JP3832938B2 - Electroless silver plating powder and method for producing the same - Google Patents

Electroless silver plating powder and method for producing the same Download PDF

Info

Publication number
JP3832938B2
JP3832938B2 JP23027997A JP23027997A JP3832938B2 JP 3832938 B2 JP3832938 B2 JP 3832938B2 JP 23027997 A JP23027997 A JP 23027997A JP 23027997 A JP23027997 A JP 23027997A JP 3832938 B2 JP3832938 B2 JP 3832938B2
Authority
JP
Japan
Prior art keywords
silver
plating
electroless
copper
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23027997A
Other languages
Japanese (ja)
Other versions
JPH1161424A (en
Inventor
浩 川上
雅明 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP23027997A priority Critical patent/JP3832938B2/en
Publication of JPH1161424A publication Critical patent/JPH1161424A/en
Application granted granted Critical
Publication of JP3832938B2 publication Critical patent/JP3832938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、均一で緻密な銀皮膜が形成された無電解銀めっき粉体およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子工業等では、導電性ペーストあるいは電磁波シールド用導電塗料に配合される導電性フィラーとして、銀の微粉末が多量に用いられている。銀は貴金属で高価であるにもかかわらず、このような工業用として利用されるのは、その優れた電気伝導性と耐環境性による。すなわち、ニッケルや鉄は安価であるが電気導電性が劣り、Cuは電気導電性に優れるが、表面が酸化されると電気導電性が低下するためである。
【0003】
従来、無電解銀めっき方法は、無電解銅めっきを施した後、次いで無電解銀めっきを施して、銅と銀の置換反応により銀皮膜を形成させる方法が行われてきた。しかしながら、従来の置換反応により得られる銀めっき品は、銅を下層とした銅と銀の2重の皮膜を形成させたものであり、多量の銅を含有するため、銀めっき後、時間の経過に伴い下層の銅皮膜と表層の銀との相互拡散により、銀めっき本来の諸物性が劣化し良好な銀めっき品が得られにくいという問題があった。
【0004】
そこで、粉体に銀めっきを施す各種の無電解めっき方法が提案されている。例えば、金属粉末に特定周波数以上の超音波振動を与えて無電解めっきを施す方法(特開平1−225778号公報)、銀錯イオン、還元剤及び安定剤を含有する銀めっき液で無電解めっきする方法(特開平2−173272号公報)、雲母粉末を、室温でめっき浴のpHを特定値に保ちながら抱水ヒドラジンを連続的に添加して無電解めっきを施す方法(特開昭63−20486 号公報)、球状フェノール樹脂の粉末を塩酸及び塩化物を含有する水溶液で表面を活性化した後、無電解めっきする方法(特開平1−225776号公報)、硝酸銀、ポリエチレンポリアミン及び水からなる特定組成のめっき液を用いて無電解めっきする方法(特開平1−201485号公報)等が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、いずれの方法も析出する銀皮膜も緻密で密着性の良いものが得られにくいばかりでなく、めっき方法によってはめっき効率も経済性も悪いという問題がある。
【0006】
従って、本発明の目的は、粉体表面に均一で緻密な銀皮膜を形成した、導電性に優れる無電解銀めっき粉体及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
かかる実情において、本発明者等は鋭意検討を行った結果、ニッケルめっき皮膜下地層を有する銅被覆された粒子の表面に無電解めっき法により銀皮膜を形成させれば、均一で緻密な銀皮膜を形成でき、銀の皮膜厚が薄いにもかかわらず導電性に優れることを見い出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、ニッケルめっき皮膜下地層を有する銅被覆された無機質又は有機質の粒子を基材とし、無電解めっき粉体中の銀に対する銅の含有量が15重量%以下となるまで、銅と銀の置換反応により銅めっき層を溶解消失させ、銀皮膜を形成させる無電解めっき法により、該基材の表面に銀皮膜を形成させてなることを特徴とする無電解銀めっき粉体を提供するものである。
【0009】
また、本発明は、無機質又は有機質の粒子を無電解ニッケルめっきしてニッケル皮膜を形成させる第一工程、該ニッケル被覆粒子を無電解銅めっきして銅皮膜を形成させる第二工程、該銅被覆粒子を無電解銀めっき反応により、無電解めっき粉体中の銀に対する銅の含有量が15重量%以下となるまで、該銅皮膜を銀により置換して、銀の皮膜を形成させる第三工程を順次施すことを特徴とする無電解銀めっき粉体の製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明の無電解銀めっき粉体において、基材であるニッケルめっき皮膜下地層を有する銅被覆された無機質又は有機質の粒子は、後述するように芯材となる無機質又は有機質の粉体を、常法により無電解ニッケルめっきを施し、次いで常法により無電解銅めっきを施したもので、二重の下地処理を施したものである。
【0011】
この二重の下地処理を施した基材の表面に行う無電解銀めっき反応は、銅と銀の置換反応により銅めっき層を溶解消失させたものであり、これにより、実質的に下地層のニッケル皮膜と表層の銀皮膜との二層構造を有するめっき粉体を得ることができる。ここで実質的にというのは、無電解銀めっき反応終了時に未反応で残存する若干の銅または銅皮膜は許容される意味である。この場合、無電解銀めっき粉体中の銀に対する銅の含有量は、通常15重量%以下、好ましくは5重量%以下である。また、下地層のニッケル皮膜の厚さとしては、特に制限されないが、0.03μm 〜0.5μm とするのが好ましい。0.03μm 未満では基材表面をニッケル皮膜で完全に被覆することは実質的に困難であり、一方、0.5μm を超えると、いたずらにめっき粉体の比重が高くなるだけで不経済である。また、銀皮膜の厚さとしては、特に制限されないが、上記と同様の理由から、0.03μm 〜0.5μm とするのが好ましい。
【0012】
また、本発明に係る無電解銀めっき粉体は、上記のとおり、均質な銀皮膜が形成された銀めっき粉体であり、ブリッチを構成して被覆された凝集粉体は存在せず、実質的に個々の独立分散体である。これは、電子顕微鏡にて容易に確認することができる。また、無電解銀めっき粉体の大きさは、粒子としての芯材の大きさに依存し、その用途によって設計されるため、特に制限されないが、多くの場合1〜数mmまでの範囲が実用的であり、その形状は特に制限されない。
【0013】
芯材の無機質又は有機質の粒子において、無機質粒子としては、金属粉末、金属又は非金属の酸化物(含有物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物又は炭素等を例示することができる。有機質粒子としては、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリロニトリル、ポリアセタール、アイオノマー、ポリエステル等の合成可塑性樹脂、アルキド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂又はジアリールフタレート樹脂の如き合成熱硬化性樹脂を例示することができる。これらの無機質及び有機質の粒子は、1種単独又は2種以上の混合物であってもよい。この混合物というのは、化学的に組成が不均質のもの及び芯材として混合物の双方を含むものである。
【0014】
上記芯材の無機質又は有機質粒子の粒子径及び形状としては、特に制限されないが、粒子径としては1μm 〜数mmの範囲が好ましく、形状としては、球状、板状、棒状、針状、中空状又は繊維状のいずれの形状であってもよい。従って、外観上は粉末状又は粒状のいずれであってもよい。芯材の材質は、無電解めっきが可能な水不溶性または水難溶性のものであれば特に限定なく用いることができる。また、芯材は化学的に均一な組成であることが望ましいが、不均一な化学組成を有するものであってもよい。
【0015】
本発明の無電解銀めっき粉体は粒子表面が銀の緻密な単一層が形成されているため銀の皮膜厚が薄いにもかかわらず体積固有電気抵抗値が小さく、通常4.5×10-3Ωcm未満、好ましくは3×10-3Ωcm以下である。ここで体積固有電気抵抗値とは、突起上部の平面に金めっきを施した直径1cmの円柱状の突起電極を備えた銅製円盤上の突起部に内径1cmのプラスチック円筒を差し込み、この円筒内に試料1gを入れ、次いで鍔の付いた直径1cm弱の端部を金めっきした銅製の円柱電極をプラスチック円筒内に差し込んで、上部より5kgの荷重を掛けた状態で、電極間の電気抵抗を測定し、下記(1) 式により電気抵抗値を求めた値である。
体積固有電気抵抗値(Ωcm)
=電気抵抗測定値×0.7856(cm2 )/電極間の距離(cm) (1)
【0016】
次に、上記無電解銀めっき粉体の製造方法について説明する。当該製造方法は、芯材となる粒子が疎水性の場合、親水化処理し触媒処理を施す前工程、無電解ニッケルめっき処理を行う第一工程、無電解銅めっき処理を行う第二工程及び無電解銀めっき処理する第三工程とから成る。以下、各工程毎に説明する。
【0017】
(親水化及び触媒化処理工程)
後述の第一から第三工程の前処理工程として、芯材である無機質又は有機質の粒子が疎水性の場合に親水化し、触媒化処理を施す。
【0018】
親水化処理の方法としては、芯材が有機質の場合は、クロム酸−硫酸、有機溶剤−アルカリ処理によるエッチング法があり、無機質の場合は、アルカリ又は界面活性剤による浸漬洗浄方法等がある。触媒化処理の方法としては、例えば、第一錫塩、パラジウム塩による増感、活性化処理等の公知の方法が挙げられる。
【0019】
芯材自体が貴金属イオンの捕捉能を有するものや表面処理により捕捉能を持たせたものについては、貴金属捕捉処理により、触媒化処理に代えてもよい。貴金属の捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることを言い、例えばアミノ基、イミノ基、アミド基、イミド基、シアノ基、水酸基、ニトリル基、カルボキシル基の1種又は2種以上を芯材の表面に有するものである。芯材自体が貴金属イオンの捕捉能を有する物質としては、例えば、アミノ系樹脂、ニトリル系樹脂又はアミノ硬化剤で硬化されたエポキシ系樹脂等の有機物が挙げられる。アミノ系樹脂としては、例えば、尿素樹脂、チオ尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アセトグアナミン樹脂、ジシアンジアミド樹脂、アニリン等のアミノ化合物とホルムアミド、パラホルムアミド、アセトアルデヒド、グリオキザール等のアルデヒド化合物との縮合反応により得られるもの等が挙げられる。
【0020】
また、貴金属イオンの捕捉能を持たないものは、アミノ基置換オルガノシランカップリング剤又はアミノ系硬化剤により硬化してエポキシ樹脂で表面処理すればよい。次いで、貴金属イオンの捕捉能を有する芯材を塩化パラジウム又は硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させ、貴金属を捕捉させる。この場合、溶液濃度は0.05〜0.5g/Lの範囲で行うのがよい。また、触媒化処理の際、脱アグロメレート処理を施し、均一に芯材を分散させた水性スラリーを調製することが好ましい。
【0021】
〈第一工程:無電解ニッケルめっき処理〉
上記のような触媒化処理を行った粉体は、次いで無電解ニッケルめっき液により下地層被覆処理を行う。無電解ニッケルめっき処理をする際、充分に分散処理を施し、芯材のアグロメレートを出来るだけ除去した一次粒子に近い分散状態の水性スラリーを調製することが好ましい。分散が不十分で、凝集した芯材にめっきが施されると、使用に当たり、未処理面が露出し易くなる。
【0022】
分散方法は、芯材の物性により異なるので、適宜芯材の物性に併せて所望の手段をとればよく、例えば、通常撹拌からの高速撹拌、コロイドミル又はホモジナイザー等のせん断分散装置を用いればよい。なお、芯材を水に分散させるに際し、界面活性剤等の分散剤を用いてもよい。
【0023】
また、この分散処理には、錯化剤の水溶液を分散媒として、水性スラリーに添加しておくことが好ましい。錯化剤の種類としては、例えば、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸又はそのアルカリ金属塩やアンモニウム塩、グリシン等のアミノ酸又はそのアルカリ金属塩、エチレンジアミン、アルキルアミン等のアミン酸又はそのアルカリ金属塩、EDTA、ピロリン酸又はそのアルカリ金属塩、その他のアンモニウム塩等、ニッケルに対して錯化作用のある化合物が挙げられる。錯化剤は通常水溶液の状態で添加されるが、その濃度は0.01〜1モル/L、好ましくは0.2〜0.5モル/Lの範囲である。この段階で好ましい水性スラリーのpHの値は、芯材となる無機質又は有機質の粉体の物性にもよるが4.5〜10の範囲である。
【0024】
水性スラリー濃度としては、特に限定はないが、通常1〜500g/L、好ましくは5〜300g/Lの範囲である。スラリー濃度が低すぎると、めっき濃度が低下し、処理容量が大きくなって経済的に好ましくなく、一方、スラリー濃度が高すぎると芯材の分散性が悪くなる。
【0025】
充分に脱アグロメレート処理された水性スラリーは、めっき処理を効果的に行うため、めっき可能温度、多くの場合、55℃以上に予め調製しておくことが好ましい。
【0026】
上記のように調製した水性スラリーに、無電解めっき液として、ニッケル塩、還元剤、pH調整剤の各水溶液を、少なくとも2液にしてそれぞれ個別かつ同時に添加することにより無電解ニッケルめっき反応を行う。なお、設備の簡略化及び経済性を考慮するとpH調整剤と還元剤とを予め混合調製しておくことが好ましい。
【0027】
ニッケル塩としては、水に溶解してニッケルイオンとなるものであればよく、例えば、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、次亜リン酸ニッケル等が挙げられる。還元剤としては、次亜リン酸、次亜リン酸ソーダ及び次亜リン酸ニッケル等が挙げられる。pH調整剤としては、アンモニア、アミン化合物及び苛性アルカリ等のアルカリ剤が挙げられる。ニッケル塩の濃度は、特に限定はないが、後の濾過操作や、廃液処理を考慮して、水に対する溶解度限界近くの0.7モル/L以上で行うことが好ましい。還元剤の濃度は、同様な理由から1.4モル/L以上で行うことが好ましい。
【0028】
無電解ニッケルめっき反応は、水性スラリーにめっき液を添加することにより速やかにめっき反応が始まるが、その添加量を調節することにより形成されるニッケル皮膜を所望の膜厚に制御することができる。無電解ニッケルめっき液の添加終了後、水素ガスの発生が完全に認められなくなってから暫く液温を保持しながら撹拌を継続して反応を完結させる。めっき反応終了後、常法により濾過分離し、更にリパルプしてよく洗浄した後、乾燥することにより、基材に均一なニッケル皮膜の下地層が形成された粉体を得ることができる。
【0029】
〈第二工程:無電解銅めっき処理〉
第二工程は、第一工程で得られたニッケル被覆粉体を無電解銅めっき処理して、後述の銀との置換反応を行う銅を該粉体表面に均一な層として形成させる工程である。
【0030】
無電解銅めっき処理をするに当たって、第一工程と同様に充分に分散処理を施し、芯材のアグロメレートを出来るだけ除去した一次粒子に近い分散状態の水性スラリーを調製することが好ましく、界面活性剤等の分散剤を所望により用いてもよい。
【0031】
また、分散処理を行うに当たって、錯化剤の水溶液を分散媒として水性スラリーに添加しておくことが好ましい。錯化剤としては、EDTA、エチレンジアミン、ロッシェル塩及びそれらのアルカリ金属塩等が挙げられる。錯化剤の濃度は、通常0.02〜1モル/L、好ましくは0.05〜0.5モル/Lである。水性スラリーの濃度は、特に制限はないが、10〜500g/Lの範囲に調製すればよい。脱アグロメレート処理した水性スラリーを無電解銅めっき反応が効果的に行われるように、予め20〜70℃の温度範囲にしておくことが好ましい。
【0032】
このように調製した水性スラリーに、銅塩、還元剤及びpH調整剤の各水溶液を、それぞれ個別にかつ同時に分別添加することにより無電解めっき反応を行う。銅塩としては、水に溶解して銅イオンとなるものでよく、例えば、硫酸銅、ハロゲン化銅、硝酸銅、酢酸銅等が挙げられる。還元剤としては、例えば、ホルマリン、パラホルムアルデヒド、グリオキシル酸等が挙げられる。pH調整剤としては、水酸化ナトリウム、アンモニア等が挙げられる。
【0033】
銅塩の濃度は、特に限定はないが、経済性の面から水に対する溶解度限界近くの0.6モル/L以上で行うことが好ましい。還元剤の濃度も同様な理由から、2.4モル/L以上で行うことが好ましい。なお、銅塩、還元剤及びpH調整剤は、銅塩1モルに対して、還元剤3〜5モル倍、pH調整剤6〜11モル倍の比率となるように調製することが好ましい。めっき反応終了後、常法により濾過分離し、更にリパルプしてよく洗浄した後、乾燥することにより、均一なニッケル皮膜の下地層の上層に銅皮膜が形成された粉体を得ることができる。
【0034】
〈第三工程:無電解銀めっき処理〉
第三工程は、第二工程で形成された銅皮膜を銀により置換して、皮膜銅量に見合う厚みの緻密かつ均一な銀めっき皮膜を形成させる工程である。
【0035】
無電解銀めっき処理をするに際し、第一工程及び第二工程と同様に充分に分散処理を施し、芯材のアグロメレートを出来るだけ除去した一次粒子に近い分散状態の水性スラリーを調製することが好ましく、界面活性剤等の分散剤を所望により用いてもよい。
【0036】
また、この分散処理を行うに当たって、錯化剤の水溶液を分散媒として、水性スラリーに添加しておくことが好ましい。錯化剤としては、例えば、アンモニウム塩、アミン化合物、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン、トリエタノールアミン、EDTA、ニトリロ三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、ヒドロキシエチルイミン二酢酸、ジヒドロキシエチルグリシン、ヒドラジン、塩酸モノヒドラジン、硫酸ジヒドラジン、アセトヒドラジン及びそれらのアルカリ金属塩等が挙げられる。錯化剤の濃度は、通常0.02〜1モル/L、好ましくは0.05〜0.5モル/Lである。また、脱アグロメレート処理した水性スラリーを無電解銀めっき反応が効果的に行われるように、予め20〜60℃の温度範囲にしておくことが好ましい。
【0037】
かかる無電解銀めっき方法は、上記で調製した水性スラリーに、所定量の銀塩を添加して、銅と銀の置換反応により、銀皮膜を形成させる。反応系のpHの値は、8〜14の範囲が好ましく、従って、必要に応じて、アンモニア、アミン化合物及び苛性アルカリ等のアルカリ剤をpH調整剤として反応系内に添加してもよい。
【0038】
この無電解めっき反応において、銀塩の添加量は、銅皮膜量に対し、2倍モルとすることが好ましい。当該反応においては銀の析出効率がほぼ100%であることから2モル倍より小さくなると、未反応の銅が多量に残存することとなって、銀めっき後時間の経過に従い下層の銅皮膜と表層の銀との相互拡散により、銀めっき本来の諸物性が劣化する傾向がある。一方、2モル倍より大きくなるとめっき液中に未反応の銀イオンが残存するので好ましくない。めっき反応終了後、常法により濾過分離、乾燥して、銀めっき粉体を得ることができる。
【0039】
かかる銀めっき粉体は、銅と銀との置換反応により得られるもので、実質的にニッケル皮膜を下地層として、その上層に銀が均一に被覆されている。
【0040】
本発明の無電解銀めっき粉体は、ニッケルめっき皮膜下地層を有する銅被覆された無機質又は有機質の粒子を基材とし、該基材の表面に無電解めっき法により銀皮膜を形成するため、従来の基材に銅めっき皮膜を形成して、次いで無電解銀めっきを施した置換銀めっき反応で得られるものとは、異なる。すなわち、従来の無電解銀めっき反応では、銅を多量に含有するため銀めっき後、時間の経過に従い下層の銅皮膜と表層の銀との相互拡散により、銀めっき本来の諸物性が劣化し良好な銀めっき品は得られにくいのに対して、本発明の無電解銀めっき粉体は、実質的に銅を含有しないニッケル−銀の二層構造をとるので、銅と銀との相互拡散がなく、銀めっきが均一で緻密に施され、銀めっき本来の皮膜物性のものが得られる。また、本発明の製造方法によれば、銀鏡反応で知られる銀の析出効率が50〜60%であるのに対し、ほぼ100%であることから、生産性も高く、実用的である。
【0041】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1〜7
(前処理)
表1に示した物性の粉体試料を0.5〜1.0g/Lの濃度のアミノシランカップリング剤(S−300;チッソ社製)1Lに仕込み、約10分間分散処理した後、濾過分離、乾燥した。次いで、0.1g/Lの塩化パラジウム塩を含む酸酸性水溶液1Lに処理粉体を仕込んで、約5分間撹拌後、濾過後、リパルプして再び濾過分離した。
【0042】
【表1】

Figure 0003832938
【0043】
(無電解ニッケルめっき処理工程)
前処理を行った各粉体試料を表2に示した組成の錯化剤水溶液のめっき槽に仕込み、脱アグロメート処理した後、70℃に加温して水性スラリーを調製した。得られた水性スラリーに次亜リン酸ナトリウム3g/Lを添加し、撹拌下に溶解させた。次いで、表3に示した組成の無電解ニッケルめっき液をa液、b液として分別し、パラジウムイオンの還元による水素ガスの発生を確認したら、a液及びb液を同時に定量ポンプによりめっき槽に送り込んだ。なお、めっき液の添加量と添加速度は表4に示した。a液及びb液を所定量添加後、水素ガスの発生がなくなるまで70℃に保持して、撹拌下に無電解ニッケルめっき反応を行った。次いで、濾過、水洗い、乾燥して、無電解ニッケルめっきを施した粉体をそれぞれ得た。
【0044】
【表2】
Figure 0003832938
【0045】
【表3】
Figure 0003832938
【0046】
【表4】
Figure 0003832938
【0047】
(無電解銅めっき処理工程)
無電解ニッケルめっきを施した粉体50gを塩化パラジウム0.1g/Lを含む塩酸酸性水溶液1Lに仕込み、5分間撹拌後、濾過、洗浄、濾過分離した。
次いで、この粉体を予めEDTA−Na50g/Lを含む水溶液に仕込み、更に、次亜リン酸ナトリウム1g/Lを仕込んで、脱アグロメレート処理後、50℃に保持して水性スラリーを調製した。次いで、表5に示した組成の無電解銅めっき液を調製し、表5のめっき液の添加条件で上記水性スラリーに添加し、水素ガスの発生がなくなるまで無電解銅めっき反応を行った。無電解銅めっき反応終了後、濾過、洗浄及び濾過分離した。
【0048】
【表5】
Figure 0003832938
【0049】
(無電解銀めっき処理工程)
予めEDTA−Na50g/Lの濃度の水溶液をpH11に調製したものに、上記のニッケル−銅めっき処理した粉体を添加し、脱アグロメレート処理した後、硝酸銀158g/Lを表6に示しためっき液添加条件で添加した。硝酸銀添加後、10分間撹拌下に置換銀めっき反応を行った。次いで、濾過、水洗い、濾過分離後、乾燥して白色の銀めっき粉体をそれぞれ得た。
【0050】
【表6】
Figure 0003832938
【0051】
比較例1
粉体としてシリカ粉体(真比重2.50、粒径5.4μm )を使用し、無電解銅めっきを2倍量施した以外は、実施例2と同様の方法に従い暗黒色のめっき粉体を得た。
【0052】
比較例2
アルミナ粉体(真比重2.40、粒径3.0μm )10gを硝酸銀20g/L、28%アンモニア水30mL/Lを含む水溶液5Lに仕込み、脱アグロメレート処理を行った後、ロッシェル塩600g/Lを仕込み、1時間銀めっき処理を行った。次いで、濾過、水洗い、濾過分離、乾燥して表面がやや粗な灰白色の銀めっき粉体を得た。
【0053】
比較例3
ガラスビーズ粉体(真比重2.50、粒径30μm )10gを硝酸銀20g/L、28%アンモニア水30mL/Lを含む水溶液5Lに仕込み、脱アグロメレート処理を行った後、ロッシェル塩600g/Lを仕込み、1時間銀めっき処理を行った。次いで、濾過、水洗い、濾過分離、乾燥して表面がやや粗な灰白色の銀めっき粉体を得た。
【0054】
実施例1〜7及び比較例1〜3における無電解銀めっき時の、銀の有効利用率(使用しためっき液中の銀と、銀めっき皮膜として析出した銀の比率)を表7に示した。
【0055】
【表7】
Figure 0003832938
【0056】
〈銀めっき特性の評価〉
・金属皮膜の組成
実施例1〜7及び比較例1〜3で得られた金属皮膜粉体を硝酸銀溶液に添加し、金属皮膜を溶解した後、金属皮膜の組成と真比重を測定し、その結果を表8に示した。
【0057】
【表8】
Figure 0003832938
【0058】
(電気抵抗特性の評価)
突起上部の平面に金めっきを施した直径1cmの円柱状の突起電極を備えた銅製円盤上の突起部に内径1cmのプラスチック円筒を差込、この円筒内に実施例1〜7及び比較例1〜3で得られた金属皮膜試料1gを入れ、次いで、鍔の付いた直径1cm弱の端部を金めっきした銅製の円柱電極をプラスチック円筒内に差込、上部より5kgの荷重を掛けた状態で、電極間の電気抵抗を測定し、前記(1) 式により体積固有電気抵抗値を求めた。その結果と膜厚を表9に示した。
【0059】
【表9】
Figure 0003832938
【0060】
【発明の効果】
本発明の無電解銀めっき粉体は、安価なニッケル皮膜で銀皮膜の一部を代替して、導電性を付与するため、銀めっき層を薄くしても、単層銀めっき粉体に劣らず、優れた導電性を有し、めっき粉体の軽比重といった特性を生かして、導電性顔料として塗料や接着剤等に利用できるだけでなく、樹脂への添加、或いは他の導電性材料との併用により、電気工業を初めとする多くの分野で、従来の銀粉体の代替として、用いることができる。また、本発明の製造方法によれば、工業的に有利な方法で、効率よく上記の無電解銀めっき粉体を製造することができるので、産業的な利用価値は極めて大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electroless silver plating powder on which a uniform and dense silver film is formed and a method for producing the same.
[0002]
[Prior art]
In recent years, in the electronics industry and the like, a large amount of fine silver powder is used as a conductive filler blended in a conductive paste or a conductive paint for electromagnetic wave shielding. Despite the fact that silver is a precious metal and is expensive, it is used for such industrial use because of its excellent electrical conductivity and environmental resistance. That is, nickel and iron are inexpensive but have poor electrical conductivity, and Cu is excellent in electrical conductivity. However, when the surface is oxidized, the electrical conductivity is lowered.
[0003]
Conventionally, as the electroless silver plating method, after performing electroless copper plating, electroless silver plating is performed, and a silver film is formed by a substitution reaction between copper and silver. However, the silver-plated product obtained by the conventional substitution reaction is a copper-silver double-layered film with copper as a lower layer, and contains a large amount of copper. As a result, due to mutual diffusion between the lower layer copper film and the surface layer silver, the original physical properties of the silver plating deteriorated, and it was difficult to obtain a good silver plated product.
[0004]
Accordingly, various electroless plating methods for applying silver plating to the powder have been proposed. For example, electroless plating is performed by applying ultrasonic vibration of a specific frequency or higher to metal powder (Japanese Patent Laid-Open No. 1-225778), electroless plating with a silver plating solution containing a silver complex ion, a reducing agent and a stabilizer. A method of performing electroless plating by continuously adding hydrazine hydrate while keeping the pH of the plating bath at a specific value at room temperature (Japanese Patent Laid-Open No. 2-173272). No. 20486), a method in which the surface of a spherical phenol resin powder is activated with an aqueous solution containing hydrochloric acid and chloride, followed by electroless plating (Japanese Patent Laid-Open No. 1-225776), comprising silver nitrate, polyethylene polyamine and water A method of electroless plating using a plating solution having a specific composition (JP-A-1-201485) has been proposed.
[0005]
[Problems to be solved by the invention]
However, the silver film deposited by either method is not only difficult to obtain a dense and good adhesive film, but depending on the plating method, there is a problem that the plating efficiency and the economical efficiency are poor.
[0006]
Accordingly, an object of the present invention is to provide an electroless silver plating powder excellent in conductivity and a method for producing the same, in which a uniform and dense silver film is formed on the powder surface.
[0007]
[Means for Solving the Problems]
In such a situation, the present inventors have intensively studied, and as a result, if a silver film is formed on the surface of the copper-coated particles having the nickel plating film underlayer by an electroless plating method, a uniform and dense silver film is obtained. The present invention has been completed by finding that the film has excellent conductivity even though the silver film thickness is thin.
[0008]
That is, the present invention is based on copper-coated inorganic or organic particles having a nickel plating film underlayer, and the copper content is 15 wt% or less with respect to silver in the electroless plating powder. An electroless silver-plated powder obtained by forming a silver film on the surface of the base material by an electroless plating method in which the copper plating layer is dissolved and disappeared by a substitution reaction of silver and silver and a silver film is formed. It is to provide.
[0009]
The present invention also provides a first step of forming a nickel film by electroless nickel plating inorganic or organic particles, a second step of forming a copper film by electroless copper plating of the nickel-coated particles, the copper coating A third step of forming a silver film by replacing the copper film with silver until the content of copper with respect to silver in the electroless plating powder is 15 wt% or less by electroless silver plating reaction of the particles The present invention provides a method for producing an electroless silver-plated powder, which is characterized by sequentially applying.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the electroless silver plating powder of the present invention, the copper-coated inorganic or organic particles having a nickel plating film underlayer as a base material are usually used as an inorganic or organic powder as a core as described later. Electroless nickel plating is performed by a method, and then electroless copper plating is performed by a conventional method, and a double ground treatment is performed.
[0011]
The electroless silver plating reaction performed on the surface of the base material subjected to the double ground treatment is the dissolution of the copper plating layer by the substitution reaction of copper and silver. A plating powder having a two-layer structure of a nickel film and a surface silver film can be obtained. Here, substantially means that some copper or copper film remaining unreacted at the end of the electroless silver plating reaction is acceptable. In this case, the content of copper with respect to silver in the electroless silver plating powder is usually 15% by weight or less, preferably 5% by weight or less. Further, the thickness of the nickel film of the underlayer is not particularly limited, but is preferably 0.03 μm to 0.5 μm. If it is less than 0.03 μm, it is practically difficult to completely cover the surface of the substrate with a nickel film. On the other hand, if it exceeds 0.5 μm, it is uneconomical because the specific gravity of the plating powder increases unnecessarily. . Further, the thickness of the silver film is not particularly limited, but is preferably 0.03 μm to 0.5 μm for the same reason as described above.
[0012]
In addition, as described above, the electroless silver plating powder according to the present invention is a silver plating powder in which a homogeneous silver film is formed, and there is no agglomerated powder coated to form a blitch. Individually independent dispersions. This can be easily confirmed with an electron microscope. In addition, the size of the electroless silver plating powder depends on the size of the core material as a particle, and is designed according to its use, so it is not particularly limited. The shape is not particularly limited.
[0013]
Inorganic or organic particles of the core material, the inorganic particles include metal powders, metal or non-metal oxides (including inclusions), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates Examples thereof include salts, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides, and carbon. Organic particles include natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, polyester and other synthetic plastic resins, alkyd resins, phenol resins, A synthetic thermosetting resin such as urea resin, melamine resin, xylene resin, silicone resin or diaryl phthalate resin can be exemplified. These inorganic and organic particles may be a single type or a mixture of two or more types. This mixture includes both a chemically inhomogeneous composition and a mixture as a core material.
[0014]
The particle diameter and shape of the inorganic or organic particles of the core material are not particularly limited, but the particle diameter is preferably in the range of 1 μm to several mm, and the shape is spherical, plate-shaped, rod-shaped, needle-shaped, hollow-shaped. Or any shape of fibrous form may be sufficient. Accordingly, the appearance may be either powdery or granular. The material of the core material can be used without particular limitation as long as it is a water-insoluble or poorly water-soluble material capable of electroless plating. The core material desirably has a chemically uniform composition, but may have a non-uniform chemical composition.
[0015]
The electroless silver-plated powder of the present invention has a small volume specific electrical resistance value even though the film thickness of silver is thin because a dense single layer of silver on the particle surface is formed, and is usually 4.5 × 10 −. It is less than 3 Ωcm, preferably 3 × 10 −3 Ωcm or less. Here, the volume specific electric resistance value means that a plastic cylinder with an inner diameter of 1 cm is inserted into a protrusion on a copper disk having a cylindrical protrusion electrode with a diameter of 1 cm, which is gold-plated on the upper surface of the protrusion. Insert a 1g sample, and then insert a copper cylindrical electrode with gold plating on the end with a diameter of less than 1cm, and measure the electrical resistance between the electrodes under a load of 5kg from the top. The electric resistance value is obtained by the following equation (1).
Volume specific electrical resistance (Ωcm)
= Measurement of electrical resistance x 0.7856 (cm 2 ) / Distance between electrodes (cm) (1)
[0016]
Next, a method for producing the electroless silver plating powder will be described. In the case where the core particles are hydrophobic, the production method includes a pre-process for hydrophilic treatment and catalyst treatment, a first step for electroless nickel plating, a second step for electroless copper plating, And a third step of electrolytic silver plating. Hereinafter, each step will be described.
[0017]
(Hydrophilic and catalytic treatment process)
As a pretreatment step from the first step to the third step described later, when the inorganic or organic particles as the core material are hydrophobic, they are hydrophilized and subjected to a catalytic treatment.
[0018]
Examples of the hydrophilic treatment method include an etching method using chromic acid-sulfuric acid or an organic solvent-alkali treatment when the core material is organic, and an immersion cleaning method using an alkali or a surfactant when the core material is inorganic. Examples of the method for the catalytic treatment include known methods such as sensitization with stannous salt and palladium salt, and activation treatment.
[0019]
For the core material itself having a precious metal ion scavenging ability or a surface treatment having a scavenging ability, the catalyst may be replaced by a precious metal scavenging treatment. Having noble metal scavenging ability means that a noble metal ion can be captured as a chelate or salt, for example, an amino group, imino group, amide group, imide group, cyano group, hydroxyl group, nitrile group, carboxyl group or It has 2 or more types on the surface of the core material. Examples of the substance in which the core material itself has the ability to trap noble metal ions include organic substances such as an amino resin, a nitrile resin, or an epoxy resin cured with an amino curing agent. As the amino resin, for example, a condensation reaction between an amino compound such as urea resin, thiourea resin, melamine resin, benzoguanamine resin, acetoguanamine resin, dicyandiamide resin, and aniline and an aldehyde compound such as formamide, paraformamide, acetaldehyde, and glyoxal Can be obtained.
[0020]
Moreover, what does not have a precious metal ion capture | acquisition capability should just be hardened | cured with an amino group substituted organosilane coupling agent or an amino-type hardening | curing agent, and is surface-treated with an epoxy resin. Next, a core material having the ability to trap noble metal ions is dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate to trap the noble metal. In this case, the solution concentration is preferably 0.05 to 0.5 g / L. In addition, it is preferable to prepare an aqueous slurry in which the core material is uniformly dispersed by performing a deagglomeration treatment during the catalyst treatment.
[0021]
<First step: Electroless nickel plating>
The powder that has been subjected to the catalyst treatment as described above is then subjected to a base layer coating treatment with an electroless nickel plating solution. When performing electroless nickel plating, it is preferable to prepare an aqueous slurry in a dispersed state close to primary particles from which agglomeration of the core material has been removed as much as possible. If the dispersion is insufficient and the agglomerated core material is plated, the untreated surface is likely to be exposed in use.
[0022]
Since the dispersion method varies depending on the physical properties of the core material, a desired means may be taken according to the physical properties of the core material as appropriate. For example, a high-speed stirring from normal stirring, a shear dispersion device such as a colloid mill or a homogenizer may be used. . When dispersing the core material in water, a dispersant such as a surfactant may be used.
[0023]
For this dispersion treatment, it is preferable to add an aqueous solution of a complexing agent to the aqueous slurry as a dispersion medium. Examples of the complexing agent include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or an alkali metal salt or ammonium salt thereof, an amino acid such as glycine or an alkali metal salt thereof, ethylenediamine, alkylamine, etc. Examples thereof include compounds having a complexing action on nickel, such as amine acid or alkali metal salt thereof, EDTA, pyrophosphoric acid or alkali metal salt thereof, and other ammonium salts. The complexing agent is usually added in the form of an aqueous solution, and its concentration is in the range of 0.01 to 1 mol / L, preferably 0.2 to 0.5 mol / L. A preferable pH value of the aqueous slurry at this stage is in the range of 4.5 to 10 although it depends on the physical properties of the inorganic or organic powder as the core material.
[0024]
The aqueous slurry concentration is not particularly limited, but is usually 1 to 500 g / L, preferably 5 to 300 g / L. If the slurry concentration is too low, the plating concentration decreases and the processing capacity increases, which is not economically preferable. On the other hand, if the slurry concentration is too high, the dispersibility of the core material is deteriorated.
[0025]
The aqueous slurry that has been sufficiently deagglomerated is preferably prepared in advance at a temperature at which plating can be performed, in many cases 55 ° C. or higher, in order to effectively perform the plating treatment.
[0026]
Electroless nickel plating reaction is carried out by adding each aqueous solution of nickel salt, reducing agent, and pH adjuster individually and simultaneously as an electroless plating solution to the aqueous slurry prepared as described above. . In view of simplification of equipment and economy, it is preferable to prepare a pH adjuster and a reducing agent in advance.
[0027]
Any nickel salt may be used as long as it dissolves in water to form nickel ions. Examples thereof include nickel sulfate, nickel chloride, nickel acetate, and nickel hypophosphite. Examples of the reducing agent include hypophosphorous acid, sodium hypophosphite, nickel hypophosphite, and the like. Examples of the pH adjuster include alkali agents such as ammonia, amine compounds, and caustic. The concentration of the nickel salt is not particularly limited, but it is preferably performed at a concentration of 0.7 mol / L or more near the solubility limit in water in consideration of subsequent filtration operation and waste liquid treatment. The concentration of the reducing agent is preferably 1.4 mol / L or more for the same reason.
[0028]
In the electroless nickel plating reaction, the plating reaction starts quickly by adding a plating solution to the aqueous slurry, but the nickel film formed can be controlled to a desired film thickness by adjusting the addition amount. After completion of the addition of the electroless nickel plating solution, the reaction is completed by continuing stirring while maintaining the solution temperature for a while after the generation of hydrogen gas is completely not observed. After the completion of the plating reaction, it is filtered and separated by a conventional method, repulped and washed well, and then dried to obtain a powder having a uniform nickel coating underlayer formed on the substrate.
[0029]
<Second step: Electroless copper plating treatment>
The second step is a step in which the nickel-coated powder obtained in the first step is subjected to electroless copper plating to form copper that performs a substitution reaction with silver described later as a uniform layer on the powder surface. .
[0030]
In performing the electroless copper plating treatment, it is preferable to prepare an aqueous slurry in a dispersed state close to the primary particles from which the agglomerate of the core material is removed as much as possible, as in the first step. A dispersant such as may be used if desired.
[0031]
In carrying out the dispersion treatment, it is preferable to add an aqueous solution of a complexing agent to the aqueous slurry as a dispersion medium. Examples of the complexing agent include EDTA, ethylenediamine, Rochelle salt, and alkali metal salts thereof. The concentration of the complexing agent is usually 0.02 to 1 mol / L, preferably 0.05 to 0.5 mol / L. The concentration of the aqueous slurry is not particularly limited, but may be adjusted in the range of 10 to 500 g / L. It is preferable that the aqueous slurry subjected to the deagglomeration treatment is previously set to a temperature range of 20 to 70 ° C. so that the electroless copper plating reaction is effectively performed.
[0032]
An electroless plating reaction is performed by separately adding each aqueous solution of a copper salt, a reducing agent, and a pH adjusting agent separately and simultaneously to the aqueous slurry thus prepared. As a copper salt, what melt | dissolves in water and turns into a copper ion may be sufficient, for example, a copper sulfate, a copper halide, copper nitrate, copper acetate etc. are mentioned. Examples of the reducing agent include formalin, paraformaldehyde, glyoxylic acid and the like. Examples of the pH adjuster include sodium hydroxide and ammonia.
[0033]
The concentration of the copper salt is not particularly limited, but is preferably 0.6 mol / L or more near the solubility limit in water from the economical viewpoint. The concentration of the reducing agent is preferably 2.4 mol / L or more for the same reason. In addition, it is preferable to prepare a copper salt, a reducing agent, and a pH adjuster so that it may become a ratio of 3-5 times as much reducing agent and 6-11 times as many pH adjusting agents with respect to 1 mol of copper salts. After the completion of the plating reaction, it is filtered and separated by a conventional method, further repulped and washed well, and then dried to obtain a powder in which a copper film is formed on the upper layer of a uniform nickel film.
[0034]
<Third step: electroless silver plating>
The third step is a step of replacing the copper film formed in the second process with silver to form a dense and uniform silver plating film having a thickness commensurate with the amount of coated copper.
[0035]
When performing electroless silver plating, it is preferable to prepare an aqueous slurry in a dispersed state close to primary particles from which the agglomerate of the core material has been removed as much as possible by performing sufficient dispersion treatment in the same manner as in the first step and the second step. A dispersant such as a surfactant may be used as desired.
[0036]
In carrying out this dispersion treatment, it is preferable to add an aqueous solution of a complexing agent to the aqueous slurry as a dispersion medium. Examples of complexing agents include ammonium salts, amine compounds, tetraethylenepentamine, triethylenetetramine, ethylenediamine, triethanolamine, EDTA, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, hydroxyethyliminediacetic acid. , Dihydroxyethylglycine, hydrazine, monohydrazine hydrochloride, dihydrazine sulfate, acetohydrazine and alkali metal salts thereof. The concentration of the complexing agent is usually 0.02 to 1 mol / L, preferably 0.05 to 0.5 mol / L. Moreover, it is preferable that the aqueous slurry subjected to the deagglomeration treatment is previously set to a temperature range of 20 to 60 ° C. so that the electroless silver plating reaction is effectively performed.
[0037]
In the electroless silver plating method, a predetermined amount of silver salt is added to the aqueous slurry prepared above, and a silver film is formed by a substitution reaction of copper and silver. The pH value of the reaction system is preferably in the range of 8 to 14. Therefore, if necessary, an alkaline agent such as ammonia, amine compound and caustic alkali may be added to the reaction system as a pH adjuster.
[0038]
In this electroless plating reaction, it is preferable that the addition amount of the silver salt is 2 times the mole of the copper film. In this reaction, since the silver deposition efficiency is almost 100%, when it is less than 2 mole times, a large amount of unreacted copper remains, and the lower copper film and the surface layer as time passes after silver plating. Due to interdiffusion with silver, the original physical properties of silver plating tend to deteriorate. On the other hand, when it exceeds 2 mole times, unreacted silver ions remain in the plating solution, which is not preferable. After the completion of the plating reaction, the silver plating powder can be obtained by filtration separation and drying by a conventional method.
[0039]
Such a silver plating powder is obtained by a substitution reaction between copper and silver, and a nickel coating is substantially used as a base layer, and the upper layer thereof is uniformly coated with silver.
[0040]
The electroless silver plating powder of the present invention is based on copper-coated inorganic or organic particles having a nickel plating film underlayer, and a silver film is formed on the surface of the substrate by an electroless plating method. This is different from that obtained by a substitution silver plating reaction in which a copper plating film is formed on a conventional substrate and then electroless silver plating is applied. In other words, the conventional electroless silver plating reaction contains a large amount of copper, and after silver plating, the original physical properties of the silver plating deteriorate due to interdiffusion between the lower layer copper film and the surface layer silver over time. In contrast, the electroless silver plating powder of the present invention has a nickel-silver two-layer structure that does not substantially contain copper, so that the mutual diffusion of copper and silver is difficult. The silver plating is uniformly and densely applied, and the original film physical properties of the silver plating can be obtained. Further, according to the production method of the present invention, the deposition efficiency of silver known by the silver mirror reaction is 50% to 60%, whereas it is almost 100%, so that the productivity is high and practical.
[0041]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
Examples 1-7
(Preprocessing)
A powder sample having physical properties shown in Table 1 was charged in 1 L of an aminosilane coupling agent (S-300; manufactured by Chisso Corporation) having a concentration of 0.5 to 1.0 g / L, dispersed for about 10 minutes, and then filtered and separated. , Dried. Next, the treated powder was charged into 1 L of an acidic acidic aqueous solution containing 0.1 g / L of palladium chloride salt, stirred for about 5 minutes, filtered, repulped and filtered again.
[0042]
[Table 1]
Figure 0003832938
[0043]
(Electroless nickel plating process)
Each pretreated powder sample was charged in a plating bath of an aqueous complexing agent solution having the composition shown in Table 2 and subjected to deagglomeration treatment, and then heated to 70 ° C. to prepare an aqueous slurry. To the obtained aqueous slurry, 3 g / L of sodium hypophosphite was added and dissolved under stirring. Next, when the electroless nickel plating solution having the composition shown in Table 3 is separated into a solution and b solution, and the generation of hydrogen gas by reduction of palladium ions is confirmed, the solution a and solution b are simultaneously put into a plating tank by a metering pump. I sent it. The amount of plating solution added and the rate of addition are shown in Table 4. After adding a predetermined amount of liquid a and liquid b, the mixture was kept at 70 ° C. until generation of hydrogen gas ceased, and an electroless nickel plating reaction was performed with stirring. Next, filtration, washing with water, and drying were performed to obtain powders subjected to electroless nickel plating.
[0044]
[Table 2]
Figure 0003832938
[0045]
[Table 3]
Figure 0003832938
[0046]
[Table 4]
Figure 0003832938
[0047]
(Electroless copper plating process)
50 g of the electroless nickel-plated powder was charged in 1 L of an aqueous hydrochloric acid solution containing 0.1 g / L of palladium chloride, stirred for 5 minutes, filtered, washed and separated by filtration.
Next, this powder was charged in advance into an aqueous solution containing EDTA-Na 50 g / L, and further sodium hypophosphite 1 g / L was charged. After deagglomeration treatment, the slurry was maintained at 50 ° C. to prepare an aqueous slurry. Next, an electroless copper plating solution having the composition shown in Table 5 was prepared, added to the aqueous slurry under the conditions for adding the plating solution shown in Table 5, and an electroless copper plating reaction was performed until generation of hydrogen gas ceased. After completion of the electroless copper plating reaction, filtration, washing and filtration were separated.
[0048]
[Table 5]
Figure 0003832938
[0049]
(Electroless silver plating process)
The above-mentioned nickel-copper-plated powder was added to an aqueous solution having a concentration of EDTA-Na 50 g / L adjusted to pH 11, and after deagglomeration treatment, 158 g / L of silver nitrate was shown in Table 6. Added under the addition conditions. After the addition of silver nitrate, a substitution silver plating reaction was performed with stirring for 10 minutes. Subsequently, after filtration, washing with water, separation by filtration, and drying, white silver-plated powders were obtained.
[0050]
[Table 6]
Figure 0003832938
[0051]
Comparative Example 1
A dark black plating powder according to the same method as in Example 2 except that silica powder (true specific gravity 2.50, particle size 5.4 μm) was used as the powder and electroless copper plating was applied twice as much. Got.
[0052]
Comparative Example 2
10 g of alumina powder (true specific gravity 2.40, particle size 3.0 μm) was charged into 5 L of an aqueous solution containing 20 g / L silver nitrate and 30 mL / L 28% ammonia water, and after deagglomeration treatment, Rochelle salt 600 g / L Was silver plated for 1 hour. Next, filtration, washing, filtration separation, and drying were performed to obtain a grayish white silver-plated powder with a slightly rough surface.
[0053]
Comparative Example 3
10 g of glass bead powder (true specific gravity 2.50, particle size 30 μm) was charged in 5 L of an aqueous solution containing 20 g / L of silver nitrate and 30 mL / L of 28% ammonia water, and after deagglomeration treatment, 600 g / L of Rochelle salt was added. Preparation and silver plating were performed for 1 hour. Next, filtration, washing, filtration separation, and drying were performed to obtain a grayish white silver-plated powder with a slightly rough surface.
[0054]
Table 7 shows the effective utilization rate of silver during electroless silver plating in Examples 1 to 7 and Comparative Examples 1 to 3 (ratio of silver in the plating solution used and silver deposited as a silver plating film). .
[0055]
[Table 7]
Figure 0003832938
[0056]
<Evaluation of silver plating characteristics>
-Composition of metal film After adding the metal film powder obtained in Examples 1 to 7 and Comparative Examples 1 to 3 to a silver nitrate solution and dissolving the metal film, the composition and true specific gravity of the metal film were measured, The results are shown in Table 8.
[0057]
[Table 8]
Figure 0003832938
[0058]
(Evaluation of electrical resistance characteristics)
A plastic cylinder with an inner diameter of 1 cm is inserted into a protrusion on a copper disk provided with a cylindrical protrusion electrode having a diameter of 1 cm and plated with gold on the upper surface of the protrusion. Examples 1 to 7 and Comparative Example 1 are inserted into this cylinder. Put 1g of the metal film sample obtained in ~ 3, and then insert a copper cylinder electrode with gold plating on the end with a diameter of less than 1cm and put a 5kg load from the top. Then, the electrical resistance between the electrodes was measured, and the volume specific electrical resistance value was determined by the above equation (1). The results and film thickness are shown in Table 9.
[0059]
[Table 9]
Figure 0003832938
[0060]
【The invention's effect】
The electroless silver plating powder of the present invention substitutes a part of the silver film with an inexpensive nickel film to provide conductivity. Therefore, even if the silver plating layer is thin, it is inferior to the single-layer silver plating powder. Not only can it be used for paints, adhesives, etc. as a conductive pigment by taking advantage of the characteristics such as excellent electrical conductivity and the light specific gravity of the plating powder, but it can also be added to resins or with other conductive materials. In combination, it can be used as an alternative to conventional silver powder in many fields including the electric industry. In addition, according to the production method of the present invention, the above electroless silver plating powder can be efficiently produced by an industrially advantageous method, and thus the industrial utility value is extremely large.

Claims (5)

ニッケルめっき皮膜下地層を有する銅被覆された無機質又は有機質の粒子を基材とし、無電解めっき粉体中の銀に対する銅の含有量が15重量%以下となるまで、銅と銀の置換反応により銅めっき層を溶解消失させ、銀皮膜を形成させる無電解めっき法により、該基材の表面に銀皮膜を形成させてなることを特徴とする無電解銀めっき粉体。By using copper-coated inorganic or organic particles having a nickel plating film underlayer as a base material, until the copper content with respect to silver in the electroless plating powder is 15% by weight or less, by a substitution reaction of copper and silver An electroless silver-plated powder obtained by forming a silver film on the surface of the substrate by an electroless plating method in which a copper plating layer is dissolved and disappeared to form a silver film . 体積固有電気抵抗値が4.5×10-3Ωcm未満である請求項1記載の無電解銀めっき粉体。The electroless silver-plated powder according to claim 1, having a volume specific electric resistance value of less than 4.5 x 10 -3 Ωcm. 無機質又は有機質の粒子を無電解ニッケルめっきしてニッケル皮膜を形成させる第一工程、該ニッケル被覆粒子を無電解銅めっきして銅皮膜を形成させる第二工程、該銅被覆粒子を無電解銀めっき反応により、無電解めっき粉体中の銀に対する銅の含有量が15重量%以下となるまで、該銅皮膜を銀により置換して、銀の皮膜を形成させる第三工程を順次施すことを特徴とする無電解銀めっき粉体の製造方法。A first step of forming a nickel film by electroless nickel plating of inorganic or organic particles, a second step of forming a copper film by electroless copper plating of the nickel-coated particles, and electroless silver plating of the copper-coated particles The copper film is replaced with silver until the content of copper with respect to silver in the electroless plating powder is 15 wt% or less by the reaction, and the third step of forming a silver film is sequentially performed. A method for producing an electroless silver plating powder. 銀の皮膜厚さは、銅の皮膜厚さで調整する請求項3記載の無電解銀めっき粉体の製造方法。The method for producing an electroless silver-plated powder according to claim 3, wherein the silver film thickness is adjusted by the copper film thickness. 前記第三工程の無電解銀めっき反応は、前記銅被覆粒子が分散された水性スラリーへの銀塩の添加量が、銅皮膜量に対し、2倍モルで行うものである請求項3又は4記載の無電解銀めっき粉体の製造方法。 The electroless silver plating reaction in the third step is carried out in such a manner that the amount of silver salt added to the aqueous slurry in which the copper-coated particles are dispersed is twice as much as the amount of the copper film. The manufacturing method of electroless silver plating powder of description.
JP23027997A 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same Expired - Fee Related JP3832938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23027997A JP3832938B2 (en) 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23027997A JP3832938B2 (en) 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1161424A JPH1161424A (en) 1999-03-05
JP3832938B2 true JP3832938B2 (en) 2006-10-11

Family

ID=16905323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23027997A Expired - Fee Related JP3832938B2 (en) 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3832938B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864195B2 (en) * 2000-08-30 2012-02-01 三井金属鉱業株式会社 Coated copper powder
JP4162884B2 (en) 2001-11-20 2008-10-08 信越化学工業株式会社 Corrosion-resistant rare earth magnet
JP4662699B2 (en) * 2003-07-03 2011-03-30 大阪府 Polymer fine particles having metal film and method for producing the same
JP4728665B2 (en) * 2004-07-15 2011-07-20 積水化学工業株式会社 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4637559B2 (en) * 2004-12-14 2011-02-23 エスケー化研株式会社 Method for producing colored particles
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process
JP2007084873A (en) * 2005-09-21 2007-04-05 Bokuno Horiguchi Manufacturing method of conductive electroless plating powder
JP4849930B2 (en) * 2006-03-28 2012-01-11 日本化学工業株式会社 Conductive electroless plating powder and method for producing the same
DE102006031778A1 (en) * 2006-07-10 2008-01-24 Bartelt, Gunter, Dr. Coating polyolefin powder with silver for use in medicinal and hygienic applications, suspends powder in liquid containing silver salt, reductant, nitrogen compound and additive
CN101836264B (en) 2007-10-24 2012-07-18 积水化学工业株式会社 Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP2011047027A (en) * 2009-08-28 2011-03-10 Mitsui Chemicals Inc Functional grain and method for producing the same using plasma treatment
KR20130057459A (en) 2010-08-20 2013-05-31 미쓰비시 마테리알 가부시키가이샤 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP6239290B2 (en) * 2013-07-11 2017-11-29 三菱重工業株式会社 Radioactive substance storage container and method for manufacturing radioactive substance storage container
JP7222228B2 (en) * 2018-11-29 2023-02-15 味の素株式会社 Substrate manufacturing method
CN115007855B (en) * 2022-06-01 2024-01-02 闽都创新实验室 Silver-coated nickel aluminum powder compound and preparation method and application thereof
CN114700489B (en) * 2022-06-07 2022-08-12 天津德恒永裕金属表面处理有限公司 Preparation process of silver-coated aluminum powder and silver-coated aluminum powder

Also Published As

Publication number Publication date
JPH1161424A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JP3696429B2 (en) Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
JP5512306B2 (en) Method for producing conductive particles
JPWO2008032839A1 (en) Metal layer-coated substrate and method for producing the same
KR20070039882A (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
JP5941328B2 (en) Conductive particles and conductive material containing the same
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JP4849930B2 (en) Conductive electroless plating powder and method for producing the same
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2003034879A (en) Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP5695768B2 (en) Conductive powder and conductive material including the same
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP4261973B2 (en) Method for producing conductive electroless plating powder
JP2602495B2 (en) Manufacturing method of nickel plating material
JPH09171714A (en) Conductive powder
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
JP3028972B2 (en) Aluminum-based electroless plating powder, conductive filler and method for producing the same
JP4247039B2 (en) Method for producing conductive electroless plating powder
KR20090051452A (en) Method for coating whisker powder with silver and siver-coated whisker powder thereby
JPS62107073A (en) Production of noble metal plated material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140728

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees