on the side opposite to the substrate particle 2 side.
  • the conductive particles 11 and the conductive particles 21 differ only in the configuration of the conductive portion. That is, in the conductive particles 11, the conductive portion 12 having a single-layer structure is formed, whereas in the conductive particles 21, the first conductive portion 22A and the second conductive portion 22B having a two-layer structure are formed. ing. The first conductive portion 22A and the second conductive portion 22B are formed as separate conductive portions.
  • the first conductive portion 22A is arranged on the surface of the substrate particle 2.
  • a first conductive portion 22A is arranged between the substrate particle 2 and the second conductive portion 22B.
  • the first conductive portion 22A is in contact with the substrate particles 2 . Therefore, the first conductive portion 22A is arranged on the surface of the substrate particle 2, and the second conductive portion 22B is arranged on the surface of the first conductive portion 22A.
  • the conductive particles 21 have a plurality of projections 21a on their surfaces.
  • the conductive portion 22 has a plurality of protrusions 22a on its outer surface.
  • the first conductive portion 22A has projections 22Aa on its outer surface.
  • the second conductive portion 22B has a plurality of projections 22Ba on its outer surface.
  • the conductive portion 22 is a two-layered conductive portion (conductive layer).
  • (meth)acrylic means one or both of “acrylic” and “methacrylic”
  • (meth)acrylate means one or both of “acrylate” and “methacrylate”.
  • the substrate particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles may be core-shell particles comprising a core and a shell arranged on the surface of the core.
  • the core may be an organic core.
  • the shell may be an inorganic shell.
  • the substrate particles are preferably resin particles or organic-inorganic hybrid particles, and more preferably organic-inorganic hybrid particles, because the effects of the present invention are more excellent.
  • the base particles are preferably resin particles made of resin.
  • the conductive particles are placed between the electrodes and then pressed to compress the conductive particles.
  • the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode increases. Therefore, the reliability of electrical connection between the electrodes is further enhanced.
  • the resin that is the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene oxide , polyacetal, polyimide, polyamideimide, polyetheretherketone, polyethersulfone, and polymers obtained by polymerizing one or more of various polymerizable monomers having an ethacrylate, polyethylene, polypropylene, polystyrene, polyviny
  • the resin for forming the resin particles is obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups. Polymers are preferred.
  • the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and a crosslinkable monomer. and a monomer of
  • non-crosslinkable monomers examples include styrene-based monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid and maleic anhydride; meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl ( Alkyl (meth)acrylate compounds such as meth)acrylate and isobornyl (meth)acrylate; Oxygen atoms such as 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate Containing (meth)
  • crosslinkable monomer examples include tetramethylolmethane tetra(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipenta Erythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate Polyfunctional (meth)acrylate compounds such as acrylate, (poly)tetramethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate; triallyl (iso)cyanurate, triallyl trimellitate, divinylbenzene,
  • the resin particles can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using uncrosslinked seed particles.
  • the substrate particles are inorganic particles excluding metal particles or organic-inorganic hybrid particles
  • examples of inorganic substances that are materials of the substrate particles include silica and carbon black.
  • the inorganic substance is not a metal.
  • the particles formed of silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed as necessary. Particles obtained by carrying out.
  • the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of metals that are materials of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles, and preferably not copper particles.
  • the compression elastic modulus value (10% K value) when the base particles are compressed by 10% is preferably 9500 N/mm 2 or more, more preferably 10500 N/mm 2 or more, still more preferably 13500 N/mm 2 or more, Particularly preferably, it is 16500 N/mm 2 or more.
  • the 10% K value of the substrate particles is preferably 31,500 N/mm 2 or less, more preferably 30,500 N/mm 2 or less, still more preferably 27,500 N/mm 2 or less, and particularly preferably 24,500 N/mm 2 or less.
  • the 10% K value of the substrate particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased, and the connection resistance can be further reduced.
  • the compression elastic modulus value (20% K value) when the base particles are compressed by 20% is preferably 9000 N/mm 2 or more, more preferably 10000 N/mm 2 or more, still more preferably 13000 N/mm 2 or more, Particularly preferably, it is 16000 N/mm 2 or more.
  • the 20% K value of the base particles is at least the lower limit, the oxide film on the surface of the electrode or the conductive particles (conductive portion) is more effectively eliminated at the initial stage of compression, and the connection resistance is further reduced. be able to.
  • the 20% K value of the substrate particles is preferably 31,000 N/mm 2 or less, more preferably 30,000 N/mm 2 or less, even more preferably 27,000 N/mm 2 or less, and particularly preferably 24,000 N/mm 2 or less.
  • the 20% K value of the substrate particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased, and the connection resistance can be further reduced.
  • the compression elastic modulus value (30% K value) when the base particles are compressed by 30% is preferably 8000 N/mm 2 or more, more preferably 9000 N/mm 2 or more, and still more preferably 12000 N/mm 2 or more. Particularly preferably, it is 15000 N/mm 2 or more.
  • 30% K value of the base particles is at least the lower limit, recesses (indentations) in which the conductive particles are pushed into the electrodes are formed in the middle and late stages of compression, and the reliability of conduction between the electrodes is further enhanced. be able to.
  • the 30% K value of the substrate particles is preferably 30,000 N/mm 2 or less, more preferably 29,000 N/mm 2 or less, still more preferably 27,000 N/mm 2 or less, and particularly preferably 24,000 N/mm 2 or less.
  • the 30% K value of the base particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles is increased in the middle and late stages of compression, and both low connection resistance and high conduction reliability are achieved. can be more effectively reconciled.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 1.0 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more.
  • the particle size of the substrate particles is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 10 ⁇ m or less, and most preferably 5.0 ⁇ m or less.
  • the conductive portion is formed on the surface of the base material particles by electroless plating, it becomes difficult to form agglomerated conductive particles.
  • the particle size of the substrate particles is equal to or less than the upper limit, the conductive particles are sufficiently compressed, the connection resistance between the electrodes becomes even lower, and the distance between the electrodes becomes smaller.
  • the particle size of the base material particles indicates the number average particle size.
  • the particle size of the substrate particles is determined using a particle size distribution analyzer or the like.
  • the particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating the average value. In observation with an electron microscope or an optical microscope, the particle size of each base particle is obtained as the particle size of the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle size of arbitrary 50 substrate particles in the equivalent circle diameter is approximately equal to the average particle size in the equivalent sphere diameter.
  • the particle size of one base particle is determined as the particle size in terms of equivalent sphere diameter. It is preferable to calculate the particle size of the substrate particles using a particle size distribution analyzer. When measuring the particle size of the substrate particles of the conductive particles, it can be measured, for example, as follows.
  • a metal for forming the conductive portion is not particularly limited.
  • the above metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, ruthenium, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, and silicon. and alloys thereof.
  • the metal include tin-doped indium oxide (ITO) and solder.
  • ITO tin-doped indium oxide
  • An alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable, since the connection resistance between the electrodes can be further lowered.
  • the conductive portion may be formed of one layer.
  • the conductive portion may be formed of multiple layers. That is, the conductive portion may have a laminated structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a ruthenium layer, a copper layer, or an alloy layer containing tin and silver. more preferably a layer, a palladium layer or a ruthenium layer.
  • the outermost layer is one of these preferred conductive layers, the connection resistance between the electrodes is even lower.
  • the outermost layer is a noble metal layer, the corrosion resistance is further enhanced.
  • the method of forming the conductive portion on the surface of the substrate particles is not particularly limited.
  • Methods for forming the conductive portion include, for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of the substrate particles with a metal powder or a paste containing a metal powder and a binder. etc.
  • a method using electroless plating is preferable because the formation of the conductive portion is simple.
  • Methods such as vacuum deposition, ion plating, and ion sputtering can be used as the method by physical vapor deposition.
  • the thickness of the conductive portion is preferably 10 nm or more, more preferably 100 nm or more, still more preferably 120 nm or more, preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, It is particularly preferably 250 nm or less, most preferably 200 nm or less.
  • the thickness of the conductive portion is the thickness of the entire conductive layer when the conductive portion has multiple layers. When the thickness of the conductive portion is at least the above lower limit and at most the above upper limit, sufficient conductivity is obtained, and the conductive particles are sufficiently deformed when connecting the electrodes without becoming too hard. .
  • the thickness of the outermost conductive layer is preferably 1 nm or more, more preferably 10 nm or more, and preferably 500 nm or less, more preferably 200 nm or less.
  • the thickness of the outermost conductive layer is equal to or more than the lower limit and equal to or less than the upper limit, the coating with the outermost conductive layer is uniform, the corrosion resistance is sufficiently high, and the connection resistance between electrodes is further increased. lower.
  • the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
  • the thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles preferably have a conductive portion containing nickel.
  • the nickel content is preferably 50% by weight or more, more preferably 65% by weight or more, even more preferably 70% by weight or more, still more preferably 75% by weight or more, and even more preferably is at least 80% by weight, particularly preferably at least 85% by weight, most preferably at least 90% by weight.
  • the nickel content is preferably 100% by weight (total amount) or less, may be 99% by weight or less, or may be 95% by weight or less. If the nickel content is at least the above lower limit, the connection resistance between the electrodes will be even lower. In addition, when the oxide film on the surface of the electrode or the conductive portion is small, the connection resistance between the electrodes tends to decrease as the nickel content increases.
  • Various known analysis methods can be used for measuring the content of the metal contained in the conductive portion, and there is no particular limitation.
  • this measuring method include absorption spectrometry, spectral analysis, and the like.
  • absorption analysis method a flame absorption photometer, an electric heating furnace absorption photometer, or the like can be used.
  • spectral analysis methods include plasma emission spectrometry and plasma ion source mass spectrometry.
  • ICP emission spectrometer When measuring the average content of the metal contained in the conductive portion, it is preferable to use an ICP emission spectrometer.
  • ICP emission spectrometers include ICP emission spectrometers manufactured by HORIBA.
  • the conductive portion may contain phosphorus or boron in addition to nickel. Also, the conductive portion may contain a metal other than nickel. When the conductive portion contains a plurality of metals, the plurality of metals may be alloyed.
  • the content of phosphorus or boron is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and preferably 10% by weight or less, More preferably, it is 5% by weight or less.
  • the content of phosphorus or boron is equal to or less than the lower limit and the upper limit, the connection resistance of the conductive portion is further lowered, and the conductive portion contributes to the reduction of the connection resistance.
  • the conductive particles have a plurality of projections on the outer surface of the conductive portion. Furthermore, it is preferable that the conductive particles include a plurality of core substances protruding from the outer surface of the conductive portion so as to form a plurality of protrusions within the conductive portion.
  • the conductive portion By embedding the core material in the conductive portion, the conductive portion can easily have a plurality of projections on the outer surface.
  • the core substance may not necessarily be used to form projections on the surface of the conductive particles and the surface of the conductive portion.
  • a method of forming a conductive portion by electroless plating after attaching a core substance to the surface of the substrate particle As a method of forming the protrusions, a method of forming a conductive portion by electroless plating after attaching a core substance to the surface of the substrate particle, and a method of forming a conductive portion by electroless plating on the surface of the substrate particle. , a method of adhering a core substance and then forming a conductive portion by electroless plating, and a method of adding a core substance in the middle of forming a conductive portion on the surface of a substrate particle by electroless plating.
  • Materials for the core substance include conductive substances and non-conductive substances.
  • the conductive substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers. Polyacetylene etc. are mentioned as said conductive polymer.
  • the non-conductive substance include silica, alumina, tungsten carbide, titanium oxide, barium titanate, and zirconia.
  • the metal that is the material of the core substance the metals listed as the material of the conductive material can be appropriately used.
  • materials for the core substance include barium titanate (Mohs hardness 4.5), nickel (Mohs hardness 5), silica (silicon dioxide, Mohs hardness 6 to 7), titanium oxide (Mohs hardness 7), and zirconia. (Mohs hardness 8 to 9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9) and diamond (Mohs hardness 10).
  • the inorganic particles are preferably nickel, silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, more preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond.
  • the inorganic particles are more preferably titanium oxide, zirconia, alumina, tungsten carbide or diamond, and particularly preferably zirconia, alumina, tungsten carbide or diamond.
  • the Mohs hardness of the material of the core substance is preferably 4 or higher, more preferably 6 or higher, even more preferably 7 or higher, and particularly preferably 7.5 or higher.
  • the Mohs hardness of the material of the core substance is at least the lower limit, the 10% K value, the 20% K value, the 30% K value, and the ratio (the difference between the 10% K value and the 20% K value (absolute value of /20% K value) can be easily controlled within a suitable range.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably massive.
  • the core substance includes, for example, particulate lumps, agglomerates in which a plurality of microparticles are aggregated, and amorphous lumps.
  • the average particle size of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, and preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between electrodes is effectively lowered.
  • the average particle size of the core substance is preferably the number average particle size.
  • the average particle size of the core substance is obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope and calculating the average value.
  • the number of protrusions per conductive particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles.
  • the surface area of the portion having the protrusions is preferably 10% or more, more preferably 30% or more, out of 100% of the total surface area of the conductive particles. , preferably 95% or less, more preferably 90% or less.
  • the average height of the plurality of projections is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, and preferably 0.9 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the connection resistance between the electrodes is effectively lowered.
  • the conductive particles comprise an insulating material disposed on the surface of the conductive portion.
  • the conductive particles are used to connect the electrodes, it is possible to further prevent short circuits between the adjacent electrodes.
  • an insulating material exists between the plurality of electrodes, so short-circuiting between laterally adjacent electrodes can be prevented instead of between the electrodes above and below.
  • the electrodes are connected, the insulating material between the conductive portion of the conductive particles and the electrodes can be easily eliminated by pressing the conductive particles with two electrodes.
  • the conductive particles have a plurality of protrusions on the outer surface of the conductive portion, the insulating material between the conductive portion of the conductive particles and the electrode can be removed more easily.
  • the insulating substance is preferably insulating particles because the insulating substance can be more easily removed when the electrodes are crimped.
  • the particle size of the insulating material can be appropriately selected depending on the particle size of the conductive particles, the application of the conductive particles, and the like. In addition, from the viewpoint of improving insulation performance, insulating substances having different particle sizes may be mixed and used.
  • the particle size of the insulating substance is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less. If the particle diameter of the insulating substance is equal to or greater than the lower limit, the conductive portions of the plurality of conductive particles are less likely to come into contact with each other when the conductive particles are dispersed in the binder resin. When the particle diameter of the insulating particles is equal to or less than the upper limit, there is no need to apply an excessively high pressure to remove the insulating substance between the electrodes and the conductive particles when connecting the electrodes. No need to heat to high temperatures.
  • the conductive material according to the present invention contains the conductive particles described above and a binder resin.
  • the conductive particles are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive particles and the conductive material are each used for electrical connection between electrodes.
  • Each of the conductive particles and the conductive material is suitably used for electrical connection between electrodes of an organic EL display element.
  • the conductive material is preferably a circuit connecting material.
  • the binder resin is not particularly limited.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include photocurable components and thermosetting components.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. Only one type of the binder resin may be used, or two or more types may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin.
  • examples of the thermoplastic resins include polyolefin resins, ethylene-vinyl acetate copolymers and polyamide resins.
  • examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • thermoplastic block copolymers examples include styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, hydrogenated products of styrene-butadiene-styrene block copolymers, and styrene-isoprene. - hydrogenated products of styrene block copolymers;
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material and the binder resin preferably contain a thermoplastic component or a thermosetting component.
  • the conductive material and the binder resin may contain a thermoplastic component or may contain a thermosetting component.
  • the conductive material and the binder resin preferably contain a thermosetting component.
  • the thermosetting component preferably contains a curable compound that can be cured by heating and a thermosetting agent.
  • the heat curing agent is preferably a heat cationic curing initiator.
  • the curable compound that can be cured by heating and the thermosetting agent are used in an appropriate compounding ratio so that the binder resin is cured.
  • the binder resin contains a thermal cationic curing initiator, the cured product tends to contain an acid.
  • the connection resistance between the electrodes can be kept low.
  • Examples of the conductive material include fillers, extenders, softeners, plasticizers, polymerization catalysts, curing catalysts, colorants, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents and Various additives such as flame retardants may be included.
  • the conductive material can be used as a conductive paste, a conductive film, and the like.
  • the conductive material is a conductive film
  • a film containing no conductive particles may be laminated on the conductive film containing conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is at least the lower limit and at most the upper limit, the conductive particles are efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and preferably 80% by weight or less, more preferably 60% by weight. 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • content of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, reliability of electrical connection between electrodes is further enhanced.
  • connection structure A connected structure can be obtained by connecting members to be connected using the conductive particles or a conductive material containing the conductive particles and a binder resin.
  • connection structure connects a first member to be connected having a first electrode on its surface, a second member to be connected having a second electrode on its surface, and the first and second members to be connected. a connecting portion, wherein the material of the connecting portion comprises the conductive particles described above. In the connection structure, the first electrode and the second electrode are connected by the conductive particles.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • a connection structure 51 shown in FIG. 4 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53.
  • the connecting portion 54 is formed by curing a conductive material containing the conductive particles 1 .
  • the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, conductive particles 11, 21, etc. may be used.
  • the first connection object member 52 has a plurality of first electrodes 52a on its surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on its surface (lower surface).
  • a first electrode 52 a and a second electrode 53 a are electrically connected by one or more conductive particles 1 . Therefore, the first and second connection object members 52 and 53 are electrically connected by the conductive particles 1 .
  • the manufacturing method of the connection structure is not particularly limited.
  • the conductive material is arranged between the first member to be connected and the second member to be connected to obtain a laminate, and then the laminate is heated. and a method of pressurizing.
  • the pressurization pressure is about 1.0 ⁇ 10 6 Pa to 4.9 ⁇ 10 8 Pa per total area of the connection portion of the electrodes.
  • the heating temperature is about 120.degree. C. to 220.degree.
  • the total area of the connection portion of the electrode is not limited to the area of the portion in contact with the conductive particles, and in a plan view (in the stacking direction of the first connection target member, the connection portion, and the second connection target member) sometimes) means the total area of the facing portions of the two electrodes.
  • the members to be connected include electronic parts such as semiconductor chips, capacitors and diodes, and electronic parts such as circuit boards such as printed boards, flexible printed boards, glass epoxy boards and glass boards.
  • the member to be connected is preferably an electronic component.
  • the conductive particles are preferably used for electrical connection of electrodes in electronic components.
  • At least one of the first member to be connected and the second member to be connected is preferably a flexible printed circuit board. At least one of the first member to be connected and the second member to be connected is preferably a semiconductor chip. The first member to be connected and the second member to be connected are preferably a flexible printed circuit board and a semiconductor chip.
  • the material of the flexible printed circuit board is preferably polyimide or polyester, and in the case of polyester, it is preferably polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the conductive particles and the conductive material are suitably used for conducting a flexible printed circuit board.
  • the electrodes provided on the connection target members include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, silver electrodes, titanium electrodes, molybdenum electrodes and tungsten electrodes.
  • the electrode is preferably a gold electrode, a nickel electrode, a titanium electrode, a tin electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a titanium electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode When the electrode is an aluminum electrode, it may be an electrode made of only aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • materials for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal elements include Sn, Al and Ga.
  • the conductive particles according to the present invention are preferably conductive particles for conductive connection of titanium electrodes.
  • the conductive particles according to the present invention may be used for conductive connection between titanium electrodes, or may be used for conductive connection between titanium electrodes and electrodes other than titanium electrodes.
  • a titanium electrode is an electrode containing titanium.
  • Substrate particles A resin particles (divinylbenzene copolymer resin particles, "Micropearl SP-203" manufactured by Sekisui Chemical Co., Ltd., average particle size 3.0 ⁇ m)
  • Substrate particles B organic-inorganic hybrid particles (prepared according to Synthesis Example 1 below, average particle size 3.0 ⁇ m)
  • Substrate particles C organic-inorganic hybrid particles (different from substrate particles B only in particle diameter, average particle diameter 2.5 ⁇ m)
  • Base particle D organic-inorganic hybrid particles (different from base particle B only in particle size, average particle size 10 ⁇ m)
  • Example 1 A dispersion liquid was obtained by adding the substrate particles B to 500 parts by weight of distilled water and dispersing them.
  • a nickel plating solution (pH 8.5) containing 0.35 mol/L nickel sulfate, 1.38 mol/L dimethylamine borane, and 0.5 mol/L sodium citrate was also prepared. While stirring the resulting suspension at 60° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. After that, by filtering the suspension, the particles are taken out, washed with water, and dried to arrange a nickel-boron conductive layer (thickness 142 nm) on the surface of the base particle B, and the surface is a conductive layer. Conductive particles were obtained.
  • the nickel plating solution is a mixture of nickel sulfate 200 g / L, sodium hypophosphite 85 g / L, sodium citrate 30 g / L, thallium nitrate 50 ppm, and bismuth nitrate 20 ppm.
  • Conductive particles were obtained in the same manner as in Example 1, except that the plating solution was changed to an alloy plating solution and the thickness of the conductive portion was changed.
  • the nickel plating solution is a pure nickel plating solution obtained by adjusting the pH of a mixed solution containing 200 g/L of nickel sulfate, 50 g/L of hydrazine hydrate, 30 g/L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to pH 6.5.
  • Conductive particles were obtained in the same manner as in Example 1, except that the thickness of the conductive portion was changed.
  • Example 4 The substrate particles B were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the substrate particles B. After sufficiently washing the surface-activated substrate particles B with water, they were added to 500 parts by weight of distilled water and dispersed to obtain a dispersion liquid. Next, 1 g of nickel particle slurry (average particle size: 150 nm) was added to the dispersion liquid over 3 minutes to obtain a suspension containing base particles B to which the core substance was attached. A nickel plating solution (pH 8.5) containing 0.35 mol/L nickel sulfate, 1.38 mol/L dimethylamine borane, and 0.5 mol/L sodium citrate was also prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. After that, by filtering the suspension, the particles are taken out, washed with water, and dried to arrange a nickel-boron conductive layer (thickness 158 nm) on the surface of the base particle B, and the surface is a conductive layer. Conductive particles were obtained. Out of 100% of the total surface area of the outer surface of the conductive portion, the surface area of the portion having the protrusions was 70%.
  • Example 5 Conductive particles were obtained in the same manner as in Example 4, except that the nickel particle slurry was changed to alumina particle slurry (average particle size: 150 nm) and the thickness of the conductive portion was changed.
  • Example 6 Conductive particles were obtained in the same manner as in Example 4, except that the nickel particle slurry was changed to titanium oxide particle slurry (average particle size: 150 nm) and the thickness of the conductive portion was changed.
  • Example 7 Same as Example 1, except that no particle slurry was used to form the protrusions, and the protrusions were formed by adjusting the amount of precipitation to partially change when forming the conductive portion, and the thickness of the conductive portion was changed. to obtain conductive particles.
  • Example 8 In the same manner as in Example 4, except that a palladium plating layer (thickness 20 nm) was formed on the outer surface of the nickel-boron conductive layer when producing the conductive particles, and the thickness of the conductive portion was changed. , to obtain conductive particles.
  • Example 9 In the same manner as in Example 4, except that a gold plating layer (thickness 20 nm) was formed on the outer surface of the nickel-boron conductive layer when producing the conductive particles, and the thickness of the conductive portion was changed. , to obtain conductive particles.
  • a gold plating layer thickness 20 nm
  • Example 10 A conductive particle was obtained in the same manner as in Example 1, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
  • Example 11 A conductive particle was obtained in the same manner as in Example 2, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
  • Example 12 A conductive particle was obtained in the same manner as in Example 4, except that the base particle B was changed to the base particle C and the thickness of the conductive portion was changed.
  • Example 13 Conductive particles were obtained in the same manner as in Example 4, except that substrate particles B were changed to substrate particles D and the thickness of the conductive portion was changed.
  • Example 14 Prepare a monomer composition containing 100 mmol of methyl methacrylate, 1 mmol of N,N,N-trimethyl-N-2-methacryloyloxyethylammonium chloride, and 1 mmol of 2,2′-azobis(2-amidinopropane) dihydrochloride bottom.
  • the above monomer composition was added to deionized water so that the solid content was 5% by weight. Weighed. Then, the mixture was stirred at 200 rpm and polymerized at 70° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, the mixture was lyophilized to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm and a CV value of 10%.
  • the insulating particles were dispersed in ion-exchanged water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles.
  • Example 4 10 g of the conductive particles obtained in Example 4 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles to which insulating particles adhered.
  • Example 15 In the same manner as in Example 4, except that a ruthenium plating layer (thickness of 20 nm) was formed on the outer surface of the nickel-boron conductive layer when producing the conductive particles, and that the thickness of the conductive portion was changed. , to obtain conductive particles.
  • a ruthenium plating layer thickness of 20 nm
  • Example 1 A conductive particle was obtained in the same manner as in Example 1, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
  • Example 2 A conductive particle was obtained in the same manner as in Example 4, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
  • Example 3 A conductive particle was obtained in the same manner as in Example 14, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
  • Example 4 A conductive particle was obtained in the same manner as in Example 14, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
  • Compression modulus of conductive particles (10% K value, 20% K value, and 30% K value) and ratio (absolute value of difference between 10% K value and 20% K value/20% K value )
  • the compression elastic modulus (10% K value, 20% K value, and 30% K value) of the obtained conductive particles was measured using a microcompression tester ("Fisherscope H-100" manufactured by Fisher Co., Ltd.) by the method described above. ) was used.
  • the ratio of the absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% to the value of the compression modulus when compressed by 20% (10% K
  • the absolute value of the difference between the value and the 20% K value/20% K value was calculated.
  • An anisotropic conductive paste was prepared by adding the obtained conductive particles to "Structbond XN-5A" manufactured by Mitsui Chemicals Co., Ltd. so that the content was 10% by weight and dispersed. .
  • a polyimide substrate (flexible printed substrate) having a Ti--Al--Ti multilayer electrode pattern with L/S of 20 ⁇ m/20 ⁇ m on its upper surface was prepared.
  • a semiconductor chip having a gold electrode pattern with L/S of 20 ⁇ m/20 ⁇ m on the lower surface was prepared.
  • the anisotropic conductive paste immediately after production was applied onto the polyimide substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was laminated on the anisotropic conductive paste layer so that the electrodes faced each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 40 MPa per total bump area is applied to anisotropically.
  • the conductive paste layer was cured at 150° C. to obtain a connection structure.
  • a connection resistance A between opposing electrodes of the obtained connection structure was measured by a four-probe method. The connection resistance was judged according to the following criteria.
  • connection resistance A is 2.0 ⁇ or less ⁇ : Connection resistance A is over 2.0 ⁇ and is 3.0 ⁇ or less ⁇ : Connection resistance A is over 3.0 ⁇ and is 5.0 ⁇ or less ⁇ : Connection resistance A exceeds 5.0 ⁇
  • connection structure after the connection resistance evaluation (2) was left under conditions of 85° C. and 85% humidity for 500 hours.
  • the connection resistance B between the upper and lower electrodes of the connection structure after being left for 500 hours was measured by the four-probe method. From the connection resistances A and B, the conduction reliability after being left at high temperature and high humidity was determined according to the following criteria.
  • connection resistance B is less than 1.25 times the connection resistance A ⁇ : The connection resistance B is 1.25 times or more and less than 1.5 times the connection resistance A ⁇ : The connection resistance B is 1 of the connection resistance A .5 times or more and less than 2.0 times ⁇ : Connection resistance B is 2.0 times or more of connection resistance A

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are conductive particles that can decrease connection resistance and increase conduction reliability when the conductive particles are used for electrical connection between electrodes. A conductive particle according to the present invention comprises a base material particle and a conductive part disposed on the surface of the base material particle. The compressive elasticity modulus value of the conductive particle at 10% compression is greater than or equal to the compressive elasticity modulus value of the conductive particle at 20% compression. The compressive elasticity modulus value of the conductive particle at 20% compression is greater than or equal to the compressive elasticity modulus value of the conductive particle at 30% compression. The ratio of the absolute value of the difference between the compressive elasticity modulus value of the conductive particle at 10% compression and the compressive elasticity modulus value of the conductive particle at 20% compression to the compressive elasticity modulus value of the conductive particle at 20% compression is less than or equal to 0.20.

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive materials and connecting structures
 本発明は、基材粒子と、該基材粒子の表面上に配置された導電部とを備える導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to a conductive particle comprising a base particle and a conductive portion arranged on the surface of the base particle. The present invention also relates to a conductive material and a connection structure using the conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.
 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電部とを有する導電性粒子が用いられることがある。 The above anisotropic conductive materials are used to electrically connect electrodes of various members to be connected, such as flexible printed circuit boards (FPC), glass substrates, and semiconductor chips, to obtain connection structures. Further, as the conductive particles, conductive particles having a substrate particle and a conductive portion arranged on the surface of the substrate particle may be used.
 導電性粒子に用いられる基材粒子の一例として、下記の特許文献1には、破壊点荷重が9.8mN(1.0gf)以下である重合体微粒子が開示されている。特許文献1には、該重合体微粒子は、10%K値>30%K値>20%K値の関係を満足することが好ましい旨が記載されている。 As an example of base particles used for conductive particles, Patent Document 1 below discloses polymer fine particles having a breaking point load of 9.8 mN (1.0 gf) or less. Patent Document 1 describes that the fine polymer particles preferably satisfy the relationship of 10% K value>30% K value>20% K value.
WO2012/020799A1WO2012/020799A1
 電極間を導電性粒子により電気的に接続する際には、電極間に導電性粒子を含む異方性導電材料を配置し、加熱及び加圧する。その際、導電性粒子は圧縮される。 When electrically connecting the electrodes with conductive particles, an anisotropic conductive material containing conductive particles is placed between the electrodes and heated and pressurized. At that time, the conductive particles are compressed.
 一般に、導電性粒子により接続される電極の表面や、導電性粒子の導電部の表面には、酸化被膜が形成されていることが多い。酸化被膜が形成されていると、電極と導電性粒子(導電部)とが十分に接触することができず、電極間の接続抵抗が高くなる原因となるため、酸化被膜は除去されることが望ましい。 In general, oxide films are often formed on the surfaces of electrodes connected by conductive particles and on the surfaces of the conductive portions of conductive particles. If an oxide film is formed, the electrode and the conductive particles (conductive portion) cannot sufficiently contact each other, which causes the connection resistance between the electrodes to increase. Therefore, the oxide film is often removed. desirable.
 しかしながら、特許文献1に記載のような従来の基材粒子を用いて導電性粒子を作製した場合、圧縮初期(例えば、導電性粒子を10%~20%圧縮したとき)の圧縮弾性率が比較的低いために、電極又は導電性粒子(導電部)の表面の酸化被膜を十分に排除することができないことがある。結果として、従来の基材粒子を用いた導電性粒子では、電極間の接続抵抗が高くなり、導通信頼性を高めることができないことがある。 However, when conductive particles are produced using conventional base particles as described in Patent Document 1, the compression elastic modulus at the beginning of compression (for example, when the conductive particles are compressed by 10% to 20%) is compared. In some cases, the oxide film on the surface of the electrode or the conductive particles (conductive portion) cannot be sufficiently removed due to the low thermal conductivity. As a result, with conductive particles using conventional base particles, the connection resistance between electrodes increases, and the reliability of conduction cannot be improved in some cases.
 すなわち、従来の導電性粒子では、低い接続抵抗と、高い導通信頼性との双方を両立することが困難であるという問題がある。 That is, with conventional conductive particles, there is the problem that it is difficult to achieve both low connection resistance and high conduction reliability.
 本発明の目的は、電極間の電気的な接続に用いたときに、低い接続抵抗と、高い導通信頼性との双方を両立することができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles that can achieve both low connection resistance and high conduction reliability when used for electrical connection between electrodes. Another object of the present invention is to provide a conductive material and a connection structure using the conductive particles.
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された導電部とを備え、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値以上であり、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値以上であり、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、0.20以下である、導電性粒子が提供される。 According to a broad aspect of the present invention, a base particle and a conductive portion disposed on the surface of the base particle are provided, and the compression elastic modulus value when compressed by 10% is The value of the elastic modulus or more, and the value of the elastic modulus when compressed by 20% is equal to or higher than the value of the elastic modulus when compressed by 30%, and the value of the elastic modulus when compressed by 10% and 20 Conductive particles are provided, wherein the ratio of the absolute value of the difference between the compression modulus value at 20% compression and the compression modulus value at 20% compression is 0.20 or less.
 本発明に係る導電性粒子のある特定の局面では、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、0.15以下である。 In a specific aspect of the conductive particles according to the present invention, when compressed by 20% of the absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% to the compression modulus value is 0.15 or less.
 本発明に係る導電性粒子のある特定の局面では、10%圧縮したときの圧縮弾性率の値が13000N/mm以上であり、20%圧縮したときの圧縮弾性率の値が13000N/mm以上であり、30%圧縮したときの圧縮弾性率の値が13000N/mm以上である。 In a specific aspect of the conductive particles according to the present invention, the value of compression modulus when compressed by 10% is 13000 N/mm 2 or more, and the value of compression modulus when compressed by 20% is 13000 N/mm 2 . That is, the value of the compression elastic modulus when compressed by 30% is 13000 N/mm 2 or more.
 本発明に係る導電性粒子のある特定の局面では、10%圧縮したときの圧縮弾性率の値が15000N/mm以上であり、20%圧縮したときの圧縮弾性率の値が15000N/mm以上である。 In a specific aspect of the conductive particles according to the present invention, the value of compression modulus when compressed by 10% is 15000 N/mm 2 or more, and the value of compression modulus when compressed by 20% is 15000 N/mm 2 That's it.
 本発明に係る導電性粒子のある特定の局面では、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値よりも大きく、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値よりも大きい。 In a specific aspect of the conductive particles according to the present invention, the value of the compression modulus when compressed by 10% is greater than the value of the compression modulus when compressed by 20%, and when compressed by 20% The value of elastic modulus is greater than the value of compressive elastic modulus when compressed by 30%.
 本発明に係る導電性粒子のある特定の局面では、前記基材粒子が、樹脂粒子又は有機無機ハイブリッド粒子である。 In a specific aspect of the conductive particles according to the present invention, the substrate particles are resin particles or organic-inorganic hybrid particles.
 本発明に係る導電性粒子のある特定の局面では、前記基材粒子が、有機無機ハイブリッド粒子である。 In a specific aspect of the conductive particles according to the present invention, the substrate particles are organic-inorganic hybrid particles.
 本発明に係る導電性粒子のある特定の局面では、前記基材粒子の粒子径が、1.0μm以上10μm以下である。 In a specific aspect of the conductive particles according to the present invention, the particle size of the substrate particles is 1.0 µm or more and 10 µm or less.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子が、前記導電部の外表面上に配置された絶縁性物質を備える。 In a specific aspect of the conductive particles according to the present invention, the conductive particles are provided with an insulating substance arranged on the outer surface of the conductive portion.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子が、前記導電部の外表面に突起を有する。 In a specific aspect of the conductive particles according to the present invention, the conductive particles have projections on the outer surface of the conductive portion.
 本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 A broad aspect of the present invention provides a conductive material containing the above-described conductive particles and a binder resin.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電性粒子を含み、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first member to be connected having a first electrode on its surface; a second member to be connected having a second electrode on its surface; a connecting portion connecting a second member to be connected, wherein the material of the connecting portion contains the above-described conductive particles, and the first electrode and the second electrode are connected to the conductive particles A connecting structure is provided which is electrically connected by a.
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値以上であり、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値以上である。本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、0.20以下である。本発明に係る導電性粒子では、上記の構成が備えられているので、導電性粒子を電極間の電気的な接続に用いたときに、接続抵抗を低くし、導通信頼性を高めることができる。 A conductive particle according to the present invention comprises a base particle and a conductive portion arranged on the surface of the base particle. In the conductive particles according to the present invention, the value of the compression modulus when compressed by 10% is equal to or greater than the value of the compression modulus when compressed by 20%, and the value of the compression modulus when compressed by 20% is It is equal to or greater than the value of compression elastic modulus when compressed by 30%. In the conductive particles according to the present invention, the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20%, the compression modulus when compressed by 20% The ratio to value is less than or equal to 0.20. Since the conductive particles according to the present invention have the above configuration, when the conductive particles are used for electrical connection between electrodes, the connection resistance can be reduced and the reliability of conduction can be improved. .
図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing conductive particles according to a second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing conductive particles according to a third embodiment of the present invention. 図4は、図1に示す導電性粒子を用いた接続構造体を模式的に示す断面図である。4 is a cross-sectional view schematically showing a connection structure using the conductive particles shown in FIG. 1. FIG.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 (導電性粒子)
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値以上であり、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値以上である。本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、0.20以下である。
(Conductive particles)
A conductive particle according to the present invention comprises a substrate particle and a conductive portion arranged on the surface of the substrate particle. In the conductive particles according to the present invention, the value of the compression modulus when compressed by 10% is equal to or greater than the value of the compression modulus when compressed by 20%, and the value of the compression modulus when compressed by 20% is It is equal to or greater than the value of compression elastic modulus when compressed by 30%. In the conductive particles according to the present invention, the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20%, the compression modulus when compressed by 20% The ratio to value is less than or equal to 0.20.
 10%圧縮したときの圧縮弾性率、20%圧縮したときの圧縮弾性率、30%圧縮したときの圧縮弾性率をそれぞれ、10%K値、20%K値及び30%K値とする。本発明に係る導電性粒子は、以下の関係を満足する。なお、「10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値」は、比(10%K値と20%K値との差の絶対値/20%K値)である。また、10%K値≧20%K値のとき、「10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値」は、「10%圧縮したときの圧縮弾性率の値から20%圧縮したときの圧縮弾性率の値を差し引いた値」である。 The compression modulus at 10% compression, the compression modulus at 20% compression, and the compression modulus at 30% compression are defined as 10% K value, 20% K value, and 30% K value, respectively. The conductive particles according to the present invention satisfy the following relationships. The "absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20%" is the ratio (the difference between the 10% K value and the 20% K value). absolute value/20% K value). In addition, when 10% K value ≥ 20% K value, the "absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20%" is "10% It is a value obtained by subtracting the value of the compression modulus when compressed by 20% from the value of the compression modulus when compressed.
 10%K値≧20%K値
 20%K値≧30%K値
 (10%K値-20%K値)/20%K値≦0.20
10% K value ≥ 20% K value 20% K value ≥ 30% K value (10% K value - 20% K value) / 20% K value ≤ 0.20
 また、別の表現をすると、本発明に係る導電性粒子は、以下の関係を満足する。 In other words, the conductive particles according to the present invention satisfy the following relationships.
 10%K値≧20%K値≧30%K値
 (10%K値-20%K値)/20%K値≦0.20
10% K value ≥ 20% K value ≥ 30% K value (10% K value - 20% K value) / 20% K value ≤ 0.20
 従来の導電性粒子では、電極又は導電性粒子(導電部)の表面の酸化被膜を十分に排除することができず、結果として電極間の接続抵抗が高くなり、導通信頼性を高めることができないという課題がある。 With conventional conductive particles, the oxide film on the surface of the electrodes or conductive particles (conductive portion) cannot be sufficiently removed, resulting in increased connection resistance between electrodes and failure to improve conduction reliability. There is a problem.
 本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、従来の導電性粒子に比べて小さい。すなわち、本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値が比較的小さいので、圧縮初期に電極又は導電性粒子(導電部)の表面の酸化被膜を十分に排除することができる。結果として、導電性粒子を電極間の電気的な接続に用いたときに、低い接続抵抗と、高い導通信頼性との双方を両立することができる。 In the conductive particles according to the present invention, the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20%, the compression modulus when compressed by 20% The ratio to value is small compared to conventional conductive particles. That is, in the conductive particles according to the present invention, the absolute value of the difference between the compression modulus when compressed by 10% and the compression modulus when compressed by 20% is relatively small. Alternatively, the oxide film on the surface of the conductive particles (conductive portion) can be sufficiently removed. As a result, both low connection resistance and high conduction reliability can be achieved when the conductive particles are used for electrical connection between electrodes.
 また、近年では、視認性が良好で薄型化することができ、直流低電圧下での駆動が可能な有機エレクトロルミネッセンス(有機EL)表示素子の需要が高まっている。有機EL表示素子では、チタン電極が用いられることが多い。従来の導電性粒子では、チタン電極の表面の酸化被膜を十分に排除することが困難であるところ、本発明に係る導電性粒子では、上記の構成が備えられているので、チタン電極を用いた場合にも、電極の表面の酸化被膜を十分に排除することができ、低い接続抵抗と、高い導通信頼性との双方を両立することができる。 Also, in recent years, there has been an increasing demand for organic electroluminescence (organic EL) display elements that have good visibility, can be made thin, and can be driven under a low DC voltage. Titanium electrodes are often used in organic EL display elements. With conventional conductive particles, it is difficult to sufficiently remove the oxide film on the surface of the titanium electrode. In this case as well, the oxide film on the surface of the electrode can be sufficiently removed, and both low connection resistance and high conduction reliability can be achieved.
 また、本発明に係る導電性粒子では、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値以上であり、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値以上であるので、圧縮中期及び圧縮後期に電極と変形した導電性粒子との接触面積を大きくすることができる。結果として、導電性粒子を電極間の電気的な接続に用いたときに、低い接続抵抗と、高い導通信頼性との双方を両立することができる。 Further, in the conductive particles according to the present invention, the value of the compression elastic modulus when compressed by 10% is equal to or greater than the value of the compression elastic modulus when compressed by 20%, and the compression elastic modulus when compressed by 20% Since the value is equal to or greater than the value of the compressive elastic modulus when compressed by 30%, the contact area between the electrode and the deformed conductive particles can be increased in the middle and late stages of compression. As a result, both low connection resistance and high conduction reliability can be achieved when the conductive particles are used for electrical connection between electrodes.
 上記導電性粒子では、10%圧縮したときの圧縮弾性率の値と、20%圧縮したときの圧縮弾性率の値とが同一であってもよい。上記導電性粒子では、20%圧縮したときの圧縮弾性率の値と、30%圧縮したときの圧縮弾性率の値とが同一であってもよい。上記導電性粒子では、10%圧縮したときの圧縮弾性率の値と、20%圧縮したときの圧縮弾性率の値と、30%圧縮したときの圧縮弾性率の値とが同一であってもよい。本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値よりも大きいことが好ましい。本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値よりも大きいことが好ましい。本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値よりも大きく、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値よりも大きいことが好ましい。 In the conductive particles, the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% may be the same. The conductive particles may have the same value of compression modulus when compressed by 20% and the value of compression modulus when compressed by 30%. In the conductive particles, even if the value of the compression modulus when compressed by 10%, the value of the compression modulus when compressed by 20%, and the value of the compression modulus when compressed by 30% are the same good. From the viewpoint of exhibiting the effects of the present invention more effectively, it is preferable that the conductive particles have a compression modulus value when compressed by 10% that is greater than a compression modulus value when compressed by 20%. preferable. From the viewpoint of exhibiting the effect of the present invention more effectively, it is preferable that the conductive particles have a compression modulus value when compressed by 20% greater than a compression modulus value when compressed by 30%. preferable. From the viewpoint of exhibiting the effects of the present invention more effectively, the conductive particles have a compression modulus value when compressed by 10% greater than a compression modulus value when compressed by 20%, and , the value of the compression modulus when compressed by 20% is preferably greater than the value of the compression modulus when compressed by 30%.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比は、好ましくは0.20未満、より好ましくは0.15以下、さらに好ましくは0.13以下である。本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、上記比(10%K値と20%K値との差の絶対値/20%K値)は、好ましくは0を超え、より好ましくは0.05以上、さらに好ましくは0.10以上である。 From the viewpoint of exhibiting the effect of the present invention more effectively, the absolute difference between the compression modulus value when compressed by 10% and the compression modulus value when compressed by 20% in the above conductive particles The ratio of the value to the value of compression modulus at 20% compression is preferably less than 0.20, more preferably 0.15 or less, even more preferably 0.13 or less. From the viewpoint of exhibiting the effect of the present invention more effectively, in the conductive particles, the ratio (absolute value of difference between 10% K value and 20% K value/20% K value) is preferably It is more than 0, more preferably 0.05 or more, and still more preferably 0.10 or more.
 上記導電性粒子を10%圧縮したときの圧縮弾性率の値(10%K値)は、好ましくは10000N/mm以上、より好ましくは12000N/mm以上、さらに好ましくは13000N/mm以上、特に好ましくは15000N/mm以上である。上記導電性粒子の10%K値が上記下限以上であると、圧縮初期に電極又は導電性粒子(導電部)の表面の酸化被膜をより一層効果的に排除し、接続抵抗をより一層低くすることができる。上記導電性粒子の10%K値は好ましくは50000N/mm以下、より好ましくは40000N/mm以下、さらに好ましくは30000N/mm以下、特に好ましくは25000N/mm以下である。上記導電性粒子の10%K値が上記上限以下であると、電極と変形した導電性粒子との接触面積を大きくして、接続抵抗をより一層低くすることができる。 The compression elastic modulus value (10% K value) when the conductive particles are compressed by 10% is preferably 10000 N/mm 2 or more, more preferably 12000 N/mm 2 or more, still more preferably 13000 N/mm 2 or more, Particularly preferably, it is 15000 N/mm 2 or more. When the 10% K value of the conductive particles is at least the lower limit, the oxide film on the surface of the electrode or conductive particles (conductive portion) is more effectively eliminated at the initial stage of compression, and the connection resistance is further reduced. be able to. The 10% K value of the conductive particles is preferably 50,000 N/mm 2 or less, more preferably 40,000 N/mm 2 or less, even more preferably 30,000 N/mm 2 or less, and particularly preferably 25,000 N/mm 2 or less. When the 10% K value of the conductive particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased to further reduce the connection resistance.
 上記導電性粒子を20%圧縮したときの圧縮弾性率の値(20%K値)は、好ましくは10000N/mm以上、より好ましくは12000N/mm以上、さらに好ましくは13000N/mm以上、特に好ましくは15000N/mm以上である。上記導電性粒子の20%K値が上記下限以上であると、圧縮初期に電極又は導電性粒子(導電部)の表面の酸化被膜をより一層効果的に排除し、接続抵抗をより一層低くすることができる。上記導電性粒子の20%K値は好ましくは40000N/mm以下、より好ましくは30000N/mm以下、さらに好ましくは25000N/mm以下、特に好ましくは20000N/mm以下である。上記導電性粒子の20%K値が上記上限以下であると、電極と変形した導電性粒子との接触面積を大きくして、接続抵抗をより一層低くすることができる。 The compression elastic modulus value (20% K value) when the conductive particles are compressed by 20% is preferably 10,000 N/mm 2 or more, more preferably 12,000 N/mm 2 or more, and still more preferably 13,000 N/mm 2 or more, Particularly preferably, it is 15000 N/mm 2 or more. When the 20% K value of the conductive particles is at least the lower limit, the oxide film on the surface of the electrode or the conductive particles (conductive portion) is more effectively eliminated at the initial stage of compression, and the connection resistance is further reduced. be able to. The 20% K value of the conductive particles is preferably 40,000 N/mm 2 or less, more preferably 30,000 N/mm 2 or less, still more preferably 25,000 N/mm 2 or less, and particularly preferably 20,000 N/mm 2 or less. When the 20% K value of the conductive particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased to further reduce the connection resistance.
 上記導電性粒子を30%圧縮したときの圧縮弾性率の値(30%K値)は、好ましくは8000N/mm以上、より好ましくは10000N/mm以上、さらに好ましくは12000N/mm以上、特に好ましくは13000N/mm以上である。上記導電性粒子の30%K値が上記下限以上であると、圧縮中期及び圧縮後期に電極に導電性粒子が押し込まれた凹部(圧痕)が形成され、電極間の導通信頼性をより一層高めることができる。上記導電性粒子の30%K値は好ましくは40000N/mm以下、より好ましくは30000N/mm以下、さらに好ましくは25000N/mm以下、特に好ましくは20000N/mm以下である。上記導電性粒子の30%K値が上記上限以下であると、圧縮中期及び圧縮後期に電極と変形した導電性粒子との接触面積を大きくし、低い接続抵抗と、高い導通信頼性との双方をより一層効果的に両立することができる。 The compression elastic modulus value (30% K value) when the conductive particles are compressed by 30% is preferably 8,000 N/mm 2 or more, more preferably 10,000 N/mm 2 or more, and still more preferably 12,000 N/mm 2 or more, Particularly preferably, it is 13000 N/mm 2 or more. When the 30% K value of the conductive particles is at least the lower limit, recesses (indentations) in which the conductive particles are pushed into the electrodes are formed in the middle and late stages of compression, and the reliability of conduction between the electrodes is further enhanced. be able to. The 30% K value of the conductive particles is preferably 40,000 N/mm 2 or less, more preferably 30,000 N/mm 2 or less, still more preferably 25,000 N/mm 2 or less, and particularly preferably 20,000 N/mm 2 or less. When the 30% K value of the conductive particles is the above upper limit or less, the contact area between the electrode and the deformed conductive particles is increased in the middle and late compression stages, and both low connection resistance and high conduction reliability are achieved. can be more effectively reconciled.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、10%圧縮したときの圧縮弾性率の値(10%K値)の、20%圧縮したときの圧縮弾性率の値(20%K値)に対する比は、好ましくは1.00以上、より好ましくは1.05以上、さらに好ましくは1.10以上である。本発明の効果をより一層効果的に発揮する観点からは、上記比(10%K値/20%K値)は、好ましくは1.20以下、より好ましくは1.20未満、さらに好ましくは1.15以下、特に好ましくは1.13以下である。 From the viewpoint of exhibiting the effect of the present invention more effectively, the above-described conductive particles have a compressive elastic modulus value (10% K value) when compressed by 20% compared to the value of the elastic modulus when compressed by 10%. (20% K value) is preferably 1.00 or more, more preferably 1.05 or more, still more preferably 1.10 or more. From the viewpoint of more effectively exhibiting the effects of the present invention, the ratio (10% K value/20% K value) is preferably 1.20 or less, more preferably less than 1.20, and still more preferably 1 0.15 or less, particularly preferably 1.13 or less.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、10%圧縮したときの圧縮弾性率の値(10%K値)の、30%圧縮したときの圧縮弾性率の値(30%K値)に対する比は、好ましくは1.00以上、より好ましくは1.20以上、さらに好ましくは1.30以上である。本発明の効果をより一層効果的に発揮する観点からは、上記比(10%K値/30%K値)は、好ましくは1.80以下、より好ましくは1.70以下、さらに好ましくは1.60以下、特に好ましくは1.50以下である。 From the viewpoint of exhibiting the effect of the present invention more effectively, the above-described conductive particles have a compression elastic modulus when compressed by 30% compared to the compression elastic modulus value (10% K value) when compressed by 10%. (30% K value) is preferably 1.00 or more, more preferably 1.20 or more, still more preferably 1.30 or more. From the viewpoint of more effectively exhibiting the effects of the present invention, the ratio (10% K value/30% K value) is preferably 1.80 or less, more preferably 1.70 or less, and still more preferably 1 0.60 or less, particularly preferably 1.50 or less.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子では、20%圧縮したときの圧縮弾性率の値(20%K値)の、30%圧縮したときの圧縮弾性率の値(30%K値)に対する比は、好ましくは1.00以上、より好ましくは1.05以上、さらに好ましくは1.10以上である。本発明の効果をより一層効果的に発揮する観点からは、上記比(20%K値/30%K値)は、好ましくは1.60以下、より好ましくは1.50以下、さらに好ましくは1.40以下、特に好ましくは1.30以下である。 From the viewpoint of exhibiting the effects of the present invention more effectively, the above-described conductive particles have a compression elastic modulus when compressed by 30%, which is lower than the compression elastic modulus when compressed by 20% (20% K value). (30% K value) is preferably 1.00 or more, more preferably 1.05 or more, still more preferably 1.10 or more. From the viewpoint of more effectively exhibiting the effects of the present invention, the ratio (20% K value/30% K value) is preferably 1.60 or less, more preferably 1.50 or less, and still more preferably 1 0.40 or less, particularly preferably 1.30 or less.
 上記導電性粒子の10%K値、20%K値、及び30%K値は、以下のようにして測定できる。 The 10% K value, 20% K value, and 30% K value of the conductive particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、最大試験荷重90mNを30秒かけて負荷する条件下で導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 Using a microcompression tester, the conductive particles are compressed at 25°C with a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond) under the conditions of applying a maximum test load of 90 mN over 30 seconds. The load value (N) and compression displacement (mm) at this time are measured. From the obtained measured values, the compression elastic modulus can be obtained by the following formula. As the microcompression tester, for example, "Fischer Scope H-100" manufactured by Fisher Co., Ltd. is used.
 K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子が10%、20%、又は30%圧縮変形したときの荷重値(N)
 S:導電性粒子が10%、20%、又は30%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子の半径(mm)
K value (N/mm 2 ) = (3/2 1/2 ) F S −3/2 R −1/2
F: Load value (N) when the conductive particles are compressed by 10%, 20%, or 30%
S: Compressive displacement (mm) when the conductive particles are compressed by 10%, 20%, or 30%
R: radius of conductive particles (mm)
 上記10%K値、上記20%K値、上記30%K値、及び上記比(10%K値と20%K値との差の絶対値/20%K値)を好ましい範囲に制御する方法としては、以下の方法等が挙げられる。基材粒子のモノマー種、モノマー分子量、モノマー配合量、架橋材、重合温度、重合時間、焼成酸素濃度、及び焼成温度等を調整して物性を調整する方法。導電部の金属種、合金種、及び導電部の厚み等を調整して硬さを調整する方法。 A method of controlling the 10% K value, the 20% K value, the 30% K value, and the ratio (the absolute value of the difference between the 10% K value and the 20% K value/20% K value) within a preferable range. Examples include the following methods. A method of adjusting the physical properties by adjusting the monomer type, monomer molecular weight, monomer compounding amount, cross-linking agent, polymerization temperature, polymerization time, baking oxygen concentration, baking temperature, etc. of the substrate particles. A method of adjusting the hardness by adjusting the metal type, alloy type, thickness of the conductive portion, etc. of the conductive portion.
 本発明の効果をより一層良好にする観点からは、上記導電性粒子の圧縮回復率は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは65%以上であり、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは85%以下である。 From the viewpoint of further improving the effect of the present invention, the compression recovery rate of the conductive particles is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, and preferably 95%. Below, more preferably 90% or less, still more preferably 85% or less.
 上記圧縮回復率は、以下のようにして測定できる。 The compression recovery rate can be measured as follows.
 試料台上に導電性粒子を散布する。散布された導電性粒子1個について、微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃で、導電性粒子の中心方向に、導電性粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 Scatter conductive particles on the sample stage. For one dispersed conductive particle, using a microcompression tester, a cylindrical (diameter 100 μm, made of diamond) smooth indenter end face, at 25 ° C., 30% of the conductive particle in the center direction of the conductive particle. A load (reverse load value) is applied until compression deformation occurs. After that, unloading is performed to the origin load value (0.40 mN). By measuring the load-compression displacement during this period, the compression recovery rate can be obtained from the following formula. Note that the load speed is 0.33 mN/sec. As the microcompression tester, for example, "Fischer Scope H-100" manufactured by Fisher Co., Ltd. is used.
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [L2/L1] x 100
L1: Compressive displacement from the origin load value to the reverse load value when the load is applied L2: Unloading displacement from the reverse load value to the origin load value when releasing the load
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは100μm以下、特に好ましくは30μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くなる。また、導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に使用可能である。 The particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 500 μm or less, more preferably 300 μm or less, still more preferably 100 μm or less, and particularly preferably 30 μm or less. . When the particle diameter of the conductive particles is at least the lower limit and at most the upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, and the conductive portion It becomes difficult to form agglomerated conductive particles when forming. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portions are less likely to peel off from the surface of the substrate particles. Moreover, when the particle size of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, the conductive particles can be suitably used as a conductive material.
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The particle size of the conductive particles is preferably an average particle size, more preferably a number average particle size. The particle size of the conductive particles can be obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average particle size of each conductive particle, or by laser diffraction particle size distribution measurement. is obtained by doing In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is obtained as the particle size in circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle size of arbitrary 50 conductive particles in equivalent circle diameter is almost equal to the average particle size in equivalent sphere diameter. In the laser diffraction particle size distribution measurement, the particle size of each conductive particle is obtained as the particle size in terms of equivalent sphere diameter. The particle size of the conductive particles is preferably calculated by laser diffraction particle size distribution measurement.
 以下、図面を参照しつつ、本発明を具体的に説明する。 The present invention will be specifically described below with reference to the drawings.
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、基材粒子2と、導電部3とを有する。導電部3は、基材粒子2の表面上に配置されている。第1の実施形態では、導電部3は、基材粒子2の表面に接している。導電性粒子1は、基材粒子2の表面が導電部3により被覆された被覆粒子である。導電性粒子1では、導電部3は、単層の導電部(導電層)である。 The conductive particles 1 shown in FIG. 1 have base particles 2 and conductive portions 3 . The conductive portion 3 is arranged on the surface of the substrate particle 2 . In the first embodiment, the conductive portion 3 is in contact with the surface of the substrate particles 2 . The conductive particles 1 are coated particles in which the surfaces of the base particles 2 are coated with the conductive parts 3 . In the conductive particles 1, the conductive portion 3 is a single-layer conductive portion (conductive layer).
 導電性粒子1は、後述する導電性粒子11,21とは異なり、芯物質を有さない。導電性粒子1は、表面に突起を有さず、導電部3の外表面に突起を有さない。導電性粒子1は球状である。 The conductive particles 1 do not have a core substance, unlike the conductive particles 11 and 21 described later. The conductive particles 1 do not have protrusions on their surfaces, and the conductive portions 3 do not have protrusions on their outer surfaces. Conductive particles 1 are spherical.
 このように、本発明に係る導電性粒子は、表面に突起を有していなくてもよく、導電部の外表面に突起を有していなくてもよく、球状であってもよい。また、導電性粒子1は、後述する導電性粒子11,21とは異なり、絶縁性物質を有さない。但し、導電性粒子1は、導電部3の外表面上に配置された絶縁性物質を有していてもよい。 Thus, the conductive particles according to the present invention may have no projections on the surface, may have no projections on the outer surface of the conductive portion, and may be spherical. Also, unlike the conductive particles 11 and 21 to be described later, the conductive particles 1 do not have an insulating substance. However, the conductive particles 1 may have an insulating substance arranged on the outer surface of the conductive portion 3 .
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子11は、基材粒子2と、導電部12と、複数の芯物質13と、複数の絶縁性物質14とを有する。導電部12は、基材粒子2の表面上に基材粒子2に接するように配置されている。導電性粒子11では、導電部12は、単層の導電部(導電層)である。 A conductive particle 11 shown in FIG. 2 has a base particle 2, a conductive portion 12, a plurality of core substances 13, and a plurality of insulating substances 14. The conductive portion 12 is arranged on the surface of the substrate particle 2 so as to be in contact with the substrate particle 2 . In the conductive particles 11, the conductive portion 12 is a single-layer conductive portion (conductive layer).
 導電性粒子11は、表面に、複数の突起11aを有する。導電部12は外表面に、複数の突起12aを有する。複数の芯物質13が、基材粒子2の表面上に配置されている。複数の芯物質13は導電部12内に埋め込まれている。芯物質13は、突起11a,12aの内側に配置されている。導電部12は、複数の芯物質13を被覆している。複数の芯物質13により導電部12の外表面が隆起されており、突起11a,12aが形成されている。 The conductive particles 11 have a plurality of protrusions 11a on their surfaces. The conductive portion 12 has a plurality of protrusions 12a on its outer surface. A plurality of core substances 13 are arranged on the surface of the substrate particles 2 . A plurality of core substances 13 are embedded in the conductive portion 12 . The core substance 13 is arranged inside the protrusions 11a and 12a. The conductive portion 12 covers a plurality of core substances 13 . The outer surface of the conductive portion 12 is raised by a plurality of core substances 13 to form projections 11a and 12a.
 導電性粒子11は、導電部12の外表面上に配置された絶縁性物質14を有する。導電部12の外表面の少なくとも一部の領域が、絶縁性物質14により被覆されている。絶縁性物質14は絶縁性を有する材料により形成されている、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電部の外表面上に配置された絶縁性物質を有していてもよい。但し、本発明に係る導電性粒子は、絶縁性物質を必ずしも有していなくてもよい。 The conductive particles 11 have an insulating substance 14 arranged on the outer surface of the conductive portion 12 . At least a partial region of the outer surface of the conductive portion 12 is covered with an insulating material 14 . The insulating substance 14 is an insulating particle made of an insulating material. Thus, the conductive particles according to the present invention may have an insulating material arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention may not necessarily contain an insulating substance.
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
 図3に示す導電性粒子21は、基材粒子2と、導電部22と、複数の芯物質13と、複数の絶縁性物質14とを有する。導電部22は全体で、基材粒子2側に第1の導電部22Aと、基材粒子2側とは反対側に第2の導電部22Bとを有する。 A conductive particle 21 shown in FIG. 3 has a base particle 2 , a conductive portion 22 , multiple core substances 13 , and multiple insulating substances 14 . The conductive portion 22 as a whole has a first conductive portion 22A on the substrate particle 2 side and a second conductive portion 22B on the side opposite to the substrate particle 2 side.
 導電性粒子11と導電性粒子21とでは、導電部の構成のみが異なっている。すなわち、導電性粒子11では、1層構造の導電部12が形成されているのに対し、導電性粒子21では、2層構造の第1の導電部22A及び第2の導電部22Bが形成されている。第1の導電部22Aと第2の導電部22Bとは別の導電部として形成されている。 The conductive particles 11 and the conductive particles 21 differ only in the configuration of the conductive portion. That is, in the conductive particles 11, the conductive portion 12 having a single-layer structure is formed, whereas in the conductive particles 21, the first conductive portion 22A and the second conductive portion 22B having a two-layer structure are formed. ing. The first conductive portion 22A and the second conductive portion 22B are formed as separate conductive portions.
 第1の導電部22Aは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電部22Bとの間に、第1の導電部22Aが配置されている。第1の導電部22Aは、基材粒子2に接している。従って、基材粒子2の表面上に第1の導電部22Aが配置されており、第1の導電部22Aの表面上に第2の導電部22Bが配置されている。導電性粒子21は、表面に、複数の突起21aを有する。導電部22は外表面に、複数の突起22aを有する。第1の導電部22Aは外表面に、突起22Aaを有する。第2の導電部22Bは外表面に、複数の突起22Baを有する。導電性粒子21では、導電部22は、2層の導電部(導電層)である。 The first conductive portion 22A is arranged on the surface of the substrate particle 2. A first conductive portion 22A is arranged between the substrate particle 2 and the second conductive portion 22B. The first conductive portion 22A is in contact with the substrate particles 2 . Therefore, the first conductive portion 22A is arranged on the surface of the substrate particle 2, and the second conductive portion 22B is arranged on the surface of the first conductive portion 22A. The conductive particles 21 have a plurality of projections 21a on their surfaces. The conductive portion 22 has a plurality of protrusions 22a on its outer surface. The first conductive portion 22A has projections 22Aa on its outer surface. The second conductive portion 22B has a plurality of projections 22Ba on its outer surface. In the conductive particles 21, the conductive portion 22 is a two-layered conductive portion (conductive layer).
 以下、導電性粒子の他の詳細について説明する。なお、以下の説明において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 Other details of the conductive particles will be described below. In the following description, "(meth)acrylic" means one or both of "acrylic" and "methacrylic", and "(meth)acrylate" means one or both of "acrylate" and "methacrylate". means.
 [基材粒子]
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよい。上記シェルが無機シェルであってもよい。本発明の効果により一層優れることから、上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが好ましく、有機無機ハイブリッド粒子であることがより好ましい。
[Substrate particles]
Examples of the substrate particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles may be core-shell particles comprising a core and a shell arranged on the surface of the core. The core may be an organic core. The shell may be an inorganic shell. The substrate particles are preferably resin particles or organic-inorganic hybrid particles, and more preferably organic-inorganic hybrid particles, because the effects of the present invention are more excellent.
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。上記基材粒子が樹脂粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性がより一層高くなる。 The base particles are preferably resin particles made of resin. When the electrodes are connected using the conductive particles, the conductive particles are placed between the electrodes and then pressed to compress the conductive particles. When the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode increases. Therefore, the reliability of electrical connection between the electrodes is further enhanced.
 上記樹脂粒子の材料である樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子の材料である樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are preferably used as the resin that is the material of the resin particles. Examples of the resin that is the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene oxide , polyacetal, polyimide, polyamideimide, polyetheretherketone, polyethersulfone, and polymers obtained by polymerizing one or more of various polymerizable monomers having an ethylenically unsaturated group. be done. Since the hardness of the substrate particles can be easily controlled within a suitable range, the resin for forming the resin particles is obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups. Polymers are preferred.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and a crosslinkable monomer. and a monomer of
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomers include styrene-based monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid and maleic anhydride; meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl ( Alkyl (meth)acrylate compounds such as meth)acrylate and isobornyl (meth)acrylate; Oxygen atoms such as 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate Containing (meth)acrylate compounds; Nitrile-containing monomers such as (meth)acrylonitrile; Halogen-containing monomers such as trifluoromethyl (meth)acrylate, pentafluoroethyl (meth)acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene A body etc. are mentioned.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipenta Erythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate Polyfunctional (meth)acrylate compounds such as acrylate, (poly)tetramethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate; triallyl (iso)cyanurate, triallyl trimellitate, divinylbenzene, Examples include silane-containing monomers such as diallyl phthalate, diallyl acrylamide, diallyl ether, γ-(meth)acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, and the like.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using uncrosslinked seed particles.
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子の材料である無機物としては、シリカ及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the substrate particles are inorganic particles excluding metal particles or organic-inorganic hybrid particles, examples of inorganic substances that are materials of the substrate particles include silica and carbon black. Preferably, the inorganic substance is not a metal. The particles formed of silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed as necessary. Particles obtained by carrying out. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましく、銅粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of metals that are materials of the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles, and preferably not copper particles.
 上記基材粒子を10%圧縮したときの圧縮弾性率の値(10%K値)は、好ましくは9500N/mm以上、より好ましくは10500N/mm以上、さらに好ましくは13500N/mm以上、特に好ましくは16500N/mm以上である。上記基材粒子の10%K値が上記下限以上であると、圧縮初期に電極又は導電性粒子(導電部)の表面の酸化被膜をより一層効果的に排除し、接続抵抗をより一層低くすることができる。上記基材粒子の10%K値は好ましくは31500N/mm以下、より好ましくは30500N/mm以下、さらに好ましくは27500N/mm以下、特に好ましくは24500N/mm以下である。上記基材粒子の10%K値が上記上限以下であると、電極と変形した導電性粒子との接触面積を大きくして、接続抵抗をより一層低くすることができる。 The compression elastic modulus value (10% K value) when the base particles are compressed by 10% is preferably 9500 N/mm 2 or more, more preferably 10500 N/mm 2 or more, still more preferably 13500 N/mm 2 or more, Particularly preferably, it is 16500 N/mm 2 or more. When the 10% K value of the base particles is equal to or higher than the lower limit, the oxide film on the surface of the electrode or the conductive particles (conductive portion) is more effectively eliminated at the initial stage of compression, and the connection resistance is further reduced. be able to. The 10% K value of the substrate particles is preferably 31,500 N/mm 2 or less, more preferably 30,500 N/mm 2 or less, still more preferably 27,500 N/mm 2 or less, and particularly preferably 24,500 N/mm 2 or less. When the 10% K value of the substrate particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased, and the connection resistance can be further reduced.
 上記基材粒子を20%圧縮したときの圧縮弾性率の値(20%K値)は、好ましくは9000N/mm以上、より好ましくは10000N/mm以上、さらに好ましくは13000N/mm以上、特に好ましくは16000N/mm以上である。上記基材粒子の20%K値が上記下限以上であると、圧縮初期に電極又は導電性粒子(導電部)の表面の酸化被膜をより一層効果的に排除し、接続抵抗をより一層低くすることができる。上記基材粒子の20%K値は好ましくは31000N/mm以下、より好ましくは30000N/mm以下、さらに好ましくは27000N/mm以下、特に好ましくは24000N/mm以下である。上記基材粒子の20%K値が上記上限以下であると、電極と変形した導電性粒子との接触面積を大きくして、接続抵抗をより一層低くすることができる。 The compression elastic modulus value (20% K value) when the base particles are compressed by 20% is preferably 9000 N/mm 2 or more, more preferably 10000 N/mm 2 or more, still more preferably 13000 N/mm 2 or more, Particularly preferably, it is 16000 N/mm 2 or more. When the 20% K value of the base particles is at least the lower limit, the oxide film on the surface of the electrode or the conductive particles (conductive portion) is more effectively eliminated at the initial stage of compression, and the connection resistance is further reduced. be able to. The 20% K value of the substrate particles is preferably 31,000 N/mm 2 or less, more preferably 30,000 N/mm 2 or less, even more preferably 27,000 N/mm 2 or less, and particularly preferably 24,000 N/mm 2 or less. When the 20% K value of the substrate particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles can be increased, and the connection resistance can be further reduced.
 上記基材粒子を30%圧縮したときの圧縮弾性率の値(30%K値)は、好ましくは8000N/mm以上、より好ましくは9000N/mm以上、さらに好ましくは12000N/mm以上、特に好ましくは15000N/mm以上である。上記基材粒子の30%K値が上記下限以上であると、圧縮中期及び圧縮後期に電極に導電性粒子が押し込まれた凹部(圧痕)が形成され、電極間の導通信頼性をより一層高めることができる。上記基材粒子の30%K値は好ましくは30000N/mm以下、より好ましくは29000N/mm以下、さらに好ましくは27000N/mm以下、特に好ましくは24000N/mm以下である。上記基材粒子の30%K値が上記上限以下であると、圧縮中期及び圧縮後期に電極と変形した導電性粒子との接触面積を大きくし、低い接続抵抗と、高い導通信頼性との双方をより一層効果的に両立することができる。 The compression elastic modulus value (30% K value) when the base particles are compressed by 30% is preferably 8000 N/mm 2 or more, more preferably 9000 N/mm 2 or more, and still more preferably 12000 N/mm 2 or more. Particularly preferably, it is 15000 N/mm 2 or more. When the 30% K value of the base particles is at least the lower limit, recesses (indentations) in which the conductive particles are pushed into the electrodes are formed in the middle and late stages of compression, and the reliability of conduction between the electrodes is further enhanced. be able to. The 30% K value of the substrate particles is preferably 30,000 N/mm 2 or less, more preferably 29,000 N/mm 2 or less, still more preferably 27,000 N/mm 2 or less, and particularly preferably 24,000 N/mm 2 or less. When the 30% K value of the base particles is equal to or less than the upper limit, the contact area between the electrode and the deformed conductive particles is increased in the middle and late stages of compression, and both low connection resistance and high conduction reliability are achieved. can be more effectively reconciled.
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上、特に好ましくは2.0μm以上である。上記基材粒子の粒子径は、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは50μm以下、さらに一層好ましくは30μm以下、特に好ましくは10μm以下、最も好ましくは5.0μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに基材粒子の表面に導電部を無電解めっきにより形成する際に、凝集した導電性粒子が形成されにくくなる。上記基材粒子の粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗がより一層低くなり、さらに電極間の間隔が小さくなる。 The particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 1.0 μm or more, still more preferably 1.5 μm or more, and particularly preferably 2.0 μm or more. The particle size of the substrate particles is preferably 500 μm or less, more preferably 300 μm or less, still more preferably 50 μm or less, still more preferably 30 μm or less, particularly preferably 10 μm or less, and most preferably 5.0 μm or less. When the particle diameter of the substrate particles is at least the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the reliability of the electrical connection between the electrodes is further increased, and the connection is made via the conductive particles. The connection resistance between the electrodes becomes even lower. Furthermore, when the conductive portion is formed on the surface of the base material particles by electroless plating, it becomes difficult to form agglomerated conductive particles. When the particle size of the substrate particles is equal to or less than the upper limit, the conductive particles are sufficiently compressed, the connection resistance between the electrodes becomes even lower, and the distance between the electrodes becomes smaller.
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの基材粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の基材粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの基材粒子の粒子径は、球相当径での粒子径として求められる。上記基材粒子の粒子径は、粒度分布測定装置により算出することが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the base material particles indicates the number average particle size. The particle size of the substrate particles is determined using a particle size distribution analyzer or the like. The particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating the average value. In observation with an electron microscope or an optical microscope, the particle size of each base particle is obtained as the particle size of the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle size of arbitrary 50 substrate particles in the equivalent circle diameter is approximately equal to the average particle size in the equivalent sphere diameter. In the particle size distribution analyzer, the particle size of one base particle is determined as the particle size in terms of equivalent sphere diameter. It is preferable to calculate the particle size of the substrate particles using a particle size distribution analyzer. When measuring the particle size of the substrate particles of the conductive particles, it can be measured, for example, as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。上記埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 "Technovit 4000" manufactured by Kulzer is added so that the content of the conductive particles is 30% by weight, and dispersed to prepare an embedded resin body for conductive particle inspection. Using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation), a cross section of the conductive particles is cut out so as to pass through the vicinity of the center of the conductive particles dispersed in the embedding resin body. Then, using a field emission scanning electron microscope (FE-SEM), set the image magnification to 25000 times, randomly select 50 conductive particles, and observe the base particles of each conductive particle. do. The particle diameter of the base material particles in each conductive particle is measured, and the arithmetic mean is taken as the particle size of the base material particles.
 [導電部]
 上記導電部を形成するための金属は、特に限定されない。上記金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、ルテニウム、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムが好ましい。
[Conductive part]
A metal for forming the conductive portion is not particularly limited. Examples of the above metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, ruthenium, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, and silicon. and alloys thereof. Further, examples of the metal include tin-doped indium oxide (ITO) and solder. An alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable, since the connection resistance between the electrodes can be further lowered.
 導電性粒子1,11のように、上記導電部は、1つの層により形成されていてもよい。導電性粒子21のように、上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、ルテニウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層、パラジウム層又はルテニウム層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が貴金属層である場合には、耐腐食性がより一層高くなる。 Like the conductive particles 1 and 11, the conductive portion may be formed of one layer. Like the conductive particles 21, the conductive portion may be formed of multiple layers. That is, the conductive portion may have a laminated structure of two or more layers. When the conductive portion is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a ruthenium layer, a copper layer, or an alloy layer containing tin and silver. more preferably a layer, a palladium layer or a ruthenium layer. When the outermost layer is one of these preferred conductive layers, the connection resistance between the electrodes is even lower. Moreover, when the outermost layer is a noble metal layer, the corrosion resistance is further enhanced.
 上記基材粒子の表面上に導電部を形成する方法は特に限定されない。導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。導電部の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method of forming the conductive portion on the surface of the substrate particles is not particularly limited. Methods for forming the conductive portion include, for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of the substrate particles with a metal powder or a paste containing a metal powder and a binder. etc. A method using electroless plating is preferable because the formation of the conductive portion is simple. Methods such as vacuum deposition, ion plating, and ion sputtering can be used as the method by physical vapor deposition.
 上記導電部の厚み(導電部全体の厚み)は、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは120nm以上であり、好ましくは1000nm以下、より好ましくは500nm以下、さらに好ましくは300nm以下、特に好ましくは250nm以下、最も好ましくは200nm以下である。上記導電部の厚みは、導電部が多層である場合には導電層全体の厚みである。導電部の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。 The thickness of the conductive portion (thickness of the entire conductive portion) is preferably 10 nm or more, more preferably 100 nm or more, still more preferably 120 nm or more, preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, It is particularly preferably 250 nm or less, most preferably 200 nm or less. The thickness of the conductive portion is the thickness of the entire conductive layer when the conductive portion has multiple layers. When the thickness of the conductive portion is at least the above lower limit and at most the above upper limit, sufficient conductivity is obtained, and the conductive particles are sufficiently deformed when connecting the electrodes without becoming too hard. .
 上記導電部が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは1nm以上、より好ましくは10nm以上であり、好ましくは500nm以下、より好ましくは200nm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗がより一層低くなる。また、上記最外層が金層である場合に、金層の厚みが薄いほど、コストが低くなる。 When the conductive portion is formed of a plurality of layers, the thickness of the outermost conductive layer is preferably 1 nm or more, more preferably 10 nm or more, and preferably 500 nm or less, more preferably 200 nm or less. When the thickness of the outermost conductive layer is equal to or more than the lower limit and equal to or less than the upper limit, the coating with the outermost conductive layer is uniform, the corrosion resistance is sufficiently high, and the connection resistance between electrodes is further increased. lower. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
 上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
 導電性を効果的に高める観点からは、上記導電性粒子は、ニッケルを含む導電部を有することが好ましい。ニッケルを含む導電部100重量%中、ニッケルの含有量は好ましくは50重量%以上、より好ましくは65重量%以上、より一層好ましくは70重量%以上、さらに好ましくは75重量%以上、さらに一層好ましくは80重量%以上、特に好ましくは85重量%以上、最も好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中、ニッケルの含有量は好ましくは100重量%(全量)以下であり、99重量%以下であってもよく、95重量%以下であってもよい。ニッケルの含有量が上記下限以上であると、電極間の接続抵抗がより一層低くなる。また、電極や導電部の表面における酸化被膜が少ない場合には、ニッケルの含有量が多いほど電極間の接続抵抗が低くなる傾向がある。 From the viewpoint of effectively increasing conductivity, the conductive particles preferably have a conductive portion containing nickel. In 100% by weight of the conductive portion containing nickel, the nickel content is preferably 50% by weight or more, more preferably 65% by weight or more, even more preferably 70% by weight or more, still more preferably 75% by weight or more, and even more preferably is at least 80% by weight, particularly preferably at least 85% by weight, most preferably at least 90% by weight. In 100% by weight of the conductive portion containing nickel, the nickel content is preferably 100% by weight (total amount) or less, may be 99% by weight or less, or may be 95% by weight or less. If the nickel content is at least the above lower limit, the connection resistance between the electrodes will be even lower. In addition, when the oxide film on the surface of the electrode or the conductive portion is small, the connection resistance between the electrodes tends to decrease as the nickel content increases.
 上記導電部に含まれる金属の含有量の測定方法は、既知の種々の分析法を用いることができ、特に限定されない。この測定方法として、吸光分析法又はスペクトル分析法等が挙げられる。上記吸光分析法では、フレーム吸光光度計及び電気加熱炉吸光光度計等を用いることができる。上記スペクトル分析法としては、プラズマ発光分析法及びプラズマイオン源質量分析法等が挙げられる。 Various known analysis methods can be used for measuring the content of the metal contained in the conductive portion, and there is no particular limitation. Examples of this measuring method include absorption spectrometry, spectral analysis, and the like. In the absorption analysis method, a flame absorption photometer, an electric heating furnace absorption photometer, or the like can be used. Examples of spectral analysis methods include plasma emission spectrometry and plasma ion source mass spectrometry.
 上記導電部に含まれる金属の平均含有量を測定する際には、ICP発光分析装置を用いることが好ましい。ICP発光分析装置の市販品としては、HORIBA社製のICP発光分析装置等が挙げられる。 When measuring the average content of the metal contained in the conductive portion, it is preferable to use an ICP emission spectrometer. Commercially available ICP emission spectrometers include ICP emission spectrometers manufactured by HORIBA.
 上記導電部は、ニッケルに加えて、リン又はボロンを含んでいてもよい。また、上記導電部は、ニッケル以外の金属を含んでいてもよい。上記導電部において、複数の金属が含まれる場合に、複数の金属は合金化していてもよい。 The conductive portion may contain phosphorus or boron in addition to nickel. Also, the conductive portion may contain a metal other than nickel. When the conductive portion contains a plurality of metals, the plurality of metals may be alloyed.
 ニッケルとリン又はボロンとを含む導電部100重量%中、リン又はボロンの含有量は好ましくは0.1重量%以上、より好ましくは0.5重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下である。リン又はボロンの含有量が上記下限及び上記上限以下であると、導電部の接続抵抗がより一層低くなり、上記導電部が接続抵抗の低減に寄与する。 In 100% by weight of the conductive portion containing nickel and phosphorus or boron, the content of phosphorus or boron is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and preferably 10% by weight or less, More preferably, it is 5% by weight or less. When the content of phosphorus or boron is equal to or less than the lower limit and the upper limit, the connection resistance of the conductive portion is further lowered, and the conductive portion contributes to the reduction of the connection resistance.
 [芯物質]
 接続抵抗をより一層低くし、導通信頼性をより一層高める観点からは、上記導電性粒子は、上記導電部の外表面に複数の突起を有することが好ましい。さらに、上記導電性粒子は、上記導電部内において、複数の上記突起を形成するように、上記導電部の外表面を隆起させている複数の芯物質を備えることが好ましい。
[Core substance]
From the viewpoint of further reducing the connection resistance and further increasing the conduction reliability, it is preferable that the conductive particles have a plurality of projections on the outer surface of the conductive portion. Furthermore, it is preferable that the conductive particles include a plurality of core substances protruding from the outer surface of the conductive portion so as to form a plurality of protrusions within the conductive portion.
 上記芯物質が上記導電部中に埋め込まれていることによって、上記導電部が外表面に複数の突起を有するようにすることが容易である。但し、導電性粒子の表面及び導電部の表面に突起を形成するために、芯物質を必ずしも用いなくてもよい。 By embedding the core material in the conductive portion, the conductive portion can easily have a plurality of projections on the outer surface. However, the core substance may not necessarily be used to form projections on the surface of the conductive particles and the surface of the conductive portion.
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成する途中段階で芯物質を添加する方法等が挙げられる。 As a method of forming the protrusions, a method of forming a conductive portion by electroless plating after attaching a core substance to the surface of the substrate particle, and a method of forming a conductive portion by electroless plating on the surface of the substrate particle. , a method of adhering a core substance and then forming a conductive portion by electroless plating, and a method of adding a core substance in the middle of forming a conductive portion on the surface of a substrate particle by electroless plating.
 上記芯物質の材料としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、炭化タングステン、酸化チタン、チタン酸バリウム及びジルコニア等が挙げられる。上記芯物質の材料である金属としては、上記導電材料の材料として挙げた金属を適宜使用可能である。 Materials for the core substance include conductive substances and non-conductive substances. Examples of the conductive substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers. Polyacetylene etc. are mentioned as said conductive polymer. Examples of the non-conductive substance include silica, alumina, tungsten carbide, titanium oxide, barium titanate, and zirconia. As the metal that is the material of the core substance, the metals listed as the material of the conductive material can be appropriately used.
 上記芯物質の材料の具体例としては、チタン酸バリウム(モース硬度4.5)、ニッケル(モース硬度5)、シリカ(二酸化珪素、モース硬度6~7)、酸化チタン(モース硬度7)、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)等が挙げられる。上記無機粒子は、ニッケル、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが好ましく、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることがより好ましい。また、上記無機粒子は、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることがさらに好ましく、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが特に好ましい。上記芯物質の材料のモース硬度は、好ましくは4以上、より好ましくは6以上、さらに好ましくは7以上、特に好ましくは7.5以上である。上記芯物質の材料のモース硬度が上記下限以上であると、上記10%K値、上記20%K値、上記30%K値、及び上記比(10%K値と20%K値との差の絶対値/20%K値)を好適な範囲に容易に制御することができる。 Specific examples of materials for the core substance include barium titanate (Mohs hardness 4.5), nickel (Mohs hardness 5), silica (silicon dioxide, Mohs hardness 6 to 7), titanium oxide (Mohs hardness 7), and zirconia. (Mohs hardness 8 to 9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9) and diamond (Mohs hardness 10). The inorganic particles are preferably nickel, silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, more preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond. Further, the inorganic particles are more preferably titanium oxide, zirconia, alumina, tungsten carbide or diamond, and particularly preferably zirconia, alumina, tungsten carbide or diamond. The Mohs hardness of the material of the core substance is preferably 4 or higher, more preferably 6 or higher, even more preferably 7 or higher, and particularly preferably 7.5 or higher. When the Mohs hardness of the material of the core substance is at least the lower limit, the 10% K value, the 20% K value, the 30% K value, and the ratio (the difference between the 10% K value and the 20% K value (absolute value of /20% K value) can be easily controlled within a suitable range.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably massive. The core substance includes, for example, particulate lumps, agglomerates in which a plurality of microparticles are aggregated, and amorphous lumps.
 上記芯物質の平均粒子径は、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均粒子径が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average particle size of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, and preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average particle size of the core substance is equal to or more than the lower limit and equal to or less than the upper limit, the connection resistance between electrodes is effectively lowered.
 上記芯物質の平均粒子径は、数平均粒子径であることが好ましい。上記芯物質の平均粒子径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The average particle size of the core substance is preferably the number average particle size. The average particle size of the core substance is obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope and calculating the average value.
 上記導電性粒子1個当たりの上記の突起の数は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。上記突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。 The number of protrusions per conductive particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles.
 接続抵抗をより一層低くし、導通信頼性をより一層高める観点からは、上記導電性粒子の全表面積100%中、上記突起がある部分の表面積は好ましくは10%以上、より好ましくは30%以上であり、好ましくは95%以下、より好ましくは90%以下である。 From the viewpoint of further lowering the connection resistance and further increasing the conduction reliability, the surface area of the portion having the protrusions is preferably 10% or more, more preferably 30% or more, out of 100% of the total surface area of the conductive particles. , preferably 95% or less, more preferably 90% or less.
 複数の上記突起の平均高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.5μm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average height of the plurality of projections is preferably 0.001 μm or more, more preferably 0.05 μm or more, and preferably 0.9 μm or less, more preferably 0.5 μm or less. When the average height of the projections is equal to or more than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes is effectively lowered.
 [絶縁性物質]
 上記導電性粒子は、上記導電部の表面上に配置された絶縁性物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡をより一層防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。上記導電性粒子が導電部の外表面に複数の突起を有する場合には、導電性粒子の導電部と電極との間の絶縁性物質をより一層容易に排除できる。
[Insulating material]
It is preferable that the conductive particles comprise an insulating material disposed on the surface of the conductive portion. In this case, if the conductive particles are used to connect the electrodes, it is possible to further prevent short circuits between the adjacent electrodes. Specifically, when a plurality of conductive particles are brought into contact with each other, an insulating material exists between the plurality of electrodes, so short-circuiting between laterally adjacent electrodes can be prevented instead of between the electrodes above and below. When the electrodes are connected, the insulating material between the conductive portion of the conductive particles and the electrodes can be easily eliminated by pressing the conductive particles with two electrodes. When the conductive particles have a plurality of protrusions on the outer surface of the conductive portion, the insulating material between the conductive portion of the conductive particles and the electrode can be removed more easily.
 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。 The insulating substance is preferably insulating particles because the insulating substance can be more easily removed when the electrodes are crimped.
 上記絶縁性物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating substance include polyolefins, (meth)acrylate polymers, (meth)acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermal Examples include curable resins and water-soluble resins.
 上記絶縁性物質の粒子径は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。また絶縁性能を向上させる観点から、粒子径が異なる絶縁性物質を混合して使用してもよい。上記絶縁性物質の粒子径は好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。上記絶縁性物質の粒子径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電部同士が接触し難くなる。上記絶縁性粒子の粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 The particle size of the insulating material can be appropriately selected depending on the particle size of the conductive particles, the application of the conductive particles, and the like. In addition, from the viewpoint of improving insulation performance, insulating substances having different particle sizes may be mixed and used. The particle size of the insulating substance is preferably 0.005 μm or more, more preferably 0.01 μm or more, and preferably 1 μm or less, more preferably 0.5 μm or less. If the particle diameter of the insulating substance is equal to or greater than the lower limit, the conductive portions of the plurality of conductive particles are less likely to come into contact with each other when the conductive particles are dispersed in the binder resin. When the particle diameter of the insulating particles is equal to or less than the upper limit, there is no need to apply an excessively high pressure to remove the insulating substance between the electrodes and the conductive particles when connecting the electrodes. No need to heat to high temperatures.
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電性粒子及び上記導電材料はそれぞれ、電極間の電気的な接続に用いられることが好ましい。上記導電性粒子及び上記導電材料はそれぞれ、有機EL表示素子の電極間の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention contains the conductive particles described above and a binder resin. The conductive particles are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. Preferably, the conductive particles and the conductive material are each used for electrical connection between electrodes. Each of the conductive particles and the conductive material is suitably used for electrical connection between electrodes of an organic EL display element. The conductive material is preferably a circuit connecting material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include photocurable components and thermosetting components. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. Only one type of the binder resin may be used, or two or more types may be used in combination.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin and styrene resin. Examples of the thermoplastic resins include polyolefin resins, ethylene-vinyl acetate copolymers and polyamide resins. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. Examples of the thermoplastic block copolymers include styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, hydrogenated products of styrene-butadiene-styrene block copolymers, and styrene-isoprene. - hydrogenated products of styrene block copolymers; Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料及び上記バインダー樹脂は、熱可塑性成分又は熱硬化性成分を含むことが好ましい。上記導電材料及び上記バインダー樹脂は、熱可塑性成分を含んでいてもよく、熱硬化性成分を含んでいてもよい。上記導電材料及び上記バインダー樹脂は、熱硬化性成分を含むことが好ましい。上記熱硬化性成分は、加熱により硬化可能な硬化性化合物と熱硬化剤とを含むことが好ましい。上記熱硬化剤は、熱カチオン硬化開始剤であることが好ましい。上記加熱により硬化可能な硬化性化合物と上記熱硬化剤とは、上記バインダー樹脂が硬化するように適宜の配合比で用いられる。上記バインダー樹脂が熱カチオン硬化開始剤を含むと、硬化物中に酸が含まれやすい。しかし、本発明に係る導電性粒子の使用により、電極間の接続抵抗を低く維持することができる。 The conductive material and the binder resin preferably contain a thermoplastic component or a thermosetting component. The conductive material and the binder resin may contain a thermoplastic component or may contain a thermosetting component. The conductive material and the binder resin preferably contain a thermosetting component. The thermosetting component preferably contains a curable compound that can be cured by heating and a thermosetting agent. The heat curing agent is preferably a heat cationic curing initiator. The curable compound that can be cured by heating and the thermosetting agent are used in an appropriate compounding ratio so that the binder resin is cured. When the binder resin contains a thermal cationic curing initiator, the cured product tends to contain an acid. However, by using the conductive particles according to the present invention, the connection resistance between the electrodes can be kept low.
 上記導電材料は、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 Examples of the conductive material include fillers, extenders, softeners, plasticizers, polymerization catalysts, curing catalysts, colorants, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents and Various additives such as flame retardants may be included.
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material can be used as a conductive paste, a conductive film, and the like. When the conductive material is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is at least the lower limit and at most the upper limit, the conductive particles are efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the conductive material is further increased.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。 The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and preferably 80% by weight or less, more preferably 60% by weight. 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, reliability of electrical connection between electrodes is further enhanced.
 (接続構造体)
 上記導電性粒子を用いて、又は上記導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(connection structure)
A connected structure can be obtained by connecting members to be connected using the conductive particles or a conductive material containing the conductive particles and a binder resin.
 上記接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、上記接続部の材料が、上述した導電性粒子を含む。上記接続構造体では、上記第1の電極と上記第2の電極とが上記導電性粒子により接続される。 The connection structure connects a first member to be connected having a first electrode on its surface, a second member to be connected having a second electrode on its surface, and the first and second members to be connected. a connecting portion, wherein the material of the connecting portion comprises the conductive particles described above. In the connection structure, the first electrode and the second electrode are connected by the conductive particles.
 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
 図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図4では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子11,21等を用いてもよい。 A connection structure 51 shown in FIG. 4 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Prepare. The connecting portion 54 is formed by curing a conductive material containing the conductive particles 1 . In addition, in FIG. 4, the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, conductive particles 11, 21, etc. may be used.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。 The first connection object member 52 has a plurality of first electrodes 52a on its surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on its surface (lower surface). A first electrode 52 a and a second electrode 53 a are electrically connected by one or more conductive particles 1 . Therefore, the first and second connection object members 52 and 53 are electrically connected by the conductive particles 1 .
 上記接続構造体の製造方法は特に限定されない。上記接続構造体の製造方法の一例としては、上記第1の接続対象部材と上記第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は、電極の接続部分の総面積当たり1.0×10Pa~4.9×10Pa程度である。上記加熱の温度は、120℃~220℃程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of the method for manufacturing the connected structure, the conductive material is arranged between the first member to be connected and the second member to be connected to obtain a laminate, and then the laminate is heated. and a method of pressurizing. The pressurization pressure is about 1.0×10 6 Pa to 4.9×10 8 Pa per total area of the connection portion of the electrodes. The heating temperature is about 120.degree. C. to 220.degree.
 なお、電極の接続部分の総面積とは、導電性粒子に接する部分の面積に限られず、平面視において(第1の接続対象部材と接続部と第2の接続対象部材との積層方向にみたときに)、2つの電極の対向し合う部分の総面積を意味する。 In addition, the total area of the connection portion of the electrode is not limited to the area of the portion in contact with the conductive particles, and in a plan view (in the stacking direction of the first connection target member, the connection portion, and the second connection target member) sometimes) means the total area of the facing portions of the two electrodes.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。 Specific examples of the members to be connected include electronic parts such as semiconductor chips, capacitors and diodes, and electronic parts such as circuit boards such as printed boards, flexible printed boards, glass epoxy boards and glass boards. The member to be connected is preferably an electronic component. The conductive particles are preferably used for electrical connection of electrodes in electronic components.
 上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方は、フレキシブルプリント基板であることが好ましい。上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方は、半導体チップであることが好ましい。上記第1の接続対象部材及び上記第2の接続対象部材は、フレキシブルプリント基板及び半導体チップであることが好ましい。フレキシブルプリント基板の材料は、ポリイミド又はポリエステルであることが好ましく、ポリエステルの場合はポリエチレンテレフタラート(PET)であることが好ましい。上記導電性粒子及び上記導電材料は、フレキシブルプリント基板の導通に好適に用いられる。 At least one of the first member to be connected and the second member to be connected is preferably a flexible printed circuit board. At least one of the first member to be connected and the second member to be connected is preferably a semiconductor chip. The first member to be connected and the second member to be connected are preferably a flexible printed circuit board and a semiconductor chip. The material of the flexible printed circuit board is preferably polyimide or polyester, and in the case of polyester, it is preferably polyethylene terephthalate (PET). The conductive particles and the conductive material are suitably used for conducting a flexible printed circuit board.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、チタン電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、チタン電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、チタン電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。特に、本発明に係る導電性粒子では、チタン電極を用いた場合にも、電極の表面の酸化被膜を十分に排除することができ、低い接続抵抗と、高い導通信頼性との双方を両立することができる。本発明に係る導電性粒子は、チタン電極の導電接続用導電性粒子であることが好ましい。本発明に係る導電性粒子は、チタン電極とチタン電極との導電接続に用いられてもよく、チタン電極とチタン電極以外の電極との導電接続に用いられてもよい。チタン電極は、チタンを含む電極である。 Examples of the electrodes provided on the connection target members include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, silver electrodes, titanium electrodes, molybdenum electrodes and tungsten electrodes. When the member to be connected is a flexible printed circuit board, the electrode is preferably a gold electrode, a nickel electrode, a titanium electrode, a tin electrode, or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a titanium electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode made of only aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of materials for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal elements include Sn, Al and Ga. In particular, with the conductive particles according to the present invention, even when a titanium electrode is used, the oxide film on the surface of the electrode can be sufficiently removed, and both low connection resistance and high conduction reliability can be achieved. be able to. The conductive particles according to the present invention are preferably conductive particles for conductive connection of titanium electrodes. The conductive particles according to the present invention may be used for conductive connection between titanium electrodes, or may be used for conductive connection between titanium electrodes and electrodes other than titanium electrodes. A titanium electrode is an electrode containing titanium.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 The present invention will be specifically described below with reference to examples and comparative examples. The invention is not limited only to the following examples.
 以下の材料を用意した。 "I prepared the following materials."
 (基材粒子)
 基材粒子A:樹脂粒子(ジビニルベンゼン共重合体樹脂粒子、積水化学工業社製「ミクロパールSP-203」、平均粒子径3.0μm)
 基材粒子B:有機無機ハイブリッド粒子(下記の合成例1に従って作製、平均粒子径3.0μm)
 基材粒子C:有機無機ハイブリッド粒子(基材粒子Bと粒子径のみ異なる、平均粒子径2.5μm)
 基材粒子D:有機無機ハイブリッド粒子(基材粒子Bと粒子径のみ異なる、平均粒子径10μm)
(Base particles)
Substrate particles A: resin particles (divinylbenzene copolymer resin particles, "Micropearl SP-203" manufactured by Sekisui Chemical Co., Ltd., average particle size 3.0 μm)
Substrate particles B: organic-inorganic hybrid particles (prepared according to Synthesis Example 1 below, average particle size 3.0 μm)
Substrate particles C: organic-inorganic hybrid particles (different from substrate particles B only in particle diameter, average particle diameter 2.5 μm)
Base particle D: organic-inorganic hybrid particles (different from base particle B only in particle size, average particle size 10 μm)
 (合成例1)
 1000mLビーカーにアンモニア水溶液(0.13重量%)を600g入れた。次に、ビニルトリメトキシシラン38.4g、メチルトリメトキシシラン8.2g、シリコーンアルコキシオリゴマー(信越化学工業社製「X-41-1053」)1.4gを静かに添加して、撹拌した。反応溶液が白濁化した後、25重量%アンモニア水溶液4.8mLを添加した後、ろ過して粉体を分離した。回収した粉体を酸素濃度0ppm以上500ppm以下、600℃の条件で焼成して、基材粒子Bを得た。
(Synthesis example 1)
A 1000 mL beaker was charged with 600 g of an aqueous ammonia solution (0.13% by weight). Next, 38.4 g of vinyltrimethoxysilane, 8.2 g of methyltrimethoxysilane, and 1.4 g of silicone alkoxy oligomer (“X-41-1053” manufactured by Shin-Etsu Chemical Co., Ltd.) were gently added and stirred. After the reaction solution became cloudy, 4.8 mL of a 25% by weight aqueous ammonia solution was added, followed by filtration to separate powder. The recovered powder was calcined under conditions of oxygen concentration of 0 ppm or more and 500 ppm or less and 600° C. to obtain base particles B.
 (実施例1)
 基材粒子Bを蒸留水500重量部に加え、分散させることにより、分散液を得た。また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。得られた懸濁液を60℃にて撹拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子Bの表面にニッケル-ボロン導電層(厚み142nm)を配置して、表面が導電層である導電性粒子を得た。
(Example 1)
A dispersion liquid was obtained by adding the substrate particles B to 500 parts by weight of distilled water and dispersing them. A nickel plating solution (pH 8.5) containing 0.35 mol/L nickel sulfate, 1.38 mol/L dimethylamine borane, and 0.5 mol/L sodium citrate was also prepared. While stirring the resulting suspension at 60° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. After that, by filtering the suspension, the particles are taken out, washed with water, and dried to arrange a nickel-boron conductive layer (thickness 142 nm) on the surface of the base particle B, and the surface is a conductive layer. Conductive particles were obtained.
 (実施例2)
 ニッケルめっき液を、硫酸ニッケル200g/L、次亜リン酸ナトリウム85g/L、クエン酸ナトリウム30g/L、硝酸タリウム50ppm、及び硝酸ビスマス20ppmを含む混合液を、pH6.5に調整したニッケル-リン合金めっき液に変更したこと、及び導電部の厚みを変更したこと以外は、実施例1と同様にして、導電性粒子を得た。
(Example 2)
The nickel plating solution is a mixture of nickel sulfate 200 g / L, sodium hypophosphite 85 g / L, sodium citrate 30 g / L, thallium nitrate 50 ppm, and bismuth nitrate 20 ppm. Conductive particles were obtained in the same manner as in Example 1, except that the plating solution was changed to an alloy plating solution and the thickness of the conductive portion was changed.
 (実施例3)
 ニッケルめっき液を、硫酸ニッケル200g/L、ヒドラジン水和物50g/L、クエン酸ナトリウム30g/L、硝酸タリウム50ppm、及び硝酸ビスマス20ppmを含む混合液を、pH6.5に調整した純ニッケルめっき液に変更したこと、及び導電部の厚みを変更したこと以外は、実施例1と同様にして、導電性粒子を得た。
(Example 3)
The nickel plating solution is a pure nickel plating solution obtained by adjusting the pH of a mixed solution containing 200 g/L of nickel sulfate, 50 g/L of hydrazine hydrate, 30 g/L of sodium citrate, 50 ppm of thallium nitrate, and 20 ppm of bismuth nitrate to pH 6.5. Conductive particles were obtained in the same manner as in Example 1, except that the thickness of the conductive portion was changed.
 (実施例4)
 基材粒子Bをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Bの表面を活性化させた。表面が活性化された基材粒子Bを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径150nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子Bを含む懸濁液を得た。また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。得られた懸濁液を60℃にて撹拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子Bの表面にニッケル-ボロン導電層(厚み158nm)を配置して、表面が導電層である導電性粒子を得た。導電部の外表面の全表面積100%中、突起がある部分の表面積は70%であった。
(Example 4)
The substrate particles B were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the substrate particles B. After sufficiently washing the surface-activated substrate particles B with water, they were added to 500 parts by weight of distilled water and dispersed to obtain a dispersion liquid. Next, 1 g of nickel particle slurry (average particle size: 150 nm) was added to the dispersion liquid over 3 minutes to obtain a suspension containing base particles B to which the core substance was attached. A nickel plating solution (pH 8.5) containing 0.35 mol/L nickel sulfate, 1.38 mol/L dimethylamine borane, and 0.5 mol/L sodium citrate was also prepared. While stirring the resulting suspension at 60° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. After that, by filtering the suspension, the particles are taken out, washed with water, and dried to arrange a nickel-boron conductive layer (thickness 158 nm) on the surface of the base particle B, and the surface is a conductive layer. Conductive particles were obtained. Out of 100% of the total surface area of the outer surface of the conductive portion, the surface area of the portion having the protrusions was 70%.
 (実施例5)
 ニッケル粒子スラリーをアルミナ粒子スラリー(平均粒子径150nm)に変更したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 5)
Conductive particles were obtained in the same manner as in Example 4, except that the nickel particle slurry was changed to alumina particle slurry (average particle size: 150 nm) and the thickness of the conductive portion was changed.
 (実施例6)
 ニッケル粒子スラリーを酸化チタン粒子スラリー(平均粒子径150nm)に変更したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 6)
Conductive particles were obtained in the same manner as in Example 4, except that the nickel particle slurry was changed to titanium oxide particle slurry (average particle size: 150 nm) and the thickness of the conductive portion was changed.
 (実施例7)
 突起形成に粒子スラリーを用いずに、導電部の形成時に部分的に析出量が変わるように調整して突起を形成したこと、及び導電部の厚みを変更したこと以外は、実施例1と同様にして、導電性粒子を得た。
(Example 7)
Same as Example 1, except that no particle slurry was used to form the protrusions, and the protrusions were formed by adjusting the amount of precipitation to partially change when forming the conductive portion, and the thickness of the conductive portion was changed. to obtain conductive particles.
 (実施例8)
 導電性粒子を作製する際に、ニッケル-ボロン導電層の外表面上にパラジウムめっき層(厚み20nm)を形成したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 8)
In the same manner as in Example 4, except that a palladium plating layer (thickness 20 nm) was formed on the outer surface of the nickel-boron conductive layer when producing the conductive particles, and the thickness of the conductive portion was changed. , to obtain conductive particles.
 (実施例9)
 導電性粒子を作製する際に、ニッケル-ボロン導電層の外表面上に金めっき層(厚み20nm)を形成したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 9)
In the same manner as in Example 4, except that a gold plating layer (thickness 20 nm) was formed on the outer surface of the nickel-boron conductive layer when producing the conductive particles, and the thickness of the conductive portion was changed. , to obtain conductive particles.
 (実施例10)
 基材粒子Bを基材粒子Aに変更したこと、及び、導電部の厚みを変更したこと以外は、実施例1と同様にして、導電性粒子を得た。
(Example 10)
A conductive particle was obtained in the same manner as in Example 1, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
 (実施例11)
 基材粒子Bを基材粒子Aに変更したこと、及び、導電部の厚みを変更したこと以外は、実施例2と同様にして、導電性粒子を得た。
(Example 11)
A conductive particle was obtained in the same manner as in Example 2, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
 (実施例12)
 基材粒子Bを基材粒子Cに変更したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 12)
A conductive particle was obtained in the same manner as in Example 4, except that the base particle B was changed to the base particle C and the thickness of the conductive portion was changed.
 (実施例13)
 基材粒子Bを基材粒子Dに変更したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 13)
Conductive particles were obtained in the same manner as in Example 4, except that substrate particles B were changed to substrate particles D and the thickness of the conductive portion was changed.
 (実施例14)
 メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を用意した。4ツ口セパラブルカバー、撹拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、上記モノマー組成物を、固形分率が5重量%となるようにイオン交換水に秤取した。次いで、200rpmで撹拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
(Example 14)
Prepare a monomer composition containing 100 mmol of methyl methacrylate, 1 mmol of N,N,N-trimethyl-N-2-methacryloyloxyethylammonium chloride, and 1 mmol of 2,2′-azobis(2-amidinopropane) dihydrochloride bottom. In a 1000 mL separable flask equipped with a 4-neck separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe, the above monomer composition was added to deionized water so that the solid content was 5% by weight. Weighed. Then, the mixture was stirred at 200 rpm and polymerized at 70° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, the mixture was lyophilized to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm and a CV value of 10%.
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。 The insulating particles were dispersed in ion-exchanged water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles.
 実施例4で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間撹拌した。3μmのメッシュフィルターでろ過した後、さらにメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。 10 g of the conductive particles obtained in Example 4 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles to which insulating particles adhered.
 走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より1.66μmの距離における表面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one layer of insulating particles was formed on the surface of the conductive particles. By image analysis, the coverage area of the insulating particles with respect to the surface area at a distance of 1.66 μm from the center of the conductive particles (that is, the projected area of the particle diameter of the insulating particles) was calculated, and the coverage was 30%.
 (実施例15)
 導電性粒子を作製する際に、ニッケル-ボロン導電層の外表面上にルテニウムめっき層(厚み20nm)を形成したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Example 15)
In the same manner as in Example 4, except that a ruthenium plating layer (thickness of 20 nm) was formed on the outer surface of the nickel-boron conductive layer when producing the conductive particles, and that the thickness of the conductive portion was changed. , to obtain conductive particles.
 (比較例1)
 基材粒子Bを基材粒子Aに変更したこと、及び導電部の厚みを変更したこと以外は、実施例1と同様にして、導電性粒子を得た。
(Comparative example 1)
A conductive particle was obtained in the same manner as in Example 1, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
 (比較例2)
 基材粒子Bを基材粒子Aに変更したこと、及び導電部の厚みを変更したこと以外は、実施例4と同様にして、導電性粒子を得た。
(Comparative example 2)
A conductive particle was obtained in the same manner as in Example 4, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
 (比較例3)
 基材粒子Bを基材粒子Aに変更したこと、及び導電部の厚みを変更したこと以外は、実施例14と同様にして、導電性粒子を得た。
(Comparative Example 3)
A conductive particle was obtained in the same manner as in Example 14, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
 (比較例4)
 基材粒子Bを基材粒子Aに変更したこと、及び導電部の厚みを変更したこと以外は、実施例14と同様にして、導電性粒子を得た。
(Comparative Example 4)
A conductive particle was obtained in the same manner as in Example 14, except that the base particle B was changed to the base particle A and the thickness of the conductive portion was changed.
 (評価)
 (1)導電性粒子の圧縮弾性率(10%K値、20%K値、及び30%K値)及び比(10%K値と20%K値との差の絶対値/20%K値)
 得られた導電性粒子の上記圧縮弾性率(10%K値、20%K値、及び30%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。また、10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比(10%K値と20%K値との差の絶対値/20%K値)を計算した。
(evaluation)
(1) Compression modulus of conductive particles (10% K value, 20% K value, and 30% K value) and ratio (absolute value of difference between 10% K value and 20% K value/20% K value )
The compression elastic modulus (10% K value, 20% K value, and 30% K value) of the obtained conductive particles was measured using a microcompression tester ("Fisherscope H-100" manufactured by Fisher Co., Ltd.) by the method described above. ) was used. In addition, the ratio of the absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% to the value of the compression modulus when compressed by 20% (10% K The absolute value of the difference between the value and the 20% K value/20% K value) was calculated.
 (2)接続抵抗
 得られた導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させて、異方性導電ペーストを作製した。L/Sが20μm/20μmであるTi-Al-Tiの複層電極パターンを上面に有するポリイミド基板(フレキシブルプリント基板)を用意した。また、L/Sが20μm/20μmである金電極パターンを下面に有する半導体チップを用意した。上記ポリイミド基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が150℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、バンプ総面積当たり40MPaの圧力をかけて異方性導電ペースト層を150℃で硬化させて、接続構造体を得た。得られた接続構造体の対向する電極間の接続抵抗Aを4端子法により測定した。接続抵抗を、下記の基準で判定した。
(2) Connection resistance An anisotropic conductive paste was prepared by adding the obtained conductive particles to "Structbond XN-5A" manufactured by Mitsui Chemicals Co., Ltd. so that the content was 10% by weight and dispersed. . A polyimide substrate (flexible printed substrate) having a Ti--Al--Ti multilayer electrode pattern with L/S of 20 μm/20 μm on its upper surface was prepared. Also, a semiconductor chip having a gold electrode pattern with L/S of 20 μm/20 μm on the lower surface was prepared. The anisotropic conductive paste immediately after production was applied onto the polyimide substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was laminated on the anisotropic conductive paste layer so that the electrodes faced each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 150° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 40 MPa per total bump area is applied to anisotropically. The conductive paste layer was cured at 150° C. to obtain a connection structure. A connection resistance A between opposing electrodes of the obtained connection structure was measured by a four-probe method. The connection resistance was judged according to the following criteria.
 [接続抵抗の評価基準]
 ○○○:接続抵抗Aが2.0Ω以下
 ○○:接続抵抗Aが2.0Ωを超え、3.0Ω以下
 ○:接続抵抗Aが3.0Ωを超え、5.0Ω以下
 ×:接続抵抗Aが5.0Ωを超える
[Evaluation criteria for connection resistance]
○○○: Connection resistance A is 2.0 Ω or less ○○: Connection resistance A is over 2.0 Ω and is 3.0 Ω or less ○: Connection resistance A is over 3.0 Ω and is 5.0 Ω or less ×: Connection resistance A exceeds 5.0Ω
 (3)導通信頼性
 上記の(2)接続抵抗の評価後の接続構造体を、85℃及び湿度85%の条件下で500時間放置した。500時間放置後の接続構造体において、上下の電極間の接続抵抗Bをそれぞれ、4端子法により測定した。接続抵抗A,Bから高温高湿放置後の導通信頼性を下記の基準で判定した。
(3) Conductivity Reliability The connection structure after the connection resistance evaluation (2) was left under conditions of 85° C. and 85% humidity for 500 hours. The connection resistance B between the upper and lower electrodes of the connection structure after being left for 500 hours was measured by the four-probe method. From the connection resistances A and B, the conduction reliability after being left at high temperature and high humidity was determined according to the following criteria.
 [導通信頼性の評価基準]
 ○○○:接続抵抗Bが接続抵抗Aの1.25倍未満
 ○○:接続抵抗Bが接続抵抗Aの1.25倍以上、1.5倍未満
 ○:接続抵抗Bが接続抵抗Aの1.5倍以上、2.0倍未満
 ×:接続抵抗Bが接続抵抗Aの2.0倍以上
[Continuity reliability evaluation criteria]
○○○: The connection resistance B is less than 1.25 times the connection resistance A ○○: The connection resistance B is 1.25 times or more and less than 1.5 times the connection resistance A ○: The connection resistance B is 1 of the connection resistance A .5 times or more and less than 2.0 times ×: Connection resistance B is 2.0 times or more of connection resistance A
 詳細及び結果を下記の表1,2に示す。 Details and results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1…導電性粒子
 2…基材粒子
 3…導電部
 11…導電性粒子
 11a…突起
 12…導電部
 12a…突起
 13…芯物質
 14…絶縁性物質
 21…導電性粒子
 21a…突起
 22…導電部
 22a…突起
 22A…第1の導電部
 22Aa…突起
 22B…第2の導電部
 22Ba…突起
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
DESCRIPTION OF SYMBOLS 1... Conductive particle 2... Base material particle 3... Conductive part 11... Conductive particle 11a... Protrusion 12... Conductive part 12a... Protrusion 13... Core substance 14... Insulating substance 21... Conductive particle 21a... Protrusion 22... Conductive part 22a...Protrusion 22A...First conductive portion 22Aa...Protrusion 22B...Second conductive portion 22Ba...Protrusion 51...Connection structure 52...First connection target member 52a...First electrode 53...Second connection target member 53a... 2nd electrode 54... Connection part

Claims (12)

  1.  基材粒子と、前記基材粒子の表面上に配置された導電部とを備え、
     10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値以上であり、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値以上であり、
     10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、0.20以下である、導電性粒子。
    A substrate particle and a conductive portion disposed on the surface of the substrate particle,
    The value of the compression modulus when compressed by 10% is equal to or greater than the value of the compression modulus when compressed by 20%, and the value of the compression modulus when compressed by 20% is the compression modulus when compressed by 30%. is greater than or equal to the value of
    The ratio of the absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% to the value of the compression modulus when compressed by 20% is 0.20 or less. , conductive particles.
  2.  10%圧縮したときの圧縮弾性率の値と20%圧縮したときの圧縮弾性率の値との差の絶対値の、20%圧縮したときの圧縮弾性率の値に対する比が、0.15以下である、請求項1に記載の導電性粒子。 The ratio of the absolute value of the difference between the value of the compression modulus when compressed by 10% and the value of the compression modulus when compressed by 20% to the value of the compression modulus when compressed by 20% is 0.15 or less. The conductive particles according to claim 1, which are
  3.  10%圧縮したときの圧縮弾性率の値が13000N/mm以上であり、
     20%圧縮したときの圧縮弾性率の値が13000N/mm以上であり、
     30%圧縮したときの圧縮弾性率の値が13000N/mm以上である、請求項1又は2に記載の導電性粒子。
    The compression modulus value when compressed by 10% is 13000 N / mm 2 or more,
    The compression modulus value when compressed by 20% is 13000 N / mm 2 or more,
    The conductive particles according to claim 1 or 2, having a compressive modulus of 13000 N/mm 2 or more when compressed by 30%.
  4.  10%圧縮したときの圧縮弾性率の値が15000N/mm以上であり、
     20%圧縮したときの圧縮弾性率の値が15000N/mm以上である、請求項1~3のいずれか1項に記載の導電性粒子。
    The compression modulus value when compressed by 10% is 15000 N / mm 2 or more,
    The conductive particles according to any one of claims 1 to 3, which have a compression modulus value of 15000 N/mm 2 or more when compressed by 20%.
  5.  10%圧縮したときの圧縮弾性率の値が20%圧縮したときの圧縮弾性率の値よりも大きく、かつ、20%圧縮したときの圧縮弾性率の値が30%圧縮したときの圧縮弾性率の値よりも大きい、請求項1~4のいずれか1項に記載の導電性粒子。 The value of the compression modulus when compressed by 10% is greater than the value of the compression modulus when compressed by 20%, and the value of the compression modulus when compressed by 20% is the compression modulus when compressed by 30%. The conductive particles according to any one of claims 1 to 4, which are greater than the value of.
  6.  前記基材粒子が、樹脂粒子又は有機無機ハイブリッド粒子である、請求項1~5のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 5, wherein the base particles are resin particles or organic-inorganic hybrid particles.
  7.  前記基材粒子が、有機無機ハイブリッド粒子である、請求項6に記載の導電性粒子。 The conductive particles according to claim 6, wherein the substrate particles are organic-inorganic hybrid particles.
  8.  前記基材粒子の粒子径が、1.0μm以上10μm以下である、請求項1~7のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 7, wherein the base particles have a particle diameter of 1.0 µm or more and 10 µm or less.
  9.  前記導電部の外表面上に配置された絶縁性物質を備える、請求項1~8のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 8, comprising an insulating substance arranged on the outer surface of the conductive portion.
  10.  前記導電部の外表面に突起を有する、請求項1~9のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 9, which have protrusions on the outer surface of the conductive portion.
  11.  請求項1~10のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles according to any one of claims 1 to 10 and a binder resin.
  12.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~10のいずれか1項に記載の導電性粒子を含み、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    a first connection target member having a first electrode on its surface;
    a second connection target member having a second electrode on its surface;
    A connecting portion connecting the first connection target member and the second connection target member,
    The material of the connecting portion contains the conductive particles according to any one of claims 1 to 10,
    A connection structure, wherein the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2023/001815 2022-01-27 2023-01-23 Conductive particles, conductive material, and connection structure WO2023145664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023515852A JPWO2023145664A1 (en) 2022-01-27 2023-01-23
CN202380015244.4A CN118402017A (en) 2022-01-27 2023-01-23 Conductive particle, conductive material, and connection structure
KR1020247018697A KR20240142404A (en) 2022-01-27 2023-01-23 Challenging particles, challenging materials and interconnect structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011158 2022-01-27
JP2022-011158 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023145664A1 true WO2023145664A1 (en) 2023-08-03

Family

ID=87471930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001815 WO2023145664A1 (en) 2022-01-27 2023-01-23 Conductive particles, conductive material, and connection structure

Country Status (4)

Country Link
JP (1) JPWO2023145664A1 (en)
KR (1) KR20240142404A (en)
CN (1) CN118402017A (en)
WO (1) WO2023145664A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020799A1 (en) * 2010-08-11 2012-02-16 株式会社日本触媒 Polymeric microparticles, conductive microparticles, and anisotropic conductive material
WO2018181694A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Conductive particles, conductive material, and connection structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020799A1 (en) * 2010-08-11 2012-02-16 株式会社日本触媒 Polymeric microparticles, conductive microparticles, and anisotropic conductive material
WO2018181694A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Conductive particles, conductive material, and connection structure

Also Published As

Publication number Publication date
KR20240142404A (en) 2024-09-30
CN118402017A (en) 2024-07-26
JPWO2023145664A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
KR101815336B1 (en) Conductive particles, anisotropic conductive material and connection structure
JP6734159B2 (en) Conductive particles, conductive material and connection structure
JP2020095966A (en) Conductive particle, conductive material, and connecting structure
JP7208194B2 (en) Conductive particles, method for producing conductive particles, conductive material and connection structure
JP6637391B2 (en) Conductive particles, conductive material and connection structure
JP6687408B2 (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP6734161B2 (en) Conductive particles, conductive film, connection structure and method for manufacturing connection structure
WO2023145664A1 (en) Conductive particles, conductive material, and connection structure
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
JP7132274B2 (en) Conductive particles, conductive materials and connecting structures
JP7288487B2 (en) Conductive particles, method for producing conductive particles, conductive material and connection structure
WO2023149294A1 (en) Conductive particles, method for manufacturing conductive particles, conductive material, and connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
JP6457743B2 (en) Connection structure
JP7235611B2 (en) Conductive materials and connecting structures
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP7132112B2 (en) Conductive film and connection structure
WO2022239776A1 (en) Conductive particles, conductive material, and connection structure
JP6798771B2 (en) Method for manufacturing conductive particles, method for manufacturing conductive material, and method for manufacturing connecting structure
JP2015056306A (en) Electrically conductive particle, electrically conductive material, and connection structure
JP6333624B2 (en) Connection structure
JP2015109267A (en) Conductive particle, conductive material, and connection structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023515852

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE