JP3427967B2 - Metal-coated fine particles and conductive material containing the same - Google Patents

Metal-coated fine particles and conductive material containing the same

Info

Publication number
JP3427967B2
JP3427967B2 JP27426997A JP27426997A JP3427967B2 JP 3427967 B2 JP3427967 B2 JP 3427967B2 JP 27426997 A JP27426997 A JP 27426997A JP 27426997 A JP27426997 A JP 27426997A JP 3427967 B2 JP3427967 B2 JP 3427967B2
Authority
JP
Japan
Prior art keywords
fine particles
metal
coated fine
synthetic resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27426997A
Other languages
Japanese (ja)
Other versions
JPH11111047A (en
Inventor
俊男 櫻井
功作 山田
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP27426997A priority Critical patent/JP3427967B2/en
Publication of JPH11111047A publication Critical patent/JPH11111047A/en
Application granted granted Critical
Publication of JP3427967B2 publication Critical patent/JP3427967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属被覆微粒子及
び異方導電性膜、導電性塗料、導電性インキ、導電性接
着剤、電気接点粒子等の導電性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive materials such as metal-coated fine particles and anisotropic conductive films, conductive paints, conductive inks, conductive adhesives, and electrical contact particles.

【0002】[0002]

【従来の技術】従来、導電性ペースト、導電性接着剤等
の導電性材料としては、金、銀、ニッケル等の金属粉末
を樹脂ペースト、硬化性樹脂液に混合したものが利用さ
れていた。しかし、金属粉末は、粒子径が不均一なた
め、多量に混合することが必要であり、また、保存中に
金属粉末が沈殿する等、導電性が安定しない等の欠点が
あった。
2. Description of the Related Art Heretofore, as a conductive material such as a conductive paste or a conductive adhesive, a mixture of metal powder such as gold, silver or nickel with a resin paste or a curable resin liquid has been used. However, since the metal powder has a non-uniform particle diameter, it is necessary to mix a large amount of the metal powder, and there are drawbacks such that the metal powder is precipitated during storage and the conductivity is not stable.

【0003】近年、例えば、特開昭57−49632、
特開昭60−12603、特開昭60−96548など
に見られるように、金属粉末の代わりに、粒子径や直径
が比較的均一なガラスビーズ、シリカビーズ、ガラス繊
維チップ、合成樹脂微粒子等の材料の表面に金、銀、ニ
ッケル等の被膜を施して、導電性を付与した微粒子が開
発され、利用されている。
In recent years, for example, JP-A-57-49632,
As disclosed in JP-A-60-12603 and JP-A-60-96548, instead of metal powder, glass beads, silica beads, glass fiber chips, synthetic resin fine particles, etc. having a relatively uniform particle diameter or diameter can be used. Fine particles to which electroconductivity has been developed by applying a coating of gold, silver, nickel or the like on the surface of the material have been developed and used.

【0004】これら微粒子のうち、特に粒子径が均一な
金属被覆合成樹脂微粒子は、可塑性の合成樹脂膜や合成
樹脂接着剤中に混合分散されて、圧着方向にのみ導通す
る異方導電性材料の製造に利用されている。しかし、か
かる微粒子は、粒子樹脂と金属との密着性が悪く、その
ため、合成樹脂微粒子を多孔質化させたり、エッチング
により合成樹脂表面に凹凸を発生させて、アンカー効果
をもたせる等の必要があった。
Among these fine particles, particularly metal-coated synthetic resin fine particles having a uniform particle size are mixed and dispersed in a plastic synthetic resin film or a synthetic resin adhesive to form an anisotropic conductive material which conducts only in the pressure bonding direction. It is used in manufacturing. However, such fine particles have poor adhesion between the particle resin and the metal, and therefore it is necessary to make the synthetic resin fine particles porous or to generate irregularities on the synthetic resin surface by etching so as to have an anchor effect. It was

【0005】[0005]

【発明が解決しようとする課題】このようにして製造さ
れた金属被覆層は、可塑性樹脂と混練して異方導電性材
料を製造する際に、剪断応力や振動により剥離すること
があった。また、かかる金属被覆層は、導通処理の際に
加えられる圧力により剥離することもあった。
The metal coating layer produced in this manner sometimes peels off due to shear stress or vibration when producing an anisotropically conductive material by kneading with a plastic resin. Further, the metal coating layer may be peeled off by the pressure applied during the conduction treatment.

【0006】更に、前述したように合成樹脂微粒子を多
孔質化したり、酸化分解や加水分解を起こすエッチング
処理をすると、合成樹脂微粒子の強度が著しく低下し、
あるいは粒子径が小さくなって、圧着処理の際、粒子自
体が破壊されたり、圧縮変形したまま回復しない等の問
題が生じる。結果として、かかる金属被覆層が合成樹脂
微粒子から剥離するなどして、導通に不良をきたすこと
が多かった。
Further, as described above, when the synthetic resin fine particles are made porous or subjected to an etching treatment which causes oxidative decomposition or hydrolysis, the strength of the synthetic resin fine particles is remarkably lowered,
Alternatively, the particle diameter becomes small, and there arise problems that the particles themselves are broken during the pressure-bonding treatment, or they are not compressed and deformed and then recovered. As a result, the metal coating layer is often peeled off from the synthetic resin particles, resulting in poor conduction.

【0007】本発明の目的は、耐熱性が向上し、合成樹
脂表面と金属被覆層との密着性が一段と向上した、高密
着性の金属被覆微粒子を得ることにある。
An object of the present invention is to obtain metal-coated fine particles having high adhesion, which have improved heat resistance and further improved adhesion between the synthetic resin surface and the metal coating layer.

【0008】[0008]

【課題を解決するための手段】本発明は、合成樹脂微粒
子と、その表面に形成された金属層とを具える金属被覆
微粒子に関する。本発明では、この合成樹脂微粒子の少
なくとも表面部は、実質的に、アミノ基含有モノマーと
多官能モノマーとを含有するモノマー混合物に連鎖移動
剤を添加して重合させた共重合体からなる。
SUMMARY OF THE INVENTION The present invention relates to metal-coated fine particles comprising synthetic resin fine particles and a metal layer formed on the surface thereof. In the present invention, at least the surface portion of the synthetic resin fine particles is substantially chain-transferred to a monomer mixture containing an amino group-containing monomer and a polyfunctional monomer.
It is composed of a copolymer obtained by adding an agent and polymerizing.

【0009】本発明者等は、合成樹脂微粒子に、極性の
高いアミノ基を含有させることにより、合成樹脂表面と
金属被覆層との密着性が著しく向上することを見出し
た。本発明にかかる合成樹脂微粒子は、表面に酸化又は
加水分解等の化学処理を施さなくても、金属被覆層と十
分な密着性を有する。また、かかる合成樹脂微粒子は、
通常の条件下又は温和な条件下に化学メッキ処理を施せ
ば、より一層優れた密着性を示す。
The present inventors have found that the inclusion of highly polar amino groups in the synthetic resin fine particles significantly improves the adhesion between the synthetic resin surface and the metal coating layer. The synthetic resin fine particles according to the present invention have sufficient adhesiveness to the metal coating layer even if the surface is not subjected to a chemical treatment such as oxidation or hydrolysis. Further, such synthetic resin fine particles are
If the chemical plating treatment is performed under normal conditions or mild conditions, even better adhesion is exhibited.

【0010】本発明の金属被覆微粒子は、金属層との接
着力が向上し、被覆処理後の洗浄工程における耐超音波
性、可塑性樹脂との混練安定性、圧着処理による導通安
定性に優れる。また、本発明にかかる合成樹脂微粒子
は、化学メッキ処理による損傷が少ないため、圧縮回復
性をメッキ処理前と同等又はそれに近い状態に維持する
ことができる。このため、本発明の金属被覆微粒子は、
圧着処理による破壊や、永久潰れ変形が起こらず、完全
な導通を半永久的に維持することができる。
The metal-coated fine particles of the present invention have improved adhesion to the metal layer, and are excellent in ultrasonic resistance in the washing step after the coating treatment, kneading stability with a plastic resin, and conduction stability by pressure bonding treatment. Further, since the synthetic resin fine particles according to the present invention are less damaged by the chemical plating treatment, it is possible to maintain the compression recovery property in a state equal to or close to that before the plating treatment. Therefore, the metal-coated fine particles of the present invention,
Complete electrical continuity can be maintained semi-permanently without causing damage or permanent crushing deformation due to the crimping process.

【0011】[0011]

【発明の実施の形態】本発明にかかる合成樹脂微粒子
は、アミノ基含有モノマーと多官能モノマーとを含むモ
ノマー混合物の共重合体である。この合成樹脂微粒子
は、水系懸濁重合により製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The synthetic resin fine particles according to the present invention are a copolymer of a monomer mixture containing an amino group-containing monomer and a polyfunctional monomer. The synthetic resin fine particles can be produced by aqueous suspension polymerization.

【0012】アミノ基含有モノマーとは、ビニルピリジ
ン、メチルビニルピリジン、N,N−ジメチルアミノス
チレン、N,N−ジエチルアミノスチレン、N,N−ジ
ブチルアミノスチレン、その他のN,N−ジアルキルア
ミノスチレン、N,N−ジメチルアミノエチル(メタ)
アクリレート、N,N−ジエチルアミノエチル(メタ)
アクリレート、N,N−ジブチルアミノエチル(メタ)
アクリレート、N,N−ジメチルアミノブチル(メタ)
アクリレート、その他のN,N−ジアルキル−アミノア
ルキル(メタ)アクリレート、N−ビニルカルバゾー
ル、アリルアミン、N,N−ジメチルアリルアミン、
N,N−ジエチルアリルアミン等のアミノ基及び重合性
不飽和二重結合を有する化合物を言う。
The amino group-containing monomer means vinyl pyridine, methyl vinyl pyridine, N, N-dimethylaminostyrene, N, N-diethylaminostyrene, N, N-dibutylaminostyrene, other N, N-dialkylaminostyrene, N, N-dimethylaminoethyl (meth)
Acrylate, N, N-diethylaminoethyl (meth)
Acrylate, N, N-dibutylaminoethyl (meth)
Acrylate, N, N-dimethylaminobutyl (meth)
Acrylate, other N, N-dialkyl-aminoalkyl (meth) acrylate, N-vinylcarbazole, allylamine, N, N-dimethylallylamine,
A compound having an amino group such as N, N-diethylallylamine and a polymerizable unsaturated double bond.

【0013】本発明では、これらアミノ基含有モノマー
のうち一種以上を、全モノマー混合物中、1〜30重量
%、好ましくは3〜15重量%用いる。含有量が1重量
%より少ないと、金属膜の密着性が向上しない。一方、
含有量が30重量%を超えると、アミノ基含有モノマー
の大部分が懸濁媒体である水中に溶け出し、重合中に凝
集が起きたり、粒子中に泡が入るなど不都合を発生し好
ましくない。
In the present invention, one or more of these amino group-containing monomers are used in an amount of 1 to 30% by weight, preferably 3 to 15% by weight, based on the total monomer mixture. If the content is less than 1% by weight, the adhesion of the metal film will not be improved. on the other hand,
When the content is more than 30% by weight, most of the amino group-containing monomer is dissolved in water as a suspension medium to cause problems such as agglomeration during polymerization and bubbles in the particles, which is not preferable.

【0014】多官能モノマーには、エチレンジ(メタ)
アクリレート、プロピレンジ(メタ)アクリレート、ブ
チレンジ(メタ)アクリレート、ヘキシレンジ(メタ)
アクリレート、トリメチロールエタンジ(メタ)アクリ
レート、トリメチロールエタントリ(メタ)アクリレー
ト、トリメチロールプロパンジ(メタ)アクリレート、
トリメチロールプロパントリ(メタ)アクリレート、ペ
ンタエリスリトールジ(メタ)アクリレート、ペンタエ
リスリトールトリ(メタ)アクリレート、ペンタエリス
リトールテトラ(メタ)アクリレート、ジペンタエリス
リトールジ(メタ)アクリレート、ジペンタエリスリト
ールトリ(メタ)アクリレート、ジペンタエリスリトー
ルテトラ(メタ)アクリレート、ジペンタエリスリトー
ルペンタ(メタ)アクリレート、ジペンタエリスリトー
ルヘキサ(メタ)アクリレート、ジビニルベンゼン、ジ
(メタ)アリルエーテル、ジ(メタ)アリルフタレー
ト、トリ(メタ)アリルイソシアヌレート、ジトリメチ
ロールプロパンテトラ(メタ)アクリレート、トリペン
タエリストールオクタ(メタ)アクリレート、テトラペ
ンタエリスリトールデカ(メタ)アクリレート等が含ま
れる。本発明では、これら多官能モノマーのうち一種以
上を、全モノマー混合物中、5〜99重量%、好ましく
は10〜97重量%用いる。
The polyfunctional monomer includes ethylene di (meth)
Acrylate, propylene di (meth) acrylate, butylene di (meth) acrylate, hexylene di (meth)
Acrylate, trimethylolethanedi (meth) acrylate, trimethylolethanetri (meth) acrylate, trimethylolpropane di (meth) acrylate,
Trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate , Dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, divinylbenzene, di (meth) allyl ether, di (meth) allyl phthalate, tri (meth) allyl Isocyanurate, ditrimethylolpropane tetra (meth) acrylate, tripentaerythritol octa (meth) acrylate, tetrapentaerythritol Ca (meth) acrylate and the like. In the present invention, one or more of these polyfunctional monomers are used in an amount of 5 to 99% by weight, preferably 10 to 97% by weight, based on the total monomer mixture.

【0015】尚、これら多官能モノマーは、純品として
市販される場合は少なく、ほとんどの場合、不純物若し
くは類似のモノマーが含まれている。しかし、かかる市
販品でも、表示成分として50%以上であれば、本発明
において使用することができる。
Incidentally, these polyfunctional monomers are rarely marketed as pure products, and in most cases, impurities or similar monomers are contained. However, even such a commercially available product can be used in the present invention if it is 50% or more as a display component.

【0016】また、本発明で用いるアミノ基含有モノマ
ーは親水性であるため、混合すべき多官能モノマーは強
い疎水性であるのが好ましい。水性媒体中に分散させる
際、粒子内への泡の混入を防ぐことができるからであ
る。その例としては、ジビニルベンゼン、トリメチロー
ルプロパントリメタクリレート等がある。
Since the amino group-containing monomer used in the present invention is hydrophilic, the polyfunctional monomer to be mixed is preferably strongly hydrophobic. This is because it is possible to prevent bubbles from being mixed into the particles when the particles are dispersed in an aqueous medium. Examples thereof include divinylbenzene, trimethylolpropane trimethacrylate and the like.

【0017】本発明では、上記二種の必須モノマーの他
に、一種以上の単官能モノマーを併用してもよい。単官
能モノマーには、(メタ)アクリル酸メチル、(メタ)
アクリル酸エチル、(メタ)アクリル酸プロピル、(メ
タ)アクリル酸n−ブチル、(メタ)アクリル酸−t−
ブチル、(メタ)アクリル酸イソブチル、(メタ)アク
リル酸アミル、(メタ)アクリル酸ヘキシル、(メタ)
アクリル酸シクロヘキシル、(メタ)アクリル酸オクチ
ル、(メタ)アクリル酸2−エチルヘキシル、(メタ)
アクリル酸ステアリル、(メタ)アクリル酸ベンジル、
(メタ)アクリル酸シクロヘキシルメチル、(メタ)ア
クリル酸トリフロロエチル、(メタ)アクリル酸ペンタ
フロロプロピル、スチレン、α−メチルスチレン、ビニ
ルトルエン、酢酸ビニル、塩化ビニル、酢酸プロピル、
(メタ)アクリロニトリル、マレイン酸ジメチル、フマ
ル酸ジメチル、イタコン酸ジメチル等が含まれる。
In the present invention, one or more monofunctional monomers may be used in combination with the above two kinds of essential monomers. Monofunctional monomers include methyl (meth) acrylate, (meth)
Ethyl acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, (meth) acrylic acid-t-
Butyl, isobutyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) acrylate, (meth)
Cyclohexyl acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth)
Stearyl acrylate, benzyl (meth) acrylate,
Cyclohexylmethyl (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, styrene, α-methylstyrene, vinyltoluene, vinyl acetate, vinyl chloride, propyl acetate,
(Meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, dimethyl itaconate and the like are included.

【0018】単官能モノマーを多く含有させると、得ら
れる合成樹脂微粒子の圧縮回復性が低下する。このた
め、含有させる単官能モノマーの量は、モノマー混合物
中、70重量%以下が好ましい。より一層高い圧縮回復
性を得るには、40重量%以下の単官能モノマーが好ま
しい。
If a large amount of monofunctional monomer is contained, the compression recovery of the resulting synthetic resin fine particles will decrease. Therefore, the amount of the monofunctional monomer to be contained is preferably 70% by weight or less in the monomer mixture. In order to obtain even higher compression recovery, 40% by weight or less of a monofunctional monomer is preferable.

【0019】モノマー混合物は、公知の油溶性ラジカル
開始剤を用いて重合することができる。油溶性ラジカル
開始剤には、アミノ基とレドックス反応を組まない化合
物、例えば、アゾビスイソブチロニトリル、アゾビスバ
レロニトリル等が使用される。これらの油溶性ラジカル
開始剤は、モノマー混合物100重量部に対し、0.1
〜5重量部用いる。
The monomer mixture can be polymerized by using a known oil-soluble radical initiator. As the oil-soluble radical initiator, a compound that does not undergo a redox reaction with an amino group, such as azobisisobutyronitrile or azobisvaleronitrile, is used. These oil-soluble radical initiators are added in an amount of 0.1 to 100 parts by weight of the monomer mixture.
~ 5 parts by weight are used.

【0020】また、モノマー混合物中には、連鎖移動剤
を添加する。連鎖移動剤としては、1−メルカプトオク
タン、3−メルカプトオクタン、1−メルカプトデカ
ン、3−メルカプトデカン、1−メルカプトドデカン、
3−メルカプトドデカン、ジブチルアミン、ジオクチル
アミン、N−メチルアニリン、N−エチルアニリン等が
ある。
A chain transfer agent is added to the monomer mixture. As the chain transfer agent, 1-mercaptooctane, 3-mercaptooctane, 1-mercaptodecane, 3-mercaptodecane, 1-mercaptododecane,
There are 3-mercaptododecane, dibutylamine, dioctylamine, N-methylaniline, N-ethylaniline and the like.

【0021】一般に、多官能モノマー成分が多い重合体
は、重合後三次元高分子となる。特に懸濁重合において
は、かかる重合体は、1分子が1微粒子になると考えら
れている。このため、一般には、粒径を調節すれば、分
子量を調節する必要がなく、連鎖移動剤は用いられな
い。しかし、金属被覆処理後、或いは電気部品に組みこ
まれた後に、金属被覆微粒子に耐熱性が要求される場
合、重合末端を連鎖移動剤と反応させて、重合反応を停
止させるのが好ましい。連鎖移動剤は、モノマー混合物
100重量部に対し、10重量部以下、好ましくは0.
05〜3重量部添加することができる。
Generally, a polymer containing a large amount of polyfunctional monomer components becomes a three-dimensional polymer after polymerization. Particularly in suspension polymerization, it is considered that one molecule of such a polymer becomes one fine particle. Therefore, in general, if the particle size is adjusted, it is not necessary to adjust the molecular weight, and a chain transfer agent is not used. However, when the metal-coated fine particles are required to have heat resistance after the metal-coating treatment or after being incorporated into an electric component, it is preferable to react the polymerization end with a chain transfer agent to terminate the polymerization reaction. The chain transfer agent is used in an amount of 10 parts by weight or less, preferably 0.
05 to 3 parts by weight can be added.

【0022】連鎖移動剤を用いない場合は、熱分解開始
温度は200℃前後である。これに対し、連鎖移動剤を
0.1重量部添加すると、熱分解開始温度は260℃以
上に上昇する。しかし、連鎖移動剤を10重量部以上添
加すると、重合体が短い分岐高分子の架橋体となり、強
度が低下するばかりでなく、粒子中に残存して、金属メ
ッキの密着性を低下させる。
When no chain transfer agent is used, the thermal decomposition starting temperature is around 200 ° C. On the other hand, when 0.1 part by weight of the chain transfer agent is added, the thermal decomposition starting temperature rises to 260 ° C or higher. However, when the chain transfer agent is added in an amount of 10 parts by weight or more, the polymer becomes a cross-linked polymer of a short branched polymer, which not only lowers the strength but also remains in the particles to lower the adhesion of metal plating.

【0023】水系懸濁重合を行うための懸濁安定剤とし
ては、ゼラチン、澱粉、ヒドロキシエチルセルロース、
ヒドロキシメチルセルロース、カルボキシメチルセルロ
ース、ポリビニルピロリドン、完全又は部分ケン化ポリ
ビニルアルコール、ポリビニルアルキルエーテル、スチ
レン/マレイン酸塩交互共重合体、イソブチレン/マレ
イン酸塩交互共重合体、ポリ(メタ)アクリル酸塩、ポ
リ(メタ)アクリルアミド等の水溶性高分子の他に、硫
酸バリウム、硫酸カルシウム、炭酸バリウム、炭酸カル
シウム、燐酸カルシウム、炭酸マグネシウム等の難水溶
性無機塩等があり、本発明では、これらの懸濁安定剤を
単独又は2種以上混合して用いることができる。
Suspension stabilizers for carrying out aqueous suspension polymerization include gelatin, starch, hydroxyethyl cellulose,
Hydroxymethyl cellulose, carboxymethyl cellulose, polyvinyl pyrrolidone, fully or partially saponified polyvinyl alcohol, polyvinyl alkyl ether, styrene / maleate alternating copolymer, isobutylene / maleate alternating copolymer, poly (meth) acrylate, poly In addition to water-soluble polymers such as (meth) acrylamide, there are sparingly water-soluble inorganic salts such as barium sulfate, calcium sulfate, barium carbonate, calcium carbonate, calcium phosphate, and magnesium carbonate. The stabilizers can be used alone or in combination of two or more.

【0024】懸濁重合操作中に、アミノ基含有モノマー
が水媒体中に溶出すのを防ぐために、重合系のpHは1
0以上のアルカリ性に保つのが望ましい。そのため、水
酸化ナトリウム、水酸化カリウム、アンモニア水等を少
量添加してpHを調整することができる。
During the suspension polymerization operation, the pH of the polymerization system is set to 1 in order to prevent the amino group-containing monomer from being eluted in the aqueous medium.
It is desirable to keep the alkalinity at 0 or more. Therefore, the pH can be adjusted by adding a small amount of sodium hydroxide, potassium hydroxide, aqueous ammonia, or the like.

【0025】重合操作としては、公知の方法を用いるこ
とができる。所定量の懸濁安定剤を溶解又は分散させた
水溶液を、コンデンサー及び攪拌機付加熱缶に仕込む。
重合開始剤等の助剤をモノマー混合物に添加して溶解す
る。この溶解液を加熱缶内に仕込み、激しく攪拌して、
微粒子に分散させる。次いで、これら微粒子を加熱して
重合させた後、洗浄、乾燥して、合成樹脂微粒子を得
る。
As the polymerization operation, known methods can be used. An aqueous solution in which a predetermined amount of suspension stabilizer is dissolved or dispersed is charged into a condenser and a heating can with a stirrer.
An auxiliary agent such as a polymerization initiator is added to the monomer mixture and dissolved. This solution was placed in a heating can and stirred vigorously.
Disperse into fine particles. Next, these fine particles are heated to polymerize, washed and dried to obtain synthetic resin fine particles.

【0026】得られた合成樹脂微粒子は、そのまま金属
被覆することができる。しかし、異方導電性膜や異方導
電性接着剤に応用する場合は、重合後、分級操作を施し
て均一な粒径分布の合成樹脂微粒子とすることが好まし
い。かかる微粒子は、粒子径分布の変動係数、即ち、平
均粒子径に対する標準偏差の割合が、20%以下、好ま
しくは10%以下である。
The obtained synthetic resin fine particles can be directly metal-coated. However, when it is applied to an anisotropic conductive film or an anisotropic conductive adhesive, it is preferable to carry out a classification operation after polymerization to obtain synthetic resin fine particles having a uniform particle size distribution. In such fine particles, the coefficient of variation of particle size distribution, that is, the ratio of standard deviation to the average particle size is 20% or less, preferably 10% or less.

【0027】また、母材である合成樹脂微粒子の粒径分
布が均一であれば、化学メッキ工程において、凝集塊が
発生し難く、一次粒子のみの分散性のよい金属被覆粒子
が得られる傾向にある。
Further, if the particle size distribution of the synthetic resin fine particles as the base material is uniform, agglomerates are less likely to occur in the chemical plating process, and metal-coated particles having good dispersibility of only the primary particles tend to be obtained. is there.

【0028】したがって、上記の如く均一な粒子が必要
な場合は、篩別法、風力法、水ひ法等の公知の手段によ
り分級する。分級は、金属被覆工程の後でもよいが、母
材、即ち合成樹脂微粒子の段階の方が、粒子のみかけ比
重がばらつかず好ましい。
Therefore, when uniform particles are required as described above, classification is carried out by a known means such as a sieving method, a wind method or a water sluice method. The classification may be carried out after the metal coating step, but the stage of the base material, that is, the synthetic resin fine particles is preferable because the apparent specific gravity of the particles does not vary.

【0029】以上のようにして製造した合成樹脂微粒子
には、公知の方法を利用して金属膜が被覆される。本発
明では、合成樹脂微粒子ポリマーに共有結合しているア
ミノ基のうち粒子表面に存在する基が金属と相互作用す
るため、金属の密着性に優れているので、表面処理は、
親水化処理で充分である。しかし、密着力をより一層向
上させるために強アルカリによるエッチング処理を行っ
ても良い。但し、多官能(メタ)アクリル酸エステルが
共重合されている場合は、加水分解が進行しすぎて表面
が溶解し、粒子径が小さくなる場合があるので注意を要
する。
The synthetic resin fine particles produced as described above are coated with a metal film by a known method. In the present invention, the group present on the particle surface among the amino groups covalently bonded to the synthetic resin fine particle polymer interacts with the metal, so that the adhesion of the metal is excellent.
Hydrophilization is sufficient. However, etching treatment with a strong alkali may be performed to further improve the adhesion. However, in the case where the polyfunctional (meth) acrylic acid ester is copolymerized, the hydrolysis may proceed so much that the surface may be dissolved and the particle size may be reduced, so that care should be taken.

【0030】本発明で用いる合成樹脂微粒子の粒子径
は、金属被覆後の用途によって均一なもの、不均一なも
のを問わず制限されるものではないが、0.1〜200
0μmであるのが好ましい。0.1μm以下の微粒子
は、精製等の取り扱いが困難であり、また、2000μ
m以上の大きい粒子では、メッキ工程中の湿式プロセス
で攪拌による沈殿防止や粒子の合着防止が困難となるた
め好ましくない。
The particle size of the synthetic resin fine particles used in the present invention is not limited to be uniform or non-uniform depending on the use after metal coating, but is 0.1 to 200.
It is preferably 0 μm. Fine particles of 0.1 μm or less are difficult to handle such as purification, and 2000 μm
Particles having a size larger than m are not preferable because it is difficult to prevent precipitation and particle adhesion by stirring in a wet process during the plating process.

【0031】本発明では、物理的な金属蒸着法、或いは
化学的な無電解メッキ法を用いて金属膜を被覆すること
ができる。金属としては導電性があればよく、蒸着法に
おいては、金、銀、銅、アルミニウム、クロム等が用い
られ、無電解メッキ法では、金、銀、銅、ニッケル等が
用いられる。これらの金属膜は2層以上被覆してもよ
い。
In the present invention, the metal film can be coated using a physical metal vapor deposition method or a chemical electroless plating method. It suffices that the metal has conductivity, and gold, silver, copper, aluminum, chromium, etc. are used in the vapor deposition method, and gold, silver, copper, nickel, etc. are used in the electroless plating method. Two or more layers of these metal films may be coated.

【0032】例えば、無電解メッキ法においては、硝酸
銀、シアン化銀、シアン化金カリウム、硫酸ニッケル等
の金属塩溶液に、アンモニア水等のアルカリを加え、こ
れに本発明にかかる合成樹脂微粒子を、充分に表面を濡
らせてから添加し、分散させる。その後、ホルマリン、
ブドウ糖、酒石酸、次亜リン酸ナトリウム、水素化ホウ
素等の水溶液を、徐々に添加して、金属イオンを還元
し、金属膜を合成樹脂表面に析出させる。
For example, in the electroless plating method, an alkali such as aqueous ammonia is added to a metal salt solution of silver nitrate, silver cyanide, potassium gold cyanide, nickel sulfate or the like, and the synthetic resin fine particles according to the present invention are added thereto. , Sufficiently wet the surface, then add and disperse. Then formalin,
An aqueous solution of glucose, tartaric acid, sodium hypophosphite, borohydride, etc. is gradually added to reduce metal ions and deposit a metal film on the surface of the synthetic resin.

【0033】金属膜の厚みは、0.02μm以上必要で
ある。導電性材料として充分な伝導度を得るためであ
る。しかし、厚みが5μmを超えると、圧縮による合成
樹脂粒子の変形に追随できず、金属膜が表面から剥離す
るため好ましくない。柔軟な合成樹脂微粒子の場合は、
金属膜の厚みは、圧縮変形に追随するように、0.5μ
m以下が好ましい。
The thickness of the metal film must be 0.02 μm or more. This is to obtain sufficient conductivity as a conductive material. However, if the thickness exceeds 5 μm, the deformation of the synthetic resin particles due to compression cannot be followed and the metal film peels off from the surface, which is not preferable. In the case of flexible synthetic resin particles,
The thickness of the metal film is 0.5 μm so as to follow the compressive deformation.
m or less is preferable.

【0034】本発明で得られた金属被覆微粒子は、シラ
ンカップリング剤、チタンカップリング剤、金属石鹸等
により表面処理してもよい。このような表面処理によっ
て、導電性材料を製造するに際し、マトリックスである
熱可塑性合成樹脂、熱硬化性合成樹脂、光硬化性樹脂に
良好に単粒子分散し、特に異方導電材料として好まし
い。
The metal-coated fine particles obtained in the present invention may be surface-treated with a silane coupling agent, a titanium coupling agent, a metal soap or the like. When a conductive material is produced by such surface treatment, single particles are satisfactorily dispersed in a thermoplastic synthetic resin, a thermosetting synthetic resin, or a photocurable resin that is a matrix, and it is particularly preferable as an anisotropic conductive material.

【0035】[0035]

【発明の効果】本発明の金属被覆微粒子によれば合成
樹脂微粒子が連鎖移動剤によって熱分解温度を高められ
ており、この合成樹脂微粒子と金属膜との密着性がよ
ので、熱可塑性樹脂、ゴム、塗料、接着剤等との混練に
おいて、又圧縮により粒子が変形する際にも、金属膜の
剥離がなく、優れた伝導性が得られる。また、本発明に
かかる合成樹脂微粒子は、エッチング等の苛酷な処理が
施されないため、本来有する強度、圧縮回復性をほぼ維
持している。このため、本発明の金属被覆微粒子は、安
定した電気伝導性を発揮することができる。
According to the metal-coated fine particles of the present invention, the synthetic
The thermal decomposition temperature of the resin particles can be increased by the chain transfer agent.
And which, has the good adhesion between the synthetic resin particles and the metal film
Therefore , in kneading with a thermoplastic resin, rubber, paint, adhesive or the like, and when the particles are deformed by compression, the metal film is not peeled off and excellent conductivity is obtained. Further, since the synthetic resin fine particles according to the present invention are not subjected to a severe treatment such as etching, the original strength and compression recoverability are almost maintained. Therefore, the metal-coated fine particles of the present invention can exhibit stable electric conductivity.

【0036】本発明では、合成樹脂微粒子と金属被覆微
粒子について、20℃における初期10%圧縮弾性率、
破断強度、圧縮回復率、粒径分布、金属膜剥離度、電気
抵抗値、金属膜の厚みを以下のようにして測定した。
In the present invention, for the synthetic resin fine particles and the metal-coated fine particles, the initial 10% compression elastic modulus at 20 ° C.,
Breaking strength, compression recovery rate, particle size distribution, metal film peeling degree, electric resistance value, and metal film thickness were measured as follows.

【0037】<20℃における破断強度と初期10%圧
縮弾性率>微粒子の硬さ指標には、平松の式〔日鉱誌8
1、1024(1965)〕を用いた。平松の式では、
引張強度に換算された微粒子の破壊強度S0 が以下の式
で示される。 S0 =2.8Q/πd2 〔kgf/mm2 〕 (式中、Qは、粒子が圧砕した場合の、破断応力〔kg
f〕であり、dは、粒子の直径〔mm〕である。)
<Break strength at 20 ° C. and initial 10% compressive elastic modulus> As a hardness index of fine particles, Hiramatsu's formula [Nippon Journal 8
1, 1024 (1965)] was used. In the Hiramatsu ceremony,
The breaking strength S 0 of the fine particles converted into the tensile strength is shown by the following formula. S 0 = 2.8Q / πd 2 [kgf / mm 2 ] (In the formula, Q is the breaking stress [kg when the particles are crushed]
f] and d is the diameter [mm] of the particles. )

【0038】図1は、微粒子を圧縮試験機にかけ、この
微粒子に加わる圧縮応力と圧縮変形との関係を調べたグ
ラフである。破断強度Qは、粒子が圧砕した場合の破断
応力である。図1に示すように、微粒子は、圧力をかけ
ていくと変形し、最終的には破壊する。かかる微粒子の
破断強度Qを測定し、その値を上記式に代入すれば、微
粒子の破壊強度S0 が求められる。
FIG. 1 is a graph showing the relationship between the compressive stress applied to the fine particles and the compressive deformation when the fine particles were subjected to a compression tester. The breaking strength Q is the breaking stress when the particles are crushed. As shown in FIG. 1, the fine particles are deformed when pressure is applied, and finally destroyed. By measuring the breaking strength Q of the fine particles and substituting the value into the above equation, the breaking strength S 0 of the fine particles can be obtained.

【0039】しかし、かかる破壊強度S0 は、本発明に
かかる微粒子の硬さ指標として適切でない。微粒子の破
断強度Qは、正常な状態の微粒子の硬さを正確に反映し
ないからである。そのため、本発明では、微粒子の初期
10%圧縮弾性率(以下「G値」という。)を硬さ指標
に用いた。このG値は、微粒子が20℃において直径の
10%変形した時に示す圧縮応力を基に計算する。
However, the breaking strength S 0 is not suitable as a hardness index of the fine particles according to the present invention. This is because the breaking strength Q of the fine particles does not accurately reflect the hardness of the fine particles in a normal state. Therefore, in the present invention, the initial 10% compression elastic modulus (hereinafter referred to as “G value”) of the fine particles is used as the hardness index. This G value is calculated based on the compressive stress shown when the fine particles are deformed by 10% of the diameter at 20 ° C.

【0040】図1には、微粒子が直径の10%(d/1
0で示す。)変形した時の圧縮応力Pを示す。本発明で
は、この圧縮応力Pを検出し、次式に代入して、変形率
100%時の応力に相当する圧縮弾性率に換算する。 G=28P/πd2 〔kgf/mm2 〕 (式中、Pは、粒子が10%変形した時の圧縮応力〔k
gf〕で、dは、粒子の直径〔mm〕である。)
In FIG. 1, the fine particles are 10% of the diameter (d / 1).
It is indicated by 0. ) Indicates the compressive stress P when deformed. In the present invention, this compressive stress P is detected and substituted into the following equation to be converted into a compressive elastic modulus corresponding to the stress at a deformation rate of 100%. G = 28P / πd 2 [kgf / mm 2 ] (In the formula, P is the compressive stress [k when the particles are deformed by 10%]
gf] and d is the diameter [mm] of the particle. )

【0041】島津微小圧縮試験機〔(株)島津製作所製
MCTM−200〕により、試料台上に散布した試料粒
子1個について、粒子の中心方向へ荷重をかけ、図1に
示すような、荷重−圧縮変位を測定した。直径が最も平
均的と観察される異なる5個の粒子について、この操作
を繰り返し、それらを平均した。なお、測定温度は20
℃、圧縮速度は0.675g/secのモードを用い
た。粒子が圧砕した時の荷重を、粒子の破断強度とし
た。
A Shimadzu microcompression tester [MCTM-200 (manufactured by Shimadzu Corporation)] was used to apply a load toward the center of each sample particle scattered on the sample table, and the load as shown in FIG. -The compressive displacement was measured. This operation was repeated for 5 different particles that were observed to be most average in diameter and they were averaged. The measurement temperature is 20
A mode was used in which the temperature was ° C and the compression rate was 0.675 g / sec. The load when the particles were crushed was defined as the breaking strength of the particles.

【0042】また、得られた荷重−圧縮変位の結果か
ら、粒子径の初期10%変位時の荷重を求めた。この荷
重を、圧縮応力Pとし、上記式に代入して、20℃にお
けるG値を算出した。
From the obtained load-compressive displacement result, the load at the initial 10% displacement of the particle diameter was determined. This load was used as the compressive stress P and was substituted into the above formula to calculate the G value at 20 ° C.

【0043】<圧縮回復率>圧縮回復率は、前記島津微
小圧縮試験機MCTM−200を用いて測定した。図2
は、変位−荷重曲線を示す。縦軸は荷重、横軸は変位で
ある。試料台に散布した試料粒子1個について、粒子の
中心方向に1grfまで荷重をかけた後、荷重を0gr
fまで除荷する。この間のデータを変位−荷重曲線に記
録し、原点から1grfまでの変位(L1 )に対する、
0grfに除荷した際の回復変位(L 2)の測定値の割合
を百分率で表わす。この際の圧縮速度は、0.029g
/secのモードを用いた。
<Compression recovery rate> The compression recovery rate is the above-mentioned Shimadzu
It measured using the small compression tester MCTM-200. Figure 2
Shows a displacement-load curve. The vertical axis is load and the horizontal axis is displacement
is there. For one sample particle scattered on the sample table,
After applying a load up to 1 grf in the center direction, the load is 0 gr
Unload up to f. The data during this period is recorded on the displacement-load curve.
Recorded and the displacement from the origin to 1 grf (L1),
Recovery displacement when unloading to 0 grf (L 2) Percentage of measured values
Is expressed as a percentage. The compression speed at this time is 0.029g
/ Sec mode was used.

【0044】<平均粒子径及び粒子径分布の測定>平均
粒子径の測定は、コールターエレクトロニクス社製のコ
ールターカウンターZMC−256型測定装置を用い、
約3万個を測定して平均化した。使用に際しては、同社
製標準粒子を用いて較正した。但し、平均粒子径が30
μmを超える粒子については、光学顕微鏡により測定し
た。
<Measurement of Average Particle Size and Particle Size Distribution> The average particle size was measured using a Coulter Counter ZMC-256 type measuring device manufactured by Coulter Electronics Co., Ltd.
About 30,000 pieces were measured and averaged. At the time of use, it was calibrated using standard particles manufactured by the same company. However, the average particle size is 30
Particles exceeding μm were measured by an optical microscope.

【0045】<金属膜剥離度>試験管に約5mgの金属
被覆微粒子を入れ、処理前0分のドライ状態の試料と、
超音波水層(科学共栄社製、100V、70W、42k
Hz)で30分処理した後の試料のそれぞれの一部を透
過型光学顕微鏡にて600倍で観察する。5視野以上で
1000微粒子以上観察し、金属膜が50%以上剥離し
た微粒子を数え、全観察数に対する割合を測定した。バ
ラツキがあるため、◎<0.5%,0.5≦○<3%、
3≦△<10%、10%≦×と記号で表記する。
<Peeling Degree of Metal Film> About 5 mg of metal-coated fine particles were put in a test tube, and a sample in a dry state for 0 minutes before treatment was used.
Ultrasonic water layer (Kagaku Kyoeisha, 100V, 70W, 42k
(Hz) for 30 minutes, and a part of each sample is observed with a transmission optical microscope at 600 times. 1,000 or more fine particles were observed in 5 or more visual fields and the number of fine particles in which the metal film was peeled by 50% or more was counted, and the ratio to the total number of observations was measured. Due to variations, ◎ <0.5%, 0.5 ≦ ○ <3%,
Symbols are expressed as 3 ≦ Δ <10% and 10% ≦ ×.

【0046】<電気抵抗値>内径10mmのポリエチレ
ン製円筒に、1.5gの金属被覆微粒子を入れ、円筒に
密接するステンレス電極棒を挿入し、5kgの荷重をか
けた状態で電極間の体積固有抵抗値を測定した。
<Electrical resistance value> 1.5 g of metal-coated fine particles were placed in a polyethylene cylinder having an inner diameter of 10 mm, a stainless electrode rod in close contact with the cylinder was inserted, and a volume specific to the electrodes was applied under a load of 5 kg. The resistance value was measured.

【0047】<金属膜の厚み>メッキにおいては、金属
は100%合成樹脂微粒子にほぼ均一に付着するので、
仕込み金属の重量、金属の比重、合成樹脂微粒子の重
量、その平均粒径、比重から厚みを計算した。蒸着法に
おいては、電子顕微鏡で測定した。
<Thickness of Metal Film> In plating, the metal adheres to the 100% synthetic resin fine particles almost uniformly.
The thickness was calculated from the weight of the charged metal, the specific gravity of the metal, the weight of the synthetic resin fine particles, their average particle diameter, and the specific gravity. In the vapor deposition method, it was measured with an electron microscope.

【0048】[0048]

【実施例】<参考例1> 5重量%のポリビニルアルコール〔日本合成化学(株)
製GH−17、ケン化度87%〕水溶液7kgを激しく
攪拌しながら、ジビニルベンゼン(和光純薬製)500
g、ペンタエリスリトールテトラアクリレート(大阪有
機製)450gとN,N−ジメチルアミノエチルメタク
リレート(三菱レイヨン(株)製)50g及びアゾビス
イソブチロニトリル20gを含有する混合物を、空気下
に添加し、微粒子状に分散させ、窒素下で70℃に上昇
させ、8時間重合させた。得られた重合体微粒子を充分
水洗した後、分級操作を施し、平均粒子径6.7μm、
標準偏差0.30μmの合成樹脂微粒子を得た。この粒
子の物性値を試験し、結果を表1に示した。
EXAMPLES < Reference Example 1> 5% by weight of polyvinyl alcohol [Nippon Gosei Kagaku Co., Ltd.]
GH-17, saponification degree 87%] While vigorously stirring 7 kg of an aqueous solution, divinylbenzene (manufactured by Wako Pure Chemical Industries) 500
g, a mixture containing 450 g of pentaerythritol tetraacrylate (manufactured by Osaka Organic), 50 g of N, N-dimethylaminoethyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd.) and 20 g of azobisisobutyronitrile was added under air, It was dispersed in fine particles, heated to 70 ° C. under nitrogen, and polymerized for 8 hours. The obtained polymer fine particles were sufficiently washed with water and then classified to obtain an average particle diameter of 6.7 μm.
Synthetic resin fine particles having a standard deviation of 0.30 μm were obtained. The physical properties of the particles were tested, and the results are shown in Table 1.

【0049】この6.7μmの粒子10gを、界面活性
剤液(昭光通商(株)製「クリーンエース」3倍希釈
水)に投入し、5分間超音波処理した後に、濾過し、
0.1重量%の塩化第一スズ水溶液中で増感処理し、濾
過洗浄した。次いで、0.01重量%の塩化パラジウム
を添加した0.01容量%の塩酸水溶液中で、触媒のパ
ラジウムイオンを粒子表面に捕捉させ、濾過した後、
0.1重量%の次亜リン酸ナトリウム水溶液に浸漬し
て、パラジウムを粒子表面に析出させた。この粒子を1
重量%のリンゴ酸ナトリウム水溶液中に65℃で攪拌分
散させ、ここに、硫酸ニッケル17.92gを80ml
の水に溶かした水溶液と、次亜リン酸ナトリウム18.
1gと水酸化ナトリウム9.52gとを水80mlに溶
かした水溶液とを、同時に90分程度かけて徐々に添加
し、水素ガスの発生が終るまで攪拌を続けた。その後、
濾過水洗を充分行い、80℃で1夜乾燥して、ニッケル
無電解メッキ粒子を得た。このニッケルメッキ粒子は、
平均粒子径6.9μm、標準偏差0.41μmを有して
いた。この粒子の物性値を測定した。結果を表1にまと
めて示す。
10 g of the 6.7 μm particles were put into a surfactant solution (“Clean Ace” 3-fold diluted water manufactured by Shoko Tsusho Co., Ltd.), sonicated for 5 minutes, and then filtered.
The mixture was sensitized in a 0.1 wt% stannous chloride aqueous solution, and filtered and washed. Then, in a 0.01% by volume aqueous hydrochloric acid solution to which 0.01% by weight of palladium chloride was added, the catalyst palladium ions were captured on the surface of the particles, and after filtration,
It was immersed in a 0.1 wt% sodium hypophosphite aqueous solution to deposit palladium on the particle surface. This particle is 1
Stir-dispersed in a weight% sodium malate aqueous solution at 65 ° C., and 80 ml of nickel sulfate 17.92 g is dispersed therein.
Aqueous solution dissolved in water and sodium hypophosphite 18.
An aqueous solution prepared by dissolving 1 g and 9.52 g of sodium hydroxide in 80 ml of water was gradually added simultaneously over about 90 minutes, and stirring was continued until generation of hydrogen gas was completed. afterwards,
After thorough filtration and washing with water, it was dried overnight at 80 ° C. to obtain nickel electroless plated particles. The nickel plated particles are
It had an average particle size of 6.9 μm and a standard deviation of 0.41 μm. The physical properties of the particles were measured. The results are summarized in Table 1.

【0050】エポキシ接着剤に5重量%のニッケルメッ
キ粒子を混合し、よく練った後、顕微鏡でNi膜剥離度
を観察したところ、メッキ直後と全く変わらず、Niの
粒子への密着性は良好であった。
After mixing 5% by weight of nickel-plated particles with an epoxy adhesive and thoroughly kneading, the degree of Ni film peeling was observed with a microscope. As a result, it was completely the same as immediately after plating and the adhesion to Ni particles was good. Met.

【0051】<参考例2>参考 例1で得たニッケルメッキ微粒子10gを、1重量
%のEDTA−4Na、1重量%のクエン酸−2Na及
び0.3重量%のシアン化金カリウムを含んだ水溶液1
50ml中に攪拌しながら投入し、60℃に加熱した
後、この液に、1重量%のEDTA−4Na及び1重量
%のクエン酸−2Naを含む水溶液50mlと、3重量
%の水素化ほう素カリウムと6重量%の水酸化ナトリウ
ムとを含む水溶液50mlとを、同時に約30分かけて
徐々に添加した。水素ガスが発生しなくなるまで攪拌加
温を続けた後、充分水洗・濾過した後、80℃で1夜乾
燥し、金メッキ粒子を得た。この金メッキ粒子は、平均
粒子径7.0μm、標準偏差0.43μmを有してい
た。物性値測定結果は、表1にまとめて示す。この粒子
も、参考例1と同様に接着剤に混合したが、その過程で
金属膜の剥離はなかった。
Reference Example 2 10 g of the nickel-plated fine particles obtained in Reference Example 1 contained 1% by weight of EDTA-4Na, 1% by weight of citrate-2Na and 0.3% by weight of potassium gold cyanide. Aqueous solution 1
After pouring into 50 ml with stirring and heating to 60 ° C., 50 ml of an aqueous solution containing 1 wt% EDTA-4Na and 1 wt% citrate-2Na and 3 wt% boron hydride were added to this solution. 50 ml of an aqueous solution containing potassium and 6% by weight of sodium hydroxide were gradually added simultaneously over about 30 minutes. The mixture was continuously stirred and heated until hydrogen gas was not generated, washed thoroughly with water, filtered, and dried at 80 ° C. overnight to obtain gold-plated particles. The gold-plated particles had an average particle size of 7.0 μm and a standard deviation of 0.43 μm. The results of measurement of physical properties are summarized in Table 1. The particles were also mixed with the adhesive as in Reference Example 1, but the metal film was not peeled off in the process.

【0052】<参考例3>参考 例1において、モノマーを、N,N−ジメチルアミ
ノエチルメタクリレート100g、ジビニルベンゼン4
50g、1,6−ヘキサメチレンジアクリレート(日本
化薬製)450gに変え、ポリビニルアルコール水溶液
の攪拌速度を下げた他は、参考例1と同様にして重合、
分級し、平均粒子径32.2μm、標準偏差1.6μm
の合成樹脂微粒子を得た。この粒子の物性を試験し、結
果を表1に示した。この粒子10gから、参考例1及び
参考例2と同様にして、金メッキ粒子を得た。この金メ
ッキ粒子は、平均粒子径34.6μm、標準偏差1.7
μmを有していた。各種物性値の測定結果は表1にまと
める。この金メッキ粒子を参考例1と同様に接着剤に混
合したが、何ら剥離は認められなかった。
Reference Example 3 In Reference Example 1, the monomers were 100 g of N, N-dimethylaminoethyl methacrylate and 4 of divinylbenzene.
50 g, 1,6-hexamethylene diacrylate (manufactured by Nippon Kayaku Co., Ltd.) were changed to 450 g, and the stirring speed of the polyvinyl alcohol aqueous solution was lowered, and polymerization was carried out in the same manner as in Reference Example 1,
Classified, average particle size 32.2 μm, standard deviation 1.6 μm
Synthetic resin fine particles of The physical properties of these particles were tested and the results are shown in Table 1. From 10 g of these particles, Reference Example 1 and
Gold plating particles were obtained in the same manner as in Reference Example 2. The gold-plated particles had an average particle size of 34.6 μm and a standard deviation of 1.7.
had a μm. The measurement results of various physical properties are summarized in Table 1. The gold-plated particles were mixed with the adhesive as in Reference Example 1, but no peeling was observed.

【0053】<参考例4>参考 例1において、モノマーをN,N−ジメチルアミノ
エチルメタクリレート100g、アクリル酸−n−ブチ
ル(東亜合成製)700g、ジビニルベンゼン200g
に変え、攪拌速度を参考例2よりも更に下げた他は、
例1と同様にして、懸濁重合を行ない、篩別して、平
均230μm、標準偏差36μmの合成樹脂微粒子を得
た。この粒子の物性を試験し、結果を表1に示した。こ
の粒子に、日本電子(株)製のスパッタリング装置JF
C−1300を用いて、アルゴン存在下に金を塗布し
た。球状の粒子表面になるべく全体に金が付着するよう
に、60秒スパッタ処理後に粒子を試料台上で転がして
かきまぜ、更にスパッタ処理する方法で、スパッタ処理
を3回繰り返した。得られた金被覆粒子は、平均粒子径
231μm、標準偏差36μmを有していた。この金被
覆粒子をしごいて金属膜を強制的に剥離させ、電子顕微
鏡でその厚みを測定した。その結果を他の物性値の測定
結果と共に表1にまとめて示した。
Reference Example 4 In Reference Example 1, the monomers were N, N-dimethylaminoethyl methacrylate 100 g, acrylate-n-butyl (manufactured by Toagosei) 700 g, and divinylbenzene 200 g.
Changed, except that the stirring speed was further reduced than in Reference Example 2, the participation
In the same manner as considered Example 1, subjected to suspension polymerization, sieved average 230 .mu.m, the synthetic resin particles of the standard deviation 36 .mu.m. The physical properties of these particles were tested and the results are shown in Table 1. Sputtering equipment JF manufactured by JEOL Ltd.
Gold was applied using C-1300 in the presence of argon. The sputtering process was repeated three times by a method of rolling and stirring the particles on the sample stage after 60 seconds of the sputtering process so that gold was attached to the entire surface of the spherical particles as much as possible, and further sputtered. The obtained gold-coated particles had an average particle size of 231 μm and a standard deviation of 36 μm. The metal film was forcibly peeled off by squeezing the gold-coated particles, and the thickness was measured with an electron microscope. The results are collectively shown in Table 1 together with the results of measurement of other physical properties.

【0054】<参考例5>参考 例2で製造した金メッキ粒子を、シランカップリン
グ剤(信越化学(株)製)で処理した後、エポキシ樹脂
(セメダイン株式会社製スーパーC)主剤中に2重量%
混合し、更に硬化剤を主剤と同量混合し、熱硬化性異方
導電性接着剤(導電性材料)を製造した。この導電性材
料を10mm×50mm×1mmのステンレス板の先端
に約10mm×10mm×1mmに塗布し、ここに同じ
大きさのステンレス板をはすかいに接触させ、ステンレ
ス板間を0.8mm以上に保って硬化させた後、2枚の
ステンレス板間の導電性をテスターで測定したところ、
電流は流れなかった。
Reference Example 5 The gold-plated particles produced in Reference Example 2 were treated with a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd.), and then 2 parts by weight of epoxy resin (Super C manufactured by Cemedine Co., Ltd.) was added. %
The mixture was mixed, and the curing agent was mixed in the same amount as the main component to produce a thermosetting anisotropic conductive adhesive (conductive material). This conductive material is applied to the tip of a stainless steel plate of 10 mm x 50 mm x 1 mm in a size of about 10 mm x 10 mm x 1 mm, and a stainless steel plate of the same size is brought into contact with the space to make 0.8 mm or more between the stainless steel plates. After hardening by keeping at, the conductivity between the two stainless steel plates was measured with a tester.
No current flowed.

【0055】一方、別にこの導電性材料を、同型のステ
ンレス板に、10mm×10mm×0.05mmに塗布
し、他のステンレス板を重ね、2枚のステンレス板が直
接接触しないように圧着した。その後硬化させ、テスタ
ーで測定すると、導電性を示した。
On the other hand, this conductive material was separately applied onto a stainless steel plate of the same type in a size of 10 mm × 10 mm × 0.05 mm, another stainless steel plate was overlaid and pressure-bonded so that the two stainless steel plates did not come into direct contact with each other. It was then cured and measured by a tester to show conductivity.

【0056】<比較例1>参考 例1において、N,N−ジメチルアミノエチルメタ
クリレート及びジビニルベンゼンを用いずに、ジペンタ
エリスリトールヘキサアクリレートのみを用い、重合開
始剤としてのアゾビスイソブチロニトリルを10gの過
酸化ベンゾイルに変えた他は、参考例1と同様にして、
平均粒子径5.1μm、標準偏差0.22μmの合成樹
脂微粒子を得た。これを参考例1と同様にしてニッケル
メッキし、更に、参考例2の処理と同様にして金メッキ
し、金属被覆微粒子を得た。この金メッキ粒子は、平均
粒子径5.25μm、標準偏差0.30μmを有してい
た。この粒子の各種物性値の測定結果を表1に示す。本
例は参考例1に比べ耐剥離性が劣る。
Comparative Example 1 In Reference Example 1, N, N-dimethylaminoethyl methacrylate and divinylbenzene were not used, but only dipentaerythritol hexaacrylate was used, and azobisisobutyronitrile was used as a polymerization initiator. Similar to Reference Example 1 except that 10 g of benzoyl peroxide was used,
Synthetic resin fine particles having an average particle diameter of 5.1 μm and a standard deviation of 0.22 μm were obtained. This was nickel-plated in the same manner as in Reference Example 1 and gold-plated in the same manner as in Reference Example 2 to obtain metal-coated fine particles. The gold-plated particles had an average particle size of 5.25 μm and a standard deviation of 0.30 μm. Table 1 shows the measurement results of various physical properties of the particles. This example is inferior in peeling resistance to the reference example 1.

【0057】<比較例2> 比較例1において、モノマーをジビニルベンゼン40
g、スチレン960g(共に和光純薬製)に変えた他
は、比較例1と同様にして、平均粒径7.5μm、標準
偏差0.65μmの合成樹脂微粒子を得た。これを参考
例1及び参考例2と同様に処理して、金メッキ微粒子を
得た。この粒子は、平均粒子径7.65μm、標準偏差
0.70μmを有しており、その特性値を表1に示し
た。本微粒子は、圧縮回復性がほとんどなく、耐剥離性
も劣る。
Comparative Example 2 In Comparative Example 1, the monomer was divinylbenzene 40.
g, and 960 g of styrene (both manufactured by Wako Pure Chemical Industries, Ltd.), and synthetic resin fine particles having an average particle size of 7.5 μm and a standard deviation of 0.65 μm were obtained in the same manner as in Comparative Example 1. This was treated in the same manner as in Reference <br/> Example 1 and Reference Example 2, to obtain a gold-plated particles. The particles had an average particle size of 7.65 μm and a standard deviation of 0.70 μm, and their characteristic values are shown in Table 1. The fine particles have almost no compression recovery and poor peeling resistance.

【0058】[0058]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】圧縮応力と圧縮変形との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between compressive stress and compressive deformation.

【図2】圧縮回復を示すグラフである。FIG. 2 is a graph showing compression recovery.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−319467(JP,A) 特開 昭63−198206(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 1/00 H01B 1/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-319467 (JP, A) JP-A-63-198206 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 1/00 H01B 1/22

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合成樹脂微粒子と、その表面に形成され
た金属膜とを具える金属被覆微粒子において、 前記合成樹脂微粒子が、アミノ基含有モノマーと多官能
モノマーとを含有するモノマー混合物に連鎖移動剤を添
加して重合させた共重合体からなることを特徴とする、
金属被覆微粒子。
1. A metal-coated fine particle comprising synthetic resin fine particles and a metal film formed on the surface thereof, wherein the synthetic resin fine particles are chain-transferred to a monomer mixture containing an amino group-containing monomer and a polyfunctional monomer. Add agent
Characterized in that it comprises a copolymer added and polymerized,
Metal-coated fine particles.
【請求項2】 前記モノマー混合物が、1〜30重量%
のアミノ基含有モノマーと5〜99重量%の多官能モノ
マーと70重量%以下の単官能モノマーとを含有してお
り、前記モノマー混合物100重量部に対し、10重量
部以下の連鎖移動剤が添加されていることを特徴とす
る、請求項1記載の金属被覆微粒子。
2. The monomer mixture is 1 to 30% by weight.
Of amino group-containing monomer, 5 to 99% by weight of polyfunctional monomer and 70% by weight or less of monofunctional monomer .
10 parts by weight based on 100 parts by weight of the monomer mixture
Parts or less of the chain transfer agent is characterized that you have been added, according to claim 1, wherein the metal-coated particles.
【請求項3】 前記アミノ基含有モノマーが、ビニルピ
リジン、メチルビニルピリジン、N,N−ジアルキル−
アミノアルキル(メタ)アクリレート、N−ビニルカル
バゾール、N,N−ジアルキルアミノスチレンからなる
群より選択した1種以上のモノマーであることを特徴と
する、請求項1又は2記載の金属被覆微粒子。
3. The amino group-containing monomer is vinyl pyridine, methyl vinyl pyridine, N, N-dialkyl-
The metal-coated fine particles according to claim 1 or 2, which is one or more kinds of monomers selected from the group consisting of aminoalkyl (meth) acrylate, N-vinylcarbazole, and N, N-dialkylaminostyrene.
【請求項4】 前記多官能モノマーの一種がジビニルベ
ンゼンであることを特徴とする、請求項1〜3のいずれ
か一項記載の金属被覆微粒子。
4. The metal-coated fine particles according to claim 1, wherein one kind of the polyfunctional monomer is divinylbenzene.
【請求項5】 前記合成樹脂微粒子が、変動係数20%
以下の粒子径分布を有することを特徴とする請求項1〜
4のいずれか一項記載の金属被覆微粒子。
5. The variation coefficient of the synthetic resin fine particles is 20%.
It has the following particle size distributions,
4. The metal-coated fine particles according to any one of 4 above.
【請求項6】 前記金属被覆微粒子が0.1〜2000
μmの平均粒子径を有することを特徴とする、請求項1
〜5のいずれか一項記載の金属被覆微粒子。
6. The metal-coated fine particles are 0.1 to 2000.
2. Having an average particle size of μm.
6. The metal-coated fine particles according to any one of items 5 to 5.
【請求項7】 前記金属被覆微粒子が0.02〜0.5
μmの厚さの前記金属膜を有することを特徴とする、請
求項1〜6のいずれか一項記載の金属被覆微粒子。
7. The metal-coated fine particles are 0.02-0.5.
The metal-coated fine particles according to any one of claims 1 to 6, comprising the metal film having a thickness of µm.
【請求項8】 熱可塑性樹脂、熱硬化性樹脂、光硬化性
合成樹脂、塗料、インキ及び接着剤からなる群より選択
した少なくとも一種のマトリックス材料と金属被覆微粒
子とを含む導電性材料において、 前記金属被覆微粒子が、請求項1〜7のいずれか一項記
載の金属被覆微粒子であることを特徴とする、導電性材
料。
8. A conductive material containing at least one matrix material selected from the group consisting of a thermoplastic resin, a thermosetting resin, a photocurable synthetic resin, a paint, an ink and an adhesive, and metal-coated fine particles, A conductive material, wherein the metal-coated fine particles are the metal-coated fine particles according to any one of claims 1 to 7.
JP27426997A 1997-10-07 1997-10-07 Metal-coated fine particles and conductive material containing the same Expired - Lifetime JP3427967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27426997A JP3427967B2 (en) 1997-10-07 1997-10-07 Metal-coated fine particles and conductive material containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27426997A JP3427967B2 (en) 1997-10-07 1997-10-07 Metal-coated fine particles and conductive material containing the same

Publications (2)

Publication Number Publication Date
JPH11111047A JPH11111047A (en) 1999-04-23
JP3427967B2 true JP3427967B2 (en) 2003-07-22

Family

ID=17539314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27426997A Expired - Lifetime JP3427967B2 (en) 1997-10-07 1997-10-07 Metal-coated fine particles and conductive material containing the same

Country Status (1)

Country Link
JP (1) JP3427967B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532623B2 (en) * 1999-06-14 2010-08-25 早川ゴム株式会社 Polymer fine powder and method for producing the same
JP4642286B2 (en) * 2001-08-01 2011-03-02 早川ゴム株式会社 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JP4655488B2 (en) * 2004-02-16 2011-03-23 日立化成工業株式会社 Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP6002026B2 (en) * 2012-12-20 2016-10-05 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same
JP5998048B2 (en) * 2012-12-27 2016-09-28 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same

Also Published As

Publication number Publication date
JPH11111047A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP5075180B2 (en) Conductive particles and anisotropic conductive film containing the same
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP3294146B2 (en) Metal-coated fine particles and conductive materials
KR101609403B1 (en) Polymer particle, conductive particle, anisotropic conductive material and connection structure
TW200826120A (en) Conductive particles and method of preparing the same
WO2007074962A1 (en) Conductive particles for anisotropic conductive interconnection
JP2002033022A (en) Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
JP2000319309A (en) Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle
JP3427967B2 (en) Metal-coated fine particles and conductive material containing the same
JP2507381B2 (en) Conductive microsphere
JP2017183200A (en) Conductive particle, anisotropic conductive material and connection structure
JP4313664B2 (en) Protruding conductive particles, coated conductive particles, and anisotropic conductive material
JP4278374B2 (en) Conductive fine particles, method for producing conductive fine particles, and conductive material
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP3898510B2 (en) Conductive fine particles and anisotropic conductive materials
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JPH0689069B2 (en) Conductive microsphere
JP4532623B2 (en) Polymer fine powder and method for producing the same
KR100722152B1 (en) Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP3766123B2 (en) Conductive connection method between electrodes and conductive fine particles
KR100667375B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
KR20200083099A (en) Conductive Particles, Conductive materials and Structure of connnection using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030401

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150516

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term