JPH1161424A - Electroless silver-plated powder and its production - Google Patents

Electroless silver-plated powder and its production

Info

Publication number
JPH1161424A
JPH1161424A JP9230279A JP23027997A JPH1161424A JP H1161424 A JPH1161424 A JP H1161424A JP 9230279 A JP9230279 A JP 9230279A JP 23027997 A JP23027997 A JP 23027997A JP H1161424 A JPH1161424 A JP H1161424A
Authority
JP
Japan
Prior art keywords
silver
plating
electroless
copper
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9230279A
Other languages
Japanese (ja)
Other versions
JP3832938B2 (en
Inventor
Hiroshi Kawakami
浩 川上
Masaaki Oyamada
雅明 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP23027997A priority Critical patent/JP3832938B2/en
Publication of JPH1161424A publication Critical patent/JPH1161424A/en
Application granted granted Critical
Publication of JP3832938B2 publication Critical patent/JP3832938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce electroless silver-plated powder in which a uniform and dense silver coating film is formed on the surface of powder and excellent in electric conductivity and to provide a method for producing the same. SOLUTION: This electroless silver-plated powder is the one in which copper- coated inorganic or organic grains have a nickel plating coating base layer as a base material, and silver coating film is formed on the surface of the base material by an electroless plating method. This powder is produced by successively executing a primary stage in which the inorganic or organic grains are applied with electroless nickel plating, a secondary stage in which the nickel plating-coated grains are applied with copper plating and a third stage in which the copper plating-coated grains are applied with silver plating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、均一で緻密な銀皮
膜が形成された無電解銀めっき粉体およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless silver-plated powder having a uniform and dense silver film formed thereon and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子工業等では、導電性ペースト
あるいは電磁波シールド用導電塗料に配合される導電性
フィラーとして、銀の微粉末が多量に用いられている。
銀は貴金属で高価であるにもかかわらず、このような工
業用として利用されるのは、その優れた電気伝導性と耐
環境性による。すなわち、ニッケルや鉄は安価であるが
電気導電性が劣り、Cuは電気導電性に優れるが、表面
が酸化されると電気導電性が低下するためである。
2. Description of the Related Art In recent years, in the electronic industry and the like, a large amount of fine silver powder has been used as a conductive filler mixed in a conductive paste or a conductive paint for shielding electromagnetic waves.
Although silver is a noble metal and expensive, it is used for such industrial applications because of its excellent electrical conductivity and environmental resistance. That is, nickel and iron are inexpensive but have poor electrical conductivity, and Cu has excellent electrical conductivity. However, when the surface is oxidized, the electrical conductivity decreases.

【0003】従来、無電解銀めっき方法は、無電解銅め
っきを施した後、次いで無電解銀めっきを施して、銅と
銀の置換反応により銀皮膜を形成させる方法が行われて
きた。しかしながら、従来の置換反応により得られる銀
めっき品は、銅を下層とした銅と銀の2重の皮膜を形成
させたものであり、多量の銅を含有するため、銀めっき
後、時間の経過に伴い下層の銅皮膜と表層の銀との相互
拡散により、銀めっき本来の諸物性が劣化し良好な銀め
っき品が得られにくいという問題があった。
Conventionally, the electroless silver plating method has been a method in which an electroless copper plating is applied, followed by an electroless silver plating, and a silver film is formed by a substitution reaction between copper and silver. However, the silver-plated product obtained by the conventional substitution reaction has a double layer of copper and silver with copper as a lower layer, and contains a large amount of copper. Accordingly, there has been a problem that due to the interdiffusion between the lower copper film and the surface silver, the physical properties inherent in silver plating are deteriorated and it is difficult to obtain a good silver plated product.

【0004】そこで、粉体に銀めっきを施す各種の無電
解めっき方法が提案されている。例えば、金属粉末に特
定周波数以上の超音波振動を与えて無電解めっきを施す
方法(特開平1−225778号公報)、銀錯イオン、還元剤
及び安定剤を含有する銀めっき液で無電解めっきする方
法(特開平2−173272号公報)、雲母粉末を、室温でめ
っき浴のpHを特定値に保ちながら抱水ヒドラジンを連
続的に添加して無電解めっきを施す方法(特開昭63−20
486 号公報)、球状フェノール樹脂の粉末を塩酸及び塩
化物を含有する水溶液で表面を活性化した後、無電解め
っきする方法(特開平1−225776号公報)、硝酸銀、ポ
リエチレンポリアミン及び水からなる特定組成のめっき
液を用いて無電解めっきする方法(特開平1−201485号
公報)等が提案されている。
Therefore, various electroless plating methods for applying silver plating to powder have been proposed. For example, a method of applying an ultrasonic vibration to a metal powder at a specific frequency or more to perform electroless plating (JP-A-1-225778), an electroless plating with a silver plating solution containing silver complex ions, a reducing agent and a stabilizer. (Japanese Unexamined Patent Publication (Kokai) No. 2-173272), a method in which hydrazine hydrate is continuously added to mica powder at room temperature while maintaining the pH of a plating bath at a specific value, and electroless plating is performed (Japanese Unexamined Patent Publication No. 63-173272). 20
No. 486), a method of activating the surface of a spherical phenol resin powder with an aqueous solution containing hydrochloric acid and chloride and then electrolessly plating (Japanese Patent Application Laid-Open No. 1-225776) a method comprising silver nitrate, polyethylene polyamine and water. A method of electroless plating using a plating solution having a specific composition (JP-A-1-201485) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、いずれ
の方法も析出する銀皮膜も緻密で密着性の良いものが得
られにくいばかりでなく、めっき方法によってはめっき
効率も経済性も悪いという問題がある。
However, in any of the methods, not only is it difficult to obtain a dense silver film having good adhesion, but also the plating efficiency and the economic efficiency are poor depending on the plating method. .

【0006】従って、本発明の目的は、粉体表面に均一
で緻密な銀皮膜を形成した、導電性に優れる無電解銀め
っき粉体及びその製造方法を提供することにある。
Accordingly, an object of the present invention is to provide an electroless silver-plated powder excellent in conductivity, having a uniform and dense silver film formed on the surface of the powder, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者等は鋭意検討を行った結果、ニッケルめっき皮膜
下地層を有する銅被覆された粒子の表面に無電解めっき
法により銀皮膜を形成させれば、均一で緻密な銀皮膜を
形成でき、銀の皮膜厚が薄いにもかかわらず導電性に優
れることを見い出し、本発明を完成するに至った。
Under these circumstances, the present inventors have made intensive studies and as a result, have formed a silver film by electroless plating on the surface of copper-coated particles having a nickel plating film underlayer. Then, it has been found that a uniform and dense silver film can be formed, and that the silver film has a small thickness and excellent conductivity, thereby completing the present invention.

【0008】すなわち、本発明は、ニッケルめっき皮膜
下地層を有する銅被覆された無機質又は有機質の粒子を
基材とし、該基材の表面に無電解めっき法による銀皮膜
を形成してなることを特徴とする無電解銀めっき粉体を
提供するものである。
[0008] That is, the present invention relates to a method of forming a silver film by electroless plating on the surface of a copper-coated inorganic or organic particle having a nickel plating film base layer as a base material. It is intended to provide a characteristic electroless silver plating powder.

【0009】また、本発明は、無機質又は有機質の粒子
を無電解ニッケルめっきしてニッケル皮膜を形成させる
第一工程、該ニッケル被覆粒子を無電解銅めっきして銅
皮膜を形成させる第二工程、該銅被覆粒子を無電解銀め
っきして、銅と銀の置換反応により銀の皮膜を形成させ
る第三工程を順次施すことを特徴とする無電解銀めっき
粉体の製造方法を提供するものである。
Further, the present invention provides a first step of forming a nickel film by electroless nickel plating inorganic or organic particles, a second step of forming a copper film by electroless copper plating the nickel-coated particles, The present invention provides a method for producing an electroless silver plating powder, characterized by sequentially applying a third step of forming a silver film by a substitution reaction between copper and silver by subjecting the copper-coated particles to electroless silver plating. is there.

【0010】[0010]

【発明の実施の形態】本発明の無電解銀めっき粉体にお
いて、基材であるニッケルめっき皮膜下地層を有する銅
被覆された無機質又は有機質の粒子は、後述するように
芯材となる無機質又は有機質の粉体を、常法により無電
解ニッケルめっきを施し、次いで常法により無電解銅め
っきを施したもので、二重の下地処理を施したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the electroless silver plating powder of the present invention, the inorganic or organic particles coated with copper having a nickel plating film base layer as a base material are made of an inorganic or organic material serving as a core material as described later. The organic powder is obtained by applying electroless nickel plating by an ordinary method and then by applying electroless copper plating by an ordinary method, and is subjected to a double base treatment.

【0011】この二重の下地処理を施した基材の表面に
行う無電解銀めっき反応は、銅と銀の置換反応により銅
めっき層を溶解消失させたものであり、これにより、実
質的に下地層のニッケル皮膜と表層の銀皮膜との二層構
造を有するめっき粉体を得ることができる。ここで実質
的にというのは、無電解銀めっき反応終了時に未反応で
残存する若干の銅または銅皮膜は許容される意味であ
る。この場合、無電解銀めっき粉体中の銀に対する銅の
含有量は、通常15重量%以下、好ましくは5重量%以
下である。また、下地層のニッケル皮膜の厚さとして
は、特に制限されないが、0.03μm 〜0.5μm と
するのが好ましい。0.03μm 未満では基材表面をニ
ッケル皮膜で完全に被覆することは実質的に困難であ
り、一方、0.5μm を超えると、いたずらにめっき粉
体の比重が高くなるだけで不経済である。また、銀皮膜
の厚さとしては、特に制限されないが、上記と同様の理
由から、0.03μm 〜0.5μm とするのが好まし
い。
The electroless silver plating reaction performed on the surface of the substrate subjected to the double undercoating treatment dissolves and disappears the copper plating layer by a substitution reaction between copper and silver. It is possible to obtain a plating powder having a two-layer structure of a nickel film as a base layer and a silver film as a surface layer. Here, “substantially” means that some copper or copper film remaining unreacted at the end of the electroless silver plating reaction is acceptable. In this case, the content of copper with respect to silver in the electroless silver plating powder is usually 15% by weight or less, preferably 5% by weight or less. The thickness of the nickel film of the underlayer is not particularly limited, but is preferably 0.03 μm to 0.5 μm. If the thickness is less than 0.03 μm, it is practically difficult to completely cover the surface of the substrate with a nickel film, while if it exceeds 0.5 μm, the specific gravity of the plating powder is unnecessarily increased, which is uneconomical. . The thickness of the silver film is not particularly limited, but is preferably 0.03 to 0.5 μm for the same reason as described above.

【0012】また、本発明に係る無電解銀めっき粉体
は、上記のとおり、均質な銀皮膜が形成された銀めっき
粉体であり、ブリッチを構成して被覆された凝集粉体は
存在せず、実質的に個々の独立分散体である。これは、
電子顕微鏡にて容易に確認することができる。また、無
電解銀めっき粉体の大きさは、粒子としての芯材の大き
さに依存し、その用途によって設計されるため、特に制
限されないが、多くの場合1〜数mmまでの範囲が実用的
であり、その形状は特に制限されない。
Further, as described above, the electroless silver plating powder according to the present invention is a silver plating powder on which a uniform silver film is formed, and there is no agglomerated powder which constitutes a rich coat. And are substantially individual, independent dispersions. this is,
It can be easily confirmed with an electron microscope. In addition, the size of the electroless silver plating powder depends on the size of the core material as particles and is designed according to the application, and is not particularly limited, but in most cases, the range from 1 to several mm is practical. And its shape is not particularly limited.

【0013】芯材の無機質又は有機質の粒子において、
無機質粒子としては、金属粉末、金属又は非金属の酸化
物(含有物も含む)、アルミノ珪酸塩を含む金属珪酸
塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸
塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲ
ン化物又は炭素等を例示することができる。有機質粒子
としては、天然繊維、天然樹脂、ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテ
ン、ポリアミド、ポリアクリル酸エステル、ポリアクリ
ロニトリル、ポリアセタール、アイオノマー、ポリエス
テル等の合成可塑性樹脂、アルキド樹脂、フェノール樹
脂、尿素樹脂、メラミン樹脂、キシレン樹脂、シリコー
ン樹脂又はジアリールフタレート樹脂の如き合成熱硬化
性樹脂を例示することができる。これらの無機質及び有
機質の粒子は、1種単独又は2種以上の混合物であって
もよい。この混合物というのは、化学的に組成が不均質
のもの及び芯材として混合物の双方を含むものである。
[0013] In the inorganic or organic particles of the core material,
Inorganic particles include metal powders, metal or non-metal oxides (including inclusions), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates , Metal sulfides, metal salts, metal halides or carbon. As organic particles, natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, polyester and other synthetic plastic resins, alkyd resins, phenol resins, Synthetic thermosetting resins such as urea resins, melamine resins, xylene resins, silicone resins and diaryl phthalate resins can be exemplified. These inorganic and organic particles may be used alone or as a mixture of two or more. This mixture includes both a mixture having a chemically inhomogeneous composition and a mixture as a core material.

【0014】上記芯材の無機質又は有機質粒子の粒子径
及び形状としては、特に制限されないが、粒子径として
は1μm 〜数mmの範囲が好ましく、形状としては、球
状、板状、棒状、針状、中空状又は繊維状のいずれの形
状であってもよい。従って、外観上は粉末状又は粒状の
いずれであってもよい。芯材の材質は、無電解めっきが
可能な水不溶性または水難溶性のものであれば特に限定
なく用いることができる。また、芯材は化学的に均一な
組成であることが望ましいが、不均一な化学組成を有す
るものであってもよい。
The particle size and shape of the inorganic or organic particles of the core material are not particularly limited, but the particle size is preferably in the range of 1 μm to several mm, and the shape is spherical, plate-like, rod-like or needle-like. , Hollow or fibrous shape. Therefore, it may be powdery or granular in appearance. The material of the core material can be used without any particular limitation as long as it is water-insoluble or hardly water-soluble that can be electrolessly plated. The core material desirably has a chemically uniform composition, but may have a non-uniform chemical composition.

【0015】本発明の無電解銀めっき粉体は粒子表面が
銀の緻密な単一層が形成されているため銀の皮膜厚が薄
いにもかかわらず体積固有電気抵抗値が小さく、通常
4.5×10-3Ωcm未満、好ましくは3×10-3Ωcm以
下である。ここで体積固有電気抵抗値とは、突起上部の
平面に金めっきを施した直径1cmの円柱状の突起電極を
備えた銅製円盤上の突起部に内径1cmのプラスチック円
筒を差し込み、この円筒内に試料1gを入れ、次いで鍔
の付いた直径1cm弱の端部を金めっきした銅製の円柱電
極をプラスチック円筒内に差し込んで、上部より5kgの
荷重を掛けた状態で、電極間の電気抵抗を測定し、下記
(1) 式により電気抵抗値を求めた値である。 体積固有電気抵抗値(Ωcm) =電気抵抗測定値×0.7856(cm2 )/電極間の距離(cm) (1)
The electroless silver-plated powder of the present invention has a small volume specific electric resistance despite the silver film thickness being thin, since the particle surface forms a dense single layer of silver, usually 4.5. It is less than × 10 −3 Ωcm, preferably 3 × 10 −3 Ωcm or less. Here, the volume-specific electric resistance value is defined as a plastic cylinder having an inner diameter of 1 cm inserted into a protrusion on a copper disk provided with a columnar protrusion electrode having a diameter of 1 cm and having a gold plating on the upper surface of the protrusion. Insert 1 g of sample, insert a cylindrical electrode made of copper with a flange with a diameter of less than 1 cm gold-plated into a plastic cylinder, apply a load of 5 kg from above, and measure the electrical resistance between the electrodes And below
This is a value obtained by calculating the electric resistance value by the equation (1). Volume specific electric resistance (Ωcm) = Measured electric resistance × 0.7856 (cm 2 ) / distance between electrodes (cm) (1)

【0016】次に、上記無電解銀めっき粉体の製造方法
について説明する。当該製造方法は、芯材となる粒子が
疎水性の場合、親水化処理し触媒処理を施す前工程、無
電解ニッケルめっき処理を行う第一工程、無電解銅めっ
き処理を行う第二工程及び無電解銀めっき処理する第三
工程とから成る。以下、各工程毎に説明する。
Next, a method for producing the above electroless silver plating powder will be described. In the case where the particles serving as the core material are hydrophobic, the production method includes a pre-process for performing a hydrophilization treatment and a catalyst treatment, a first process for performing electroless nickel plating, a second process for performing electroless copper plating, and And a third step of performing electrolytic silver plating. Hereinafter, each step will be described.

【0017】(親水化及び触媒化処理工程)後述の第一
から第三工程の前処理工程として、芯材である無機質又
は有機質の粒子が疎水性の場合に親水化し、触媒化処理
を施す。
(Hydrophilic and catalyzing treatment step) As a pretreatment step of the first to third steps described later, when the inorganic or organic particles as the core material are hydrophobic, the particles are hydrophilized and catalyzed.

【0018】親水化処理の方法としては、芯材が有機質
の場合は、クロム酸−硫酸、有機溶剤−アルカリ処理に
よるエッチング法があり、無機質の場合は、アルカリ又
は界面活性剤による浸漬洗浄方法等がある。触媒化処理
の方法としては、例えば、第一錫塩、パラジウム塩によ
る増感、活性化処理等の公知の方法が挙げられる。
When the core material is organic, there is an etching method using chromic acid-sulfuric acid or an organic solvent-alkali treatment, and when the core material is inorganic, an immersion cleaning method using an alkali or a surfactant is used. There is. Examples of the method of the catalyzing treatment include known methods such as sensitization with a stannous salt or a palladium salt, activation treatment and the like.

【0019】芯材自体が貴金属イオンの捕捉能を有する
ものや表面処理により捕捉能を持たせたものについて
は、貴金属捕捉処理により、触媒化処理に代えてもよ
い。貴金属の捕捉能を有するとは、貴金属イオンをキレ
ート又は塩として捕捉し得ることを言い、例えばアミノ
基、イミノ基、アミド基、イミド基、シアノ基、水酸
基、ニトリル基、カルボキシル基の1種又は2種以上を
芯材の表面に有するものである。芯材自体が貴金属イオ
ンの捕捉能を有する物質としては、例えば、アミノ系樹
脂、ニトリル系樹脂又はアミノ硬化剤で硬化されたエポ
キシ系樹脂等の有機物が挙げられる。アミノ系樹脂とし
ては、例えば、尿素樹脂、チオ尿素樹脂、メラミン樹
脂、ベンゾグアナミン樹脂、アセトグアナミン樹脂、ジ
シアンジアミド樹脂、アニリン等のアミノ化合物とホル
ムアミド、パラホルムアミド、アセトアルデヒド、グリ
オキザール等のアルデヒド化合物との縮合反応により得
られるもの等が挙げられる。
In the case where the core material itself has the ability to capture noble metal ions or has the ability to capture by surface treatment, the catalytic treatment may be replaced by the noble metal capturing treatment. Having the ability to capture a noble metal means that a noble metal ion can be captured as a chelate or a salt, for example, one of an amino group, an imino group, an amide group, an imide group, a cyano group, a hydroxyl group, a nitrile group, a carboxyl group or It has two or more kinds on the surface of the core material. Examples of the substance having the core material itself capable of capturing noble metal ions include an organic substance such as an amino resin, a nitrile resin, or an epoxy resin cured with an amino curing agent. Examples of the amino resin include, for example, a condensation reaction of an amino compound such as urea resin, thiourea resin, melamine resin, benzoguanamine resin, acetoguanamine resin, dicyandiamide resin, aniline and an aldehyde compound such as formamide, paraformamide, acetaldehyde, and glyoxal. And the like.

【0020】また、貴金属イオンの捕捉能を持たないも
のは、アミノ基置換オルガノシランカップリング剤又は
アミノ系硬化剤により硬化してエポキシ樹脂で表面処理
すればよい。次いで、貴金属イオンの捕捉能を有する芯
材を塩化パラジウム又は硝酸銀のような貴金属塩の希薄
な酸性水溶液に分散させ、貴金属を捕捉させる。この場
合、溶液濃度は0.05〜0.5g/Lの範囲で行うの
がよい。また、触媒化処理の際、脱アグロメレート処理
を施し、均一に芯材を分散させた水性スラリーを調製す
ることが好ましい。
Those having no noble metal ion-capturing ability may be cured by an amino-substituted organosilane coupling agent or an amino-based curing agent and surface-treated with an epoxy resin. Next, the core material having a noble metal ion capturing ability is dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate to capture the noble metal. In this case, the solution concentration is preferably in the range of 0.05 to 0.5 g / L. In addition, at the time of the catalyzing treatment, it is preferable to perform a deagglomeration treatment to prepare an aqueous slurry in which a core material is uniformly dispersed.

【0021】〈第一工程:無電解ニッケルめっき処理〉
上記のような触媒化処理を行った粉体は、次いで無電解
ニッケルめっき液により下地層被覆処理を行う。無電解
ニッケルめっき処理をする際、充分に分散処理を施し、
芯材のアグロメレートを出来るだけ除去した一次粒子に
近い分散状態の水性スラリーを調製することが好まし
い。分散が不十分で、凝集した芯材にめっきが施される
と、使用に当たり、未処理面が露出し易くなる。
<First step: Electroless nickel plating>
The powder that has been subjected to the above catalyzing treatment is then subjected to a base layer coating treatment with an electroless nickel plating solution. When performing electroless nickel plating, perform sufficient dispersion treatment,
It is preferable to prepare an aqueous slurry in a dispersed state close to primary particles from which agglomerates of the core material have been removed as much as possible. If the dispersion is insufficient and the agglomerated core material is plated, the untreated surface is likely to be exposed during use.

【0022】分散方法は、芯材の物性により異なるの
で、適宜芯材の物性に併せて所望の手段をとればよく、
例えば、通常撹拌からの高速撹拌、コロイドミル又はホ
モジナイザー等のせん断分散装置を用いればよい。な
お、芯材を水に分散させるに際し、界面活性剤等の分散
剤を用いてもよい。
The dispersing method varies depending on the physical properties of the core material.
For example, a high-speed stirring from a normal stirring, or a shear dispersion device such as a colloid mill or a homogenizer may be used. In dispersing the core material in water, a dispersant such as a surfactant may be used.

【0023】また、この分散処理には、錯化剤の水溶液
を分散媒として、水性スラリーに添加しておくことが好
ましい。錯化剤の種類としては、例えば、クエン酸、ヒ
ドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸又
はそのアルカリ金属塩やアンモニウム塩、グリシン等の
アミノ酸又はそのアルカリ金属塩、エチレンジアミン、
アルキルアミン等のアミン酸又はそのアルカリ金属塩、
EDTA、ピロリン酸又はそのアルカリ金属塩、その他
のアンモニウム塩等、ニッケルに対して錯化作用のある
化合物が挙げられる。錯化剤は通常水溶液の状態で添加
されるが、その濃度は0.01〜1モル/L、好ましく
は0.2〜0.5モル/Lの範囲である。この段階で好
ましい水性スラリーのpHの値は、芯材となる無機質又
は有機質の粉体の物性にもよるが4.5〜10の範囲で
ある。
In the dispersion treatment, it is preferable to add an aqueous solution of the complexing agent to the aqueous slurry as a dispersion medium. Examples of the complexing agent include, for example, citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or an alkali metal salt or ammonium salt thereof, an amino acid such as glycine or an alkali metal salt thereof, ethylenediamine,
Amine acids such as alkylamines or alkali metal salts thereof,
Compounds having a complexing effect on nickel, such as EDTA, pyrophosphoric acid or an alkali metal salt thereof, and other ammonium salts are exemplified. The complexing agent is usually added in the form of an aqueous solution, and its concentration is in the range of 0.01 to 1 mol / L, preferably 0.2 to 0.5 mol / L. The preferable pH value of the aqueous slurry at this stage is in the range of 4.5 to 10, though it depends on the physical properties of the inorganic or organic powder as the core material.

【0024】水性スラリー濃度としては、特に限定はな
いが、通常1〜500g/L、好ましくは5〜300g
/Lの範囲である。スラリー濃度が低すぎると、めっき
濃度が低下し、処理容量が大きくなって経済的に好まし
くなく、一方、スラリー濃度が高すぎると芯材の分散性
が悪くなる。
The concentration of the aqueous slurry is not particularly limited, but is usually 1 to 500 g / L, preferably 5 to 300 g.
/ L. If the slurry concentration is too low, the plating concentration will decrease and the processing capacity will increase, which is not economically favorable. On the other hand, if the slurry concentration is too high, the dispersibility of the core material will deteriorate.

【0025】充分に脱アグロメレート処理された水性ス
ラリーは、めっき処理を効果的に行うため、めっき可能
温度、多くの場合、55℃以上に予め調製しておくこと
が好ましい。
The aqueous slurry that has been sufficiently deagglomerated is preferably prepared in advance at a plating temperature, often 55 ° C. or higher, in order to effectively perform plating.

【0026】上記のように調製した水性スラリーに、無
電解めっき液として、ニッケル塩、還元剤、pH調整剤
の各水溶液を、少なくとも2液にしてそれぞれ個別かつ
同時に添加することにより無電解ニッケルめっき反応を
行う。なお、設備の簡略化及び経済性を考慮するとpH
調整剤と還元剤とを予め混合調製しておくことが好まし
い。
An electroless nickel plating solution is prepared by adding at least two aqueous solutions of a nickel salt, a reducing agent and a pH adjuster individually and simultaneously to the aqueous slurry prepared as described above as an electroless plating solution. Perform the reaction. Considering the simplicity of equipment and economics, pH
It is preferable that the adjusting agent and the reducing agent are mixed and prepared in advance.

【0027】ニッケル塩としては、水に溶解してニッケ
ルイオンとなるものであればよく、例えば、硫酸ニッケ
ル、塩化ニッケル、酢酸ニッケル、次亜リン酸ニッケル
等が挙げられる。還元剤としては、次亜リン酸、次亜リ
ン酸ソーダ及び次亜リン酸ニッケル等が挙げられる。p
H調整剤としては、アンモニア、アミン化合物及び苛性
アルカリ等のアルカリ剤が挙げられる。ニッケル塩の濃
度は、特に限定はないが、後の濾過操作や、廃液処理を
考慮して、水に対する溶解度限界近くの0.7モル/L
以上で行うことが好ましい。還元剤の濃度は、同様な理
由から1.4モル/L以上で行うことが好ましい。
The nickel salt may be any as long as it dissolves in water to form nickel ions, and examples thereof include nickel sulfate, nickel chloride, nickel acetate, and nickel hypophosphite. Examples of the reducing agent include hypophosphorous acid, sodium hypophosphite, nickel hypophosphite and the like. p
Examples of the H adjuster include ammonia, an amine compound, and an alkali agent such as caustic. The concentration of the nickel salt is not particularly limited, but is preferably 0.7 mol / L near the solubility limit in water in consideration of the subsequent filtration operation and waste liquid treatment.
It is preferable to perform the above. The concentration of the reducing agent is preferably at least 1.4 mol / L for the same reason.

【0028】無電解ニッケルめっき反応は、水性スラリ
ーにめっき液を添加することにより速やかにめっき反応
が始まるが、その添加量を調節することにより形成され
るニッケル皮膜を所望の膜厚に制御することができる。
無電解ニッケルめっき液の添加終了後、水素ガスの発生
が完全に認められなくなってから暫く液温を保持しなが
ら撹拌を継続して反応を完結させる。めっき反応終了
後、常法により濾過分離し、更にリパルプしてよく洗浄
した後、乾燥することにより、基材に均一なニッケル皮
膜の下地層が形成された粉体を得ることができる。
In the electroless nickel plating reaction, the plating reaction is started immediately by adding a plating solution to the aqueous slurry, but the nickel film formed by controlling the amount of addition is controlled to a desired thickness. Can be.
After the addition of the electroless nickel plating solution is completed, the reaction is completed by continuing stirring while maintaining the solution temperature for a while after the generation of hydrogen gas is completely stopped. After completion of the plating reaction, the mixture is filtered and separated by a conventional method, further repulped, washed well, and dried, whereby a powder having a uniform nickel film base layer formed on a substrate can be obtained.

【0029】〈第二工程:無電解銅めっき処理〉第二工
程は、第一工程で得られたニッケル被覆粉体を無電解銅
めっき処理して、後述の銀との置換反応を行う銅を該粉
体表面に均一な層として形成させる工程である。
<Second Step: Electroless Copper Plating> In the second step, the nickel-coated powder obtained in the first step is subjected to electroless copper plating to form copper, which undergoes a substitution reaction with silver described later. This is a step of forming a uniform layer on the powder surface.

【0030】無電解銅めっき処理をするに当たって、第
一工程と同様に充分に分散処理を施し、芯材のアグロメ
レートを出来るだけ除去した一次粒子に近い分散状態の
水性スラリーを調製することが好ましく、界面活性剤等
の分散剤を所望により用いてもよい。
In performing the electroless copper plating treatment, it is preferable to perform a sufficient dispersion treatment in the same manner as in the first step to prepare an aqueous slurry in a dispersed state close to primary particles from which agglomerates of the core material have been removed as much as possible. A dispersant such as a surfactant may be used if desired.

【0031】また、分散処理を行うに当たって、錯化剤
の水溶液を分散媒として水性スラリーに添加しておくこ
とが好ましい。錯化剤としては、EDTA、エチレンジ
アミン、ロッシェル塩及びそれらのアルカリ金属塩等が
挙げられる。錯化剤の濃度は、通常0.02〜1モル/
L、好ましくは0.05〜0.5モル/Lである。水性
スラリーの濃度は、特に制限はないが、10〜500g
/Lの範囲に調製すればよい。脱アグロメレート処理し
た水性スラリーを無電解銅めっき反応が効果的に行われ
るように、予め20〜70℃の温度範囲にしておくこと
が好ましい。
In carrying out the dispersion treatment, it is preferable to add an aqueous solution of the complexing agent to the aqueous slurry as a dispersion medium. Examples of the complexing agent include EDTA, ethylenediamine, Rochelle salt, and alkali metal salts thereof. The concentration of the complexing agent is usually 0.02 to 1 mol /
L, preferably 0.05 to 0.5 mol / L. The concentration of the aqueous slurry is not particularly limited, but is 10 to 500 g.
/ L. It is preferable that the aqueous slurry subjected to the deagglomeration treatment is previously set in a temperature range of 20 to 70 ° C. so that the electroless copper plating reaction is effectively performed.

【0032】このように調製した水性スラリーに、銅
塩、還元剤及びpH調整剤の各水溶液を、それぞれ個別
にかつ同時に分別添加することにより無電解めっき反応
を行う。銅塩としては、水に溶解して銅イオンとなるも
のでよく、例えば、硫酸銅、ハロゲン化銅、硝酸銅、酢
酸銅等が挙げられる。還元剤としては、例えば、ホルマ
リン、パラホルムアルデヒド、グリオキシル酸等が挙げ
られる。pH調整剤としては、水酸化ナトリウム、アン
モニア等が挙げられる。
An electroless plating reaction is carried out by separately and simultaneously adding each aqueous solution of a copper salt, a reducing agent and a pH adjusting agent to the aqueous slurry thus prepared, separately and simultaneously. The copper salt may be one that is dissolved in water to form copper ions, and examples thereof include copper sulfate, copper halide, copper nitrate, and copper acetate. Examples of the reducing agent include formalin, paraformaldehyde, glyoxylic acid and the like. Examples of the pH adjuster include sodium hydroxide, ammonia and the like.

【0033】銅塩の濃度は、特に限定はないが、経済性
の面から水に対する溶解度限界近くの0.6モル/L以
上で行うことが好ましい。還元剤の濃度も同様な理由か
ら、2.4モル/L以上で行うことが好ましい。なお、
銅塩、還元剤及びpH調整剤は、銅塩1モルに対して、
還元剤3〜5モル倍、pH調整剤6〜11モル倍の比率
となるように調製することが好ましい。めっき反応終了
後、常法により濾過分離し、更にリパルプしてよく洗浄
した後、乾燥することにより、均一なニッケル皮膜の下
地層の上層に銅皮膜が形成された粉体を得ることができ
る。
The concentration of the copper salt is not particularly limited, but is preferably 0.6 mol / L or more, which is close to the solubility limit in water, from the viewpoint of economy. For the same reason, the concentration of the reducing agent is preferably 2.4 mol / L or more. In addition,
Copper salt, reducing agent and pH adjuster are based on 1 mole of copper salt.
It is preferable to prepare the reducing agent at a ratio of 3 to 5 mol times and the pH adjusting agent at a ratio of 6 to 11 mol times. After completion of the plating reaction, the powder is separated by filtration by a conventional method, further repulped, washed well, and then dried, whereby a powder having a uniform nickel film and a copper film formed on the underlayer of the nickel film can be obtained.

【0034】〈第三工程:無電解銀めっき処理〉第三工
程は、第二工程で形成された銅皮膜を銀により置換し
て、皮膜銅量に見合う厚みの緻密かつ均一な銀めっき皮
膜を形成させる工程である。
<Third Step: Electroless Silver Plating> In the third step, the copper film formed in the second step is replaced with silver to form a dense and uniform silver plating film having a thickness corresponding to the amount of copper film. This is the step of forming.

【0035】無電解銀めっき処理をするに際し、第一工
程及び第二工程と同様に充分に分散処理を施し、芯材の
アグロメレートを出来るだけ除去した一次粒子に近い分
散状態の水性スラリーを調製することが好ましく、界面
活性剤等の分散剤を所望により用いてもよい。
In performing the electroless silver plating treatment, a sufficient dispersion treatment is performed in the same manner as in the first step and the second step to prepare an aqueous slurry in a dispersed state close to primary particles from which agglomerates of the core material have been removed as much as possible. Preferably, a dispersant such as a surfactant may be used if desired.

【0036】また、この分散処理を行うに当たって、錯
化剤の水溶液を分散媒として、水性スラリーに添加して
おくことが好ましい。錯化剤としては、例えば、アンモ
ニウム塩、アミン化合物、テトラエチレンペンタミン、
トリエチレンテトラミン、エチレンジアミン、トリエタ
ノールアミン、EDTA、ニトリロ三酢酸、ジエチレン
トリアミン五酢酸、トリエチレンテトラミン六酢酸、ヒ
ドロキシエチルイミン二酢酸、ジヒドロキシエチルグリ
シン、ヒドラジン、塩酸モノヒドラジン、硫酸ジヒドラ
ジン、アセトヒドラジン及びそれらのアルカリ金属塩等
が挙げられる。錯化剤の濃度は、通常0.02〜1モル
/L、好ましくは0.05〜0.5モル/Lである。ま
た、脱アグロメレート処理した水性スラリーを無電解銀
めっき反応が効果的に行われるように、予め20〜60
℃の温度範囲にしておくことが好ましい。
In carrying out this dispersion treatment, it is preferable to add an aqueous solution of the complexing agent to the aqueous slurry as a dispersion medium. As complexing agents, for example, ammonium salts, amine compounds, tetraethylenepentamine,
Triethylenetetramine, ethylenediamine, triethanolamine, EDTA, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, hydroxyethylimine diacetate, dihydroxyethylglycine, hydrazine, monohydrazine hydrochloride, dihydrazine sulfate, acetohydrazine and the like And the like. The concentration of the complexing agent is usually 0.02 to 1 mol / L, preferably 0.05 to 0.5 mol / L. In addition, the aqueous slurry subjected to the deagglomeration treatment is previously set to 20 to 60 so that the electroless silver plating reaction is effectively performed.
It is preferable to keep the temperature in the range of ° C.

【0037】かかる無電解銀めっき方法は、上記で調製
した水性スラリーに、所定量の銀塩を添加して、銅と銀
の置換反応により、銀皮膜を形成させる。反応系のpH
の値は、8〜14の範囲が好ましく、従って、必要に応
じて、アンモニア、アミン化合物及び苛性アルカリ等の
アルカリ剤をpH調整剤として反応系内に添加してもよ
い。
In this electroless silver plating method, a predetermined amount of a silver salt is added to the aqueous slurry prepared above, and a silver film is formed by a substitution reaction between copper and silver. PH of reaction system
Is preferably in the range of 8 to 14. Therefore, if necessary, an alkaline agent such as ammonia, an amine compound and caustic may be added to the reaction system as a pH adjuster.

【0038】この無電解めっき反応において、銀塩の添
加量は、銅皮膜量に対し、2倍モルとすることが好まし
い。当該反応においては銀の析出効率がほぼ100%で
あることから2モル倍より小さくなると、未反応の銅が
多量に残存することとなって、銀めっき後時間の経過に
従い下層の銅皮膜と表層の銀との相互拡散により、銀め
っき本来の諸物性が劣化する傾向がある。一方、2モル
倍より大きくなるとめっき液中に未反応の銀イオンが残
存するので好ましくない。めっき反応終了後、常法によ
り濾過分離、乾燥して、銀めっき粉体を得ることができ
る。
In this electroless plating reaction, the amount of silver salt added is preferably twice as much as the amount of copper film. In this reaction, since the silver deposition efficiency is almost 100%, if it is less than 2 mol times, a large amount of unreacted copper will remain, and the lower copper film and the surface layer will elapse over time after silver plating. Of silver plating tends to deteriorate due to mutual diffusion with silver. On the other hand, if it is larger than 2 mol times, unreacted silver ions remain in the plating solution, which is not preferable. After the completion of the plating reaction, it is separated by filtration and dried by a conventional method to obtain a silver-plated powder.

【0039】かかる銀めっき粉体は、銅と銀との置換反
応により得られるもので、実質的にニッケル皮膜を下地
層として、その上層に銀が均一に被覆されている。
Such a silver-plated powder is obtained by a substitution reaction between copper and silver, and has a nickel film as a base layer, and the upper layer is uniformly coated with silver.

【0040】本発明の無電解銀めっき粉体は、ニッケル
めっき皮膜下地層を有する銅被覆された無機質又は有機
質の粒子を基材とし、該基材の表面に無電解めっき法に
より銀皮膜を形成するため、従来の基材に銅めっき皮膜
を形成して、次いで無電解銀めっきを施した置換銀めっ
き反応で得られるものとは、異なる。すなわち、従来の
無電解銀めっき反応では、銅を多量に含有するため銀め
っき後、時間の経過に従い下層の銅皮膜と表層の銀との
相互拡散により、銀めっき本来の諸物性が劣化し良好な
銀めっき品は得られにくいのに対して、本発明の無電解
銀めっき粉体は、実質的に銅を含有しないニッケル−銀
の二層構造をとるので、銅と銀との相互拡散がなく、銀
めっきが均一で緻密に施され、銀めっき本来の皮膜物性
のものが得られる。また、本発明の製造方法によれば、
銀鏡反応で知られる銀の析出効率が50〜60%である
のに対し、ほぼ100%であることから、生産性も高
く、実用的である。
The electroless silver plating powder of the present invention is based on copper-coated inorganic or organic particles having a nickel plating film base layer, and forms a silver film on the surface of the substrate by electroless plating. Therefore, it is different from that obtained by a displacement silver plating reaction in which a copper plating film is formed on a conventional substrate and then electroless silver plating is performed. That is, in the conventional electroless silver plating reaction, since the copper is contained in a large amount, after silver plating, due to the interdiffusion of the lower copper film and the surface silver with time, various physical properties inherent in silver plating are deteriorated and good. Although the silver-plated product is difficult to obtain, the electroless silver-plated powder of the present invention has a nickel-silver two-layer structure containing substantially no copper, so that the mutual diffusion between copper and silver is suppressed. In addition, silver plating is applied uniformly and densely, and the original film properties of silver plating can be obtained. According to the production method of the present invention,
The silver deposition efficiency known from the silver mirror reaction is approximately 50% to 60%, but is approximately 100%, so that the productivity is high and practical.

【0041】[0041]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。 実施例1〜7 (前処理)表1に示した物性の粉体試料を0.5〜1.
0g/Lの濃度のアミノシランカップリング剤(S−3
00;チッソ社製)1Lに仕込み、約10分間分散処理
した後、濾過分離、乾燥した。次いで、0.1g/Lの
塩化パラジウム塩を含む酸酸性水溶液1Lに処理粉体を
仕込んで、約5分間撹拌後、濾過後、リパルプして再び
濾過分離した。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Examples 1 to 7 (Pretreatment) 0.5 to 1.
An aminosilane coupling agent (S-3) having a concentration of 0 g / L
00; manufactured by Chisso Co., Ltd.), dispersed for about 10 minutes, separated by filtration and dried. Next, the treated powder was charged into 1 L of an acid acidic aqueous solution containing 0.1 g / L palladium chloride salt, stirred for about 5 minutes, filtered, repulped, and separated by filtration again.

【0042】[0042]

【表1】 [Table 1]

【0043】(無電解ニッケルめっき処理工程)前処理
を行った各粉体試料を表2に示した組成の錯化剤水溶液
のめっき槽に仕込み、脱アグロメート処理した後、70
℃に加温して水性スラリーを調製した。得られた水性ス
ラリーに次亜リン酸ナトリウム3g/Lを添加し、撹拌
下に溶解させた。次いで、表3に示した組成の無電解ニ
ッケルめっき液をa液、b液として分別し、パラジウム
イオンの還元による水素ガスの発生を確認したら、a液
及びb液を同時に定量ポンプによりめっき槽に送り込ん
だ。なお、めっき液の添加量と添加速度は表4に示し
た。a液及びb液を所定量添加後、水素ガスの発生がな
くなるまで70℃に保持して、撹拌下に無電解ニッケル
めっき反応を行った。次いで、濾過、水洗い、乾燥し
て、無電解ニッケルめっきを施した粉体をそれぞれ得
た。
(Electroless Nickel Plating Process) Each of the pretreated powder samples was charged into a plating bath of a complexing agent aqueous solution having the composition shown in Table 2 and subjected to deagglomeration treatment.
An aqueous slurry was prepared by heating to ° C. Sodium hypophosphite 3 g / L was added to the obtained aqueous slurry and dissolved under stirring. Next, the electroless nickel plating solution having the composition shown in Table 3 was separated as a solution a and a solution b, and generation of hydrogen gas by reduction of palladium ions was confirmed. Sent. Table 4 shows the amount and rate of plating solution addition. After adding a predetermined amount of the liquids a and b, the temperature was maintained at 70 ° C. until the generation of hydrogen gas ceased, and an electroless nickel plating reaction was performed with stirring. Next, filtration, washing with water, and drying were performed to obtain powders each subjected to electroless nickel plating.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】(無電解銅めっき処理工程)無電解ニッケ
ルめっきを施した粉体50gを塩化パラジウム0.1g
/Lを含む塩酸酸性水溶液1Lに仕込み、5分間撹拌
後、濾過、洗浄、濾過分離した。次いで、この粉体を予
めEDTA−Na50g/Lを含む水溶液に仕込み、更
に、次亜リン酸ナトリウム1g/Lを仕込んで、脱アグ
ロメレート処理後、50℃に保持して水性スラリーを調
製した。次いで、表5に示した組成の無電解銅めっき液
を調製し、表5のめっき液の添加条件で上記水性スラリ
ーに添加し、水素ガスの発生がなくなるまで無電解銅め
っき反応を行った。無電解銅めっき反応終了後、濾過、
洗浄及び濾過分離した。
(Electroless Copper Plating Process) 0.1 g of palladium chloride was added to 50 g of the electroless nickel-plated powder.
/ L, and stirred for 5 minutes, followed by filtration, washing, and filtration. Next, this powder was charged in advance into an aqueous solution containing 50 g / L of EDTA-Na, further charged with 1 g / L of sodium hypophosphite, deagglomerated, and kept at 50 ° C. to prepare an aqueous slurry. Next, an electroless copper plating solution having the composition shown in Table 5 was prepared, added to the aqueous slurry under the conditions for adding the plating solution shown in Table 5, and subjected to an electroless copper plating reaction until hydrogen gas was no longer generated. After the completion of the electroless copper plating reaction, filtration,
Washed and separated by filtration.

【0048】[0048]

【表5】 [Table 5]

【0049】(無電解銀めっき処理工程)予めEDTA
−Na50g/Lの濃度の水溶液をpH11に調製した
ものに、上記のニッケル−銅めっき処理した粉体を添加
し、脱アグロメレート処理した後、硝酸銀158g/L
を表6に示しためっき液添加条件で添加した。硝酸銀添
加後、10分間撹拌下に置換銀めっき反応を行った。次
いで、濾過、水洗い、濾過分離後、乾燥して白色の銀め
っき粉体をそれぞれ得た。
(Electroless silver plating process) EDTA
To the aqueous solution having a concentration of -Na of 50 g / L adjusted to pH 11, the above-mentioned nickel-copper-plated powder was added, and after deagglomeration treatment, 158 g / L of silver nitrate
Was added under the plating solution addition conditions shown in Table 6. After the addition of silver nitrate, a displacement silver plating reaction was performed with stirring for 10 minutes. Next, the mixture was filtered, washed with water, separated by filtration, and dried to obtain white silver-plated powders.

【0050】[0050]

【表6】 [Table 6]

【0051】比較例1 粉体としてシリカ粉体(真比重2.50、粒径5.4μ
m )を使用し、無電解銅めっきを2倍量施した以外は、
実施例2と同様の方法に従い暗黒色のめっき粉体を得
た。
Comparative Example 1 A silica powder (true specific gravity: 2.50, particle size: 5.4 μm) was used as the powder.
m), except that twice the amount of electroless copper plating was applied.
According to the same method as in Example 2, a dark black plating powder was obtained.

【0052】比較例2 アルミナ粉体(真比重2.40、粒径3.0μm )10
gを硝酸銀20g/L、28%アンモニア水30mL/
Lを含む水溶液5Lに仕込み、脱アグロメレート処理を
行った後、ロッシェル塩600g/Lを仕込み、1時間
銀めっき処理を行った。次いで、濾過、水洗い、濾過分
離、乾燥して表面がやや粗な灰白色の銀めっき粉体を得
た。
Comparative Example 2 Alumina powder (true specific gravity 2.40, particle size 3.0 μm) 10
g of silver nitrate 20 g / L, 28% ammonia water 30 mL /
After charging into 5 L of an aqueous solution containing L and performing deagglomeration, 600 g / L of Rochelle salt was charged and silver plating was performed for 1 hour. Next, the mixture was filtered, washed with water, separated by filtration, and dried to obtain a gray-white silver-plated powder having a slightly rough surface.

【0053】比較例3 ガラスビーズ粉体(真比重2.50、粒径30μm )1
0gを硝酸銀20g/L、28%アンモニア水30mL
/Lを含む水溶液5Lに仕込み、脱アグロメレート処理
を行った後、ロッシェル塩600g/Lを仕込み、1時
間銀めっき処理を行った。次いで、濾過、水洗い、濾過
分離、乾燥して表面がやや粗な灰白色の銀めっき粉体を
得た。
Comparative Example 3 Glass bead powder (true specific gravity 2.50, particle size 30 μm) 1
0 g of silver nitrate 20 g / L, 28% ammonia water 30 mL
5 L of an aqueous solution containing L / L and deagglomeration treatment, and then 600 g / L of Rochelle salt was charged and silver plating was performed for 1 hour. Next, the mixture was filtered, washed with water, separated by filtration, and dried to obtain a gray-white silver-plated powder having a slightly rough surface.

【0054】実施例1〜7及び比較例1〜3における無
電解銀めっき時の、銀の有効利用率(使用しためっき液
中の銀と、銀めっき皮膜として析出した銀の比率)を表
7に示した。
Table 7 shows the effective utilization rate of silver (the ratio of silver in the plating solution used and silver deposited as a silver plating film) during electroless silver plating in Examples 1 to 7 and Comparative Examples 1 to 3. It was shown to.

【0055】[0055]

【表7】 [Table 7]

【0056】〈銀めっき特性の評価〉 ・金属皮膜の組成 実施例1〜7及び比較例1〜3で得られた金属皮膜粉体
を硝酸銀溶液に添加し、金属皮膜を溶解した後、金属皮
膜の組成と真比重を測定し、その結果を表8に示した。
<Evaluation of Silver Plating Properties> Composition of Metal Coating The metal coating powders obtained in Examples 1 to 7 and Comparative Examples 1 to 3 were added to a silver nitrate solution to dissolve the metal coating. Was measured for its composition and true specific gravity. The results are shown in Table 8.

【0057】[0057]

【表8】 [Table 8]

【0058】(電気抵抗特性の評価)突起上部の平面に
金めっきを施した直径1cmの円柱状の突起電極を備えた
銅製円盤上の突起部に内径1cmのプラスチック円筒を差
込、この円筒内に実施例1〜7及び比較例1〜3で得ら
れた金属皮膜試料1gを入れ、次いで、鍔の付いた直径
1cm弱の端部を金めっきした銅製の円柱電極をプラスチ
ック円筒内に差込、上部より5kgの荷重を掛けた状態
で、電極間の電気抵抗を測定し、前記(1) 式により体積
固有電気抵抗値を求めた。その結果と膜厚を表9に示し
た。
(Evaluation of Electric Resistance Characteristics) A plastic cylinder having an inner diameter of 1 cm is inserted into a protrusion on a copper disk provided with a columnar protrusion electrode having a diameter of 1 cm and plated with gold on the upper surface of the protrusion. 1 g of the metal film sample obtained in each of Examples 1 to 7 and Comparative Examples 1 to 3 was inserted into the plastic cylinder. Then, a copper-made cylindrical electrode having a flange and a little less than 1 cm in diameter and having a gold-plated end was inserted into a plastic cylinder. The electric resistance between the electrodes was measured while a load of 5 kg was applied from above, and the volume-specific electric resistance value was determined by the formula (1). The results and the film thickness are shown in Table 9.

【0059】[0059]

【表9】 [Table 9]

【0060】[0060]

【発明の効果】本発明の無電解銀めっき粉体は、安価な
ニッケル皮膜で銀皮膜の一部を代替して、導電性を付与
するため、銀めっき層を薄くしても、単層銀めっき粉体
に劣らず、優れた導電性を有し、めっき粉体の軽比重と
いった特性を生かして、導電性顔料として塗料や接着剤
等に利用できるだけでなく、樹脂への添加、或いは他の
導電性材料との併用により、電気工業を初めとする多く
の分野で、従来の銀粉体の代替として、用いることがで
きる。また、本発明の製造方法によれば、工業的に有利
な方法で、効率よく上記の無電解銀めっき粉体を製造す
ることができるので、産業的な利用価値は極めて大であ
る。
The electroless silver-plated powder of the present invention provides a conductivity by replacing a part of the silver film with an inexpensive nickel film. It has the same conductivity as plating powder and has excellent conductivity, making use of the properties such as light specific gravity of plating powder, and can be used not only as a conductive pigment in paints and adhesives, but also as an addition to resin or other When used in combination with a conductive material, it can be used as an alternative to conventional silver powder in many fields including the electric industry. Further, according to the production method of the present invention, the above-mentioned electroless silver-plated powder can be efficiently produced by an industrially advantageous method, so that the industrial use value is extremely large.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケルめっき皮膜下地層を有する銅被
覆された無機質又は有機質の粒子を基材とし、該基材の
表面に無電解めっき法による銀皮膜を形成してなること
を特徴とする無電解銀めっき粉体。
An inorganic or organic particle coated with copper having an underlayer of a nickel plating film as a base material, and a silver film formed on the surface of the base material by electroless plating. Electrolytic silver plating powder.
【請求項2】 体積固有電気抵抗値が4.5×10-3Ω
cm未満である請求項1記載の無電解銀めっき粉体。
2. A volume specific electric resistance value of 4.5 × 10 −3 Ω.
The electroless silver-plated powder according to claim 1, which has a diameter of less than 1 cm.
【請求項3】 無機質又は有機質の粒子を無電解ニッケ
ルめっきしてニッケル皮膜を形成させる第一工程、該ニ
ッケル被覆粒子を無電解銅めっきして銅皮膜を形成させ
る第二工程、該銅被覆粒子を無電解銀めっきして、銅と
銀の置換反応により銀の皮膜を形成させる第三工程を順
次施すことを特徴とする無電解銀めっき粉体の製造方
法。
3. A first step of forming a nickel film by electroless nickel plating inorganic or organic particles, a second step of forming a copper film by electroless copper plating the nickel-coated particles, and the copper-coated particles. A silver film by a substitution reaction between copper and silver, followed by a third step of forming a silver film by electroless silver plating.
【請求項4】 銀の皮膜厚さは、銅の皮膜厚さで調整す
る請求項3記載の無電解銀めっき粉体の製造方法。
4. The method according to claim 3, wherein the thickness of the silver film is adjusted by the thickness of the copper film.
【請求項5】 無電解銀めっき反応は、銀塩の添加量
が、銅皮膜量に対し、2倍モルで行うものである請求項
3又は4記載の無電解銀めっき粉体の製造方法。
5. The method for producing an electroless silver plating powder according to claim 3, wherein the electroless silver plating reaction is performed by adding the silver salt in an amount twice as much as the amount of the copper film.
JP23027997A 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same Expired - Fee Related JP3832938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23027997A JP3832938B2 (en) 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23027997A JP3832938B2 (en) 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1161424A true JPH1161424A (en) 1999-03-05
JP3832938B2 JP3832938B2 (en) 2006-10-11

Family

ID=16905323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23027997A Expired - Fee Related JP3832938B2 (en) 1997-08-12 1997-08-12 Electroless silver plating powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3832938B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075057A (en) * 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd Coated copper powder
JP2005023274A (en) * 2003-07-03 2005-01-27 Osaka Prefecture Polymer minute particle having metal film on particle surface and method for producing the same
JP2006052460A (en) * 2004-07-15 2006-02-23 Sekisui Chem Co Ltd Conductive microparticle, process for producing the same, and anisotropic conductive material
JP2006169566A (en) * 2004-12-14 2006-06-29 Sk Kaken Co Ltd Colored particle manufacturing method
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
JP2007084873A (en) * 2005-09-21 2007-04-05 Bokuno Horiguchi Manufacturing method of conductive electroless plating powder
WO2007119417A1 (en) * 2006-03-28 2007-10-25 Nippon Chemical Industrial Co., Ltd Conductive powder plated by electroless plating and process for producing the same
DE102006031778A1 (en) * 2006-07-10 2008-01-24 Bartelt, Gunter, Dr. Coating polyolefin powder with silver for use in medicinal and hygienic applications, suspends powder in liquid containing silver salt, reductant, nitrogen compound and additive
JP2011047027A (en) * 2009-08-28 2011-03-10 Mitsui Chemicals Inc Functional grain and method for producing the same using plasma treatment
JP2015017909A (en) * 2013-07-11 2015-01-29 三菱重工業株式会社 Radioactive material storage container and method for manufacturing radioactive material storage container
US8981226B2 (en) 2007-10-24 2015-03-17 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
US9093192B2 (en) 2010-08-20 2015-07-28 Mitsubishi Materials Corporation Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2020088285A (en) * 2018-11-29 2020-06-04 味の素株式会社 Method of manufacturing substrate
CN114700489A (en) * 2022-06-07 2022-07-05 天津德恒永裕金属表面处理有限公司 Preparation process of silver-coated aluminum powder and silver-coated aluminum powder
CN115007855A (en) * 2022-06-01 2022-09-06 闽都创新实验室 Silver-coated nickel-aluminum powder compound and preparation method and application thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075057A (en) * 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd Coated copper powder
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
JP2005023274A (en) * 2003-07-03 2005-01-27 Osaka Prefecture Polymer minute particle having metal film on particle surface and method for producing the same
JP4662699B2 (en) * 2003-07-03 2011-03-30 大阪府 Polymer fine particles having metal film and method for producing the same
JP2006052460A (en) * 2004-07-15 2006-02-23 Sekisui Chem Co Ltd Conductive microparticle, process for producing the same, and anisotropic conductive material
JP4637559B2 (en) * 2004-12-14 2011-02-23 エスケー化研株式会社 Method for producing colored particles
JP2006169566A (en) * 2004-12-14 2006-06-29 Sk Kaken Co Ltd Colored particle manufacturing method
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process
JP2007084873A (en) * 2005-09-21 2007-04-05 Bokuno Horiguchi Manufacturing method of conductive electroless plating powder
WO2007119417A1 (en) * 2006-03-28 2007-10-25 Nippon Chemical Industrial Co., Ltd Conductive powder plated by electroless plating and process for producing the same
TWI419996B (en) * 2006-03-28 2013-12-21 Nippon Chemical Ind Conductive electroless plating powder and its manufacturing method
DE102006031778A1 (en) * 2006-07-10 2008-01-24 Bartelt, Gunter, Dr. Coating polyolefin powder with silver for use in medicinal and hygienic applications, suspends powder in liquid containing silver salt, reductant, nitrogen compound and additive
US8981226B2 (en) 2007-10-24 2015-03-17 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP2011047027A (en) * 2009-08-28 2011-03-10 Mitsui Chemicals Inc Functional grain and method for producing the same using plasma treatment
US9093192B2 (en) 2010-08-20 2015-07-28 Mitsubishi Materials Corporation Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2015017909A (en) * 2013-07-11 2015-01-29 三菱重工業株式会社 Radioactive material storage container and method for manufacturing radioactive material storage container
JP2020088285A (en) * 2018-11-29 2020-06-04 味の素株式会社 Method of manufacturing substrate
CN115007855A (en) * 2022-06-01 2022-09-06 闽都创新实验室 Silver-coated nickel-aluminum powder compound and preparation method and application thereof
CN115007855B (en) * 2022-06-01 2024-01-02 闽都创新实验室 Silver-coated nickel aluminum powder compound and preparation method and application thereof
CN114700489A (en) * 2022-06-07 2022-07-05 天津德恒永裕金属表面处理有限公司 Preparation process of silver-coated aluminum powder and silver-coated aluminum powder
CN114700489B (en) * 2022-06-07 2022-08-12 天津德恒永裕金属表面处理有限公司 Preparation process of silver-coated aluminum powder and silver-coated aluminum powder

Also Published As

Publication number Publication date
JP3832938B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JPH1161424A (en) Electroless silver-plated powder and its production
US6770369B1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP4746116B2 (en) Conductive powder, conductive material containing the same, and method for producing conductive particles
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
JP5512306B2 (en) Method for producing conductive particles
JPWO2008032839A1 (en) Metal layer-coated substrate and method for producing the same
JP5941328B2 (en) Conductive particles and conductive material containing the same
EP2004873A1 (en) Process for the treatment of metal coated particles
JP4849930B2 (en) Conductive electroless plating powder and method for producing the same
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JP2003034879A (en) Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP6263228B2 (en) Conductive particles and conductive material containing the same
US7338686B2 (en) Method for producing conductive particles
JP2004197160A (en) Conductive electroless-plated powder and manufacturing method therefor
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2602495B2 (en) Manufacturing method of nickel plating material
JP4261973B2 (en) Method for producing conductive electroless plating powder
JP5695768B2 (en) Conductive powder and conductive material including the same
JPH09171714A (en) Conductive powder
JPH0249390B2 (en)
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140728

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees