JPS63190204A - Conducting fine pellet - Google Patents

Conducting fine pellet

Info

Publication number
JPS63190204A
JPS63190204A JP62021187A JP2118787A JPS63190204A JP S63190204 A JPS63190204 A JP S63190204A JP 62021187 A JP62021187 A JP 62021187A JP 2118787 A JP2118787 A JP 2118787A JP S63190204 A JPS63190204 A JP S63190204A
Authority
JP
Japan
Prior art keywords
conductive
alkylene
microspheres
resin
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62021187A
Other languages
Japanese (ja)
Other versions
JP2507381B2 (en
Inventor
和彦 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP62021187A priority Critical patent/JP2507381B2/en
Publication of JPS63190204A publication Critical patent/JPS63190204A/en
Application granted granted Critical
Publication of JP2507381B2 publication Critical patent/JP2507381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温下や高湿下にて耐圧縮性に優れ。[Detailed description of the invention] (Industrial application field) The present invention has excellent compression resistance under high temperature and high humidity conditions.

かつこれら条件下でも導電性が良好な導電性微球体に関
する。
The present invention also relates to conductive microspheres that have good conductivity even under these conditions.

(従来の技術) 導電性ペースト、導電性接着剤、導電性粘着剤あるいは
異方導電フィルムなどの導電性材料には。
(Prior art) For conductive materials such as conductive paste, conductive adhesive, conductive adhesive or anisotropic conductive film.

導電性粒子と樹脂とからなる組成物が用いられている。A composition consisting of conductive particles and a resin is used.

この導電性粒子には、一般に、金、銀、ニッケルなどの
金属粒子がある。しかし、このような金属粒子は、樹脂
にくらべて比重が大きく、形状も不定形であるため、樹
脂中で不均一に゛存在しやすい。そのために導電性にむ
らが生じる。このような欠点を解決するために、特開昭
59−28185号公報には、金属粒子の代わりに2粒
径の均一なガラスピーズ、グラスファイバー、プラスチ
ックボールなどの非導電性粒子の表面に、金、11.ス
ズ。
The conductive particles generally include metal particles such as gold, silver, and nickel. However, such metal particles have a higher specific gravity than the resin and are irregular in shape, so they tend to exist non-uniformly in the resin. This causes uneven conductivity. In order to solve these drawbacks, Japanese Patent Application Laid-open No. 59-28185 discloses that instead of metal particles, non-conductive particles such as glass beads, glass fibers, and plastic balls with two uniform particle diameters are coated on the surface. Gold, 11. Tin.

銅、ニッケル、コバルトなどをメッキによりコーティン
グした導電性粒子が開示されている。特に。
Conductive particles coated with copper, nickel, cobalt, etc. by plating are disclosed. especially.

ニッケルやコバルトをメッキすれば、メッキ層が酸化の
影響を受は難いため、常態では、導電性粒子の導電性が
良好に保たれる。しかも、これら導電性粒子は安価に得
られる。
If nickel or cobalt is plated, the plating layer is not easily affected by oxidation, so that the conductivity of the conductive particles is maintained at a good level under normal conditions. Furthermore, these conductive particles can be obtained at low cost.

しかし、ニッケルやコバルトをメッキした導電性粒子は
、高温状態に長時間放置したり水蒸気に長時間接触させ
ると、メッキ層が侵され変質する。
However, if conductive particles plated with nickel or cobalt are left in a high temperature state for a long time or exposed to water vapor for a long time, the plating layer will be corroded and the quality will change.

そのため、導電性粒子の電気抵抗が増大し導電性が低下
する。しかも、この導電性粒子は、メッキ層が硬すぎて
可撓性が不足しているため、非導電性粒子と導電メッキ
層との間の密着性に欠ける。
Therefore, the electrical resistance of the conductive particles increases and the conductivity decreases. Moreover, since the plating layer of the conductive particles is too hard and lacks flexibility, the adhesion between the non-conductive particles and the conductive plating layer is lacking.

従って、この導電性粒子に圧縮荷重をかけると。Therefore, when a compressive load is applied to this conductive particle.

導電メッキ層が非導電性粒子から剥離しやすい。The conductive plating layer easily separates from the non-conductive particles.

導電メッキ層は脆いため、圧縮荷重により破壊されるお
それもある。
Since the conductive plating layer is brittle, there is a risk that it will be destroyed by compressive load.

(発明が解決しようとする問題点) 本発明は上記従来の問題点を解決するものであり、その
目的とするところは、高温下や高湿下において、導電薄
膜層が変質しに<<、そのため。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and its purpose is to prevent the conductive thin film layer from deteriorating under high temperature and high humidity conditions. Therefore.

導電性が良好な導電性微球体を提供することにある。本
発明の他の目的は、圧縮荷重をかけても。
An object of the present invention is to provide conductive microspheres with good conductivity. Another object of the invention is that even when compressive loads are applied.

導電薄膜層が樹脂微球体から剥離しにくい導電性微球体
を提供することにある。本発明のさらに他の目的は、圧
縮荷重による導電薄膜層の破壊が生じにくい導電性微球
体を提供することにある。
An object of the present invention is to provide conductive microspheres in which a conductive thin film layer is difficult to peel off from resin microspheres. Still another object of the present invention is to provide conductive microspheres whose conductive thin film layer is less likely to be destroyed by compressive loads.

(問題点を解決するための手段) 本発明は、無電解ニッケルメッキ法により、樹脂微球体
にニッケルメッキを施す際に、ニッケル中に取り込まれ
るリン含有量を一定範囲に限定することにより、可撓性
を有しかつ高温下や高湿下でも変質しにくい導電メッキ
層が得られる。しかも、上記方法はコバルトメッキ法に
も適用され得る。との発明者の知見にもとづいて完成さ
れた。
(Means for Solving the Problems) The present invention makes it possible by limiting the phosphorus content incorporated into nickel to a certain range when nickel plating is applied to resin microspheres by an electroless nickel plating method. A conductive plating layer that has flexibility and is resistant to deterioration even under high temperature or high humidity can be obtained. Moreover, the above method can also be applied to a cobalt plating method. It was completed based on the inventor's knowledge.

本発明の導電性微球体は、樹脂微球体の表面にニッケル
および/またはコバルトからなる導電薄膜層が形成され
た導電性微球体であって、該導電薄膜層にリンを1.5
〜4重量%の割合で含有してなり、そのことにより上記
目的が達成される。
The conductive microspheres of the present invention are conductive microspheres in which a conductive thin film layer made of nickel and/or cobalt is formed on the surface of a resin microsphere, and the conductive thin film layer contains 1.5 phosphorus.
4% by weight, thereby achieving the above object.

樹脂微球体としては9例えば、ポリエチレン。Examples of resin microspheres include polyethylene.

ポリプロピレン、メチルペンテンポリマー、ポリスチレ
ン、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ
フッ化ビニル、ポリテトラフルオロエチレン、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート、ポ
リスルホン、ポリカーボネート、ポリアクリロニトリル
、ポリアセタール、ポリアミドなどの線状重合体がある
。この樹脂微球体は1例えば、ジビニルベンゼン、ヘキ
サトリエン、ジビニルエーテル、ジビニルスルホン。
Linear polymers include polypropylene, methylpentene polymer, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polycarbonate, polyacrylonitrile, polyacetal, polyamide, etc. . The resin microspheres include, for example, divinylbenzene, hexatriene, divinyl ether, and divinyl sulfone.

ジアリルカルビノール、アルキレンジアクリレート、ア
ルキレンジメタクリレート、オリゴまたはポリ (アル
キレングリコール)ジアクリレート。
Diallylcarbinol, alkylene diacrylate, alkylene dimethacrylate, oligo or poly(alkylene glycol) diacrylate.

オリゴまたはポリ (アルキレングリコール)ジメタク
リレート、アルキレントリアクリレート、アルキレント
リメタクリレート、アルキレンテトラアクリレート、ア
ルキレンテトラメタクリレート。
Oligo or poly(alkylene glycol) dimethacrylate, alkylene triacrylate, alkylene trimethacrylate, alkylene tetraacrylate, alkylene tetramethacrylate.

アルキレンビスアクリルアミド、アルキレンビスメタク
リルアミドなどの架橋反応性単量体を、単独もしくは他
の重合性単量体と重合して得られる網状重合体であって
もよい。単量体としては、ジビニルベンゼン、ヘキサト
リエン、ジビニルエーテル、ジビニルスルホン、アルキ
レントリアクリレート、アルキレンテトラアクリレート
が好適である。
A network polymer obtained by polymerizing a crosslinking reactive monomer such as alkylene bisacrylamide or alkylene bismethacrylamide alone or with other polymerizable monomers may also be used. Preferred monomers include divinylbenzene, hexatriene, divinyl ether, divinyl sulfone, alkylene triacrylate, and alkylene tetraacrylate.

これら樹脂微球体は、ラジカル開始剤および懸濁安定剤
によるパール重合によって形成される。
These resin microspheres are formed by pearl polymerization using a radical initiator and a suspension stabilizer.

ラジカル開始剤には、ラウロイルパーオキサイド。The radical initiator is lauroyl peroxide.

ベンゾイルパーオキサイド、アセチルパーオキサイド、
ジクミルパーオキサイド、ジt−ブチルパーオキサイド
、t−ブチルパーオキシベンゾエート、t−ブチルパー
オキシオクトエート t−ブチルパーオキシアセテ−1
−、t−プチルバーオキシイソブチレートアゾビスイソ
プチロニトリル。
benzoyl peroxide, acetyl peroxide,
Dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl peroxyoctoate, t-butyl peroxy acetate-1
-, t-butylbaroxyisobutyrate azobisisobutyronitrile.

アゾビスイソバレロニトリルなど公知のあらゆる開始剤
が使用される。ラジカル開始剤は、単量体100重量部
に対して、0.5〜15重量部の割合で添加される。0
.5重量部を下まわると、単量体の重合率が著しく低下
する。15重量部を上まわる量の開始剤は必要ではない
。懸濁安定剤は1重合反応によって形成された樹脂微球
体を反応系内に安定に存在させるための添加剤であり2
例えば、ポリビニルアルコール、ポリアクリル酸、ポリ
メタクリル酸、ゼラチン、メチルセルロース、ポリメタ
クリルアミド、ポリエチレングリコール、ポリエチレン
オキサイドモノステアレ−トソルビクンテトラオレエー
ト、グリセリルモノオレエートがある。
Any known initiator can be used, such as azobisisovaleronitrile. The radical initiator is added in an amount of 0.5 to 15 parts by weight based on 100 parts by weight of the monomer. 0
.. When the amount is less than 5 parts by weight, the polymerization rate of the monomer decreases significantly. Amounts of initiator in excess of 15 parts by weight are not necessary. A suspension stabilizer is an additive that allows the resin microspheres formed by the polymerization reaction to exist stably in the reaction system.
Examples include polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, gelatin, methylcellulose, polymethacrylamide, polyethylene glycol, polyethylene oxide monostearate sorbicune tetraoleate, and glyceryl monooleate.

これら単量体、開始剤および懸濁安定剤を含む混合物は
、適当な液体媒質中に分散させ、激しく攪拌しながら微
粒化し、これを加熱することにより重合体となる。液体
媒質には2通常、水が用いられる。重合反応は、未反応
の単量体が消失するまで持続される。得られた重合体は
樹脂微球体となる。
A mixture containing these monomers, an initiator, and a suspension stabilizer is dispersed in a suitable liquid medium, atomized with vigorous stirring, and heated to form a polymer. The liquid medium 2 is usually water. The polymerization reaction is continued until unreacted monomers disappear. The obtained polymer becomes resin microspheres.

樹脂微球体の粒子径は、上記工程における混合物の攪拌
速度および攪拌時間により調節される。
The particle size of the resin microspheres is controlled by the stirring speed and stirring time of the mixture in the above step.

粒子径は1〜100μIが好ましい。さらに好適には3
〜20μmが用いられる。5〜15μmであればさらに
好適である。粒子径には分布があるため。
The particle size is preferably 1 to 100 μI. More preferably 3
~20 μm is used. More preferably, the thickness is 5 to 15 μm. Because there is a distribution in particle size.

通常の方法により1分級するのが好ましい。あるいは、
導電薄膜層形成後に分級してもよい。
It is preferable to carry out one classification using a conventional method. or,
Classification may be performed after forming the conductive thin film layer.

このような樹脂微球体の表面には、金属蒸着やメッキ等
によって導電薄膜層が形成される。導電薄膜層は2例え
ば次のようにして形成される(以下本発明における樹脂
微球体の導電薄膜層としては導電メッキ層を例にあげて
説明する)。
A conductive thin film layer is formed on the surface of such resin microspheres by metal vapor deposition, plating, or the like. The conductive thin film layer is formed, for example, as follows (hereinafter, the conductive thin film layer of the resin microspheres in the present invention will be explained using a conductive plating layer as an example).

導電メッキ層の形成工程は、エツチング、アクチベーシ
ョンおよび化学メッキの各工程に分けられる。
The process of forming the conductive plating layer is divided into etching, activation, and chemical plating processes.

エツチング工程は、樹脂微球体の表面に凹凸を形成させ
、導電メッキ層の密着性を付与するための工程であり、
エツチング液には1例えば、カセイソーダ水溶液、 ?
Ji塩酸、 tM硫酸または無水クロム酸が用いられる
。しかし、エツチング工程は必ずしも必要ではなく、場
合によっては省略することも可能である。
The etching process is a process for forming irregularities on the surface of the resin microspheres and imparting adhesion to the conductive plating layer.
The etching solution may include, for example, a caustic soda aqueous solution.
Ji hydrochloric acid, tM sulfuric acid or chromic anhydride are used. However, the etching step is not always necessary and can be omitted depending on the case.

アクヂベーション工程は、エツチングした樹脂微球体の
表面に触媒層を形成させるとともにこの触媒層を活性化
させる工程である。触媒層の活性化により、後述の化学
メッキ工程における金属の析出が促進される。触媒とし
ては、樹脂微球体の表面にPd”およびSn”が吸着さ
れる。この触媒層に濃硫酸または濃塩酸を作用させ。
The acquisition step is a step of forming a catalyst layer on the surface of the etched resin microspheres and activating this catalyst layer. Activation of the catalyst layer promotes metal deposition in the chemical plating process described below. As catalysts, Pd'' and Sn'' are adsorbed on the surface of the resin microspheres. Concentrated sulfuric acid or concentrated hydrochloric acid is applied to this catalyst layer.

Sn”+Pd”  −=  Sn”+Pdの反応により
、 Pd”の金属化を行なう、金属化されたパラジウム
は、カセイソーダ濃厚溶液などのパラジウム活性剤によ
り活性化され増悪される。
The metallized palladium, which undergoes metallization of Pd'' by the reaction Sn''+Pd''-=Sn''+Pd, is activated and degraded by a palladium activator such as a concentrated solution of caustic soda.

化学メッキ工程は、触媒層が形成された樹脂微球体の表
面に、さらに導電メッキ層を形成させる工程である0例
えば、ニッケルメッキの場合には。
The chemical plating process is a process in which a conductive plating layer is further formed on the surface of the resin microspheres on which the catalyst layer has been formed.For example, in the case of nickel plating.

ニッケルイオン供給物質として硫酸ニッケルを用い、こ
れに、還元剤として次亜リン酸ナトリウムが加えられる
。アクチベーション工程により上記樹脂微球体の表面に
吸着されたパラジウムが触媒となり、硫酸ニッケルの還
元反応が進行して、ニッケル金属が樹脂微球体表面に析
出する。この場合、得られた導電メッキ層のニッケル中
にリンが合金の形で取り込まれる。このリンの含有量は
Nickel sulfate is used as a nickel ion supply material, and sodium hypophosphite is added as a reducing agent. During the activation step, palladium adsorbed on the surface of the resin microspheres serves as a catalyst, and the reduction reaction of nickel sulfate progresses, causing nickel metal to precipitate on the surface of the resin microspheres. In this case, phosphorus is incorporated in the form of an alloy into the nickel of the resulting conductive plating layer. What is this phosphorus content?

導電性微球体の物性に大きく影響することを1本発明者
は見出した。リンの含有率が4重量%を上まわると、導
電性微球体の導電性の初期性能が低下実るうえに、高温
下や高湿下に長時間放置すると、導電メッキ層が侵され
変質して、導電性が低下する傾向にある。リンの含有率
が4重量%以下では、導電性の初期性能が向上するうえ
に高温下や高湿下に放置しても導電性の変化はほとんど
見られない。しかし、リンの含有率が1.5重量%を下
まわると、ニッケルメッキ層の結晶性が高くなり過ぎ、
硬さが増して可撓性が不足するため、樹脂微球体と導電
メッキ層との密着性が低下する。
The present inventor has found that the physical properties of the conductive microspheres are greatly affected. If the phosphorus content exceeds 4% by weight, the initial conductive performance of the conductive microspheres will deteriorate, and if left for a long time under high temperature or high humidity, the conductive plating layer will be corroded and deteriorated. , the conductivity tends to decrease. When the phosphorus content is 4% by weight or less, not only the initial conductivity performance is improved, but also almost no change in conductivity is observed even when left at high temperature or high humidity. However, when the phosphorus content is less than 1.5% by weight, the crystallinity of the nickel plating layer becomes too high.
Since the hardness increases and the flexibility becomes insufficient, the adhesion between the resin microspheres and the conductive plating layer decreases.

従って、この導電性粒子に圧縮荷重をかけると。Therefore, when a compressive load is applied to this conductive particle.

導電メッキ層が樹脂微球体から剥離しやすい。導電メッ
キ層は脆いため、圧縮荷重により破壊されるおそれもあ
る。これらのことから、導電メッキ層のリン含有率は、
1.5〜4重量%が好ましい。
The conductive plating layer easily peels off from the resin microspheres. Since the conductive plating layer is brittle, there is a risk that it will be destroyed by compressive load. From these facts, the phosphorus content of the conductive plating layer is
1.5 to 4% by weight is preferred.

リンの含有率の決定は、メッキ反応槽のpHを制御する
ことによりなされる。次亜リン酸ナトリウムの添加量を
増すと2反応槽のpHは増大しリン含有率は高くなる。
The phosphorus content is determined by controlling the pH of the plating reactor. When the amount of sodium hypophosphite added increases, the pH of the two reaction vessels increases and the phosphorus content increases.

他方、水酸化アンモニウムを添加して反応槽のpHを増
し、リン含有率を高めてもよい。メッキ反応槽の温度は
、100℃以下、室温以上の範囲内で任意のレベルに設
定され得る。導電メッキ層の厚みは0.01〜5μmの
範囲が好ましい。0.01μmを下まわると、所望の導
電性が得られ難い。5μmを上まわると、樹脂微球体と
導電メッキ層との熱膨張率の差などから、導電メッキ層
が樹脂微球体の表面から剥離し易くなる。
On the other hand, ammonium hydroxide may be added to increase the pH of the reactor and increase the phosphorus content. The temperature of the plating reaction tank can be set at any level within the range of 100° C. or lower and room temperature or higher. The thickness of the conductive plating layer is preferably in the range of 0.01 to 5 μm. When the thickness is less than 0.01 μm, it is difficult to obtain the desired conductivity. When it exceeds 5 μm, the conductive plating layer tends to peel off from the surface of the resin microspheres due to the difference in thermal expansion coefficient between the resin microspheres and the conductive plating layer.

コバルトメッキの場合には、上記の硫酸ニッケルに代え
て硫酸コバルトを用いること以外は、全く同様にして行
われる。
In the case of cobalt plating, it is carried out in exactly the same manner except that cobalt sulfate is used in place of the above-mentioned nickel sulfate.

このようにして得られた導電性微球体は、導電性が良好
であり、かつ高温下や高湿下に長時間放置しても変質し
にくい。それゆえ、これら条件下でも導電性が良好であ
る。この導電性微球体は。
The conductive microspheres obtained in this way have good conductivity and are not easily deteriorated even if left for a long time under high temperature or high humidity. Therefore, the conductivity is good even under these conditions. These conductive microspheres.

圧縮荷重を受けても、導電メッキ層が樹脂微球体から剥
離しにくい。圧縮荷重による導電メッキ層の破壊も生じ
にくい。それゆえ“、この導電性微球体は、導電性ペー
スト、導電性接着剤、導電性粘着剤、異方導電性フィル
ム、電磁波シールド樹脂用のフィラー、磁性材料などの
用途に好適に用いられる。導電性ペース)、NL導電性
接着剤導電性粘着剤、異方傅電性フィルムには特に好適
である。
The conductive plating layer does not easily peel off from the resin microspheres even under compressive load. The conductive plating layer is also less likely to be destroyed by compressive loads. Therefore, these conductive microspheres are suitable for use in applications such as conductive pastes, conductive adhesives, conductive adhesives, anisotropic conductive films, fillers for electromagnetic shielding resins, and magnetic materials. It is particularly suitable for NL conductive adhesives, conductive adhesives, and anisotropic conductive films.

これらは、液晶表示セルにおいて、上下電極間の電極転
移用の導電性材料、外部駆動回路と表示電極との間の導
電性接合材などに用いられる。
These are used as conductive materials for electrode transition between upper and lower electrodes, conductive bonding materials between external drive circuits and display electrodes, and the like in liquid crystal display cells.

(実施例) 以下に本発明を実施例について述べる。(Example) The present invention will be described below with reference to examples.

実施炎上 (11導電性微球体の作製 樹脂微球体として、ジビニルベンゼンの懸濁重合により
得た球状重合体(平均粒径10μm、標準偏差0.35
に分級した)を用いた。
Implementation Flaming (11 Preparation of conductive microspheres As resin microspheres, a spherical polymer obtained by suspension polymerization of divinylbenzene (average particle size 10 μm, standard deviation 0.35
) was used.

この樹脂微球体10gを、粉末メッキ用プリディップ液
(奥野製薬社製)に室温で30分間浸漬してエツチング
した。水洗し1次いで、キャタリストC液(奥野製薬社
製) l□+ffi、 37%塩酸10−、メタノール
lQmlに室温で30分間浸漬してアクチベートした。
10 g of the resin microspheres were immersed in a powder plating pre-dip solution (manufactured by Okuno Pharmaceutical Co., Ltd.) for 30 minutes at room temperature for etching. It was washed with water, then activated by immersing it in Catalyst C solution (manufactured by Okuno Pharmaceutical Co., Ltd.) 1□+ffi, 37% hydrochloric acid 10-, methanol 1Qml at room temperature for 30 minutes.

さらに、この樹脂微球体を5%硫酸で洗浄した後、充分
に水洗した。硫酸ニッケル17g/100m1.次亜リ
ン酸ナトリウム17 g /100−およびビロリン酸
ナトリウム34 g /100−の組成からなるpH9
,4の無電解ニッケルメッキ液を調製した。この無電解
ニッケルメッキ液に上記樹脂微球体を投入し。
Further, the resin microspheres were washed with 5% sulfuric acid and then thoroughly washed with water. Nickel sulfate 17g/100ml1. pH 9 consisting of the composition of sodium hypophosphite 17 g/100- and sodium birophosphate 34 g/100-
, 4 was prepared. The resin microspheres were placed in this electroless nickel plating solution.

70℃、 10分間浸漬して導電メッキ層を形成した。A conductive plating layer was formed by dipping at 70°C for 10 minutes.

次いで、これを充分水洗した後乾燥し、導電性微球体を
得た。
Next, this was thoroughly washed with water and then dried to obtain conductive microspheres.

(2)導電性微球体の定量分析 (1)項で得られた導電性微球体を所定量秤量し。(2) Quantitative analysis of conductive microspheres Weigh a predetermined amount of the conductive microspheres obtained in section (1).

これを5%硝酸水溶液に溶解させた。この溶液をICr
’発光分析装置(セイコー電子工業社製)により定量分
析した。その結果、この導電性微球体1g当たり、ニッ
ケル0.27 gおよびリン0.010 gが含有され
ていた。従って、導電メッキ層中のリンの含有率は3.
6重量%であった。
This was dissolved in a 5% nitric acid aqueous solution. Add this solution to ICr
'Quantitative analysis was performed using a luminescence spectrometer (manufactured by Seiko Electronics Industries, Ltd.). As a result, 0.27 g of nickel and 0.010 g of phosphorus were contained per 1 g of the conductive microspheres. Therefore, the phosphorus content in the conductive plating layer is 3.
It was 6% by weight.

(3)導電性微球体の評価 (1)項で得られた導電性微球体について、以下のよう
にして、導電性(常態、高温処理後および高温処理後)
および圧縮荷重に対する耐圧縮性を測定した。これらの
結果を下表に示す。
(3) Evaluation of conductive microspheres Regarding the conductive microspheres obtained in section (1), conductivity (normal state, after high temperature treatment, and after high temperature treatment) was evaluated as follows.
And compression resistance against compressive load was measured. These results are shown in the table below.

(A)導電性 エポキシ接着剤5E−4500(吉川化工社製)、  
100重量部に対し、(1)項で得られた導電性微球体
4重量部を混合し、ペースト状に調製した。
(A) Conductive epoxy adhesive 5E-4500 (manufactured by Yoshikawa Kako Co., Ltd.),
4 parts by weight of the conductive microspheres obtained in section (1) were mixed with 100 parts by weight to prepare a paste.

異方導電テスト基板として、34μm厚の銅板を50μ
m厚のポリイミドフィルムに貼り合わせ、エツチング処
理により、電極部が、400μmピンチになるように作
製した基板を用いた。この異方導電テスト基板2枚を対
向させ、オーバーラツプ部が2龍になるように配置し、
導電性微球体を分散したペーストで接着した。接着条件
は、プレス圧10 kg / clで140℃、1時間
の加熱であった。このように接着した基板の各対向電極
間の抵抗値(Ω)を測定した。さらに。
As an anisotropic conductivity test board, a 34μm thick copper plate was used as a 50μ
A substrate was used that was bonded to a polyimide film of m thickness and etched so that the electrode portion had a pinch of 400 μm. These two anisotropically conductive test substrates are placed facing each other so that the overlapping parts form two dragons,
The conductive microspheres were glued together using a dispersed paste. The bonding conditions were heating at 140° C. for 1 hour with a press pressure of 10 kg/cl. The resistance value (Ω) between each opposing electrode of the substrate bonded in this way was measured. moreover.

この基板を150°Cで500時間加熱後(高温処理後
)の抵抗値および121℃で2気圧の水草気中に50時
間放置した後(高湿処理後)の抵抗値を測定した。これ
らの抵抗値測定を15個の試料について行い、抵抗値の
平均値および標準偏差を算出した。その結果。
The resistance value of this substrate was measured after heating it at 150°C for 500 hours (after high temperature treatment) and after leaving it in an aquatic atmosphere at 121°C and 2 atm for 50 hours (after high humidity treatment). These resistance values were measured for 15 samples, and the average value and standard deviation of the resistance values were calculated. the result.

常態での平均抵抗値は0.50Ω、標準偏差は0、12
.高温処理後の平均抵抗値は0.60Ω。
The average resistance value under normal conditions is 0.50Ω, and the standard deviation is 0.12
.. The average resistance value after high temperature treatment is 0.60Ω.

標準偏差は0.10.そして高温処理後の平均抵抗値は
0.93Ω、標準偏差は0.35であった。
The standard deviation is 0.10. The average resistance value after high temperature treatment was 0.93Ω, and the standard deviation was 0.35.

(B)耐圧縮性 (八)項において、基板同士を接着する際に、 10k
g/cnlのプレス圧を受けた後の導電性微球体を取り
出し、走査型電子顕微鏡により10,000倍の倍率下
で観察した。その結果、導電メッキ層の剥離や破壊はほ
とんど認められなかった。
(B) Compression resistance In item (8), when bonding substrates together, 10k
The conductive microspheres after being subjected to a press pressure of g/cnl were taken out and observed under a scanning electron microscope at a magnification of 10,000 times. As a result, almost no peeling or destruction of the conductive plating layer was observed.

刻1」1 無電解ニッケルメッキ液として、硫酸ニッケル17g/
100mf、次亜リン酸ナトリウム10.3 g /l
oOmlおよびピロリン酸ナトリウム34g/100m
1の組成からなるpHio、0のメッキ液を用いたこと
以外は、実施例1と同様にして導電性微球体を作製した
。この導電性微球体1g当たり、ニッケル0.26.お
よびリン0.008gが含有されており、導電メッキ層
中のリンの含有率は2.0重量%であった。
17g of nickel sulfate as electroless nickel plating solution
100mf, sodium hypophosphite 10.3 g/l
oOml and sodium pyrophosphate 34g/100m
Conductive microspheres were produced in the same manner as in Example 1, except that a plating solution having pHio of 1 and 0 was used. 0.26 nickel per gram of these conductive microspheres. and 0.008 g of phosphorus, and the phosphorus content in the conductive plating layer was 2.0% by weight.

この導電性微球体を用いて、実施例1と同様の方法によ
り、導電性(常態、高温処理後、高湿処理後)および耐
圧縮性を測定した。その結果、常態での平均抵抗値は0
.35Ω、標準偏差は0.06.高温処理後の平均抵抗
値は0.38Ω、標準偏差は0.0?。
Using these conductive microspheres, the conductivity (normal state, after high temperature treatment, after high humidity treatment) and compression resistance were measured by the same method as in Example 1. As a result, the average resistance value under normal conditions is 0
.. 35Ω, standard deviation 0.06. The average resistance value after high temperature treatment is 0.38Ω, and the standard deviation is 0.0? .

そして高温処理後の平均抵抗値は0.72Ω、標準偏差
は0.36であった。耐圧縮性では、 10kg/cf
lIのプレス圧を受けた後の導電メッキ層の剥離や破壊
はほとんど認められなかった。
The average resistance value after high temperature treatment was 0.72Ω, and the standard deviation was 0.36. Compression resistance: 10kg/cf
Almost no peeling or destruction of the conductive plating layer was observed after being subjected to the press pressure of 1I.

大応尉主 無電解コバルトメッキ液として、硫酸コバルト18 g
 /100++1.次亜リン酸ナトリウム25 g /
100−およびピロリン酸ナトリウム34g/100+
++ffiの組成からなるpH10,5のメッキ液を用
いたこと以外は、実施例1と同様にして導電性微球体を
作製した。この導電性微球体1g当たり、コバル)0.
23gおよびリン0.006gが含有されており、導電
メッキ層中のリンの含有率は2.5重量%であった。
18 g of cobalt sulfate as electroless cobalt plating solution
/100++1. Sodium hypophosphite 25 g /
100- and sodium pyrophosphate 34g/100+
Conductive microspheres were produced in the same manner as in Example 1, except that a plating solution having a pH of 10.5 and having a composition of ++ffi was used. per gram of these conductive microspheres, 0.
23g and 0.006g of phosphorus were contained, and the content of phosphorus in the conductive plating layer was 2.5% by weight.

この導電性微球体を用いて、実施例1と同様の方法によ
り、導電性(常態、高温処理後、高湿処理後)および耐
圧縮性を測定した。その結果、常態での平均抵抗値は0
.67Ω、標準偏差は0.29.高温処理後の平均抵抗
値は0.75Ω、標準偏差は0.30゜そして高温処理
後の平均抵抗値は1.03Ω、標準偏差は0.40であ
った。耐圧縮性では、 10kg/a(のプレス圧を受
けた後の導電メッキ層の剥離や破壊はほとんど認められ
なかった。
Using these conductive microspheres, the conductivity (normal state, after high temperature treatment, after high humidity treatment) and compression resistance were measured by the same method as in Example 1. As a result, the average resistance value under normal conditions is 0
.. 67Ω, standard deviation 0.29. The average resistance value after high temperature treatment was 0.75Ω, standard deviation 0.30°, and the average resistance value after high temperature treatment was 1.03Ω, standard deviation 0.40. Regarding compression resistance, almost no peeling or destruction of the conductive plating layer was observed after being subjected to a press pressure of 10 kg/a.

止較炎よ 無電解ニッケルメッキ液として、硫酸ニッケル17 g
 /Loom、次亜リン酸ナトリウム24 g /10
0mfおよびピロリン酸ナトリウム34 g /100
−の組成からなるpH8,5のメッキ液を用いたこと以
外は、実施例1と同様にして導電性微球体を作製した。
17 g of nickel sulfate as electroless nickel plating solution
/Loom, sodium hypophosphite 24 g /10
0mf and sodium pyrophosphate 34 g/100
Conductive microspheres were produced in the same manner as in Example 1, except that a plating solution having a pH of 8.5 and having a composition of - was used.

この導電性微球体1g当たり、ニッケル0.27gおよ
びリン0.013 gが含有されており、導電メッキ層
中のリンの含有率は4.6重量%であった。
Each gram of the conductive microspheres contained 0.27 g of nickel and 0.013 g of phosphorus, and the content of phosphorus in the conductive plating layer was 4.6% by weight.

この導電性微球体を用いて、実施例1と同様の方法によ
り、導電性(常態、高温処理後、高湿処理後)および耐
圧縮性を測定した。その結果、常態での平均抵抗値は0
.75Ω、標準偏差は0.24.高温処理後の平均抵抗
値は1.60Ω、標準偏差は0.42゜そして高温処理
後の平均抵抗値は7.80Ω、標準偏差は1.20であ
った。耐圧縮性では、 10kg/cniのプレス圧を
受けた後、導電メッキ層の剥離が認められた。
Using these conductive microspheres, the conductivity (normal state, after high temperature treatment, after high humidity treatment) and compression resistance were measured by the same method as in Example 1. As a result, the average resistance value under normal conditions is 0
.. 75Ω, standard deviation is 0.24. The average resistance value after high temperature treatment was 1.60Ω, standard deviation 0.42°, and the average resistance value after high temperature treatment was 7.80Ω, standard deviation 1.20. Regarding compression resistance, peeling of the conductive plating layer was observed after being subjected to a press pressure of 10 kg/cni.

此JU江l 無電解コバルトメッキ液として、硫酸コバルト18g/
100Wd、次亜リン酸ナトリウム45 g /ioa
mおよびピロリン酸ナトリウム34 g /100dの
組成からなるpH9,0のメッキ液を用いたこと以外は
、実施例1と同様にして導電性微球体を作製した。この
導電性微球体1g当たり、コバル) 0.24 gおよ
びリン0.013 gが含有されており、導電メッキ層
中のリンの含有率は5.1重量%であった。
As the electroless cobalt plating solution, 18g of cobalt sulfate/
100Wd, sodium hypophosphite 45g/ioa
Conductive microspheres were produced in the same manner as in Example 1, except that a plating solution having a pH of 9.0 and a composition of 34 g/100 d of sodium pyrophosphate was used. Each gram of the conductive microspheres contained 0.24 g of Kobal and 0.013 g of phosphorus, and the phosphorus content in the conductive plating layer was 5.1% by weight.

この導電性微球体を用いて、実施例1と同様の方法によ
り、導電性(常態、高温処理後、高温処理後)および耐
圧縮性を測定した。その結果、常態での平均抵抗値は0
.80Ω、標準偏差は0.46.高温処理後の平均抵抗
値は1.55Ω、標準偏差は0.75゜そして高温処理
後の平均抵抗値は5.70Ω、標準偏差は2.00であ
った。耐圧縮性では、 10kg/−のプレス圧を受け
た後、導電メッキ層の軸離が認められた。
Using these conductive microspheres, the conductivity (normal state, after high temperature treatment, after high temperature treatment) and compression resistance were measured by the same method as in Example 1. As a result, the average resistance value under normal conditions is 0
.. 80Ω, standard deviation is 0.46. The average resistance value after high temperature treatment was 1.55Ω, standard deviation 0.75°, and the average resistance value after high temperature treatment was 5.70Ω, standard deviation 2.00. Regarding compression resistance, after being subjected to a press pressure of 10 kg/-, the conductive plating layer was observed to be axially off-axis.

此ntt 無電解ニッケルメッキ液として、硫酸ニッケル17 g
 /100d、次亜リン酸ナトリウム3.5g/100
−およびピロリン酸ナトリウム34 g /100−の
組成からなるpH14,0のメッキ液を用いたこと以外
は、実施例1と同様にして導電性微球体を作製した。こ
の導電性微球体1g当たり、ニッケル0.24gおよび
リン0.002 gが含有されており、yA電メッキ層
中のリンの含有率は0.8重量%であった。
17 g of nickel sulfate as electroless nickel plating solution
/100d, sodium hypophosphite 3.5g/100
Conductive microspheres were produced in the same manner as in Example 1, except that a plating solution having a pH of 14.0 and having a composition of 34 g/100 of sodium pyrophosphate was used. Each gram of the conductive microspheres contained 0.24 g of nickel and 0.002 g of phosphorus, and the phosphorus content in the yA electroplating layer was 0.8% by weight.

この導電性微球体を用いて、実施例1と同様の方法によ
り、導電性(常態、高温処理後、高温処理後)および耐
圧縮性を測定した。その結果、常態で′の平均抵抗値は
0.53Ω、標準偏差は0.1?、高温処理後の平均抵
抗値は2.75Ω、標準偏差は0.44゜そして高温処
理後の平均抵抗値は0.65Ω、標準偏差は0.40で
あった。耐圧縮性では、 10kg/cdのプレス圧を
受けた後、導電メッキ層の剥離や破壊が認められた。
Using these conductive microspheres, the conductivity (normal state, after high temperature treatment, after high temperature treatment) and compression resistance were measured by the same method as in Example 1. As a result, under normal conditions, the average resistance value of ' is 0.53Ω, and the standard deviation is 0.1? The average resistance value after high temperature treatment was 2.75Ω, standard deviation 0.44°, and the average resistance value after high temperature treatment was 0.65Ω, standard deviation 0.40. Regarding compression resistance, peeling and destruction of the conductive plating layer were observed after being subjected to a press pressure of 10 kg/cd.

止較■土 無電解コバルトメッキ液として、硫酸コバルト18 g
 /100m、次亜リン酸ナトリウム10 g /10
0−およびピロリン酸ナトリウム34 g /100−
の組成からなるρ旧3.0のメッキ液を用いたこと以外
は、実施例1と同様にして導電性微球体を作製した。こ
の導電性微球体1g当たり゛、コバル)0.25gおよ
びリン0.002 gが含有されており、導電メッキ層
中のリンの含有率は0.8重量%であった。
Comparison ■ 18 g of cobalt sulfate as electroless cobalt plating solution
/100m, sodium hypophosphite 10 g /10
0- and sodium pyrophosphate 34 g/100-
Conductive microspheres were produced in the same manner as in Example 1, except that a plating solution having the composition of ρ<3.0 was used. Each gram of the conductive microspheres contained 0.25 g of Kobal and 0.002 g of phosphorus, and the content of phosphorus in the conductive plating layer was 0.8% by weight.

この導電性微球体を用いて、実施例1と同様の方法によ
り、!X電性(常態、高温処理後、高温処理後)および
耐圧縮性を測定した。その結果、常態での平均抵抗値は
0.70Ω、標準偏差は0.21.高温処理後の平均抵
抗値は3.54Ω、標準偏差は0.38゜そして高温処
理後の平均抵抗値は1.03Ω、標準偏差は0.47で
あった。耐圧縮性では、 10kg/cs!のプレス圧
を受けた後、導電メッキ層の剥離や破壊が認められた。
Using these conductive microspheres, the same method as in Example 1 was carried out! X-electricity (normal state, after high temperature treatment, after high temperature treatment) and compression resistance were measured. As a result, the average resistance value under normal conditions was 0.70Ω, and the standard deviation was 0.21. The average resistance value after high temperature treatment was 3.54Ω, standard deviation 0.38°, and the average resistance value after high temperature treatment was 1.03Ω, standard deviation 0.47. Compression resistance: 10kg/cs! After being subjected to press pressure, peeling and destruction of the conductive plating layer were observed.

実施例および比較例から明らかなように9本発明の導電
性微球体は、常態での導電性のみならず高温下や高温下
での導電性にも優れている。圧縮荷重を受けても、導電
メッキ層の剥離や破壊はほとんど認められない、導電メ
ッキ層のリン含有率が4重量%を上まわる導電性微球体
は、高温下や高湿下において抵抗値が上がり、導電性が
低下する。圧縮荷重により、導電メッキ層の剥離も生じ
る。リン含有率が1.5重量%を下まわると、導電性は
良好であるものの、圧縮荷重により導電メッキ層の剥離
や破壊が認められる。
As is clear from the Examples and Comparative Examples, the conductive microspheres of the present invention are excellent not only in normal conductivity but also in high temperature and high temperature conductivity. Even when subjected to compressive loads, there is almost no peeling or destruction of the conductive plating layer.The conductive microspheres, whose conductive plating layer has a phosphorus content of more than 4% by weight, have a low resistance value under high temperature and high humidity conditions. conductivity decreases. The compressive load also causes peeling of the conductive plating layer. When the phosphorus content is less than 1.5% by weight, although the conductivity is good, peeling or destruction of the conductive plating layer is observed due to compressive load.

(以下余白) (発明の効果) 本発明の導電性微球体は、このように、高温下や高湿下
においても導電薄膜層が変質しにくいため、これら条件
下でも導電性が良好である。しかも、圧縮荷重をかけて
も、導電薄膜層が樹脂微球体から剥離しにくい。圧縮荷
重による導電薄膜層の破壊も生じにくい。その結果9本
発明の導電性微球体は、導電性ペースト、導電性接着剤
、導電性粘着剤、異方導電性フィルム、電磁波シールド
樹脂用のフィラー、磁性材料などの用途北好適に用いら
れる。
(The following is a blank space) (Effects of the Invention) As described above, the conductive microspheres of the present invention have good conductivity even under high temperature and high humidity conditions because the conductive thin film layer is difficult to deteriorate. Furthermore, even when a compressive load is applied, the conductive thin film layer is difficult to peel off from the resin microspheres. The conductive thin film layer is also less likely to be destroyed by compressive loads. As a result, the conductive microspheres of the present invention can be suitably used in applications such as conductive pastes, conductive adhesives, conductive adhesives, anisotropic conductive films, fillers for electromagnetic shielding resins, and magnetic materials.

以上that's all

Claims (1)

【特許請求の範囲】 1、樹脂微球体の表面にニッケルおよび/またはコバル
トからなる導電薄膜層が形成された導電性微球体であっ
て、 該導電薄膜層にリンを1.5〜4重量%の割合で含有す
る導電性微球体。 2、前記樹脂微球体が、ポリエチレン、ポリプロピレン
、メチルペンテンポリマー、ポリスチレン、ポリメチル
メタクリレート、ポリ塩化ビニル、ポリフッ化ビニル、
ポリテトラフルオロエチレン、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート、ポリスルホン、ポ
リカーボネート、ポリアクリロニトリル、ポリアセター
ルおよびポリアミドのうちの少なくとも一種の線状重合
体である特許請求の範囲第1項に記載の導電性微球体。 3、前記樹脂微球体が、ジビニルベンゼン、ヘキサトリ
エン、ジビニルエーテル、ジビニルスルホン、ジアリル
カルビノール、アルキレンジアクリレート、アルキレン
ジメタクリレート、オリゴまたはポリ(アルキレングリ
コール)ジアクリレート、オリゴまたはポリ(アルキレ
ングリコール)ジメタクリレート、アルキレントリアク
リレート、アルキレントリメタクリレート、アルキレン
テトラアクリレート、アルキレンテトラメタクリレート
、アルキレンビスアクリルアミドおよびアルキレンビス
メタクリルアミドのうちの少なくとも一種の単量体を、
単独もしくは他の重合性単量体と重合して得られる網状
重合体である特許請求の範囲第1項に記載の導電性微球
体。 4、前記導電薄膜層の厚みが0.01〜5μmの範囲で
ある特許請求の範囲第1項に記載の導電性微球体。
[Scope of Claims] 1. A conductive microsphere in which a conductive thin film layer made of nickel and/or cobalt is formed on the surface of a resin microsphere, the conductive thin film layer containing 1.5 to 4% by weight of phosphorus. conductive microspheres in a proportion of . 2. The resin microspheres are polyethylene, polypropylene, methylpentene polymer, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl fluoride,
The conductive microspheres according to claim 1, which are a linear polymer of at least one of polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polycarbonate, polyacrylonitrile, polyacetal, and polyamide. 3. The resin microspheres contain divinylbenzene, hexatriene, divinyl ether, divinyl sulfone, diallyl carbinol, alkylene diacrylate, alkylene dimethacrylate, oligo or poly(alkylene glycol) diacrylate, oligo or poly(alkylene glycol) diacrylate, At least one monomer selected from methacrylate, alkylene triacrylate, alkylene trimethacrylate, alkylene tetraacrylate, alkylene tetramethacrylate, alkylene bisacrylamide, and alkylene bismethacrylamide,
The conductive microspheres according to claim 1, which are network polymers obtained by polymerizing alone or with other polymerizable monomers. 4. The conductive microspheres according to claim 1, wherein the thickness of the conductive thin film layer is in the range of 0.01 to 5 μm.
JP62021187A 1987-01-30 1987-01-30 Conductive microsphere Expired - Lifetime JP2507381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021187A JP2507381B2 (en) 1987-01-30 1987-01-30 Conductive microsphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021187A JP2507381B2 (en) 1987-01-30 1987-01-30 Conductive microsphere

Publications (2)

Publication Number Publication Date
JPS63190204A true JPS63190204A (en) 1988-08-05
JP2507381B2 JP2507381B2 (en) 1996-06-12

Family

ID=12047948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021187A Expired - Lifetime JP2507381B2 (en) 1987-01-30 1987-01-30 Conductive microsphere

Country Status (1)

Country Link
JP (1) JP2507381B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366335A (en) * 1991-10-08 1994-11-22 Amada Company, Limited Device and method for transferring bars in spatial storing system
JPH08319467A (en) * 1995-05-25 1996-12-03 Soken Chem & Eng Co Ltd Conductive particle and anisotropically conductive adhesive
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
US6906427B2 (en) 1997-04-17 2005-06-14 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
JP2005268527A (en) * 2004-03-18 2005-09-29 Sekisui Chem Co Ltd Manufacturing method of conductive paste and laminated ceramic capacitor
US7045050B2 (en) 2001-07-31 2006-05-16 Sekisui Chemical Co., Ltd. Method for producing electroconductive particles
JP2007262495A (en) * 2006-03-28 2007-10-11 Nippon Chem Ind Co Ltd Electroconductive electroless-plated powder and production method therefor
JP2008041671A (en) * 2007-09-07 2008-02-21 Sekisui Chem Co Ltd Manufacturing method of conductive particulate
US7491445B2 (en) 2004-09-02 2009-02-17 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material comprising non-crystal and crystal nickel plating layers and method of making thereof
EP2282314A1 (en) 2009-08-06 2011-02-09 Hitachi Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788584A1 (en) 2004-07-15 2007-05-23 Sekisui Chemical Co., Ltd. Conductive microparticle, process for producing the same and anisotropic conductive material
KR100667374B1 (en) 2004-12-16 2007-01-10 제일모직주식회사 Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
KR100719802B1 (en) 2005-12-28 2007-05-18 제일모직주식회사 Highly reliable conductive particles for anisotropic conductive interconnection
JP6423687B2 (en) * 2013-11-01 2018-11-14 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466879A (en) * 1970-05-20 1971-12-15
JPS56136965A (en) * 1980-03-27 1981-10-26 Hitachi Ltd Plating method
JPS59217301A (en) * 1983-05-25 1984-12-07 東京コスモス電機株式会社 Thin film resistor
JPS61276244A (en) * 1985-05-30 1986-12-06 Nec Corp Semiconductor device
JPS61277104A (en) * 1985-05-31 1986-12-08 積水フアインケミカル株式会社 Manufacture of conductive fine pellet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466879A (en) * 1970-05-20 1971-12-15
JPS56136965A (en) * 1980-03-27 1981-10-26 Hitachi Ltd Plating method
JPS59217301A (en) * 1983-05-25 1984-12-07 東京コスモス電機株式会社 Thin film resistor
JPS61276244A (en) * 1985-05-30 1986-12-06 Nec Corp Semiconductor device
JPS61277104A (en) * 1985-05-31 1986-12-08 積水フアインケミカル株式会社 Manufacture of conductive fine pellet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366335A (en) * 1991-10-08 1994-11-22 Amada Company, Limited Device and method for transferring bars in spatial storing system
US5507613A (en) * 1991-10-08 1996-04-16 Amada Company, Limited Device and method for transferring bars in spatial storing system
JPH08319467A (en) * 1995-05-25 1996-12-03 Soken Chem & Eng Co Ltd Conductive particle and anisotropically conductive adhesive
US6906427B2 (en) 1997-04-17 2005-06-14 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
US7045050B2 (en) 2001-07-31 2006-05-16 Sekisui Chemical Co., Ltd. Method for producing electroconductive particles
JP2005268527A (en) * 2004-03-18 2005-09-29 Sekisui Chem Co Ltd Manufacturing method of conductive paste and laminated ceramic capacitor
JP4495491B2 (en) * 2004-03-18 2010-07-07 積水化学工業株式会社 Method for manufacturing conductive paste and multilayer ceramic capacitor
US7491445B2 (en) 2004-09-02 2009-02-17 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material comprising non-crystal and crystal nickel plating layers and method of making thereof
JP2007262495A (en) * 2006-03-28 2007-10-11 Nippon Chem Ind Co Ltd Electroconductive electroless-plated powder and production method therefor
KR101305574B1 (en) * 2006-03-28 2013-09-09 니폰 가가쿠 고교 가부시키가이샤 Conductive powder plated by electroless plating and process for producing the same
JP2008041671A (en) * 2007-09-07 2008-02-21 Sekisui Chem Co Ltd Manufacturing method of conductive particulate
JP4714719B2 (en) * 2007-09-07 2011-06-29 積水化学工業株式会社 Method for producing conductive fine particles
EP2282314A1 (en) 2009-08-06 2011-02-09 Hitachi Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material
US8383016B2 (en) 2009-08-06 2013-02-26 Hitachi Chemical Company, Ltd. Conductive fine particles and anisotropic conductive material

Also Published As

Publication number Publication date
JP2507381B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
US8089151B2 (en) Conductive particles for anisotropic conductive interconnection
JPS63190204A (en) Conducting fine pellet
JP2006228475A (en) Conductive fine particles and anisotropic conductive material
JP2007184278A (en) Method of manufacturing conductive metal-coated particulate and its manufactured product
JP2008525642A (en) Plastic conductive fine particles and method for producing the same
JP4412669B2 (en) Coated conductive particles, conductive material, anisotropic conductive adhesive, and anisotropic conductive joint structure
JP3294146B2 (en) Metal-coated fine particles and conductive materials
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
JP3940638B2 (en) Conductive fine particles and method for producing conductive fine particles
JPH0689069B2 (en) Conductive microsphere
JP4050086B2 (en) Conductive particles, conductive materials, and anisotropic conductive films
JPH0519241B2 (en)
JP2003208813A (en) Conductive fine grain and anisotropic conductive material
EP2632975B1 (en) Process for the surface modification of a polymer particle
KR100722152B1 (en) Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
JP2951744B2 (en) Crosslinked polymer fine particles
JPS61277104A (en) Manufacture of conductive fine pellet
KR100667375B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
JP3427967B2 (en) Metal-coated fine particles and conductive material containing the same
JPH04147513A (en) Electrically conductive particulates and manufacture thereof
KR101410992B1 (en) Conductive particles, manufacturing method of the same, and conductive materials including the same
JP4113403B2 (en) Conductive fine particles, anisotropic conductive material, and method for producing conductive fine particles
JP4714719B2 (en) Method for producing conductive fine particles
KR20060068601A (en) Polymer particles, conductive particles and an anisotropic conductive packaging materials containing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term