JP2007262495A - Electroconductive electroless-plated powder and production method therefor - Google Patents

Electroconductive electroless-plated powder and production method therefor Download PDF

Info

Publication number
JP2007262495A
JP2007262495A JP2006089152A JP2006089152A JP2007262495A JP 2007262495 A JP2007262495 A JP 2007262495A JP 2006089152 A JP2006089152 A JP 2006089152A JP 2006089152 A JP2006089152 A JP 2006089152A JP 2007262495 A JP2007262495 A JP 2007262495A
Authority
JP
Japan
Prior art keywords
powder
plating
melamine resin
nickel
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089152A
Other languages
Japanese (ja)
Other versions
JP4849930B2 (en
Inventor
Masaaki Oyamada
雅明 小山田
Yasuhiro Abe
康弘 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2006089152A priority Critical patent/JP4849930B2/en
Priority to TW096107804A priority patent/TWI419996B/en
Priority to KR1020087023517A priority patent/KR101305574B1/en
Priority to PCT/JP2007/055497 priority patent/WO2007119417A1/en
Priority to CN2007800119038A priority patent/CN101415863B/en
Publication of JP2007262495A publication Critical patent/JP2007262495A/en
Application granted granted Critical
Publication of JP4849930B2 publication Critical patent/JP4849930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive electroless-plated powder that has a plated film which is formed on fine particles without using such chromic acid or permanganic acid as to cause environmental pollution, and which has excellent adhesiveness even though the fine particles have an average size of 20 μm or smaller, and to provide an industrially advantageous production method therefor. <P>SOLUTION: The electroconductive electroless-plated powder has a melamine resin coated on the surface of its core powder, and further has a metallic film electroless-plated thereon. The production method comprises the steps of: preparing a core powder coated with the melamine resin by bringing the core powder in contact with an initial condensate of the melamine resin and polymerizing the initial condensate through a reaction; subsequently, making the surface of the core powder coated with the melamine resin carry a noble metal; and subsequently, electroless-plating the core powder having the noble metal carried thereon with a metal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性無電解めっき粉体およびその製造方法に関する。   The present invention relates to a conductive electroless plating powder and a method for producing the same.

従来、導電性無電解めっき粉体を始めとする無電解めっき製品を製造する場合には、被めっき物が疎水性であるときには、その表面を親水化処理して金属皮膜と被めっき物との密着性を高める必要がある。密着性を高める手段として、従来はクロム酸や過マンガン酸などの強力な酸化剤が用いられてきた。   Conventionally, when producing electroless plating products such as conductive electroless plating powders, when the object to be plated is hydrophobic, the surface is hydrophilized so that the metal film and the object to be plated It is necessary to improve adhesion. Conventionally, strong oxidizing agents such as chromic acid and permanganic acid have been used as means for improving adhesion.

しかし、これらの酸化剤は環境負荷が大きいという不都合がある。適切な還元、洗浄処理をすれば、クロムやマンガンがめっき製品中に残留することは少ないが、完全な除去は非常に難しい。   However, these oxidizing agents have the disadvantage that the environmental burden is large. With proper reduction and cleaning treatment, chromium and manganese will hardly remain in the plated product, but complete removal is very difficult.

そこで、環境負荷の小さな親水化処理方法として、例えば下記特許文献1には合成樹脂材にアミノシラン系化合物、グリコール化合物、ニトリル化合物、チタネート化合物、ブタジエン重合体、リノール酸、リノレン酸等の不飽和脂肪酸等から選ばれた貴金属捕捉性表面処理材で該合成樹脂材を被覆処理して貴金属イオンを担時させ、次に無電解めっき処理する方法が提案されている。   Therefore, as a hydrophilization treatment method with a small environmental load, for example, in Patent Document 1 below, an unsaturated fatty acid such as an aminosilane compound, a glycol compound, a nitrile compound, a titanate compound, a butadiene polymer, linoleic acid, or linolenic acid is used as a synthetic resin material. A method has been proposed in which the synthetic resin material is coated with a noble metal-trapping surface treatment material selected from the above to carry noble metal ions, and then electroless plating treatment is performed.

しかし、特許文献1に記載の方法では、特に平均粒径が20μm以下の微粒子に対してめっき密着性に優れたものが得られにくく、例えばファインピッチ用接続の用途に使用することが難しい。
特開昭61−64882号公報
However, in the method described in Patent Document 1, it is difficult to obtain a material having excellent plating adhesion particularly for fine particles having an average particle diameter of 20 μm or less, and it is difficult to use for fine pitch connection, for example.
JP 61-64882 A

従って本発明の目的は、環境汚染となるクロム酸や過マンガン酸等を使用せずに、特に平均粒径が20μm以下の微粒子であっても優れためっき密着性を有する導電性無電解めっき粉体及びその工業的に有利な製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an electroless electroless plating powder that has excellent plating adhesion even if it is a fine particle having an average particle diameter of 20 μm or less, without using chromic acid or permanganic acid that causes environmental pollution. It is to provide a body and an industrially advantageous production method thereof.

本発明は、芯材粉体の表面をメラミン樹脂で被覆処理し、更に無電解めっきにより金属皮膜が形成されてなることを特徴とする導電性無電解めっき粉体を提供することにより前記目的を達成したものである。   The object of the present invention is to provide a conductive electroless plating powder characterized in that the surface of the core powder is coated with a melamine resin and a metal film is formed by electroless plating. Achieved.

本発明によれば、親水化処理に、クロム酸や過マンガン酸等を用いないでも、特に平均粒径が20μm以下の微粒子分に対してもめっき密着性が優れた導電性無電解めっき粉体を得ることができ、また、本発明の導電性無電解めっき粉体は、例えば異方導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電材料、偏光板の用途などに好適に使用される。   According to the present invention, a conductive electroless plating powder having excellent plating adhesion even for fine particles having an average particle diameter of 20 μm or less, even without using chromic acid, permanganic acid, or the like for the hydrophilic treatment. The conductive electroless plating powder of the present invention can be applied to, for example, an anisotropic conductive film (ACF), a heat seal connector (HSC), or an electrode of a liquid crystal display panel on a circuit board of a driving LSI chip. It is suitably used for conductive materials for connection, applications of polarizing plates, and the like.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の導電性無電解めっき粉体(以下、単にめっき粉体ともいう)は、芯材粉体の表面をメラミン樹脂で被覆処理し、更に無電解めっきにより金属皮膜が形成されてなるものである。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The conductive electroless plating powder of the present invention (hereinafter also simply referred to as plating powder) is obtained by coating the surface of a core material powder with a melamine resin and further forming a metal film by electroless plating. is there.

本発明で使用する芯材粉体の種類に特に制限はなく、有機物粉体及び無機物粉体の何れもが用いられる。芯材粉体は、その表面が疎水性であってもよく、或いは親水性であってもよい。尤も、本実施形態の方法は、表面が疎水性である芯材粉体に特に有効である。芯材粉体は、好ましくは水に実質的に不溶性のものであり、更に好ましくは酸やアルカリに対しても溶解または変質しないものである。   There is no restriction | limiting in particular in the kind of core material powder used by this invention, Both organic substance powder and inorganic substance powder are used. The surface of the core material powder may be hydrophobic or hydrophilic. However, the method of this embodiment is particularly effective for the core material powder having a hydrophobic surface. The core powder is preferably substantially insoluble in water, more preferably not dissolved or denatured in acid or alkali.

芯材粉体の形状に特に制限はない。一般に芯材粉体は粉粒状であり得るが、それ以外の形状、例えば繊維状、中空状、板状、針状であってもよく、粒子表面に多数の突起を有するものや或いは不定形のものであってもよい。本発明ではこれらの中、球状のものが導電性フィラーとして使用する場合に充填性に優れたものになる点で特に好ましい。   There is no restriction | limiting in particular in the shape of core material powder. In general, the core powder may be granular, but may have other shapes, for example, a fiber shape, a hollow shape, a plate shape, a needle shape, a particle having a large number of protrusions on the particle surface, or an irregular shape. It may be a thing. In the present invention, among these, spherical ones are particularly preferable in that they have excellent filling properties when used as conductive fillers.

芯材粉体の具体例としては、無機物として、金属(合金も含む)、ガラス、セラミックス、シリカ、カーボン、金属または非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素などが挙げられる。有機物としては、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステルなどの熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂またはジアリルフタレート樹脂などが挙げられる。これらは単独でも使用でき又は2種以上の混合物として使用してもよい。   Specific examples of the core powder include metal (including alloys), glass, ceramics, silica, carbon, metal or non-metal oxides (including hydrates), and metal silicates including aluminosilicates as inorganic materials. Metal carbide, metal nitride, metal carbonate, metal sulfate, metal phosphate, metal sulfide, metal acid salt, metal halide and carbon. Organic materials include natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, polyester and other thermoplastic resins, alkyd resins, phenol resins, Examples include urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, or diallyl phthalate resin. These may be used alone or in a mixture of two or more.

本発明で使用する芯材粉体の他の好ましい物性としては、平均粒径が0.5〜100μm、特に0.8〜80μm、とりわけ1〜20μmであることがめっき工程中の凝集を抑制し、無電解めっき後の導電粒子として狭ピッチ化に対応できる観点で特に好ましい。なお、芯材粉体の平均粒径は電気抵抗法を用いて測定された値を示す。   Another preferable physical property of the core powder used in the present invention is that the average particle size is 0.5 to 100 μm, particularly 0.8 to 80 μm, especially 1 to 20 μm to suppress aggregation during the plating process. The conductive particles after electroless plating are particularly preferable from the viewpoint of adapting to narrow pitch. In addition, the average particle diameter of core material powder shows the value measured using the electrical resistance method.

更に、前述の方法によって測定された芯材粉体の粒度分布には幅がある。一般に、粉体の粒度分布の幅は、下記計算式(1)で示される変動係数により表わされる。
変動係数(%)=(標準偏差/平均粒径)×100 計算式(1)
この変動係数が大きいことは分布に幅があることを示し、一方、変動係数が小さいことは粒度分布がシャープであることを示す。本実施形態では、この変動係数が芯材粉体として50%以下、特に30%以下、とりわけ20%以下のものを使用することが好ましい。この理由は、本発明によって得られためっき粉体を異方性導電膜中の導電粒子として用いた場合に、接続に有効な寄与割合が高くなるという利点があるからである。
Furthermore, there is a range in the particle size distribution of the core material powder measured by the method described above. In general, the width of the particle size distribution of the powder is represented by a coefficient of variation represented by the following calculation formula (1).
Coefficient of variation (%) = (standard deviation / average particle size) × 100 Formula (1)
A large coefficient of variation indicates that the distribution is wide, while a small coefficient of variation indicates that the particle size distribution is sharp. In the present embodiment, it is preferable to use a core material powder having a coefficient of variation of 50% or less, particularly 30% or less, especially 20% or less. This is because when the plating powder obtained by the present invention is used as conductive particles in an anisotropic conductive film, there is an advantage that the effective contribution ratio for connection is increased.

メラミン樹脂の被覆量は、使用する芯材粉体の種類や形状等によって異なるが多くの場合、0.1〜15重量%、好ましくは0.5〜10重量%とすることが望ましい。この理由は、メラミン樹脂の被覆量が0.1重量%未満では被覆量が不足しめっき密着性に優れためっき粉体が得られない傾向があり、一方、15重量%を超えると後述する(1)のメラミン樹脂を被覆した芯材粉体を得る工程で微粒子状のメラミン樹脂が単独で生成し、異物として残存する傾向があるためである。また、前記メラミン樹脂は、変性されたものであっもよい。   The coating amount of the melamine resin varies depending on the type and shape of the core material powder to be used, but in many cases it is 0.1 to 15% by weight, preferably 0.5 to 10% by weight. The reason for this is that when the coating amount of the melamine resin is less than 0.1% by weight, the coating amount is insufficient and a plating powder excellent in plating adhesion tends to be not obtained. This is because in the step 1) of obtaining the core material powder coated with the melamine resin, the fine particle melamine resin is generated alone and remains as a foreign substance. The melamine resin may be a modified one.

導電性無電解めっき粉体における金属皮膜は、通常は単一金属の単層構造であるが、所望により2種類以上の異種金属による多層構造であってもよい。また、金属皮膜は、その種類やめっき条件によって結晶質または非晶質のいずれであっても良い。更に、金属皮膜は、磁性または非磁性を示すものでもあり得る。ここでいう金属には、金属単体のほか、合金(例えばニッケル−リン合金やニッケル−ホウ素合金)が含まれる。使用可能な金属としては、Ni、Fe、Cu、Co、Pd、Ag、Au、Pt、Snなどが挙げられる。金属皮膜の厚さは0.001〜2μm、特に0.005〜1μmであることが好ましい。金属皮膜の厚さは、ニッケルイオンの添加量や化学分析から算出することができる。   The metal film in the electroless electroless plating powder is usually a single metal single layer structure, but may be a multilayer structure of two or more different kinds of metals if desired. The metal film may be crystalline or amorphous depending on the type and plating conditions. Furthermore, the metal film may be magnetic or non-magnetic. The metal here includes not only a simple metal but also an alloy (for example, nickel-phosphorus alloy or nickel-boron alloy). Usable metals include Ni, Fe, Cu, Co, Pd, Ag, Au, Pt, and Sn. The thickness of the metal film is preferably 0.001 to 2 μm, particularly preferably 0.005 to 1 μm. The thickness of the metal film can be calculated from the amount of nickel ions added and chemical analysis.

経済的な観点からNiが好ましい。以下の実施形態では金属としてニッケルを例に取り説明するが、用い得る金属はこの限りではない。   Ni is preferable from an economical viewpoint. In the following embodiment, nickel will be described as an example of the metal, but the metal that can be used is not limited to this.

本実施形態の製造方法は、芯材粉体とメラミン樹脂の初期縮合物を接触させて該初期縮合物の重合反応を行ってメラミン樹脂を被覆した芯材粉体を得る工程、次いで該メラミン樹脂を被覆した芯材粉体の表面に貴金属を担持させる工程、次いで該貴金属を担持させた芯材粉体を無電解めっき処理する工程とを、含むものであるが、特に(1)メラミン樹脂を被覆した芯材粉体を得る工程、(2)触媒化処理工程、(3)初期薄膜形成工程、(4)無電解めっき工程を含むことにより、安定した品質のめっき粉体を工業的に有利に得ることができる。   The production method of the present embodiment includes a step of bringing a core material powder and an initial condensate of melamine resin into contact with each other to perform a polymerization reaction of the initial condensate to obtain a core material powder coated with melamine resin, and then the melamine resin Including a step of supporting a noble metal on the surface of the core material powder coated with, and then a step of electroless plating the core material powder supporting the noble metal, particularly (1) coated with a melamine resin. By including a step of obtaining a core powder, (2) a catalytic treatment step, (3) an initial thin film forming step, and (4) an electroless plating step, a stable quality plating powder is advantageously obtained industrially. be able to.

(1)の芯材粉体のメラミン樹脂被覆工程は、芯材粉体とメラミン樹脂の初期縮合物を接触させて該初期縮合物の重合反応を行ってメラミン樹脂で被覆した芯材粉体を得る工程である。   The melamine resin coating step of the core material powder of (1) is performed by bringing the core material powder and the melamine resin into an initial condensate so that the initial condensate undergoes a polymerization reaction to coat the core material powder coated with the melamine resin. It is a process to obtain.

なお、本発明においてメラミン樹脂の初期縮合物とは加熱又は酸触媒の添加により縮合反応を起こしメラミン樹脂が生成されるものを言う。前記メラミン樹脂の初期縮合物は、市販のものであってもよく、また、メラミン化合物とアルデヒド化合物とを反応させて得られるものをメラミン樹脂の初期縮合物として使用してもよい。   In the present invention, the initial condensate of melamine resin refers to a product in which a condensation reaction is caused by heating or addition of an acid catalyst to produce a melamine resin. The initial condensate of the melamine resin may be a commercially available product, or a product obtained by reacting a melamine compound and an aldehyde compound may be used as the initial condensate of the melamine resin.

前記メラミン化合物としては、例えば、メラミン、メラミンのアミノ基の水素をアルキル基、アルケニル基、フェニル基で置換したメラミン化合物(例えば、特開平09−143238号公報参照。)、メラミンのアミノ基の水素をヒドロキシアルキル基、アミノアルキル基で置換した置換メラミン化合物(例えば、特開平5−202157号公報参照。)等が挙げられるが、工業的に容易に入手可能で、安価である点でメラミンが好ましい。また、メラミン化合物の一部を尿素、チオ尿素、エチレン尿素等の尿素類、ベンゾグアナミン、アセトグアナミン等のグアナミン類、フェノール、クレゾール、アルキルフェノール、レゾルシン、ハイドロキノン、ピロガロール等のフェノール類、アニリンで置換したものであってもよい。   Examples of the melamine compound include melamine, a melamine compound in which the amino group hydrogen of melamine is substituted with an alkyl group, an alkenyl group, or a phenyl group (see, for example, Japanese Patent Application Laid-Open No. 09-143238), and the hydrogen of the melamine amino group. Substituted with a hydroxyalkyl group or an aminoalkyl group (for example, see JP-A No. 5-202157). However, melamine is preferable because it is easily available industrially and is inexpensive. . Some melamine compounds are substituted with ureas such as urea, thiourea and ethylene urea, guanamines such as benzoguanamine and acetoguanamine, phenols such as phenol, cresol, alkylphenol, resorcin, hydroquinone and pyrogallol, and aniline. It may be.

前記アルデヒド化合物としては、例えばホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、フルフラール等が挙げられ、メラミン化合物との反応性の点でホルムアルデヒド、パラホルムアルデヒドが好ましい。アルデヒド化合物の添加量はメラミン化合物に対するモル比で1.1〜6.0倍モル、好ましくは1.2〜4.0倍モルとすることが好ましい。   Examples of the aldehyde compound include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, furfural and the like, and formaldehyde and paraformaldehyde are preferable from the viewpoint of reactivity with the melamine compound. The addition amount of the aldehyde compound is 1.1 to 6.0 times mol, preferably 1.2 to 4.0 times mol in terms of a molar ratio to the melamine compound.

使用することができる溶媒としては、水が特に好ましいが、水と有機溶媒との混合溶媒として使用してもよい。この場合、使用することができる有機溶媒としては、メラミン樹脂の初期縮合物を溶解することができる溶媒を用いることが好ましく、例えば、メタノール、エタノール、プロパノール等のアルコール、ジオキサン、テトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類、ジメチルホルムアミド、ジメチルスルオキシド等の極性溶媒が挙げられる。   As a solvent that can be used, water is particularly preferable, but it may be used as a mixed solvent of water and an organic solvent. In this case, the organic solvent that can be used is preferably a solvent that can dissolve the initial condensate of the melamine resin. For example, alcohols such as methanol, ethanol, and propanol, dioxane, tetrahydrofuran, and 1,2 -Ethers such as dimethoxyethane, and polar solvents such as dimethylformamide and dimethylsulfoxide.

前記メラミン化合物とアルデヒド化合物の反応はpH8〜9で行われ、必要により塩基を添加して反応を行うことができる。使用できる塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア水等の常用のアルカリ剤を使用できる。反応温度は25〜100で通常分子量が200〜700程度のメラミン樹脂の初期縮合物を得ることができる。   The reaction between the melamine compound and the aldehyde compound is carried out at a pH of 8 to 9, and the reaction can be carried out by adding a base if necessary. Usable bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and aqueous ammonia can be used as the base that can be used. An initial condensate of melamine resin having a reaction temperature of 25 to 100 and a molecular weight of about 200 to 700 can be obtained.

更に、前記メラミン樹脂の初期縮合物を微量の酸性物質の存在下にメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類と反応させることによりアルコールにより変性されたメラミン樹脂の初期縮合物を得ることができる。   Further, by reacting the initial condensate of melamine resin with alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol in the presence of a small amount of acidic substance, an initial condensate of melamine resin modified with alcohol is obtained. Obtainable.

前記メラミン樹脂の初期縮合物の添加量は、使用する芯材粉体の種類によって異なるが多くの場合、0.1〜15重量%、好ましくは0.5〜10重量%とすることが望ましい。   The amount of the initial condensation product of the melamine resin varies depending on the kind of the core material powder to be used, but in many cases it is 0.1 to 15% by weight, preferably 0.5 to 10% by weight.

本発明において、この(1)のメラミン樹脂を被覆した芯材粉体を得る工程での反応操作は、前記芯材粉体を含む溶媒を調製し、該溶媒に前記メラミン樹脂の初期縮合物を添加して該初期縮合物の重合反応を行う方法、前記メラミン樹脂の初期縮合物を含む溶媒に、前記芯材粉体を添加して該初期縮合物の重合反応を行う方法、或いは芯材粉体、前記メラミン化合物及びアルデヒド化合物を所定量添加し、必要によりアルカリ剤を添加し溶媒中でそのままメラミン樹脂の初期縮合物の重合反応を行う方法等を用いることができる。なお、重合反応は必要により酸触媒を添加し40〜100℃で加温下に反応を行い、反応終了後、常法により固液分離し、次いで60〜180℃で乾燥を行うか、或いは反応液をそのまま噴霧乾燥することにより、メラミン樹脂で被覆した芯材粉体を得ることができる。   In the present invention, the reaction operation in the step (1) of obtaining the core material powder coated with the melamine resin comprises preparing a solvent containing the core material powder, and adding the initial condensate of the melamine resin to the solvent. A method of adding and conducting a polymerization reaction of the initial condensate, a method of adding the core material powder to a solvent containing the initial condensate of the melamine resin and performing a polymerization reaction of the initial condensate, or a core material powder A predetermined amount of the melamine compound and the aldehyde compound, an alkali agent as necessary, and a polymerization reaction of the initial condensate of the melamine resin in a solvent can be used. In addition, an acid catalyst is added to the polymerization reaction as necessary, and the reaction is carried out at 40 to 100 ° C. under heating, and after the completion of the reaction, solid-liquid separation is carried out by a conventional method, followed by drying at 60 to 180 ° C. By spray-drying the liquid as it is, a core powder coated with melamine resin can be obtained.

前記重合反応で用いることができる酸触媒としては、特に制限されるものではないが、例えば塩酸、硫酸、硝酸、リン酸、メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、アルキルベンゼンスルホン酸、スルファミン酸等のスルホン酸類、ギ酸、シュウ酸、安息香酸、フタル酸等の有機酸を使用することができる。   The acid catalyst that can be used in the polymerization reaction is not particularly limited. For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, alkylbenzenesulfonic acid, sulfamine. Sulfonic acids such as acids, and organic acids such as formic acid, oxalic acid, benzoic acid, and phthalic acid can be used.

(2)の触媒化処理工程は、貴金属イオンの捕捉能を有するか又は表面処理によって貴金属イオンの捕捉能を付与した芯材粉体に、貴金属イオンを捕捉させた後、これを還元して前記貴金属を芯材粉体の表面に担持させる工程である。(3)の初期薄膜形成工程は、貴金属が担持された芯材粉体を、ニッケルイオン、還元剤及び錯化剤を含む初期薄膜形成液に分散混合させ、ニッケルイオンを還元させて該芯材粉体の表面にニッケルの初期薄膜を形成する工程である。(4)の無電解めっき工程は、無電解めっきによって芯材粉体の表面にニッケル皮膜を有するめっき粉体を製造する工程である。以下、それぞれの工程について詳述する。   The catalytic treatment step (2) includes capturing the noble metal ions in the core powder having the ability to capture noble metal ions or imparting the ability to capture noble metal ions by surface treatment, and then reducing the noble metal ions. This is a step of supporting a noble metal on the surface of the core powder. In the initial thin film forming step (3), the core material powder carrying the noble metal is dispersed and mixed in an initial thin film forming liquid containing nickel ions, a reducing agent and a complexing agent, and the nickel ions are reduced to reduce the core material. This is a step of forming an initial thin film of nickel on the surface of the powder. The electroless plating step (4) is a step of producing a plating powder having a nickel coating on the surface of the core material powder by electroless plating. Hereinafter, each process is explained in full detail.

(2)触媒化処理工程
前記(1)の工程で得られたメラミン樹脂を被覆した芯材粉体は、その表面が貴金属イオンの捕捉能を有するか、又は貴金属イオンの捕捉能を有するように表面改質される。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオンの捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることをいう。
(2) Catalytic treatment step The core powder coated with the melamine resin obtained in the step (1) has a surface capable of capturing noble metal ions, or has a capability of capturing noble metal ions. Surface modified. The noble metal ions are preferably palladium or silver ions. Having a precious metal ion scavenging ability means that the precious metal ion can be captured as a chelate or salt.

次に、芯材粉体を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させる。これによって貴金属イオンを粉体表面に捕捉させる。貴金属塩濃度は粉体の表面積1m2当り1×10-7〜1×10-2モルの範囲で充分である。貴金属イオンが捕捉された芯材粉体は系から分離され水洗される。引き続き、芯材粉体を水に懸濁させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによって芯材粉体の表面に貴金属を担持させる。還元剤としては、例えば次亜リン酸ナトリウム、水素化ほう素ナトリウム、水素化ほう素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等が用いられる。 Next, the core powder is dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. As a result, noble metal ions are trapped on the powder surface. The noble metal salt concentration is sufficiently in the range of 1 × 10 −7 to 1 × 10 −2 mol per 1 m 2 of the surface area of the powder. The core powder with the precious metal ions captured is separated from the system and washed with water. Subsequently, the core material powder is suspended in water, and a reducing agent is added thereto to reduce the noble metal ions. As a result, the noble metal is supported on the surface of the core powder. Examples of the reducing agent include sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin and the like.

貴金属イオンを芯材粉体の表面に捕捉させる前に、錫イオンを粉体表面に吸着させる感受性化処理を施してもよい。錫イオンを粉体表面に吸着させるには、例えば表面改質処理された芯材粉体を塩化第一錫の水溶液に投入し所定時間撹拌すればよい。   Before capturing the noble metal ions on the surface of the core powder, a sensitization treatment for adsorbing tin ions on the powder surface may be performed. In order to adsorb tin ions on the powder surface, for example, the surface-modified core material powder may be put into an aqueous solution of stannous chloride and stirred for a predetermined time.

(3)初期薄膜形成工程
初期薄膜形成工程は、主として、芯材粉体へのニッケルの均一析出を平滑化する目的で行われる。初期薄膜形成工程においては、先ず、貴金属が担持された芯材粉体を十分に水に分散させる。分散にはコロイドミルやホモジナイザーのような剪断分散装置などを用いることができる。芯材粉体を分散させるに際し、例えば界面活性剤等の分散剤を必要に応じて用いることができる。このようにして得られた水性懸濁体を、ニッケルイオン、還元剤及び錯化剤を含む初期薄膜形成液に分散混合させる。これによって、ニッケルイオンの還元反応が開始され、芯材粉体の表面にニッケルの初期薄膜が形成される。先に述べた通り、初期薄膜形成工程は主として均一析出の目的で行われるから、形成されるニッケルの初期薄膜は、芯材粉体の表面を平滑にし得る程度に薄いものであればよい。この観点から、初期薄膜の厚さは0.001〜2μm、特に0.005〜1μmであることが好ましい。初期薄膜の厚さは、ニッケルイオンの添加量や化学分析から算出することができる。
(3) Initial thin film forming step The initial thin film forming step is mainly performed for the purpose of smoothing uniform precipitation of nickel on the core material powder. In the initial thin film forming step, first, the core material powder supporting the noble metal is sufficiently dispersed in water. For the dispersion, a shearing dispersion device such as a colloid mill or a homogenizer can be used. In dispersing the core powder, for example, a dispersant such as a surfactant can be used as necessary. The aqueous suspension thus obtained is dispersed and mixed in an initial thin film forming liquid containing nickel ions, a reducing agent and a complexing agent. Thereby, the reduction reaction of nickel ions is started, and an initial thin film of nickel is formed on the surface of the core material powder. As described above, since the initial thin film forming step is mainly performed for the purpose of uniform precipitation, the formed initial thin film of nickel may be thin enough to smooth the surface of the core powder. From this viewpoint, the thickness of the initial thin film is preferably 0.001 to 2 μm, particularly preferably 0.005 to 1 μm. The thickness of the initial thin film can be calculated from the amount of nickel ions added and chemical analysis.

前述した厚さの初期薄膜を形成させる観点から、初期薄膜形成液におけるニッケルイオンの濃度は2.0×10-4〜1.0モル/リットル、特に1.0×10-3〜0.1モル/リットルであることが好ましい。ニッケルイオン源としては、硫酸ニッケルや塩化ニッケルのような水溶性ニッケル塩が用いられる。同様の観点から、初期薄膜形成液における還元剤の濃度は4×10-4〜2.0モル/リットル、特に2.0×10-3〜0.2モル/リットルであることが好ましい。還元剤としては、先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができる。 From the viewpoint of forming the initial thin film having the thickness described above, the concentration of nickel ions in the initial thin film forming liquid is 2.0 × 10 −4 to 1.0 mol / liter, particularly 1.0 × 10 −3 to 0.1. Mole / liter is preferred. As the nickel ion source, a water-soluble nickel salt such as nickel sulfate or nickel chloride is used. From the same viewpoint, the concentration of the reducing agent in the initial thin film forming solution is preferably 4 × 10 −4 to 2.0 mol / liter, particularly 2.0 × 10 −3 to 0.2 mol / liter. As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used.

初期薄膜形成液には錯化剤を含有させておくことが好ましい。錯化剤は、めっきの対象となる金属イオンに対して錯体形成作用のある化合物である。本実施形態においては、錯化剤として有機カルボン酸又はその塩、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸若しくはグルコン酸又はそのアルカリ金属塩やアンモニウム塩が使用できる。さらにアミン化合物、例えばグリシン、アラニン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミンなどのアミノ基を有する化合物も使用できる。これらの錯化剤は1種または2種類以上用いることができる。錯化剤の溶解度の観点から、初期薄膜形成液における錯化剤の量は0.003〜10モル/リットル、特に0.006〜4モル/リットルであることが好ましい。
初期薄膜を容易に形成し得る点から、水性懸濁体における芯材粉体の濃度は0.1〜500g/リットル、特に0.5〜300g/リットルであることが好ましい。
The initial thin film forming liquid preferably contains a complexing agent. The complexing agent is a compound having a complex forming action on the metal ion to be plated. In this embodiment, an organic carboxylic acid or a salt thereof such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid or gluconic acid, or an alkali metal salt or ammonium salt thereof can be used as the complexing agent. Further, amine compounds such as glycine, alanine, ethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine and other compounds having an amino group can also be used. These complexing agents can be used alone or in combination of two or more. From the viewpoint of the solubility of the complexing agent, the amount of the complexing agent in the initial thin film forming liquid is preferably 0.003 to 10 mol / liter, particularly preferably 0.006 to 4 mol / liter.
From the viewpoint that an initial thin film can be easily formed, the concentration of the core material powder in the aqueous suspension is preferably 0.1 to 500 g / liter, particularly preferably 0.5 to 300 g / liter.

芯材粉体を含む水性懸濁体と初期薄膜形成液とを混合して得られた水性懸濁体は、次いで後述する無電解めっき工程に付される。無電解めっき工程に付される前における水性懸濁体においては、該水性懸濁体の体積に対する該水性懸濁体に含まれる該芯材粉体の表面積の総和の割合(この割合は一般に負荷量と呼ばれる)が0.1〜15m2/リットル、特に1〜10m2/リットルであることが、密着性に優れた皮膜を有するニッケル皮膜を容易に形成し得る点から好ましい。負荷量が高すぎると、後述する無電解めっき工程において、液相でのニッケルイオンの還元が甚だしくなり、ニッケルの微粒子が液相に多量に発生し、これが芯材粉体の表面に付着してしまい、均一なニッケル皮膜を形成することが困難となる。 The aqueous suspension obtained by mixing the aqueous suspension containing the core powder and the initial thin film forming liquid is then subjected to an electroless plating process described later. In the aqueous suspension before being subjected to the electroless plating step, the ratio of the total surface area of the core powder contained in the aqueous suspension to the volume of the aqueous suspension (this ratio is generally a load). (Referred to as “amount”) is preferably 0.1 to 15 m 2 / liter, particularly 1 to 10 m 2 / liter from the viewpoint that a nickel film having a film having excellent adhesion can be easily formed. If the load is too high, the reduction of nickel ions in the liquid phase will be significant in the electroless plating process described later, and a large amount of nickel fine particles will be generated in the liquid phase, which will adhere to the surface of the core powder. Therefore, it becomes difficult to form a uniform nickel film.

(3)無電解めっき工程
無電解めっき工程においては、(a)初期薄膜が形成された芯材粉体及び前記錯化剤を含む水性懸濁体、(b)ニッケルイオン含有液及び(c)還元剤含有液の3液を使用する。(a)の水性懸濁体は、先に述べた初期薄膜形成工程で得られたものをそのまま用いればよい。
(3) Electroless plating step In the electroless plating step, (a) an aqueous suspension containing the core material powder on which an initial thin film is formed and the complexing agent, (b) a nickel ion-containing liquid, and (c) Three liquids containing a reducing agent are used. As the aqueous suspension (a), the aqueous suspension obtained in the above-described initial thin film formation step may be used as it is.

(a)の水性懸濁体とは別に、(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を調製しておく。ニッケルイオン含有液は、ニッケルイオン源である硫酸ニッケルや塩化ニッケルのような水溶性ニッケル塩の水溶液である。ニッケルイオンの濃度は、0.1〜1.2モル/リットル、特に0.5〜1.0モル/リットルであることが、密着性に優れたニッケル皮膜を容易に形成させることができることから好ましい。   Separately from the aqueous suspension of (a), two liquids, a nickel ion-containing liquid (b) and a reducing agent-containing liquid (c), are prepared. The nickel ion-containing liquid is an aqueous solution of a water-soluble nickel salt such as nickel sulfate or nickel chloride, which is a nickel ion source. The concentration of nickel ions is preferably 0.1 to 1.2 mol / liter, particularly 0.5 to 1.0 mol / liter because a nickel film having excellent adhesion can be easily formed. .

ニッケルイオン含有液には、水性懸濁体に含有されている錯化剤と同種の錯化剤を含有させておくことが好ましい。つまり(a)の水性懸濁体及び(b)のニッケルイオン含有液の双方に同種の錯化剤を含有させておくことが好ましい。これによって密着性に優れたニッケル皮膜を容易に形成させることができる。この理由は明確ではないが、(a)の水性懸濁体及び(b)のニッケルイオン含有液の双方に錯化剤を含有させておくことで、ニッケルイオンが安定化し、その還元反応が急激に進行することが妨げられるからであると推測される。   The nickel ion-containing liquid preferably contains a complexing agent of the same type as the complexing agent contained in the aqueous suspension. That is, it is preferable that the same kind of complexing agent is contained in both the aqueous suspension (a) and the nickel ion-containing liquid (b). As a result, a nickel film having excellent adhesion can be easily formed. The reason for this is not clear, but by adding a complexing agent to both the aqueous suspension (a) and the nickel ion-containing liquid (b), the nickel ions are stabilized, and the reduction reaction is rapid. It is presumed that this is hindered from proceeding to the next stage.

(b)のニッケルイオン含有液における錯化剤の濃度も、(a)の水性懸濁体における錯化剤の濃度と同様にニッケル皮膜の形成に影響を及ぼす。この観点及び錯化剤の溶解度の観点から、ニッケルイオン含有液における錯化剤の量は0.006〜12モル/リットル、特に0.012〜8モル/リットルであることが好ましい。   The concentration of the complexing agent in the nickel ion-containing liquid (b) affects the formation of the nickel film in the same manner as the concentration of the complexing agent in the aqueous suspension (a). From this viewpoint and the viewpoint of the solubility of the complexing agent, the amount of the complexing agent in the nickel ion-containing liquid is preferably 0.006 to 12 mol / liter, particularly 0.012 to 8 mol / liter.

(c)の還元剤含有液は、一般に還元剤の水溶液である。還元剤としては、先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができる。特に次亜リン酸ナトリウムを用いることが好ましい。還元剤の濃度は、ニッケルイオンの還元状態に影響を及ぼすことから、0.1〜20モル/リットル、特に1〜10モル/リットルの範囲に調整することが好ましい。   The reducing agent-containing liquid (c) is generally an aqueous solution of a reducing agent. As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used. It is particularly preferable to use sodium hypophosphite. Since the concentration of the reducing agent affects the reduction state of nickel ions, it is preferably adjusted to a range of 0.1 to 20 mol / liter, particularly 1 to 10 mol / liter.

(a)の水性懸濁体に、(b)のニッケルイオン含有液及び(c)の還元剤含有液の2液を個別かつ同時に添加する。これによってニッケルイオンが還元されて、芯材粉体の表面にニッケルが析出しその皮膜が形成される。ニッケルイオン含有液と還元剤含有液の添加速度は、ニッケルの析出速度を制御するのに有効である。ニッケルの析出速度は、密着性の良いニッケル皮膜の形成に影響を及ぼす。従って、ニッケルの析出速度は、両液の添加速度を調整することによって1〜10000nm/時、特に5〜300nm/時に制御することが好ましい。ニッケルの析出速度は、ニッケルイオン含有液の添加速度から計算によって求めることができる。   Two liquids, the nickel ion-containing liquid (b) and the reducing agent-containing liquid (c), are added individually and simultaneously to the aqueous suspension (a). As a result, nickel ions are reduced, and nickel is deposited on the surface of the core powder to form a film. The addition rate of the nickel ion-containing liquid and the reducing agent-containing liquid is effective in controlling the nickel deposition rate. The deposition rate of nickel affects the formation of a nickel film with good adhesion. Therefore, it is preferable to control the deposition rate of nickel by adjusting the addition rate of both solutions to 1 to 10,000 nm / hour, particularly 5 to 300 nm / hour. The deposition rate of nickel can be obtained by calculation from the addition rate of the nickel ion-containing liquid.

2液を水性懸濁体に添加している間、負荷量を0.1〜15m2/リットル、特に1〜10m2/リットルの範囲に保つことが好ましい。これによって、ニッケルが均一に析出する。同様の理由から、2液の添加が終わりニッケルイオンの還元が完了した時点での負荷量がこの範囲であることも好ましい。 While the two liquids are added to the aqueous suspension, it is preferable to keep the loading in the range of 0.1 to 15 m 2 / liter, particularly 1 to 10 m 2 / liter. Thereby, nickel is deposited uniformly. For the same reason, it is also preferable that the loading amount at the time when the addition of the two liquids is completed and the reduction of nickel ions is completed is within this range.

用いる還元剤の種類にもよるが、ニッケルイオンの還元反応中、水性懸濁体のpHは3〜13、特に4〜11の範囲に保たれていることが、ニッケルの水不溶性沈殿物の生成を防止する点から好ましい。pHを調整するには、例えば、還元剤含有液中に水酸化ナトリウムなどのpH調整剤を所定量添加しておけばよい。   Depending on the type of reducing agent used, during the nickel ion reduction reaction, the pH of the aqueous suspension is maintained in the range of 3 to 13, particularly 4 to 11, in order to form a water-insoluble precipitate of nickel. It is preferable from the point which prevents. In order to adjust the pH, for example, a predetermined amount of a pH adjusting agent such as sodium hydroxide may be added to the reducing agent-containing liquid.

得られためっき粉体は、ろ過及び水洗が数度繰り返された後に分離される。更に付加工程として、ニッケル皮膜上に最上層としての金めっき層の形成工程を行ってもよい。金めっき層の形成は、従来公知の無電解めっき法に従い行うことができる。例えば、めっき粉体の水性懸濁体に、エチレンジアミン四酢酸四ナトリウム、クエン酸三ナトリウム及びシアン化金カリウムを含み、水酸化ナトリウムでpHが調整された無電解めっき液を添加することで、ニッケル皮膜上に金めっき層が形成される。金めっき層の厚さは一般に0.001〜0.5μm程度である。金めっき層の厚さは、金イオンの添加量や化学分析から算出することができる。   The obtained plating powder is separated after filtration and water washing are repeated several times. Further, as an additional process, a gold plating layer as the uppermost layer may be formed on the nickel film. The gold plating layer can be formed according to a conventionally known electroless plating method. For example, by adding an electroless plating solution containing ethylenediaminetetraacetic acid tetrasodium, trisodium citrate and potassium gold cyanide, adjusted to pH with sodium hydroxide, to an aqueous suspension of plating powder, A gold plating layer is formed on the film. The thickness of the gold plating layer is generally about 0.001 to 0.5 μm. The thickness of the gold plating layer can be calculated from the amount of gold ions added and chemical analysis.

このようにして、ニッケル皮膜が芯材粉体の表面に形成されてなるめっき粉体が得られる。このめっき粉体におけるニッケル皮膜は芯材粉体との密着性に優れたものとなる。ニッケル皮膜の厚さはその密着性や耐熱性に少なからず影響し、皮膜が厚すぎると芯材粉体からの落剥が起こって導電性が低下しやすい傾向にある。逆に、皮膜が薄すぎても所望の導電性が得られなくなる。これらの観点から、ニッケル皮膜の厚さは0.005〜10μm、特に0.01〜2μm程度であることが好ましい。ニッケル皮膜の厚さは例えば走査型電子顕微鏡による観察から実測できるほか、ニッケルイオンの添加量や化学分析から算出することもできる。   In this way, a plating powder is obtained in which a nickel film is formed on the surface of the core powder. The nickel film in the plating powder has excellent adhesion to the core material powder. The thickness of the nickel film has a considerable influence on its adhesion and heat resistance, and if the film is too thick, it tends to fall from the core powder and the conductivity tends to decrease. On the contrary, even if the film is too thin, desired conductivity cannot be obtained. From these viewpoints, the thickness of the nickel coating is preferably about 0.005 to 10 μm, particularly about 0.01 to 2 μm. The thickness of the nickel film can be measured, for example, by observation with a scanning electron microscope, or can be calculated from the amount of nickel ions added or chemical analysis.

かくして得られる本発明のめっき粉体は、例えば異方導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電材料、偏光板などの用途に好適に使用される。   The plating powder of the present invention thus obtained includes, for example, an anisotropic conductive film (ACF), a heat seal connector (HSC), a conductive material for connecting electrodes of a liquid crystal display panel to a circuit board of a driving LSI chip, a polarizing plate It is suitably used for such applications.

以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1−3〕
(1) メラミン樹脂被覆工程
冷却器付四つ口フラスコに表1に示す芯材粉体100重量部、水100重量部、メラミン3重量部、37%ホルマリン8重量部を仕込み、攪拌下に5%炭酸ナトリウム水溶液を添加してpHを9.0に調製した。次に75℃に昇温し、2時間攪拌下に反応を行った。反応終了後、冷却し、濾過、水洗し、減圧下(5mmHg以下)、150℃で6時間乾燥硬化させることによりメラミン樹脂を2.1重量%被覆した芯材粉体を得た。
[Example 1-3]
(1) Melamine resin coating step In a four-necked flask equipped with a condenser, 100 parts by weight of the core powder shown in Table 1, 100 parts by weight of water, 3 parts by weight of melamine, and 8 parts by weight of 37% formalin were charged and stirred under 5 parts. % Aqueous sodium carbonate solution was added to adjust the pH to 9.0. Next, the temperature was raised to 75 ° C., and the reaction was conducted with stirring for 2 hours. After completion of the reaction, the mixture was cooled, filtered, washed with water, and dried and cured at 150 ° C. for 6 hours under reduced pressure (5 mmHg or less) to obtain a core material powder coated with 2.1% by weight of melamine resin.

(2)触媒化処理工程
(1)の工程で得られたメラミン被覆芯材粉体を7.5重量%含む水性スラリー200mlに、塩化第一錫水溶液200mlを投入した。この水溶液の濃度は5×10-3モル/Lであった。常温で5分間攪拌し、錫イオンをメラミン被覆芯材粉体の表面に吸着させる感受性化処理を行った。引き続き水溶液を濾過し、1回リパルプして水洗した。次いでメラミン被覆芯材粉体を3.75重量%含む水性スラリー400mLを調製し、60℃に維持した。超音波を併用してスラリーを攪拌しながら、0.11モルg/Lの塩化パラジウム水溶液2mLを添加した。そのままの攪拌状態を5分間維持させ、メラミン被覆芯材粉体の表面にパラジウムイオンを捕捉させる活性化処理を行った。次いで水溶液をろ過し、1回リパルプ湯洗した。次にメラミン被覆芯材粉体を7.5重量%含む水性スラリー200mlを調製した。超音波を併用しながらこのスラリーを攪拌し、そこへ、0.017モル/リットルのジメチルアミンボランと0.16モル/リットルのホウ酸との混合水溶液20mLを加えた。常温で超音波を併用しながら2分間攪拌してパラジウムイオンの還元処理を行った。
(3)初期薄膜形成工程
(2) Catalytic Treatment Step 200 ml of stannous chloride aqueous solution was added to 200 ml of an aqueous slurry containing 7.5% by weight of the melamine-coated core material powder obtained in the step (1). The concentration of this aqueous solution was 5 × 10 −3 mol / L. The mixture was stirred at room temperature for 5 minutes, and sensitization treatment was performed to adsorb tin ions to the surface of the melamine-coated core material powder. Subsequently, the aqueous solution was filtered, repulped once and washed with water. Next, 400 mL of an aqueous slurry containing 3.75% by weight of melamine-coated core material powder was prepared and maintained at 60 ° C. While stirring the slurry using ultrasonic waves, 2 mL of an aqueous 0.11 mol / L palladium chloride solution was added. The state of stirring as it was was maintained for 5 minutes, and an activation treatment for trapping palladium ions on the surface of the melamine-coated core material powder was performed. The aqueous solution was then filtered and washed once with repulp hot water. Next, 200 ml of an aqueous slurry containing 7.5% by weight of melamine-coated core material powder was prepared. The slurry was stirred while using ultrasonic waves, and 20 mL of a mixed aqueous solution of 0.017 mol / liter dimethylamine borane and 0.16 mol / liter boric acid was added thereto. The mixture was stirred for 2 minutes while using ultrasonic waves at room temperature to reduce palladium ions.
(3) Initial thin film formation process

(2)の工程で処理したメラミン被覆芯材粉体7.5重量%含む水性スラリー200mLを、0.087モル/Lの酒石酸ナトリウムと0.005モル/Lの硫酸ニッケルと0.012モル/Lの次亜リン酸ナトリウムからなる初期薄膜形成液に攪拌しながら添加して水性懸濁体となした。初期薄膜形成液は75℃に加温されており、液量は2Lであった。スラリー投入後、直ぐに水素の発生が認められ、初期薄膜形成の開始を確認した。
(4)無電解めっき工程
200 mL of an aqueous slurry containing 7.5% by weight of the melamine-coated core powder treated in the step (2) was mixed with 0.087 mol / L sodium tartrate, 0.005 mol / L nickel sulfate and 0.012 mol / L. An aqueous suspension was obtained by adding to the initial thin film-forming solution composed of sodium hypophosphite while stirring. The initial thin film forming liquid was heated to 75 ° C., and the liquid volume was 2 L. Immediately after the slurry was introduced, hydrogen generation was observed, confirming the start of initial thin film formation.
(4) Electroless plating process

初期薄膜形成工程で得られた水性懸濁体に0.86モル/Lの硫酸ニッケルと0.17モル/Lの酒石酸ナトリウムからなるニッケルイオン含有液及び2.57モル/Lの次亜リン酸ナトリウムと2.6モル/Lの水酸化ナトリウムからなる還元剤含有液の2液を、それぞれ8mL/分の添加速度で添加した。添加量はそれぞれ析出した膜厚が0.2ミクロンになるように添加液量を調節した。2液の添加後すぐに水素の発生が認められ、めっき反応の開始が確認された。2液の添加が完了した後、水素の発泡が停止するまで75℃の温度を保持しながら攪拌を続けた。次いで水性懸濁体をろ過し、ろ過物を3回リパルプ洗浄した後、110℃の真空乾燥機で乾燥させた。これにより、ニッケル−リン合金めっき皮膜を有するめっき粉体を得た。   Nickel ion-containing liquid consisting of 0.86 mol / L nickel sulfate and 0.17 mol / L sodium tartrate and 2.57 mol / L hypophosphorous acid in the aqueous suspension obtained in the initial thin film formation step Two solutions of a reducing agent-containing solution consisting of sodium and 2.6 mol / L sodium hydroxide were added at an addition rate of 8 mL / min. The amount of the added solution was adjusted so that the deposited film thickness was 0.2 microns. Generation of hydrogen was observed immediately after the addition of the two liquids, confirming the start of the plating reaction. After the addition of the two liquids was completed, stirring was continued while maintaining the temperature at 75 ° C. until hydrogen bubbling stopped. Subsequently, the aqueous suspension was filtered, and the filtrate was washed with repulp three times and then dried with a vacuum dryer at 110 ° C. Thereby, the plating powder which has a nickel- phosphorus alloy plating film was obtained.

〔比較例1−3〕
実施例1〜3において、(1)の工程を実施しない以外は同様な操作でめっき粉体を得た。
[Comparative Example 1-3]
In Examples 1 to 3, plated powder was obtained by the same operation except that the step (1) was not performed.

〔比較例4〜6〕
実施例1において、(1)の工程を下記(1−1)工程に代えた以外は実施例1〜3と同様な操作でめっき粉体を得た。
(1−1)工程
表1に示す表面処理剤1.0重量%含む水溶液100重量部に、実施例1で使用した同じスチレン樹脂10重量部を添加し室温で1時間浸漬させた。次に110℃で乾燥して表面処理剤を被覆した芯材粉体を調製した。
[Comparative Examples 4 to 6]
In Example 1, the plating powder was obtained by the same operation as Example 1-3 except having replaced the process of (1) with the following (1-1) process.
(1-1) Step 10 parts by weight of the same styrene resin used in Example 1 was added to 100 parts by weight of an aqueous solution containing 1.0% by weight of the surface treatment agent shown in Table 1, and immersed for 1 hour at room temperature. Next, the core material powder which dried by 110 degreeC and coat | covered the surface treating agent was prepared.

〔比較例7〕
実施例1において、(1)の工程を下記(1−2)工程に代えた以外は実施例1と同様な操作でめっき粉体を得た。
(1−2)工程
無水クロム酸2.0モル/L、硫酸3.6モル/Lからなるエッチング液2L中に芯材粉体100重量部を仕込み、70℃に昇温後、10分間攪拌した。次いでろ過、洗浄を繰り返し、エッチング処理をした芯材粉体を得た。
[Comparative Example 7]
In Example 1, plating powder was obtained by the same operation as Example 1 except having replaced the process of (1) with the following (1-2) process.
(1-2) Step 100 parts by weight of core material powder is charged in 2 L of an etching solution consisting of 2.0 mol / L of chromic anhydride and 3.6 mol / L of sulfuric acid, heated to 70 ° C., and stirred for 10 minutes. did. Subsequently, filtration and washing were repeated to obtain an etching-treated core material powder.

得られためっき粉体について、以下の方法で、めっき皮膜の厚み、めっき皮膜の密着性を測定・評価した。その結果を表2に示す。また、めっき粉体に残存するクロム量を測定し、その結果も表2に併記した。   About the obtained plating powder, the thickness of the plating film and the adhesion of the plating film were measured and evaluated by the following methods. The results are shown in Table 2. Further, the amount of chromium remaining in the plating powder was measured, and the results are also shown in Table 2.

〔めっき皮膜の厚み〕
めっき粉体を硝酸に浸漬してめっき皮膜を溶解し、皮膜成分をICPまたは化学分析により定量し、下式により厚みを算出した。
A=[(r+t)3−r3]d1/rd2
A=W/100−W
式中、rは芯材粉体の半径(μm)、tはめっき皮膜の厚み(μm)、d1はめっき皮膜の比重、d2は芯材粉体の比重、Wは金属含有量(重量%)を示す。
[Thickness of plating film]
The plating powder was immersed in nitric acid to dissolve the plating film, the film components were quantified by ICP or chemical analysis, and the thickness was calculated by the following equation.
A = [(r + t) 3 −r 3 ] d 1 / rd 2
A = W / 100-W
In the formula, r is the radius of the core powder (μm), t is the thickness of the plating film (μm), d 1 is the specific gravity of the plating film, d 2 is the specific gravity of the core powder, and W is the metal content (weight). %).

〔めっき皮膜の密着性〕
めっき粉体2.2g及び直径3mmのジルコニアビーズ90gを、100ミリリットルのマヨネーズビンに入れた。更にマヨネーズビンに、ホールピペットを用いてトルエン10ミリリットルを加えた。攪拌機(スリーワンモーター)を用いてマヨネーズビン内を10分間400rpmで攪拌した。終了後、めっき粉体とジルコニアビーズとを分別した。走査型電子顕微鏡でめっき粉体を観察し、めっき皮膜のはがれ具合を以下の基準で評価した。
○:めっき皮膜の剥がれが観察されなかった。
×:めっき皮膜の剥がれが観察された。
[Adhesion of plating film]
Plating powder 2.2 g and zirconia beads 90 g having a diameter of 3 mm were placed in a 100 ml mayonnaise bottle. Further, 10 ml of toluene was added to the mayonnaise bottle using a whole pipette. The inside of the mayonnaise bottle was stirred for 10 minutes at 400 rpm using a stirrer (three one motor). After completion, the plating powder and zirconia beads were separated. The plating powder was observed with a scanning electron microscope, and the peeling degree of the plating film was evaluated according to the following criteria.
○: Peeling of the plating film was not observed.
X: Peeling of the plating film was observed.

〔クロム含有量〕
めっき粉体を硝酸に浸漬してめっき皮膜を溶解し、さらに硫酸を加え加熱分解した。得られた分解溶液からICPによりクロム量を測定した。
[Chromium content]
The plating powder was immersed in nitric acid to dissolve the plating film, and further sulfuric acid was added for thermal decomposition. The amount of chromium was measured by ICP from the obtained decomposition solution.

Figure 2007262495
注)表面処理剤1;γ―アミノプロピルトリエトキシシラン、表面処理剤2;N−β(アミノエチル)γ―アミノプロピルトリメトキシシラン、表面処理剤3;γ―メタアクリロキシプロピルトリメトキシシラン
Figure 2007262495
Note) Surface treatment agent 1; γ-aminopropyltriethoxysilane, surface treatment agent 2; N-β (aminoethyl) γ-aminopropyltrimethoxysilane, surface treatment agent 3; γ-methacryloxypropyltrimethoxysilane

Figure 2007262495
注)N.D.は検出限界0.002mg/g−めっき粉体以下であることを示す。
Figure 2007262495
Note) N. D. Indicates that the detection limit is 0.002 mg / g or less of the plating powder.

表2に示す結果から明らかなように、各実施例のめっき粉体(本発明品)はめっき皮膜の密着性に優れており、実質的にクロムを含まないことが判る。これに対して比較例1〜6のめっき粉体はクロムを含まないものの、めっきが剥がれやすいものであることが判る。また、比較例7のめっき粉体はめっき皮膜の密着性に優れているものの、めっき粉体中にクロムが含有されていることが判る。   As is apparent from the results shown in Table 2, it can be seen that the plating powders of the respective examples (products of the present invention) are excellent in the adhesion of the plating film and are substantially free of chromium. On the other hand, although the plating powder of Comparative Examples 1-6 does not contain chromium, it turns out that plating is easy to peel off. Moreover, although the plating powder of the comparative example 7 is excellent in the adhesiveness of a plating film, it turns out that chromium is contained in plating powder.

Claims (6)

芯材粉体の表面をメラミン樹脂で被覆処理し、更に無電解めっきにより金属皮膜が形成されてなることを特徴とする導電性無電解めっき粉体。   A conductive electroless plating powder, wherein the surface of a core powder is coated with a melamine resin, and further a metal film is formed by electroless plating. 前記芯材粉体が疎水性のものである請求項1記載の導電性無電解めっき粉体。   The conductive electroless plating powder according to claim 1, wherein the core material powder is hydrophobic. 前記芯材粉体の平均粒径が0.5〜100μmである請求項1又は2記載の導電性無電解めっき粉体。   The conductive electroless plating powder according to claim 1 or 2, wherein the core material powder has an average particle size of 0.5 to 100 µm. 前記芯材粉体の平均粒径が1〜20μmである請求項1又は2記載の導電性無電解めっき粉体。   The conductive electroless plating powder according to claim 1 or 2, wherein the core material powder has an average particle diameter of 1 to 20 µm. 前記芯材粉体として球状のものを用いる請求項1乃至4の何れかに記載の導電性無電解めっき粉体。   The conductive electroless plating powder according to claim 1, wherein a spherical powder is used as the core material powder. 芯材粉体とメラミン樹脂の初期縮合物を接触させて該初期縮合物の重合反応を行ってメラミン樹脂を被覆した芯材粉体を得る工程、次いで該メラミン樹脂を被覆した芯材粉体の表面に貴金属を担持させる工程、次いで該貴金属を担持させた芯材粉体を無電解めっき処理する工程とを、含むことを特徴とする導電性無電解めっき粉体の製造方法。   A step of bringing a core material powder and an initial condensate of melamine resin into contact with each other to carry out a polymerization reaction of the initial condensate to obtain a core material powder coated with melamine resin; A method for producing a conductive electroless plating powder, comprising: a step of supporting a noble metal on a surface; and a step of subjecting a core powder carrying the noble metal to electroless plating.
JP2006089152A 2006-03-28 2006-03-28 Conductive electroless plating powder and method for producing the same Active JP4849930B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006089152A JP4849930B2 (en) 2006-03-28 2006-03-28 Conductive electroless plating powder and method for producing the same
TW096107804A TWI419996B (en) 2006-03-28 2007-03-07 Conductive electroless plating powder and its manufacturing method
KR1020087023517A KR101305574B1 (en) 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same
PCT/JP2007/055497 WO2007119417A1 (en) 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same
CN2007800119038A CN101415863B (en) 2006-03-28 2007-03-19 Conductive powder plated by electroless plating and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089152A JP4849930B2 (en) 2006-03-28 2006-03-28 Conductive electroless plating powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007262495A true JP2007262495A (en) 2007-10-11
JP4849930B2 JP4849930B2 (en) 2012-01-11

Family

ID=38609208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089152A Active JP4849930B2 (en) 2006-03-28 2006-03-28 Conductive electroless plating powder and method for producing the same

Country Status (5)

Country Link
JP (1) JP4849930B2 (en)
KR (1) KR101305574B1 (en)
CN (1) CN101415863B (en)
TW (1) TWI419996B (en)
WO (1) WO2007119417A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054386A1 (en) 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2010229554A (en) * 2010-06-16 2010-10-14 Sony Chemical & Information Device Corp Conductive particle, production method of the same, and anisotropic conductive adhesive
JP2010229556A (en) * 2010-06-30 2010-10-14 Sony Chemical & Information Device Corp Conductive particle, production method of the same, and anisotropic conductive adhesive
WO2011158783A1 (en) * 2010-06-16 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particles, method for producing same and anisotropically conductive adhesive
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167838B (en) * 2010-12-21 2012-11-28 苏州纳微生物科技有限公司 Polymer composite microsphere containing dendritic structure, anisotropic conducting material and anisotropic conducting film
JP6352879B2 (en) * 2015-10-15 2018-07-04 小島化学薬品株式会社 Electroless platinum plating solution
CN106903305A (en) * 2017-04-12 2017-06-30 合肥学院 A kind of preparation method of 3D printing metallic particles/inorganic nanoparticles/polymer compound powder body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228678A (en) * 1984-04-26 1985-11-13 Agency Of Ind Science & Technol Formation of metallic film on surface of high molecular material
JPS63190204A (en) * 1987-01-30 1988-08-05 積水フアインケミカル株式会社 Conducting fine pellet
JPH05156456A (en) * 1991-11-29 1993-06-22 Nippon Chem Ind Co Ltd Electroless plating pretreating agent for aluminum base material and electroless plating method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297471A (en) * 1986-06-16 1987-12-24 Seiko Epson Corp Electroless nickel plating method for inorganic fine powder
JP2635331B2 (en) * 1987-09-01 1997-07-30 株式会社資生堂 Composite material, method for producing the same, and method for depositing metal
JP3417699B2 (en) * 1994-12-26 2003-06-16 日本化学工業株式会社 Conductive electroless plating powder
JP3436327B2 (en) * 1995-05-16 2003-08-11 日本化学工業株式会社 Conductive electroless plating powder
JP3832938B2 (en) * 1997-08-12 2006-10-11 日本化学工業株式会社 Electroless silver plating powder and method for producing the same
CN1667157B (en) * 2004-03-10 2010-05-05 日本化学工业株式会社 Chemically plated conductive powder and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228678A (en) * 1984-04-26 1985-11-13 Agency Of Ind Science & Technol Formation of metallic film on surface of high molecular material
JPS63190204A (en) * 1987-01-30 1988-08-05 積水フアインケミカル株式会社 Conducting fine pellet
JPH05156456A (en) * 1991-11-29 1993-06-22 Nippon Chem Ind Co Ltd Electroless plating pretreating agent for aluminum base material and electroless plating method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054386A1 (en) 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2010229554A (en) * 2010-06-16 2010-10-14 Sony Chemical & Information Device Corp Conductive particle, production method of the same, and anisotropic conductive adhesive
WO2011158783A1 (en) * 2010-06-16 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particles, method for producing same and anisotropically conductive adhesive
JP2010229556A (en) * 2010-06-30 2010-10-14 Sony Chemical & Information Device Corp Conductive particle, production method of the same, and anisotropic conductive adhesive

Also Published As

Publication number Publication date
WO2007119417A1 (en) 2007-10-25
CN101415863B (en) 2011-04-20
CN101415863A (en) 2009-04-22
KR101305574B1 (en) 2013-09-09
JP4849930B2 (en) 2012-01-11
TWI419996B (en) 2013-12-21
TW200745377A (en) 2007-12-16
KR20080111022A (en) 2008-12-22

Similar Documents

Publication Publication Date Title
JP4849930B2 (en) Conductive electroless plating powder and method for producing the same
WO2000051138A1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP4746116B2 (en) Conductive powder, conductive material containing the same, and method for producing conductive particles
JP6201153B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
TWI449804B (en) Metal layer-coated substrate and process for the production thereof
JP5512306B2 (en) Method for producing conductive particles
JP4740137B2 (en) Method for producing conductive fine particles
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
TW201319307A (en) Pretreatment solution for electroless copper plating and electroless copper plating method
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
US20050227074A1 (en) Conductive electrolessly plated powder and method for making same
JP2009511746A (en) Method for producing conductive powder excellent in dispersibility and adhesion
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
TWI540222B (en) Method of metallization for surface of substrate and substrate manufactured by the same
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2006241499A (en) Method for producing powder electroless-plated with electroconductive substance
JP5695768B2 (en) Conductive powder and conductive material including the same
TW200900531A (en) Manufacturing method of conductive ball using eletroless plating
JP5707247B2 (en) Method for producing conductive particles
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP5446191B2 (en) Method for producing electroless plating resin particles
KR20070096318A (en) Conductive ball for anisotropic conductive film and method of preparing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250