WO2007119417A1 - Conductive powder plated by electroless plating and process for producing the same - Google Patents

Conductive powder plated by electroless plating and process for producing the same Download PDF

Info

Publication number
WO2007119417A1
WO2007119417A1 PCT/JP2007/055497 JP2007055497W WO2007119417A1 WO 2007119417 A1 WO2007119417 A1 WO 2007119417A1 JP 2007055497 W JP2007055497 W JP 2007055497W WO 2007119417 A1 WO2007119417 A1 WO 2007119417A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
electroless plating
core
nickel
melamine resin
Prior art date
Application number
PCT/JP2007/055497
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Oyamada
Yasuhiro Abe
Original Assignee
Nippon Chemical Industrial Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co., Ltd filed Critical Nippon Chemical Industrial Co., Ltd
Priority to KR1020087023517A priority Critical patent/KR101305574B1/en
Priority to CN2007800119038A priority patent/CN101415863B/en
Publication of WO2007119417A1 publication Critical patent/WO2007119417A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material

Definitions

  • the present invention relates to a conductive electroless plating powder and a method for producing the same.
  • an aminosilane compound, a glycol compound, a nitrile compound, a titanate compound, a butadiene polymer, and linoleic acid are used as a synthetic resin material.
  • Unsaturated fatty acids such as linolenic acid, etc.
  • a method is proposed in which the synthetic resin material is coated with a selected noble metal-capturing surface treatment material to carry noble metal ions, and then electroless plating is performed. .
  • Patent Document 1 In the method described in Patent Document 1, it is difficult to obtain a material having excellent adhesiveness particularly for fine particles having an average particle diameter of 20 ⁇ m or less. Difficult to use.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-64882
  • the object of the present invention is to provide a conductive material having excellent adhesion without using chromic acid, permanganic acid, or the like, which causes environmental pollution, especially fine particles having an average particle diameter of 20 ⁇ m or less.
  • Means for solving the problem [0007]
  • the present invention provides a conductive electroless plating powder characterized in that the surface of the core powder is coated with melamine resin and a metal film is formed by electroless plating. By doing so, the above-mentioned purpose is achieved.
  • the conductive electroless plating powder of the present invention (hereinafter also simply referred to as a platter powder) is obtained by coating the surface of the core material powder with melamine resin and further forming a metal film by electroless platter. It will be.
  • the surface of the core material powder may be hydrophobic or hydrophilic.
  • the method of the present embodiment is particularly effective for the core material powder having a hydrophobic surface.
  • the core powder is preferably substantially insoluble in water, and more preferably does not dissolve or change in acid or alkali.
  • the shape of the core powder is not particularly limited.
  • the core powder can be in the form of a powder, but other shapes such as fibers, hollows, plates, and needles can be used. It may be a thing.
  • a spherical one is particularly preferable in that it has excellent filling properties when used as a conductive filler.
  • the core material powder as an inorganic substance, metal (including an alloy), glass, ceramics
  • Silica carbon, metal or non-metal oxides (including hydrates), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, Examples thereof include metal sulfides, metal acid salts, metal halides, and carbon.
  • Organic substances include natural fiber, natural resin, polyethylene, polypropylene, polychlorinated butyl, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylic nitrile, polyacetal, ionomer, polyester and other thermoplastic resin, alkyd
  • the resin include resin, phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, and diallyl phthalate resin. These may be used alone or as a mixture of two or more.
  • the average particle size is 0.5 to 100. ⁇ m, especially 0.8 to 80 ⁇ m, especially 1 to 20 ⁇ m suppresses agglomeration during the plating process, and is particularly effective from the viewpoint of adapting to a narrow pitch as electroconductive particles after electroless plating. Preferred.
  • the average particle diameter of core material powder shows the value measured using the electrical resistance method.
  • the particle size distribution of the core material powder measured by the method described above has a range.
  • the width of the particle size distribution of the powder is represented by a coefficient of variation represented by the following calculation formula (1).
  • Coefficient of variation (%) (standard deviation Z average particle size) X 100 Formula (1)
  • a large coefficient of variation indicates that there is a range of distribution, while a small coefficient of variation indicates that the particle size distribution is sharp. Indicates that there is.
  • the coating amount of melamine rosin varies depending on the type and shape of the core powder used, but in many cases it is 0.1 to 15% by weight, preferably 0.5 to 10% by weight. desirable.
  • the reason for this is that when the coating amount of melamine resin is less than 0.1% by weight, the coating amount is insufficient and the plating adhesion tends to be difficult to obtain due to excellent plating adhesion. This is because in the step (1) of obtaining the core powder coated with melamine resin, fine particle melamine resin is generated alone and tends to remain as a foreign substance. Further, the melamine rosin may be modified.
  • the metal film in the electroless electroless plating powder is usually a single metal single layer structure. If desired, the metal film may have a multilayer structure of two or more different metals. In addition, the metal film may be crystalline or amorphous depending on the type and staking conditions. Furthermore, the metal film may be magnetic or non-magnetic.
  • the metal here includes not only a simple metal but also an alloy (for example, a nickel-phosphorus alloy or a nickel-boron alloy). Usable metals include Ni, Fe, Cu, Co, Pd, Ag, Au, Pt, and Sn.
  • the thickness of the metal film is preferably 0.001 to 2 ⁇ m, particularly preferably 0.001 to 1 ⁇ m. The thickness of the metal film can be calculated based on the amount of nickel ions added and the chemical analysis ability.
  • Ni is also preferable in terms of economic viewpoint.
  • nickel is used as an example of the metal.
  • the metal that can be used is not limited to this.
  • the production method of the present embodiment includes a step of contacting a core material powder and an initial condensate of melamine resin, and performing a polymerization reaction of the initial condensate to obtain a core material powder coated with melamine resin Next, a step of supporting a noble metal on the surface of the core material powder coated with the melamine resin, and a step of subjecting the core material powder supporting the noble metal to an electroless plating process in the next step.
  • Stable quality plating powder can be advantageously obtained industrially.
  • the core material powder is coated with the melamine resin by bringing the core material powder and the initial condensate of the melamine resin into contact with each other to perform a polymerization reaction of the initial condensate. This is a step of obtaining a core powder.
  • the initial condensate of melamine resin means a product in which a condensation reaction is caused by heating or addition of an acid catalyst to produce melamine resin.
  • the initial condensate of melamine resin may be a commercially available product, or a product obtained by reacting a melamine compound with an aldehyde compound is used as the initial condensate of melamine resin. May be.
  • Examples of the melamine compound include melamine, a melamine compound obtained by substituting hydrogen of an amino group of melamine with an alkyl group, a alkenyl group, or a phenol group (for example, JP 09-1432 38 A). ), Substituted melamine compounds in which the hydrogen of the amino group of melamine is substituted with a hydroxyalkyl group or an aminoalkyl group (for example, see JP-A-5-202157), etc. Melamine is preferred because it is readily available and inexpensive.
  • Some of the melamine compounds are also urea, thiourea, ethylene urea and other ureas, benzoguanamine, acetoguanamine and other guanamines, phenol, cresol, alkylphenol, resorcin, hydroquinone, pyrogallol and other phenols, -It may be substituted with phosphorus.
  • aldehyde compound examples include formaldehyde, paraformaldehyde, acetoaldehyde, benzaldehyde, furfural and the like, and formaldehyde and paraformaldehyde are preferable in terms of reactivity with the melamine compound.
  • the addition amount of the aldehyde compound is 1.1 to 6.0 times mol, preferably 1.2 to 4.0 in terms of a molar ratio to the melamine compound. It is preferred to be double moles.
  • the solvent that can be used is particularly preferably water, but may be used as a mixed solvent of water and an organic solvent.
  • a solvent that can dissolve the initial condensate of melamine resin for example, alcohols such as methanol, ethanol, and propanol, dioxane, tetrahydrofuran, 1
  • Ethers such as 2-dimethoxyethane
  • polar solvents such as dimethylformamide and dimethyl sulfoxide.
  • reaction of the melamine compound and the aldehyde compound is carried out at a pH of 8 to 9. If necessary, the reaction can be carried out by adding a base group.
  • Usable bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and aqueous ammonia can be used as the base that can be used.
  • Reaction temperature is 25-: An initial condensate of melamine rosin having a molecular weight of about 200-700 with LOO can be obtained.
  • the melamine modified with alcohol by reacting the initial condensate of melamine resin with alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol in the presence of a small amount of acidic substance.
  • alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol
  • An initial condensate of rosin can be obtained.
  • the amount of the initial condensate of melamine rosin varies depending on the type of the core powder used, but in many cases is 0.1 to 15% by weight, preferably 0.5 to 10% by weight. It is desirable to do.
  • the reaction operation in the step (1) of obtaining the core material powder coated with melamine rosin comprises preparing a solvent containing the core material powder and adding the solvent to the solvent.
  • a method of adding an initial condensate of melamine resin and performing a polymerization reaction of the initial condensate, and adding the core powder to a solvent containing the initial condensate of melamine resin and polymerizing the initial condensate Method for carrying out reaction, or core material powder, melamine compound and aldehyde compound, a predetermined amount is added, and if necessary, an alkali agent is added and an initial condensate of melamine resin is directly added in a solvent.
  • the method of performing the polymerization reaction can be used.
  • the polymerization reaction may be carried out by adding an acid catalyst if necessary, and the reaction is carried out under heating at 40 to LOO ° C. After completion of the reaction, solid-liquid separation is carried out by a conventional method, followed by drying at 60 to 180 ° C Alternatively, spray-dry the reaction solution as it is and cover with melamine rosin. Covered core powder can be obtained.
  • the acid catalyst that can be used in the polymerization reaction is not particularly limited. 1S
  • hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, alkylbenzenesulfonic acid In addition, sulfonic acids such as sulfamic acid, and organic acids such as formic acid, oxalic acid, benzoic acid, and phthalic acid can be used.
  • the catalytic treatment step (2) noble metal ions are captured by a core material powder that has the ability to capture noble metal ions or that has been provided with a surface treatment. This is a step of reducing this and supporting the noble metal on the surface of the core powder.
  • the core material powder on which the noble metal is supported is dispersed and mixed in the initial thin film forming liquid containing nickel ions, a reducing agent and a complexing agent, and the nickel ions are reduced.
  • the electroless plating process (4) is a process for producing a plating powder having a nickel coating on the surface of the core powder by electroless plating.
  • the core material powder coated with the melamine resin obtained in the step (1) is surface-modified so that the surface thereof has a precious metal ion capturing ability or a precious metal ion capturing ability.
  • the noble metal ions are preferably palladium or silver ions. Having a precious metal ion scavenging ability means that the precious metal ion can be captured as a chelate or salt.
  • the core powder is dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate.
  • a noble metal salt such as palladium chloride or silver nitrate.
  • Noble metal salt concentration is sufficient surface area lm 2 per 1 X 10- 7 ⁇ 1 X 10- 2 mol per mol of silver powder.
  • the core powder with the precious metal ions captured is separated from the system and washed with water. Subsequently, the core powder is suspended in water, and a reducing agent is added thereto to reduce the precious metal ions.
  • the noble metal is supported on the surface of the core powder.
  • the reducing agent include sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin and the like.
  • a sensitivity treatment for adsorbing tin ions on the powder surface may be performed.
  • the surface-modified core material powder may be put into an aqueous stannous chloride solution and stirred for a predetermined time.
  • the initial thin film forming step is mainly performed for the purpose of smoothing the uniform precipitation of nickel on the core powder.
  • the core powder carrying the noble metal is sufficiently dispersed in water.
  • a shearing dispersion device such as a colloid mill or a homogenizer can be used.
  • a dispersant such as a surfactant can be used as necessary.
  • the aqueous suspension thus obtained is dispersed and mixed in an initial thin film forming liquid containing nickel ions, a reducing agent and a complexing agent. This initiates a nickel ion reduction reaction, and an initial nickel thin film is formed on the surface of the core powder.
  • the initial thin film of nickel to be formed may be thin enough to smooth the surface of the core powder.
  • the thickness of the initial thin film is preferably 0.001 to 2 ⁇ m, particularly preferably 0.001 to 1 ⁇ m.
  • the initial thin film thickness can be calculated from the amount of nickel ions added and the ability to analyze the ions.
  • Tsu Ke concentration Noreion ⁇ or 2. 0 X 10- 4 ⁇ 1 0 Monore / Rittonore, especially 1. 0 X 10 — 3 to 0.1 monolayer / liter is preferable.
  • the nickel ion source a water-soluble nickel salt such as nickel sulfate or nickel chloride is used. From the same viewpoint, it is preferable that the initial concentration ⁇ of the reducing agent in the thin film-forming solution or 4 X 10- 4 ⁇ 2. 0 Monore / Rittonore, especially 2. 0 X 10- 3 ⁇ 0. 2 Monore / liters .
  • the reducing agent those similar to those used for the reduction of the noble metal ions described above can be used.
  • the initial thin film forming liquid preferably contains a complexing agent.
  • the complexing agent is a compound that has a complex forming action on the metal ion to be plated.
  • an organic carboxylic acid or a salt thereof such as citrate, hydroxyacetic acid, tartaric acid, malic acid, lactic acid or dulconic acid or an alkali metal salt or ammonium salt thereof can be used as a complexing agent.
  • amine groups such as glycine, alanine, ethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine and other amino groups A compound having can also be used. These complexing agents can be used alone or in combination of two or more.
  • the amount of the complexing agent in the initial thin film forming liquid is preferably 0.003 to 10 monole / Ritsunore, particularly 0.006 to 4 monore / Ritsunore! /.
  • the concentration of the core powder in the aqueous suspension is 0.1 to 500 g / liter, particularly 0.5 to 300 g / liter.
  • the aqueous suspension obtained by mixing the aqueous suspension containing the core powder and the initial thin film forming liquid is then subjected to an electroless plating process described later.
  • the ratio of the total surface area of the core powder contained in the aqueous suspension to the volume of the aqueous suspension ( This ratio is generally referred to as the load amount) 0.1 to 15 m 2 / l, especially 1 to LOm 2 / l, which is a point force that can easily form a nickel film with excellent adhesion. preferable.
  • a core powder on which an initial thin film is formed and an aqueous suspension containing the complexing agent (b) a nickel ion-containing liquid, and (c) a reducing agent Use 3 liquids.
  • aqueous suspension (a) the one obtained in the above-described initial thin film forming step may be used as it is.
  • the nickel ion-containing liquid is an aqueous solution of a water-soluble nickel salt such as nickel sulfate or nickel chloride as a nickel ion source.
  • the nickel ion concentration should be 0.1 to 1.2 monolith / lit nore, especially 0.5 to 1.0 monolet / lit nore, and it can easily form a nickel film with excellent strength and adhesion. Preferred from.
  • the nickel ion-containing liquid preferably contains a complexing agent of the same type as the complexing agent contained in the aqueous suspension. That is, it is preferable that the same kind of complexing agent is contained in both the aqueous suspension (a) and the nickel ion-containing liquid (b). This makes it possible to easily form a nickel film having excellent adhesion. The reason for this is not clear, but ( By adding a complexing agent to both the aqueous suspension of a) and the nickel ion-containing liquid of (b), nickel ions are stabilized and the reduction reaction is prevented from proceeding rapidly. It is speculated that it is also the power that can be.
  • the concentration of the complexing agent in the nickel ion-containing liquid (b) affects the formation of the nickel film in the same manner as the concentration of the complexing agent in the aqueous suspension (a).
  • the amount of the complexing agent in the nickel ion-containing liquid is preferably 0.006 to 12 mol Z liter, particularly preferably 0.012 to 8 mol Z liter.
  • the reducing agent-containing liquid (c) is generally an aqueous solution of a reducing agent.
  • a reducing agent those similar to those used for the reduction of the noble metal ions described above can be used. It is particularly preferable to use sodium hypophosphite. Since the concentration of the reducing agent affects the reduction state of nickel ions, it is preferable to adjust the concentration within the range of 0.1 to 20 mol Z liter, particularly 1 to 10 mol Z liter.
  • the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c) are added individually and simultaneously. As a result, nickel ions are reduced, and nickel is deposited on the surface of the core powder to form a film.
  • the addition rate of the nickel ion-containing solution and the reducing agent-containing solution is effective in controlling the nickel deposition rate.
  • the deposition rate of nickel affects the formation of a nickel film with good adhesion. Therefore, it is preferable to control the nickel deposition rate by adjusting the addition rate of both solutions at 1 to: LOOOOnmZ, particularly 5 to 300 nm / hour.
  • the deposition rate of nickel can be obtained by calculation from the addition rate of the nickel ion-containing liquid.
  • the load 0. l ⁇ 15m 2 / l is preferably kept in a range especially of 1 to 10 m 2 / liter.
  • nickel is deposited uniformly.
  • the load amount is within this range when the addition of the two liquids is completed and the reduction of nickel ions is completed! /.
  • the pH of the aqueous suspension is kept in the range of 3 to 13, especially 4 to: Force of water insoluble precipitation of nickel This is preferable from the viewpoint of preventing the formation of products.
  • a predetermined amount of a pH adjusting agent such as sodium hydroxide may be added to the reducing agent-containing solution.
  • the obtained plating powder is separated after filtration and washing several times. Further, as an additional step, a gold-plated layer forming step as the uppermost layer may be performed on the nickel film.
  • the gold plating layer can be formed according to a conventionally known electroless plating method.
  • an electroless plating solution containing tetrasodium ethylenediammine tetraacetate, trisodium citrate and potassium cyanate and adjusted to pH with sodium hydroxide.
  • a gold plating layer is formed on the nickel film.
  • the thickness of the gold plating layer is generally about 0.001 to 0.5 m. The thickness of the gold plating layer can be calculated from the amount of gold ions added and the ability to analyze the ions.
  • the thickness of the nickel film is preferably about 0.005 to 10 / ⁇ ⁇ , particularly about 0.01 to 2 / ⁇ ⁇ .
  • the thickness of the nickel film can be measured, for example, by observation with a scanning electron microscope, and the amount of nickel ion added and the ability to analyze chemistry can also be calculated.
  • the plating powder of the present invention obtained by force is used for connecting, for example, an anisotropic conductive film (ACF), a heat seal connector (HSC), and an electrode of a liquid crystal display panel to a circuit board of an LSI chip for driving. It is suitably used for applications such as conductive materials and polarizing plates.
  • ACF anisotropic conductive film
  • HSC heat seal connector
  • electrode of a liquid crystal display panel to a circuit board of an LSI chip for driving. It is suitably used for applications such as conductive materials and polarizing plates.
  • the slurry was stirred while using ultrasonic waves, and 20 mL of a mixed aqueous solution of 0.117 mol / liter dimethylamine borane and 0.16 mol Z liter boric acid was added thereto.
  • the palladium ion was reduced by stirring for 2 minutes while using ultrasonic waves at room temperature.
  • the aqueous suspension obtained in the initial thin film formation step was mixed with a nickel ion-containing liquid consisting of 0.86 mol ZL of nickel sulfate and 0.17 mol ZL of sodium tartrate and 2.57 mol ZL of hypophosphorous acid.
  • a nickel ion-containing liquid consisting of 0.86 mol ZL of nickel sulfate and 0.17 mol ZL of sodium tartrate and 2.57 mol ZL of hypophosphorous acid.
  • the aqueous suspension was filtered, and the filtrate was washed with repulp three times and dried in a vacuum dryer at 110 ° C. As a result, a plating powder having a nickel lurin alloy plating film was obtained.
  • plating powder was obtained by the same operation except that the step (1) was not performed.
  • Example 1 except that the step (1) was replaced with the following step (1-1), a plated powder was obtained in the same manner as in Examples 1-3.
  • Example 2 10 parts by weight of the same styrene resin used in Example 1 was added to 100 parts by weight of an aqueous solution containing 1.0% by weight of the surface treating agent shown in Table 1, and immersed for 1 hour at room temperature. Next, it was dried at 110 ° C. to prepare a core powder coated with the surface treatment agent.
  • Example 1 a plated powder was obtained in the same manner as in Example 1, except that the step (1) was replaced with the following step (1-2).
  • Chloric anhydride 2.0 mol ZL, sulfuric acid 3.6 mol ZL strength 100 parts by weight of the core powder was charged in 2 L of an etching solution, heated to 70 ° C., and stirred for 10 minutes. Next, filtration and washing were repeated to obtain a core material powder subjected to etching treatment.
  • the thickness of the plating film and the adhesion of the plating film were measured and evaluated for the obtained plating powder by the following method. The results are shown in Table 2. The amount of chromium remaining in the plating powder was measured, and the results are also shown in Table 2.
  • the plating powder was immersed in nitric acid to dissolve the adhesive film, the film components were quantified by ICP or chemical analysis, and the thickness was calculated by the following equation.
  • A W / 100-W Where r is the radius of the core powder m), t is the thickness of the adhesive film m), and d is the adhesive film.
  • the specific gravity of, d is the specific gravity of the core powder, w is the metal content (% by weight).
  • the plating powder was immersed in nitric acid to dissolve the adhesion film, and further sulfuric acid was added for thermal decomposition.
  • the obtained solution strength was also measured by ICP for chromium.
  • N. D. indicates that the detection limit is 0.002 mgZg or less.
  • the plating powders of the respective examples are excellent in adhesion of the adhesive skin film and are substantially free of chromium.
  • the plating powders of Comparative Examples 1 to 6 do not contain chromium, but are easily peeled off.
  • the plating powder of Comparative Example 7 is excellent in the adhesion of the plating film, but chromium is contained in the plating powder.
  • Electroless plating powder can be obtained.
  • the conductive electroless plating powder of the present invention is used for driving, for example, anisotropic conductive film (ACF), heat seal connector (HSC), and electrodes of liquid crystal display panels. It is suitable for use in conductive materials for connecting LSI chip circuit boards and polarizing plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A conductive powder plated by electroless plating which, even when composed of fine particles having an average particle diameter of, in particular, 20 µm or smaller, has excellent deposit adhesion imparted thereto without using chromic acid, which is causative of environmental pollution, permanganic acid, etc.; and a process for industrially advantageously producing the powder. The conductive powder plated by electroless plating is characterized by comprising a core powder coated with a melamine resin and a metallic coating film deposited thereon by electroless plating. The process is characterized by comprising: a step in which a core powder is brought into contact with an initial condensate for a melamine resin and the initial condensate is polymerized to obtain a core powder coated with a melamine resin; a step in which a noble metal is deposited on the surface of the core powder coated with the melamine resin; and a step in which the core powder having the noble metal deposited thereon is plated by electroless plating.

Description

明 細 書  Specification
導電性無電解めつき粉体およびその製造方法  Conductive electroless plating powder and method for producing the same
技術分野  Technical field
[0001] 本発明は、導電性無電解めつき粉体およびその製造方法に関する。  [0001] The present invention relates to a conductive electroless plating powder and a method for producing the same.
背景技術  Background art
[0002] 従来、導電性無電解めつき粉体を始めとする無電解めつき製品を製造する場合に は、被めつき物が疎水性であるときには、その表面を親水化処理して金属皮膜と被め つき物との密着性を高める必要がある。密着性を高める手段として、従来はクロム酸 や過マンガン酸などの強力な酸化剤が用いられてきた。  Conventionally, when manufacturing electroless plating products such as conductive electroless plating powder, when the object to be coated is hydrophobic, the surface is hydrophilized to form a metal film. It is necessary to improve the adhesion between the cover and the object to be covered. Conventionally, strong oxidizing agents such as chromic acid and permanganic acid have been used as means for improving adhesion.
[0003] しかし、これらの酸化剤は環境負荷が大き!/、と 、う不都合がある。適切な還元、洗 浄処理をすれば、クロムやマンガンがめっき製品中に残留することは少ないが、完全 な除去は非常に難しい。  [0003] However, these oxidants have a large environmental burden! /. With appropriate reduction and cleaning treatment, chromium and manganese will hardly remain in the plated product, but complete removal is very difficult.
[0004] そこで、環境負荷の小さな親水化処理方法として、例えば下記特許文献 1には合 成榭脂材にアミノシラン系化合物、グリコール化合物、二トリル化合物、チタネートイ匕 合物、ブタジエン重合体、リノール酸、リノレン酸等の不飽和脂肪酸等力 選ばれた 貴金属捕捉性表面処理材で該合成樹脂材を被覆処理して貴金属イオンを担時させ 、次に無電解めつき処理する方法が提案されている。  [0004] Therefore, as a hydrophilization treatment method with a small environmental load, for example, in Patent Document 1 below, an aminosilane compound, a glycol compound, a nitrile compound, a titanate compound, a butadiene polymer, and linoleic acid are used as a synthetic resin material. Unsaturated fatty acids such as linolenic acid, etc. A method is proposed in which the synthetic resin material is coated with a selected noble metal-capturing surface treatment material to carry noble metal ions, and then electroless plating is performed. .
[0005] しかし、特許文献 1に記載の方法では、特に平均粒径が 20 μ m以下の微粒子に対 してめつき密着性に優れたものが得られにくぐ例えばファインピッチ用接続の用途 に使用することが難しい。  [0005] However, in the method described in Patent Document 1, it is difficult to obtain a material having excellent adhesiveness particularly for fine particles having an average particle diameter of 20 μm or less. Difficult to use.
特許文献 1:特開昭 61— 64882号公報  Patent Document 1: Japanese Patent Laid-Open No. 61-64882
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 従って本発明の目的は、環境汚染となるクロム酸や過マンガン酸等を使用せずに、 特に平均粒径が 20 μ m以下の微粒子であっても優れためつき密着性を有する導電 性無電解めつき粉体及びその工業的に有利な製造方法を提供することにある。 課題を解決するための手段 [0007] 本発明は、芯材粉体の表面をメラミン榭脂で被覆処理し、更に無電解めつきにより 金属皮膜が形成されてなることを特徴とする導電性無電解めつき粉体を提供すること により前記目的を達成したものである。 [0006] Therefore, the object of the present invention is to provide a conductive material having excellent adhesion without using chromic acid, permanganic acid, or the like, which causes environmental pollution, especially fine particles having an average particle diameter of 20 μm or less. An electroless electroless powder and an industrially advantageous production method thereof. Means for solving the problem [0007] The present invention provides a conductive electroless plating powder characterized in that the surface of the core powder is coated with melamine resin and a metal film is formed by electroless plating. By doing so, the above-mentioned purpose is achieved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下本発明を、その好ましい実施形態に基づき説明する。本発明の導電性無電解 めっき粉体 (以下、単にめつき粉体ともいう)は、芯材粉体の表面をメラミン榭脂で被 覆処理し、更に無電解めつきにより金属皮膜が形成されてなるものである。  Hereinafter, the present invention will be described based on preferred embodiments thereof. The conductive electroless plating powder of the present invention (hereinafter also simply referred to as a platter powder) is obtained by coating the surface of the core material powder with melamine resin and further forming a metal film by electroless platter. It will be.
[0009] 本発明で使用する芯材粉体の種類に特に制限はなぐ有機物粉体及び無機物粉 体の何れもが用いられる。芯材粉体は、その表面が疎水性であってもよぐ或いは親 水性であってもよい。尤も、本実施形態の方法は、表面が疎水性である芯材粉体に 特に有効である。芯材粉体は、好ましくは水に実質的に不溶性のものであり、更に好 ましくは酸やアルカリに対しても溶解または変質しな 、ものである。  [0009] Either an organic powder or an inorganic powder is used, with no particular restriction on the type of core powder used in the present invention. The surface of the core material powder may be hydrophobic or hydrophilic. However, the method of the present embodiment is particularly effective for the core material powder having a hydrophobic surface. The core powder is preferably substantially insoluble in water, and more preferably does not dissolve or change in acid or alkali.
[0010] 芯材粉体の形状に特に制限はない。一般に芯材粉体は粉粒状であり得るが、それ 以外の形状、例えば繊維状、中空状、板状、針状であってもよぐ粒子表面に多数の 突起を有するものや或いは不定形のものであってもよい。本発明ではこれらの中、球 状のものが導電性フイラ一として使用する場合に充填性に優れたものになる点で特 に好ましい。  [0010] The shape of the core powder is not particularly limited. In general, the core powder can be in the form of a powder, but other shapes such as fibers, hollows, plates, and needles can be used. It may be a thing. In the present invention, among these, a spherical one is particularly preferable in that it has excellent filling properties when used as a conductive filler.
[0011] 芯材粉体の具体例としては、無機物として、金属 (合金も含む)、ガラス、セラミックス [0011] As specific examples of the core material powder, as an inorganic substance, metal (including an alloy), glass, ceramics
、シリカ、カーボン、金属または非金属の酸ィ匕物 (含水物も含む)、アルミノ珪酸塩を 含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸 塩、金属硫化物、金属酸塩、金属ハロゲンィ匕物及び炭素などが挙げられる。有機物 としては、天然繊維、天然榭脂、ポリエチレン、ポリプロピレン、ポリ塩化ビュル、ポリス チレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリル二トリル、ポリアセ タール、アイオノマー、ポリエステルなどの熱可塑性榭脂、アルキッド榭脂、フエノー ル榭脂、尿素樹脂、ベンゾグアナミン榭脂、メラミン榭脂、キシレン榭脂、シリコーン榭 脂、エポキシ榭脂またはジァリルフタレート榭脂などが挙げられる。これらは単独でも 使用でき又は 2種以上の混合物として使用してもよい。 , Silica, carbon, metal or non-metal oxides (including hydrates), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, Examples thereof include metal sulfides, metal acid salts, metal halides, and carbon. Organic substances include natural fiber, natural resin, polyethylene, polypropylene, polychlorinated butyl, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylic nitrile, polyacetal, ionomer, polyester and other thermoplastic resin, alkyd Examples of the resin include resin, phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, and diallyl phthalate resin. These may be used alone or as a mixture of two or more.
[0012] 本発明で使用する芯材粉体の他の好ましい物性としては、平均粒径が 0. 5〜100 μ m、特に 0. 8〜80 μ m、とりわけ 1〜20 μ mであることがめっき工程中の凝集を抑 制し、無電解めつき後の導電粒子として狭ピッチ化に対応できる観点で特に好ましい 。なお、芯材粉体の平均粒径は電気抵抗法を用いて測定された値を示す。 [0012] As another preferable physical property of the core powder used in the present invention, the average particle size is 0.5 to 100. μm, especially 0.8 to 80 μm, especially 1 to 20 μm suppresses agglomeration during the plating process, and is particularly effective from the viewpoint of adapting to a narrow pitch as electroconductive particles after electroless plating. Preferred. In addition, the average particle diameter of core material powder shows the value measured using the electrical resistance method.
[0013] 更に、前述の方法によって測定された芯材粉体の粒度分布には幅がある。一般に 、粉体の粒度分布の幅は、下記計算式(1)で示される変動係数により表わされる。  [0013] Furthermore, the particle size distribution of the core material powder measured by the method described above has a range. In general, the width of the particle size distribution of the powder is represented by a coefficient of variation represented by the following calculation formula (1).
変動係数 (%) = (標準偏差 Z平均粒径) X 100 計算式 (1) この変動係数が大きいことは分布に幅があることを示し、一方、変動係数が小さいこと は粒度分布がシャープであることを示す。本実施形態では、この変動係数が芯材粉 体として 50%以下、特に 30%以下、とりわけ 20%以下のものを使用することが好まし い。この理由は、本発明によって得られためっき粉体を異方性導電膜中の導電粒子 として用いた場合に、接続に有効な寄与割合が高くなるという利点がある力もである。  Coefficient of variation (%) = (standard deviation Z average particle size) X 100 Formula (1) A large coefficient of variation indicates that there is a range of distribution, while a small coefficient of variation indicates that the particle size distribution is sharp. Indicates that there is. In the present embodiment, it is preferable to use a core material powder having a coefficient of variation of 50% or less, particularly 30% or less, particularly 20% or less. The reason for this is that when the plating powder obtained by the present invention is used as the conductive particles in the anisotropic conductive film, there is an advantage that the effective contribution ratio for connection is increased.
[0014] メラミン榭脂の被覆量は、使用する芯材粉体の種類や形状等によって異なるが多く の場合、 0. 1〜15重量%、好ましくは 0. 5〜10重量%とすることが望ましい。この理 由は、メラミン榭脂の被覆量が 0. 1重量%未満では被覆量が不足しめっき密着性に 優れためつき粉体が得られない傾向があり、一方、 15重量%を超えると後述する(1) のメラミン榭脂を被覆した芯材粉体を得る工程で微粒子状のメラミン榭脂が単独で生 成し、異物として残存する傾向があるためである。また、前記メラミン榭脂は、変性さ れたものであつもよい。  [0014] The coating amount of melamine rosin varies depending on the type and shape of the core powder used, but in many cases it is 0.1 to 15% by weight, preferably 0.5 to 10% by weight. desirable. The reason for this is that when the coating amount of melamine resin is less than 0.1% by weight, the coating amount is insufficient and the plating adhesion tends to be difficult to obtain due to excellent plating adhesion. This is because in the step (1) of obtaining the core powder coated with melamine resin, fine particle melamine resin is generated alone and tends to remain as a foreign substance. Further, the melamine rosin may be modified.
[0015] 導電性無電解めつき粉体における金属皮膜は、通常は単一金属の単層構造であ る力 所望により 2種類以上の異種金属による多層構造であってもよい。また、金属 皮膜は、その種類やめつき条件によって結晶質または非晶質のいずれであっても良 い。更に、金属皮膜は、磁性または非磁性を示すものでもあり得る。ここでいう金属に は、金属単体のほか、合金(例えばニッケル リン合金やニッケル ホウ素合金)が 含まれる。使用可能な金属としては、 Ni、 Fe、 Cu、 Co、 Pd、 Ag、 Au、 Pt、 Snなどが 挙げられる。金属皮膜の厚さは 0. 001-2 μ m、特に 0. 005〜1 μ mであることが好 ましい。金属皮膜の厚さは、ニッケルイオンの添加量やィ匕学分析力 算出することが できる。  [0015] The metal film in the electroless electroless plating powder is usually a single metal single layer structure. If desired, the metal film may have a multilayer structure of two or more different metals. In addition, the metal film may be crystalline or amorphous depending on the type and staking conditions. Furthermore, the metal film may be magnetic or non-magnetic. The metal here includes not only a simple metal but also an alloy (for example, a nickel-phosphorus alloy or a nickel-boron alloy). Usable metals include Ni, Fe, Cu, Co, Pd, Ag, Au, Pt, and Sn. The thickness of the metal film is preferably 0.001 to 2 μm, particularly preferably 0.001 to 1 μm. The thickness of the metal film can be calculated based on the amount of nickel ions added and the chemical analysis ability.
[0016] 経済的な観点力も Niが好ましい。以下の実施形態では金属としてニッケルを例に 取り説明するが、用い得る金属はこの限りではない。 [0016] Ni is also preferable in terms of economic viewpoint. In the following embodiment, nickel is used as an example of the metal. Although explained, the metal that can be used is not limited to this.
[0017] 本実施形態の製造方法は、芯材粉体とメラミン榭脂の初期縮合物を接触させて該 初期縮合物の重合反応を行ってメラミン榭脂を被覆した芯材粉体を得る工程、次 、 で該メラミン榭脂を被覆した芯材粉体の表面に貴金属を担持させる工程、次 、で該 貴金属を担持させた芯材粉体を無電解めつき処理する工程とを、含むものであるが、 特に(1)メラミン榭脂を被覆した芯材粉体を得る工程、(2)触媒化処理工程、(3)初 期薄膜形成工程、(4)無電解めつき工程を含むことにより、安定した品質のめっき粉 体を工業的に有利に得ることができる。  [0017] The production method of the present embodiment includes a step of contacting a core material powder and an initial condensate of melamine resin, and performing a polymerization reaction of the initial condensate to obtain a core material powder coated with melamine resin Next, a step of supporting a noble metal on the surface of the core material powder coated with the melamine resin, and a step of subjecting the core material powder supporting the noble metal to an electroless plating process in the next step. However, by including (1) a step of obtaining a core powder coated with melamine rosin, (2) a catalytic treatment step, (3) an initial thin film formation step, and (4) an electroless plating step, Stable quality plating powder can be advantageously obtained industrially.
[0018] (1)の芯材粉体のメラミン榭脂被覆工程は、芯材粉体とメラミン榭脂の初期縮合物 を接触させて該初期縮合物の重合反応を行ってメラミン榭脂で被覆した芯材粉体を 得る工程である。  [0018] In the step (1), the core material powder is coated with the melamine resin by bringing the core material powder and the initial condensate of the melamine resin into contact with each other to perform a polymerization reaction of the initial condensate. This is a step of obtaining a core powder.
[0019] なお、本発明においてメラミン榭脂の初期縮合物とは加熱又は酸触媒の添カ卩により 縮合反応を起こしメラミン榭脂が生成されるものを言う。前記メラミン榭脂の初期縮合 物は、市販のものであってもよぐまた、メラミンィ匕合物とアルデヒドィ匕合物とを反応さ せて得られるものをメラミン榭脂の初期縮合物として使用してもよい。  [0019] In the present invention, the initial condensate of melamine resin means a product in which a condensation reaction is caused by heating or addition of an acid catalyst to produce melamine resin. The initial condensate of melamine resin may be a commercially available product, or a product obtained by reacting a melamine compound with an aldehyde compound is used as the initial condensate of melamine resin. May be.
[0020] 前記メラミンィ匕合物としては、例えば、メラミン、メラミンのァミノ基の水素をアルキル 基、ァルケ-ル基、フエ-ル基で置換したメラミンィ匕合物(例えば、特開平 09— 1432 38号公報参照。 )、メラミンのァミノ基の水素をヒドロキシアルキル基、アミノアルキル 基で置換した置換メラミンィ匕合物 (例えば、特開平 5— 202157号公報参照。)等が 挙げられるが、工業的に容易に入手可能で、安価である点でメラミンが好ましい。ま た、メラミン化合物の一部を尿素、チォ尿素、エチレン尿素等の尿素類、ベンゾグァ ナミン、ァセトグアナミン等のグアナミン類、フエノール、クレゾール、アルキルフエノー ル、レゾルシン、ハイドロキノン、ピロガロール等のフエノール類、ァ-リンで置換した ものであってもよい。  [0020] Examples of the melamine compound include melamine, a melamine compound obtained by substituting hydrogen of an amino group of melamine with an alkyl group, a alkenyl group, or a phenol group (for example, JP 09-1432 38 A). ), Substituted melamine compounds in which the hydrogen of the amino group of melamine is substituted with a hydroxyalkyl group or an aminoalkyl group (for example, see JP-A-5-202157), etc. Melamine is preferred because it is readily available and inexpensive. Some of the melamine compounds are also urea, thiourea, ethylene urea and other ureas, benzoguanamine, acetoguanamine and other guanamines, phenol, cresol, alkylphenol, resorcin, hydroquinone, pyrogallol and other phenols, -It may be substituted with phosphorus.
[0021] 前記アルデヒド化合物としては、例えばホルムアルデヒド、パラホルムアルデヒド、ァ セトアルデヒド、ベンズアルデヒド、フルフラール等が挙げられ、メラミン化合物との反 応性の点でホルムアルデヒド、パラホルムアルデヒドが好ましい。アルデヒド化合物の 添力卩量はメラミン化合物に対するモル比で 1. 1〜6. 0倍モル、好ましくは 1. 2〜4. 0 倍モルとすることが好まし 、。 [0021] Examples of the aldehyde compound include formaldehyde, paraformaldehyde, acetoaldehyde, benzaldehyde, furfural and the like, and formaldehyde and paraformaldehyde are preferable in terms of reactivity with the melamine compound. The addition amount of the aldehyde compound is 1.1 to 6.0 times mol, preferably 1.2 to 4.0 in terms of a molar ratio to the melamine compound. It is preferred to be double moles.
[0022] 使用することができる溶媒としては、水が特に好ましいが、水と有機溶媒との混合溶 媒として使用してもよい。この場合、使用することができる有機溶媒としては、メラミン 榭脂の初期縮合物を溶解することができる溶媒を用いることが好ましぐ例えば、メタ ノール、エタノール、プロパノール等のアルコール、ジォキサン、テトラヒドロフラン、 1 [0022] The solvent that can be used is particularly preferably water, but may be used as a mixed solvent of water and an organic solvent. In this case, as the organic solvent that can be used, it is preferable to use a solvent that can dissolve the initial condensate of melamine resin, for example, alcohols such as methanol, ethanol, and propanol, dioxane, tetrahydrofuran, 1
, 2—ジメトキシェタン等のエーテル類、ジメチルホルムアミド、ジメチルスルォキシド 等の極性溶媒が挙げられる。 , Ethers such as 2-dimethoxyethane, and polar solvents such as dimethylformamide and dimethyl sulfoxide.
[0023] 前記メラミンィ匕合物とアルデヒドィ匕合物の反応は pH8〜9で行われ、必要により塩 基を添加して反応を行うことができる。使用できる塩基としては、例えば水酸化ナトリ ゥム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア水等の常用のアル力 リ剤を使用できる。反応温度は 25〜: LOOで通常分子量が 200〜700程度のメラミン 榭脂の初期縮合物を得ることができる。 [0023] The reaction of the melamine compound and the aldehyde compound is carried out at a pH of 8 to 9. If necessary, the reaction can be carried out by adding a base group. Usable bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and aqueous ammonia can be used as the base that can be used. Reaction temperature is 25-: An initial condensate of melamine rosin having a molecular weight of about 200-700 with LOO can be obtained.
[0024] 更に、前記メラミン榭脂の初期縮合物を微量の酸性物質の存在下にメチルアルコ ール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類 と反応させることによりアルコールにより変性されたメラミン榭脂の初期縮合物を得る ことができる。 [0024] Further, the melamine modified with alcohol by reacting the initial condensate of melamine resin with alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol in the presence of a small amount of acidic substance. An initial condensate of rosin can be obtained.
[0025] 前記メラミン榭脂の初期縮合物の添加量は、使用する芯材粉体の種類によって異 なるが多くの場合、 0. 1〜15重量%、好ましくは 0. 5〜10重量%とすることが望まし い。  [0025] The amount of the initial condensate of melamine rosin varies depending on the type of the core powder used, but in many cases is 0.1 to 15% by weight, preferably 0.5 to 10% by weight. It is desirable to do.
[0026] 本発明にお ヽて、この(1)のメラミン榭脂を被覆した芯材粉体を得る工程での反応 操作は、前記芯材粉体を含む溶媒を調製し、該溶媒に前記メラミン榭脂の初期縮合 物を添加して該初期縮合物の重合反応を行う方法、前記メラミン榭脂の初期縮合物 を含む溶媒に、前記芯材粉体を添加して該初期縮合物の重合反応を行う方法、或 いは芯材粉体、前記メラミンィ匕合物及びアルデヒドィ匕合物を所定量添加し、必要によ りアルカリ剤を添加し溶媒中でそのままメラミン榭脂の初期縮合物の重合反応を行う 方法等を用いることができる。なお、重合反応は必要により酸触媒を添加し 40〜: LOO °Cで加温下に反応を行い、反応終了後、常法により固液分離し、次いで 60〜180°C で乾燥を行うか、或いは反応液をそのまま噴霧乾燥することにより、メラミン榭脂で被 覆した芯材粉体を得ることができる。 [0026] In the present invention, the reaction operation in the step (1) of obtaining the core material powder coated with melamine rosin comprises preparing a solvent containing the core material powder and adding the solvent to the solvent. A method of adding an initial condensate of melamine resin and performing a polymerization reaction of the initial condensate, and adding the core powder to a solvent containing the initial condensate of melamine resin and polymerizing the initial condensate Method for carrying out reaction, or core material powder, melamine compound and aldehyde compound, a predetermined amount is added, and if necessary, an alkali agent is added and an initial condensate of melamine resin is directly added in a solvent. The method of performing the polymerization reaction can be used. In addition, the polymerization reaction may be carried out by adding an acid catalyst if necessary, and the reaction is carried out under heating at 40 to LOO ° C. After completion of the reaction, solid-liquid separation is carried out by a conventional method, followed by drying at 60 to 180 ° C Alternatively, spray-dry the reaction solution as it is and cover with melamine rosin. Covered core powder can be obtained.
[0027] 前記重合反応で用いることができる酸触媒としては、特に制限されるものではない 1S 例えば塩酸、硫酸、硝酸、リン酸、メタンスルホン酸、ベンゼンスルホン酸、パラト ルエンスルホン酸、アルキルベンゼンスルホン酸、スルファミン酸等のスルホン酸類、 ギ酸、シユウ酸、安息香酸、フタル酸等の有機酸を使用することができる。  [0027] The acid catalyst that can be used in the polymerization reaction is not particularly limited. 1S For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, alkylbenzenesulfonic acid In addition, sulfonic acids such as sulfamic acid, and organic acids such as formic acid, oxalic acid, benzoic acid, and phthalic acid can be used.
[0028] (2)の触媒化処理工程は、貴金属イオンの捕捉能を有するか又は表面処理によつ て貴金属イオンの捕捉能を付与した芯材粉体に、貴金属イオンを捕捉させた後、こ れを還元して前記貴金属を芯材粉体の表面に担持させる工程である。(3)の初期薄 膜形成工程は、貴金属が担持された芯材粉体を、ニッケルイオン、還元剤及び錯ィ匕 剤を含む初期薄膜形成液に分散混合させ、ニッケルイオンを還元させて該芯材粉体 の表面にニッケルの初期薄膜を形成する工程である。(4)の無電解めつき工程は、 無電解めつきによって芯材粉体の表面にニッケル皮膜を有するめっき粉体を製造す る工程である。以下、それぞれの工程について詳述する。  [0028] In the catalytic treatment step (2), noble metal ions are captured by a core material powder that has the ability to capture noble metal ions or that has been provided with a surface treatment. This is a step of reducing this and supporting the noble metal on the surface of the core powder. In the initial thin film forming step (3), the core material powder on which the noble metal is supported is dispersed and mixed in the initial thin film forming liquid containing nickel ions, a reducing agent and a complexing agent, and the nickel ions are reduced. This is a process of forming an initial nickel thin film on the surface of the core powder. The electroless plating process (4) is a process for producing a plating powder having a nickel coating on the surface of the core powder by electroless plating. Hereinafter, each process is explained in full detail.
[0029] (2)触媒化処理工程  [0029] (2) Catalytic treatment process
前記(1)の工程で得られたメラミン榭脂を被覆した芯材粉体は、その表面が貴金属 イオンの捕捉能を有する力 又は貴金属イオンの捕捉能を有するように表面改質さ れる。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオン の捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることを 、う。  The core material powder coated with the melamine resin obtained in the step (1) is surface-modified so that the surface thereof has a precious metal ion capturing ability or a precious metal ion capturing ability. The noble metal ions are preferably palladium or silver ions. Having a precious metal ion scavenging ability means that the precious metal ion can be captured as a chelate or salt.
[0030] 次に、芯材粉体を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液 に分散させる。これによつて貴金属イオンを粉体表面に捕捉させる。貴金属塩濃度は 粉体の表面積 lm2当り 1 X 10— 7〜1 X 10— 2モルの範囲で充分である。貴金属イオンが 捕捉された芯材粉体は系から分離され水洗される。引き続き、芯材粉体を水に懸濁 させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによつて芯材粉体 の表面に貴金属を担持させる。還元剤としては、例えば次亜リン酸ナトリウム、水素化 ほう素ナトリウム、水素化ほう素カリウム、ジメチルァミンボラン、ヒドラジン、ホルマリン 等が用いられる。 [0030] Next, the core powder is dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. As a result, noble metal ions are trapped on the powder surface. Noble metal salt concentration is sufficient surface area lm 2 per 1 X 10- 7 ~1 X 10- 2 mol per mol of silver powder. The core powder with the precious metal ions captured is separated from the system and washed with water. Subsequently, the core powder is suspended in water, and a reducing agent is added thereto to reduce the precious metal ions. As a result, the noble metal is supported on the surface of the core powder. Examples of the reducing agent include sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin and the like.
[0031] 貴金属イオンを芯材粉体の表面に捕捉させる前に、錫イオンを粉体表面に吸着さ せる感受性ィ匕処理を施してもよい。錫イオンを粉体表面に吸着させるには、例えば表 面改質処理された芯材粉体を塩化第一錫の水溶液に投入し所定時間撹拌すればよ い。 [0031] Before the noble metal ions are trapped on the surface of the core powder, a sensitivity treatment for adsorbing tin ions on the powder surface may be performed. To adsorb tin ions on the powder surface, for example, The surface-modified core material powder may be put into an aqueous stannous chloride solution and stirred for a predetermined time.
[0032] (3)初期薄膜形成工程  [0032] (3) Initial thin film formation process
初期薄膜形成工程は、主として、芯材粉体へのニッケルの均一析出を平滑化する 目的で行われる。初期薄膜形成工程においては、先ず、貴金属が担持された芯材 粉体を十分に水に分散させる。分散にはコロイドミルやホモジナイザーのような剪断 分散装置などを用いることができる。芯材粉体を分散させるに際し、例えば界面活性 剤等の分散剤を必要に応じて用いることができる。このようにして得られた水性懸濁 体を、ニッケルイオン、還元剤及び錯化剤を含む初期薄膜形成液に分散混合させる 。これによつて、ニッケルイオンの還元反応が開始され、芯材粉体の表面にニッケル の初期薄膜が形成される。先に述べた通り、初期薄膜形成工程は主として均一析出 の目的で行われるから、形成されるニッケルの初期薄膜は、芯材粉体の表面を平滑 にし得る程度に薄いものであればよい。この観点から、初期薄膜の厚さは 0. 001-2 μ m、特に 0. 005〜1 μ mであることが好ましい。初期薄膜の厚さは、ニッケルイオン の添加量やィ匕学分析力も算出することができる。  The initial thin film forming step is mainly performed for the purpose of smoothing the uniform precipitation of nickel on the core powder. In the initial thin film forming step, first, the core powder carrying the noble metal is sufficiently dispersed in water. For dispersion, a shearing dispersion device such as a colloid mill or a homogenizer can be used. In dispersing the core powder, for example, a dispersant such as a surfactant can be used as necessary. The aqueous suspension thus obtained is dispersed and mixed in an initial thin film forming liquid containing nickel ions, a reducing agent and a complexing agent. This initiates a nickel ion reduction reaction, and an initial nickel thin film is formed on the surface of the core powder. As described above, since the initial thin film forming step is mainly performed for the purpose of uniform precipitation, the initial thin film of nickel to be formed may be thin enough to smooth the surface of the core powder. From this viewpoint, the thickness of the initial thin film is preferably 0.001 to 2 μm, particularly preferably 0.001 to 1 μm. The initial thin film thickness can be calculated from the amount of nickel ions added and the ability to analyze the ions.
[0033] 前述した厚さの初期薄膜を形成させる観点から、初期薄膜形成液における-ッケ ノレイオンの濃度 ίま 2. 0 X 10— 4〜1. 0モノレ/リットノレ、特に 1. 0 X 10— 3〜0. 1モノレ/リ ットルであることが好ましい。ニッケルイオン源としては、硫酸ニッケルや塩化ニッケル のような水溶性ニッケル塩が用いられる。同様の観点から、初期薄膜形成液における 還元剤の濃度 ίま 4 X 10— 4〜2. 0モノレ/リットノレ、特に 2. 0 X 10— 3〜0. 2モノレ/リット ルであることが好ましい。還元剤としては、先に述べた貴金属イオンの還元に用いら れて 、るものと同様のものを用いることができる。 [0033] From the viewpoint of forming the initial film thickness described above, in the initial thin film forming liquid -. Tsu Ke concentration Noreion ί or 2. 0 X 10- 4 ~1 0 Monore / Rittonore, especially 1. 0 X 10 — 3 to 0.1 monolayer / liter is preferable. As the nickel ion source, a water-soluble nickel salt such as nickel sulfate or nickel chloride is used. From the same viewpoint, it is preferable that the initial concentration ί of the reducing agent in the thin film-forming solution or 4 X 10- 4 ~2. 0 Monore / Rittonore, especially 2. 0 X 10- 3 ~0. 2 Monore / liters . As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used.
[0034] 初期薄膜形成液には錯化剤を含有させておくことが好ましい。錯化剤は、めっきの 対象となる金属イオンに対して錯体形成作用のある化合物である。本実施形態にお いては、錯化剤として有機カルボン酸又はその塩、例えばクェン酸、ヒドロキシ酢酸、 酒石酸、リンゴ酸、乳酸若しくはダルコン酸又はそのアルカリ金属塩やアンモニゥム 塩が使用できる。さらにアミンィ匕合物、例えばグリシン、ァラニン、エチレンジァミン、 ジエチレントリァミン、トリエチレンテトラミン、ペンタエチレンへキサミンなどのアミノ基 を有する化合物も使用できる。これらの錯化剤は 1種または 2種類以上用いることが できる。錯化剤の溶解度の観点から、初期薄膜形成液における錯化剤の量は 0. 00 3〜10モノレ/リツ卜ノレ、特に 0. 006〜4モノレ/リツ卜ノレであること力好まし!/、。 [0034] The initial thin film forming liquid preferably contains a complexing agent. The complexing agent is a compound that has a complex forming action on the metal ion to be plated. In the present embodiment, an organic carboxylic acid or a salt thereof such as citrate, hydroxyacetic acid, tartaric acid, malic acid, lactic acid or dulconic acid or an alkali metal salt or ammonium salt thereof can be used as a complexing agent. In addition, amine groups such as glycine, alanine, ethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine and other amino groups A compound having can also be used. These complexing agents can be used alone or in combination of two or more. From the viewpoint of the solubility of the complexing agent, the amount of the complexing agent in the initial thin film forming liquid is preferably 0.003 to 10 monole / Ritsunore, particularly 0.006 to 4 monore / Ritsunore! /.
初期薄膜を容易に形成し得る点から、水性懸濁体における芯材粉体の濃度は 0. 1 〜500g/リットノレ、特に 0. 5〜300g/リットノレであること力 子まし!/、。  Since the initial thin film can be easily formed, the concentration of the core powder in the aqueous suspension is 0.1 to 500 g / liter, particularly 0.5 to 300 g / liter.
[0035] 芯材粉体を含む水性懸濁体と初期薄膜形成液とを混合して得られた水性懸濁体 は、次いで後述する無電解めつき工程に付される。無電解めつき工程に付される前 における水性懸濁体にぉ 、ては、該水性懸濁体の体積に対する該水性懸濁体に含 まれる該芯材粉体の表面積の総和の割合 (この割合は一般に負荷量と呼ばれる)が 0. l〜15m2/リットル、特に 1〜: LOm2/リットルであることが、密着性に優れた皮膜 を有するニッケル皮膜を容易に形成し得る点力 好ましい。負荷量が高すぎると、後 述する無電解めつき工程において、液相でのニッケルイオンの還元が甚だしくなり、 ニッケルの微粒子が液相に多量に発生し、これが芯材粉体の表面に付着してしまい 、均一なニッケル皮膜を形成することが困難となる。 [0035] The aqueous suspension obtained by mixing the aqueous suspension containing the core powder and the initial thin film forming liquid is then subjected to an electroless plating process described later. In the aqueous suspension before being subjected to the electroless plating process, the ratio of the total surface area of the core powder contained in the aqueous suspension to the volume of the aqueous suspension ( This ratio is generally referred to as the load amount) 0.1 to 15 m 2 / l, especially 1 to LOm 2 / l, which is a point force that can easily form a nickel film with excellent adhesion. preferable. If the load is too high, nickel ions in the liquid phase are severely reduced in the electroless plating process described later, and a large amount of nickel fine particles are generated in the liquid phase, which adheres to the surface of the core powder. Therefore, it becomes difficult to form a uniform nickel film.
[0036] (3)無電解めつき工程 [0036] (3) Electroless plating process
無電解めつき工程にぉ ヽては、(a)初期薄膜が形成された芯材粉体及び前記錯ィ匕 剤を含む水性懸濁体、(b)ニッケルイオン含有液及び (c)還元剤含有液の 3液を使用 する。(a)の水性懸濁体は、先に述べた初期薄膜形成工程で得られたものをそのまま 用いればよい。  For the electroless plating process, (a) a core powder on which an initial thin film is formed and an aqueous suspension containing the complexing agent, (b) a nickel ion-containing liquid, and (c) a reducing agent Use 3 liquids. As the aqueous suspension (a), the one obtained in the above-described initial thin film forming step may be used as it is.
[0037] (a)の水性懸濁体とは別に、(b)のニッケルイオン含有液及び (c)の還元剤含有液の 2 液を調製しておく。ニッケルイオン含有液は、ニッケルイオン源である硫酸ニッケルや 塩ィ匕ニッケルのような水溶性ニッケル塩の水溶液である。ニッケルイオンの濃度は、 0 . 1〜1. 2モノレ/リットノレ、特に 0. 5〜1. 0モノレ/リットノレであること力 S、密着'性に優れ たニッケル皮膜を容易に形成させることができることから好ま 、。  [0037] Separately from the aqueous suspension (a), two liquids are prepared: a nickel ion-containing liquid (b) and a reducing agent-containing liquid (c). The nickel ion-containing liquid is an aqueous solution of a water-soluble nickel salt such as nickel sulfate or nickel chloride as a nickel ion source. The nickel ion concentration should be 0.1 to 1.2 monolith / lit nore, especially 0.5 to 1.0 monolet / lit nore, and it can easily form a nickel film with excellent strength and adhesion. Preferred from.
[0038] ニッケルイオン含有液には、水性懸濁体に含有されている錯化剤と同種の錯化剤 を含有させておくことが好まし 、。つまり (a)の水性懸濁体及び (b)のニッケルイオン含 有液の双方に同種の錯化剤を含有させておくことが好ましい。これによつて密着性に 優れたニッケル皮膜を容易に形成させることができる。この理由は明確ではないが、 ( a)の水性懸濁体及び (b)のニッケルイオン含有液の双方に錯化剤を含有させておくこ とで、ニッケルイオンが安定ィ匕し、その還元反応が急激に進行することが妨げられる 力もであると推測される。 [0038] The nickel ion-containing liquid preferably contains a complexing agent of the same type as the complexing agent contained in the aqueous suspension. That is, it is preferable that the same kind of complexing agent is contained in both the aqueous suspension (a) and the nickel ion-containing liquid (b). This makes it possible to easily form a nickel film having excellent adhesion. The reason for this is not clear, but ( By adding a complexing agent to both the aqueous suspension of a) and the nickel ion-containing liquid of (b), nickel ions are stabilized and the reduction reaction is prevented from proceeding rapidly. It is speculated that it is also the power that can be.
[0039] (b)のニッケルイオン含有液における錯化剤の濃度も、(a)の水性懸濁体における錯 ィ匕剤の濃度と同様にニッケル皮膜の形成に影響を及ぼす。この観点及び錯化剤の 溶解度の観点から、ニッケルイオン含有液における錯化剤の量は 0. 006〜12モル Zリットル、特に 0. 012〜8モル Zリットルであることが好ましい。  [0039] The concentration of the complexing agent in the nickel ion-containing liquid (b) affects the formation of the nickel film in the same manner as the concentration of the complexing agent in the aqueous suspension (a). From this viewpoint and the solubility of the complexing agent, the amount of the complexing agent in the nickel ion-containing liquid is preferably 0.006 to 12 mol Z liter, particularly preferably 0.012 to 8 mol Z liter.
[0040] (c)の還元剤含有液は、一般に還元剤の水溶液である。還元剤としては、先に述べ た貴金属イオンの還元に用いられて 、るものと同様のものを用いることができる。特に 次亜リン酸ナトリウムを用いることが好ましい。還元剤の濃度は、ニッケルイオンの還 元状態に影響を及ぼすことから、 0. 1〜20モル Zリットル、特に 1〜10モル Zリットル の範囲に調整することが好まし 、。  [0040] The reducing agent-containing liquid (c) is generally an aqueous solution of a reducing agent. As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used. It is particularly preferable to use sodium hypophosphite. Since the concentration of the reducing agent affects the reduction state of nickel ions, it is preferable to adjust the concentration within the range of 0.1 to 20 mol Z liter, particularly 1 to 10 mol Z liter.
[0041] (a)の水性懸濁体に、(b)のニッケルイオン含有液及び (c)の還元剤含有液の 2液を個 別かつ同時に添加する。これによつてニッケルイオンが還元されて、芯材粉体の表面 にニッケルが析出しその皮膜が形成される。ニッケルイオン含有液と還元剤含有液の 添加速度は、ニッケルの析出速度を制御するのに有効である。ニッケルの析出速度 は、密着性の良いニッケル皮膜の形成に影響を及ぼす。従って、ニッケルの析出速 度は、両液の添カ卩速度を調整することによって 1〜: LOOOOnmZ時、特に 5〜300n m/時に制御することが好ましい。ニッケルの析出速度は、ニッケルイオン含有液の 添加速度から計算によって求めることができる。  [0041] To the aqueous suspension of (a), two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c), are added individually and simultaneously. As a result, nickel ions are reduced, and nickel is deposited on the surface of the core powder to form a film. The addition rate of the nickel ion-containing solution and the reducing agent-containing solution is effective in controlling the nickel deposition rate. The deposition rate of nickel affects the formation of a nickel film with good adhesion. Therefore, it is preferable to control the nickel deposition rate by adjusting the addition rate of both solutions at 1 to: LOOOOnmZ, particularly 5 to 300 nm / hour. The deposition rate of nickel can be obtained by calculation from the addition rate of the nickel ion-containing liquid.
[0042] 2液を水性懸濁体に添カ卩している間、負荷量を 0. l〜15m2/リットル、特に 1〜10 m2/リットルの範囲に保つことが好ましい。これによつて、ニッケルが均一に析出する 。同様の理由から、 2液の添カ卩が終わりニッケルイオンの還元が完了した時点での負 荷量がこの範囲であることも好まし!/、。 [0042] While 2 solution are添Ka卩aqueous suspension, the load 0. l~15m 2 / l, is preferably kept in a range especially of 1 to 10 m 2 / liter. As a result, nickel is deposited uniformly. For the same reason, it is also preferable that the load amount is within this range when the addition of the two liquids is completed and the reduction of nickel ions is completed! /.
[0043] 用いる還元剤の種類にもよる力 ニッケルイオンの還元反応中、水性懸濁体の pH は 3〜13、特に 4〜: L 1の範囲に保たれていること力 ニッケルの水不溶性沈殿物の 生成を防止する点から好ましい。 pHを調整するには、例えば、還元剤含有液中に水 酸ィ匕ナトリウムなどの pH調整剤を所定量添加しておけばよい。 [0044] 得られためっき粉体は、ろ過及び水洗が数度繰り返された後に分離される。更に付 加工程として、ニッケル皮膜上に最上層としての金めつき層の形成工程を行ってもよ い。金めつき層の形成は、従来公知の無電解めつき法に従い行うことができる。例え ば、めっき粉体の水性懸濁体に、エチレンジァミン四酢酸四ナトリウム、クェン酸三ナ トリウム及びシアンィ匕金カリウムを含み、水酸化ナトリウムで pHが調整された無電解め つき液を添加することで、ニッケル皮膜上に金めつき層が形成される。金めつき層の 厚さは一般に 0. 001〜0. 5 m程度である。金めつき層の厚さは、金イオンの添カロ 量やィ匕学分析力 算出することができる。 [0043] Force depending on the type of reducing agent used During the reduction reaction of nickel ions, the pH of the aqueous suspension is kept in the range of 3 to 13, especially 4 to: Force of water insoluble precipitation of nickel This is preferable from the viewpoint of preventing the formation of products. In order to adjust the pH, for example, a predetermined amount of a pH adjusting agent such as sodium hydroxide may be added to the reducing agent-containing solution. [0044] The obtained plating powder is separated after filtration and washing several times. Further, as an additional step, a gold-plated layer forming step as the uppermost layer may be performed on the nickel film. The gold plating layer can be formed according to a conventionally known electroless plating method. For example, to an aqueous suspension of plating powder, add an electroless plating solution containing tetrasodium ethylenediammine tetraacetate, trisodium citrate and potassium cyanate and adjusted to pH with sodium hydroxide. Thus, a gold plating layer is formed on the nickel film. The thickness of the gold plating layer is generally about 0.001 to 0.5 m. The thickness of the gold plating layer can be calculated from the amount of gold ions added and the ability to analyze the ions.
[0045] このようにして、ニッケル皮膜が芯材粉体の表面に形成されてなるめっき粉体が得 られる。このめつき粉体におけるニッケル皮膜は芯材粉体との密着性に優れたものと なる。ニッケル皮膜の厚さはその密着性や耐熱性に少な力 ず影響し、皮膜が厚す ぎると芯材粉体力もの落剥が起こって導電性が低下しやすい傾向にある。逆に、皮 膜が薄すぎても所望の導電性が得られなくなる。これらの観点から、ニッケル皮膜の 厚さは 0. 005〜10 /ζ πι、特に 0. 01〜2 /ζ πι程度であることが好ましい。ニッケル皮 膜の厚さは例えば走査型電子顕微鏡による観察から実測できるほか、ニッケルィォ ンの添加量やィ匕学分析力 算出することもできる。  [0045] In this way, a plating powder in which a nickel film is formed on the surface of the core material powder is obtained. The nickel coating on the plated powder has excellent adhesion to the core powder. The thickness of the nickel film has a slight effect on its adhesion and heat resistance. If the film is too thick, the core powder tends to fall off and the conductivity tends to decrease. On the other hand, if the skin is too thin, the desired conductivity cannot be obtained. From these viewpoints, the thickness of the nickel film is preferably about 0.005 to 10 / ζ πι, particularly about 0.01 to 2 / ζ πι. The thickness of the nickel film can be measured, for example, by observation with a scanning electron microscope, and the amount of nickel ion added and the ability to analyze chemistry can also be calculated.
[0046] 力べして得られる本発明のめっき粉体は、例えば異方導電フィルム (ACF)やヒート シールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用 LSIチップの回路 基板へ接続するための導電材料、偏光板などの用途に好適に使用される。  [0046] The plating powder of the present invention obtained by force is used for connecting, for example, an anisotropic conductive film (ACF), a heat seal connector (HSC), and an electrode of a liquid crystal display panel to a circuit board of an LSI chip for driving. It is suitably used for applications such as conductive materials and polarizing plates.
実施例  Example
[0047] 以下、実施例により本発明を更に詳細に説明する。し力しながら、本発明の範囲は 力かる実施例に制限されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to the powerful embodiments.
[0048] 〔実施例 1 3〕  [Example 1 3]
(1) メラミン榭脂被覆工程  (1) Melamine rosin coating process
冷却器付四つ口フラスコに表 1に示す芯材粉体 100重量部、水 100重量部、メラミ ン 3重量部、 37%ホルマリン 8重量部を仕込み、攪拌下に 5%炭酸ナトリウム水溶液 を添加して pHを 9. 0に調製した。次に 75°Cに昇温し、 2時間攪拌下に反応を行った 。反応終了後、冷却し、濾過、水洗し、減圧下(5mmHg以下)、 150°Cで 6時間乾燥 硬化させることによりメラミン榭脂を 2. 1重量%被覆した芯材粉体を得た。 Charge 100 parts by weight of the core powder shown in Table 1, 100 parts by weight of water, 3 parts by weight of melamine, and 8 parts by weight of 37% formalin in a four-necked flask with a condenser, and add 5% aqueous sodium carbonate solution with stirring. The pH was adjusted to 9.0. Next, the temperature was raised to 75 ° C, and the reaction was carried out with stirring for 2 hours. After completion of the reaction, it is cooled, filtered, washed with water, and dried under reduced pressure (5 mmHg or less) at 150 ° C for 6 hours. By curing, a core material powder coated with 2.1% by weight of melamine resin was obtained.
[0049] (2)触媒化処理工程 [0049] (2) Catalytic treatment process
(1)の工程で得られたメラミン被覆芯材粉体を 7.5重量%含む水性スラリー 200mlに 、塩化第一錫水溶液 200mlを投入した。この水溶液の濃度は 5 X 10— 3モル/ Lであつ た。常温で 5分間攪拌し、錫イオンをメラミン被覆芯材粉体の表面に吸着させる感受 性ィ匕処理を行った。引き続き水溶液を濾過し、 1回リパルプして水洗した。次いでメラ ミン被覆芯材粉体を 3.75重量%含む水性スラリー 400mLを調製し、 60°Cに維持した 。超音波を併用してスラリーを攪拌しながら、 0. 11モル gZLの塩化パラジウム水溶 液 2mLを添加した。そのままの攪拌状態を 5分間維持させ、メラミン被覆芯材粉体の 表面にパラジウムイオンを捕捉させる活性ィ匕処理を行った。次 、で水溶液をろ過し、 1回リパルプ湯洗した。次にメラミン被覆芯材粉体を 7.5重量%含む水性スラリー 200 mlを調製した。超音波を併用しながらこのスラリーを攪拌し、そこへ、 0. 017モル/リ ットルのジメチルァミンボランと 0. 16モル Zリットルのホウ酸との混合水溶液 20mLを 加えた。常温で超音波を併用しながら 2分間攪拌してパラジウムイオンの還元処理を 行った。 200 ml of an aqueous stannous chloride solution was added to 200 ml of an aqueous slurry containing 7.5% by weight of the melamine-coated core material powder obtained in the step (1). The concentration of this aqueous solution was filed at 5 X 10- 3 mol / L. The mixture was agitated at room temperature for 5 minutes and subjected to a susceptibility treatment to adsorb tin ions on the surface of the melamine-coated core material powder. Subsequently, the aqueous solution was filtered, repulped once and washed with water. Next, 400 mL of an aqueous slurry containing 3.75% by weight of melamine-coated core material powder was prepared and maintained at 60 ° C. While stirring the slurry using ultrasonic waves, 2 mL of a 0.11 mol g ZL palladium chloride aqueous solution was added. The state of stirring as it was was maintained for 5 minutes, and an active soot treatment was performed to trap palladium ions on the surface of the melamine-coated core powder. Next, the aqueous solution was filtered and washed once with repulp hot water. Next, 200 ml of an aqueous slurry containing 7.5% by weight of melamine-coated core material powder was prepared. The slurry was stirred while using ultrasonic waves, and 20 mL of a mixed aqueous solution of 0.117 mol / liter dimethylamine borane and 0.16 mol Z liter boric acid was added thereto. The palladium ion was reduced by stirring for 2 minutes while using ultrasonic waves at room temperature.
(3)初期薄膜形成工程  (3) Initial thin film formation process
[0050] (2)の工程で処理したメラミン被覆芯材粉体 7.5重量%含む水性スラリー 200mLを、 0. 087モル ZLの酒石酸ナトリウムと 0. 005モル ZLの硫酸ニッケルと 0. 012モル ZLの次亜リン酸ナトリウム力 なる初期薄膜形成液に攪拌しながら添加して水性懸 濁体となした。初期薄膜形成液は 75°Cに加温されており、液量は 2Lであった。スラリ 一投入後、直ぐに水素の発生が認められ、初期薄膜形成の開始を確認した。  [0050] 200 mL of an aqueous slurry containing 7.5% by weight of the melamine-coated core powder treated in the step (2) was mixed with 0.087 mol ZL sodium tartrate, 0.005 mol ZL nickel sulfate and 0.012 mol ZL. Sodium hypophosphite was added to the initial thin film forming solution with stirring to form an aqueous suspension. The initial thin film forming liquid was heated to 75 ° C and the liquid volume was 2 L. Immediately after the slurry was charged, hydrogen generation was observed, confirming the start of initial thin film formation.
(4)無電解めつき工程  (4) Electroless plating process
[0051] 初期薄膜形成工程で得られた水性懸濁体に 0. 86モル ZLの硫酸ニッケルと 0. 1 7モル ZLの酒石酸ナトリウムからなるニッケルイオン含有液及び 2. 57モル ZLの次 亜リン酸ナトリウムと 2. 6モル/ Lの水酸ィ匕ナトリウム力もなる還元剤含有液の 2液を、 それぞれ 8mLZ分の添加速度で添加した。添加量はそれぞれ析出した膜厚が 0. 2 ミクロンになるように添加液量を調節した。 2液の添加後すぐに水素の発生が認めら れ、めっき反応の開始が確認された。 2液の添加が完了した後、水素の発泡が停止 するまで 75°Cの温度を保持しながら攪拌を続けた。次いで水性懸濁体をろ過し、ろ 過物を 3回リパルプ洗浄した後、 110°Cの真空乾燥機で乾燥させた。これにより、ニッ ケルーリン合金めつき皮膜を有するめっき粉体を得た。 [0051] The aqueous suspension obtained in the initial thin film formation step was mixed with a nickel ion-containing liquid consisting of 0.86 mol ZL of nickel sulfate and 0.17 mol ZL of sodium tartrate and 2.57 mol ZL of hypophosphorous acid. Two solutions, sodium acid and 2.6 mol / L of a reducing agent-containing solution that also has sodium hydroxide strength, were added at an addition rate of 8 mLZ each. The amount of the added solution was adjusted so that the deposited film thickness was 0.2 microns. Hydrogen generation was observed immediately after the addition of the two solutions, confirming the start of the plating reaction. After the addition of two liquids is complete, hydrogen bubbling stops Stirring was continued while maintaining a temperature of 75 ° C. Next, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and dried in a vacuum dryer at 110 ° C. As a result, a plating powder having a nickel lurin alloy plating film was obtained.
[0052] 〔比較例 1 3〕 [Comparative Example 1 3]
実施例 1〜3において、 (1)の工程を実施しない以外は同様な操作でめっき粉体を 得た。  In Examples 1 to 3, plating powder was obtained by the same operation except that the step (1) was not performed.
[0053] 〔比較例 4 6〕  [Comparative Example 4 6]
実施例 1において、(1)の工程を下記(1— 1)工程に代えた以外は実施例 1〜3と 同様な操作でめっき粉体を得た。  In Example 1, except that the step (1) was replaced with the following step (1-1), a plated powder was obtained in the same manner as in Examples 1-3.
(1 1)工程  (1 1) Process
表 1に示す表面処理剤 1. 0重量%含む水溶液 100重量部に、実施例 1で使用した 同じスチレン榭脂 10重量部を添加し室温で 1時間浸漬させた。次に 110°Cで乾燥し て表面処理剤を被覆した芯材粉体を調製した。  10 parts by weight of the same styrene resin used in Example 1 was added to 100 parts by weight of an aqueous solution containing 1.0% by weight of the surface treating agent shown in Table 1, and immersed for 1 hour at room temperature. Next, it was dried at 110 ° C. to prepare a core powder coated with the surface treatment agent.
[0054] 〔比較例 7〕 [Comparative Example 7]
実施例 1において、(1)の工程を下記(1— 2)工程に代えた以外は実施例 1と同様 な操作でめっき粉体を得た。  In Example 1, a plated powder was obtained in the same manner as in Example 1, except that the step (1) was replaced with the following step (1-2).
(1 2)工程  (1 2) Process
無水クロム酸 2. 0モル ZL、硫酸 3. 6モル ZL力 なるエッチング液 2L中に芯材粉 体 100重量部を仕込み、 70°Cに昇温後、 10分間攪拌した。次いでろ過、洗浄を繰り 返し、エッチング処理をした芯材粉体を得た。  Chloric anhydride 2.0 mol ZL, sulfuric acid 3.6 mol ZL strength 100 parts by weight of the core powder was charged in 2 L of an etching solution, heated to 70 ° C., and stirred for 10 minutes. Next, filtration and washing were repeated to obtain a core material powder subjected to etching treatment.
[0055] 得られためっき粉体について、以下の方法で、めっき皮膜の厚み、めっき皮膜の密 着性を測定'評価した。その結果を表 2に示す。また、めっき粉体に残存するクロム量 を測定し、その結果も表 2に併記した。 [0055] The thickness of the plating film and the adhesion of the plating film were measured and evaluated for the obtained plating powder by the following method. The results are shown in Table 2. The amount of chromium remaining in the plating powder was measured, and the results are also shown in Table 2.
[0056] 〔めっき皮膜の厚み〕 [Thickness of plating film]
めっき粉体を硝酸に浸漬してめつき皮膜を溶解し、皮膜成分を ICPまたは化学分 析により定量し、下式により厚みを算出した。  The plating powder was immersed in nitric acid to dissolve the adhesive film, the film components were quantified by ICP or chemical analysis, and the thickness was calculated by the following equation.
A= [ (r+t)3-r3]d /rd A = [(r + t) 3 -r 3 ] d / rd
1 2  1 2
A=W/100-W 式中、 rは芯材粉体の半径 m)、 tはめつき皮膜の厚み m)、 dはめつき皮膜 A = W / 100-W Where r is the radius of the core powder m), t is the thickness of the adhesive film m), and d is the adhesive film.
1  1
の比重、 dは芯材粉体の比重、 wは金属含有量 (重量%)を示す。  The specific gravity of, d is the specific gravity of the core powder, w is the metal content (% by weight).
2  2
[0057] 〔めっき皮膜の密着性〕  [0057] [Adhesion of plating film]
めっき粉体 2. 2g及び直径 3mmのジルコユアビーズ 90gを、 100ミリリットルのマョ ネーズビンに入れた。更にマヨネーズビンに、ホールピペットを用いてトルエン 10ミリリ ットルを加えた。攪拌機 (スリーワンモーター)を用いてマヨネーズビン内を 10分間 40 Orpmで攪拌した。終了後、めっき粉体とジルコユアビーズとを分別した。走査型電子 顕微鏡でめっき粉体を観察し、めっき皮膜のはがれ具合を以下の基準で評価した。 〇:めっき皮膜の剥がれが観察されな力つた。  2. 2 g of plating powder and 90 g of 3 mm diameter zircoyu beads were placed in a 100 ml mayonnaise bottle. Furthermore, 10 ml of toluene was added to the mayonnaise bottle using a whole pipette. The inside of the mayonnaise bottle was stirred for 10 minutes at 40 Orpm using a stirrer (three-one motor). After the completion, the plating powder and the zircoyu beads were separated. The plated powder was observed with a scanning electron microscope, and the degree of peeling of the plating film was evaluated according to the following criteria. ◯: Peeling of the plating film was not observed.
X:めっき皮膜の剥がれが観察された。  X: Peeling of the plating film was observed.
[0058] 〔クロム含有量〕 [Chromium content]
めっき粉体を硝酸に浸漬してめつき皮膜を溶解し、さらに硫酸を加え加熱分解した 。得られた分解溶液力も ICPによりクロム量を測定した。  The plating powder was immersed in nitric acid to dissolve the adhesion film, and further sulfuric acid was added for thermal decomposition. The obtained solution strength was also measured by ICP for chromium.
[0059] [表 1] [0059] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
注)表面処理剤 1 ; γ—ァミノプロピルトリエトキシシラン、表面処理剤 2 ;Ν— β (ァミノ ェチル) γ—ァミノプロピルトリメトキシシラン、表面処理剤 3 ; γ—メタアタリロキシプロ ピルトリメトキシシラン Note) Surface treatment agent 1; γ-Aminopropyltriethoxysilane, surface treatment agent 2; Ν-β (aminoethyl) γ-aminopropyltrimethoxysilane, surface treatment agent 3; γ-metaataryloxypropyltri Methoxysilane
[表 2] [Table 2]
Figure imgf000017_0001
Figure imgf000017_0001
注) N. D.は検出限界 0. 002mgZg—めっき粉体以下であることを示す。 Note) N. D. indicates that the detection limit is 0.002 mgZg or less.
[0061] 表 2に示す結果力も明らかなように、各実施例のめっき粉体 (本発明品)はめつき皮 膜の密着性に優れており、実質的にクロムを含まないことが判る。これに対して比較 例 1〜6のめつき粉体はクロムを含まないものの、めっきが剥がれやすいものであるこ とが判る。また、比較例 7のめつき粉体はめつき皮膜の密着性に優れているものの、 めっき粉体中にクロムが含有されて 、ることが判る。 [0061] As can be seen from the results shown in Table 2, it can be seen that the plating powders of the respective examples (product of the present invention) are excellent in adhesion of the adhesive skin film and are substantially free of chromium. On the other hand, it can be seen that the plating powders of Comparative Examples 1 to 6 do not contain chromium, but are easily peeled off. Further, it can be seen that the plating powder of Comparative Example 7 is excellent in the adhesion of the plating film, but chromium is contained in the plating powder.
産業上の利用可能性  Industrial applicability
[0062] 本発明によれば、親水化処理に、クロム酸や過マンガン酸等を用いないでも、特に 平均粒径が 20 μ m以下の微粒子分に対してもめっき密着性が優れた導電性無電解 めっき粉体を得ることができ、また、本発明の導電性無電解めつき粉体は、例えば異 方導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの 電極を駆動用 LSIチップの回路基板へ接続するための導電材料、偏光板の用途な どに好適に使用される。 [0062] According to the present invention, even if chromic acid or permanganic acid is not used for the hydrophilization treatment, the electroconductivity is excellent in plating adhesion even for fine particles having an average particle diameter of 20 μm or less. Electroless plating powder can be obtained. The conductive electroless plating powder of the present invention is used for driving, for example, anisotropic conductive film (ACF), heat seal connector (HSC), and electrodes of liquid crystal display panels. It is suitable for use in conductive materials for connecting LSI chip circuit boards and polarizing plates.

Claims

請求の範囲 The scope of the claims
[1] 芯材粉体の表面をメラミン榭脂で被覆処理し、更に無電解めつきにより金属皮膜が 形成されてなることを特徴とする導電性無電解めつき粉体。  [1] A conductive electroless plating powder characterized in that the surface of the core powder is coated with melamine resin and a metal film is formed by electroless plating.
[2] 前記芯材粉体が疎水性のものである請求項 1記載の導電性無電解めつき粉体。  [2] The conductive electroless plating powder according to [1], wherein the core powder is hydrophobic.
[3] 前記芯材粉体の平均粒径が 0. 5〜: LOO μ mである請求項 1又は 2記載の導電性 無電解めつき粉体。 [3] The conductive electroless plating powder according to claim 1 or 2, wherein the average particle diameter of the core powder is 0.5 to LOO μm.
[4] 前記芯材粉体の平均粒径が 1〜20 μ mである請求項 1又は 2記載の導電性無電 解めつき粉体。  [4] The conductive electroless powder according to claim 1 or 2, wherein the core material powder has an average particle size of 1 to 20 μm.
[5] 前記芯材粉体として球状のものを用いる請求項 1乃至 4の何れかに記載の導電性 無電解めつき粉体。  [5] The conductive electroless plating powder according to any one of claims 1 to 4, wherein a spherical powder is used as the core powder.
[6] 芯材粉体とメラミン榭脂の初期縮合物を接触させて該初期縮合物の重合反応を行 つてメラミン榭脂を被覆した芯材粉体を得る工程、次!、で該メラミン榭脂を被覆した芯 材粉体の表面に貴金属を担持させる工程、次 ヽで該貴金属を担持させた芯材粉体 を無電解めつき処理する工程とを、含むことを特徴とする導電性無電解めつき粉体の 製造方法。  [6] A step of contacting a core material powder with an initial condensate of melamine resin to carry out a polymerization reaction of the initial condensate to obtain a core material powder coated with melamine resin; A step of supporting a noble metal on the surface of the core powder coated with fat, and a step of subjecting the core powder supporting the noble metal to an electroless plating process in the next step. A method for producing electrolytic plating powder.
PCT/JP2007/055497 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same WO2007119417A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020087023517A KR101305574B1 (en) 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same
CN2007800119038A CN101415863B (en) 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-089152 2006-03-28
JP2006089152A JP4849930B2 (en) 2006-03-28 2006-03-28 Conductive electroless plating powder and method for producing the same

Publications (1)

Publication Number Publication Date
WO2007119417A1 true WO2007119417A1 (en) 2007-10-25

Family

ID=38609208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055497 WO2007119417A1 (en) 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same

Country Status (5)

Country Link
JP (1) JP4849930B2 (en)
KR (1) KR101305574B1 (en)
CN (1) CN101415863B (en)
TW (1) TWI419996B (en)
WO (1) WO2007119417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167838A (en) * 2010-12-21 2011-08-31 苏州纳微生物科技有限公司 Polymer composite microsphere containing dendritic structure, anisotropic conducting material and anisotropic conducting film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262940B2 (en) 2007-10-22 2012-09-11 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP5363989B2 (en) 2007-10-22 2013-12-11 日本化学工業株式会社 Coated conductive powder and conductive adhesive using the same.
WO2011158783A1 (en) * 2010-06-16 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particles, method for producing same and anisotropically conductive adhesive
JP5505149B2 (en) * 2010-06-16 2014-05-28 デクセリアルズ株式会社 Conductive particles, method for producing the same, and anisotropic conductive adhesive
JP5505156B2 (en) * 2010-06-30 2014-05-28 デクセリアルズ株式会社 Conductive particles, method for producing the same, and anisotropic conductive adhesive
JP6352879B2 (en) * 2015-10-15 2018-07-04 小島化学薬品株式会社 Electroless platinum plating solution
CN106903305A (en) * 2017-04-12 2017-06-30 合肥学院 Preparation method of metal particle/inorganic nano particle/polymer composite powder for 3D printing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297471A (en) * 1986-06-16 1987-12-24 Seiko Epson Corp Electroless nickel plating method for inorganic fine powder
JPS6462475A (en) * 1987-09-01 1989-03-08 Shiseido Co Ltd Composite material and its production and method for precipitating metal
JPH05156456A (en) * 1991-11-29 1993-06-22 Nippon Chem Ind Co Ltd Electroless plating pretreating agent for aluminum base material and electroless plating method using the same
JPH08176836A (en) * 1994-12-26 1996-07-09 Nippon Chem Ind Co Ltd Electrically conductive electroless plated powder
JPH08311655A (en) * 1995-05-16 1996-11-26 Nippon Chem Ind Co Ltd Conductive electroless plating powder
JPH1161424A (en) * 1997-08-12 1999-03-05 Nippon Chem Ind Co Ltd Electroless silver-plated powder and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228678A (en) * 1984-04-26 1985-11-13 Agency Of Ind Science & Technol Formation of metallic film on surface of high molecular material
JP2507381B2 (en) * 1987-01-30 1996-06-12 積水フアインケミカル株式会社 Conductive microsphere
CN1667157B (en) * 2004-03-10 2010-05-05 日本化学工业株式会社 Chemically plated conductive powder and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297471A (en) * 1986-06-16 1987-12-24 Seiko Epson Corp Electroless nickel plating method for inorganic fine powder
JPS6462475A (en) * 1987-09-01 1989-03-08 Shiseido Co Ltd Composite material and its production and method for precipitating metal
JPH05156456A (en) * 1991-11-29 1993-06-22 Nippon Chem Ind Co Ltd Electroless plating pretreating agent for aluminum base material and electroless plating method using the same
JPH08176836A (en) * 1994-12-26 1996-07-09 Nippon Chem Ind Co Ltd Electrically conductive electroless plated powder
JPH08311655A (en) * 1995-05-16 1996-11-26 Nippon Chem Ind Co Ltd Conductive electroless plating powder
JPH1161424A (en) * 1997-08-12 1999-03-05 Nippon Chem Ind Co Ltd Electroless silver-plated powder and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167838A (en) * 2010-12-21 2011-08-31 苏州纳微生物科技有限公司 Polymer composite microsphere containing dendritic structure, anisotropic conducting material and anisotropic conducting film

Also Published As

Publication number Publication date
TW200745377A (en) 2007-12-16
KR101305574B1 (en) 2013-09-09
CN101415863A (en) 2009-04-22
CN101415863B (en) 2011-04-20
JP4849930B2 (en) 2012-01-11
JP2007262495A (en) 2007-10-11
KR20080111022A (en) 2008-12-22
TWI419996B (en) 2013-12-21

Similar Documents

Publication Publication Date Title
WO2007119417A1 (en) Conductive powder plated by electroless plating and process for producing the same
JP3696429B2 (en) Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP5422812B2 (en) Coating composition for electroless plating
TWI449804B (en) Metal layer-coated substrate and process for the production thereof
JP5620678B2 (en) Metal film forming method and conductive particles
JP5512306B2 (en) Method for producing conductive particles
JP5422563B2 (en) Metal film forming method, conductive particles and method for producing the same
JP6089462B2 (en) Conductive particles, manufacturing method thereof, and conductive material including the same
US20050227074A1 (en) Conductive electrolessly plated powder and method for making same
US4888209A (en) Catalytic process and systems
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JP5844219B2 (en) Method for producing conductive particles
WO2006018995A1 (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
EP0141528A2 (en) Conducting or catalysing a chemical reation on a surface especially electroless metal deposition and catalyst systems used therein
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP2004197160A (en) Conductive electroless-plated powder and manufacturing method therefor
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2004131801A (en) Conductive electroless plating powder and method for manufacturing the same
JP5695768B2 (en) Conductive powder and conductive material including the same
KR100813614B1 (en) Conductive ball for anisotropic conductive film and method of preparing same
JP4897344B2 (en) Conductive fine particles and anisotropic conductive materials
JP5707247B2 (en) Method for producing conductive particles
JP2007194210A (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087023517

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780011903.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738942

Country of ref document: EP

Kind code of ref document: A1