JP4662748B2 - Conductive fine particles and anisotropic conductive materials - Google Patents

Conductive fine particles and anisotropic conductive materials Download PDF

Info

Publication number
JP4662748B2
JP4662748B2 JP2004291653A JP2004291653A JP4662748B2 JP 4662748 B2 JP4662748 B2 JP 4662748B2 JP 2004291653 A JP2004291653 A JP 2004291653A JP 2004291653 A JP2004291653 A JP 2004291653A JP 4662748 B2 JP4662748 B2 JP 4662748B2
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
conductive
nonconductive
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004291653A
Other languages
Japanese (ja)
Other versions
JP2006107881A (en
Inventor
拓也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004291653A priority Critical patent/JP4662748B2/en
Publication of JP2006107881A publication Critical patent/JP2006107881A/en
Application granted granted Critical
Publication of JP4662748B2 publication Critical patent/JP4662748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性微粒子及び異方性導電材料に関し、詳しくは、接続抵抗値が低く、導電信頼性に優れた導電性微粒子、及び該導電性微粒子を用いた接続抵抗値が低く、導電信頼性に優れた異方性導電材料に関する。   The present invention relates to conductive fine particles and anisotropic conductive materials, and in particular, conductive fine particles having a low connection resistance value and excellent conductive reliability, and a low connection resistance value using the conductive fine particles. The present invention relates to an anisotropic conductive material having excellent properties.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。   The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, anisotropic Widely used as anisotropic conductive materials such as conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基板の電極間や各種部品の電極間に挟み込んで使用されている。   These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to achieve this, it is used by being sandwiched between electrodes of opposing substrates or between electrodes of various components.

上記電極間の接続の場合には、例えばバインダー樹脂等に分散された導電性微粒子は、バインダー樹脂の中にあって、しかも熱圧着等の際にバインダー樹脂を排除して電極に接触されることが必要とされている。   In the case of the connection between the electrodes, for example, the conductive fine particles dispersed in the binder resin or the like are in the binder resin and are contacted with the electrode by removing the binder resin at the time of thermocompression bonding. Is needed.

上記異方性導電材料に用いられる導電性微粒子としては、従来から、粒子径が均一な樹脂微粒子等の非導電性微粒子の表面に、金属メッキを施した導電性微粒子が用いられてきている。しかしながら、近年の電子機器の急激な進歩や発展に伴って、異方性導電材料として用いられる導電性微粒子の接続抵抗の更なる低減化や導電信頼性の向上が求められてきている。   As the conductive fine particles used in the anisotropic conductive material, conventionally, conductive fine particles obtained by performing metal plating on the surface of non-conductive fine particles such as resin fine particles having a uniform particle diameter have been used. However, with rapid progress and development of electronic devices in recent years, further reduction in connection resistance of conductive fine particles used as anisotropic conductive materials and improvement in conductive reliability have been demanded.

上記導電性微粒子の接続抵抗の低減化や導電信頼性の向上のため、導電性微粒子として、表面に突起を有する導電性微粒子が報告されている(例えば、特許文献1参照)。
導電性微粒子の表面に突起を付与することで、バインダー樹脂の排除性を高め、接続抵抗の低減化や導電信頼性の向上を図っている。
In order to reduce the connection resistance of the conductive fine particles and improve the conductive reliability, conductive fine particles having protrusions on the surface have been reported as conductive fine particles (see, for example, Patent Document 1).
By providing protrusions on the surface of the conductive fine particles, the exclusion property of the binder resin is increased, and the connection resistance is reduced and the conductive reliability is improved.

特許文献1には、表面に突起を持った非導電性微粒子の表面に金属メッキを施した導電性微粒子が開示されている。この導電性微粒子の基材微粒子は、母粒子と子粒子を複合させた複合微粒子により形成させた突起微粒子であり、その突起部分は、プラスチックやケイ酸ガラス等のガラス類が用いられている。   Patent Document 1 discloses conductive fine particles obtained by performing metal plating on the surface of non-conductive fine particles having protrusions on the surface. The substrate fine particles of the conductive fine particles are protruding fine particles formed by composite fine particles obtained by combining mother particles and child particles, and the protruding portions are made of glass such as plastic or silicate glass.

特開平4−36902号公報JP-A-4-36902

しかしながら、例えば、異方性導電接着剤や異方性導電フィルムを接続面に配置して圧着して使用する場合、導電性微粒子を30%程度圧縮して使用されることが多く、この場合、突起が硬いと、接続面積が少なくなり、更なる接続抵抗の低減化や導電信頼性の向上には十分ではなかった。   However, for example, when an anisotropic conductive adhesive or an anisotropic conductive film is disposed on the connection surface and used by pressure bonding, the conductive fine particles are often used after being compressed by about 30%. If the protrusions are hard, the connection area is reduced, which is not sufficient for further reducing connection resistance and improving conductive reliability.

本発明は、上記現状に鑑み、接続抵抗値が低く、導電信頼性に優れた導電性微粒子、及び該導電性微粒子を用いた接続抵抗値が低く、導電信頼性に優れた異方性導電材料を提供することを目的とする。   In view of the above situation, the present invention provides conductive fine particles having a low connection resistance value and excellent conductive reliability, and an anisotropic conductive material having a low connection resistance value using the conductive fine particles and excellent conductive reliability. The purpose is to provide.

上記目的を達成するために請求項1記載の発明は、異方性導電材料に用いられ、非導電性微粒子Aの表面に非導電性微粒子Aより小さい非導電性微粒子Bが結合した複合微粒子の表面に、金属メッキを施してなる導電性微粒子であって、非導電性微粒子Aが架橋性単量体を用いた架橋樹脂微粒子からなり、非導電性微粒子Bが非架橋性単量体を用いた非架橋樹脂微粒子からなり、前記架橋性単量体として、ジビニルベンゼン、共役ジエン類又は多官能(メタ)アクリレート類が用いられており、前記非架橋性単量体として、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン、塩化ビニル、不飽和ニトリル類又は単官能(メタ)アクリレート類が用いられており、導電性微粒子を10%圧縮変形させたときの圧縮弾性率(10%K値)が5000〜8500N/mmで、かつ30%圧縮変形させたときの圧縮弾性率(30%K値)が1500〜3000N/mmである導電性微粒子を提供する。 In order to achieve the above object, the invention according to claim 1 is a composite fine particle which is used for an anisotropic conductive material and in which non-conductive fine particles B smaller than non-conductive fine particles A are bonded to the surface of non-conductive fine particles A. Conductive fine particles formed by metal plating on the surface, wherein non-conductive fine particles A are made of cross-linked resin fine particles using a cross-linkable monomer, and non-conductive fine particles B are made of non-cross-linkable monomers of a non-crosslinked resin particles had, as the crosslinking monomer, divinylbenzene, and Conjugate dienes or polyfunctional (meth) acrylates are used, as the non-crosslinkable monomer, styrene, alpha- methyl styrene, p- methyl styrene, p- chlorostyrene, chloromethylstyrene, vinyl chloride, unsaturated nitriles or monofunctional (meth) acrylates are used, the conductive fine particles 10% compression strange Conductivity compressive modulus in (10% K value) 5000~8500N / mm 2, and compressive modulus obtained while a 30% compressive deformation (30% K value) is 1500~3000N / mm 2 obtained while Providing fine particles.

また、請求項記載の発明は、非導電性微粒子Aの平均粒子径に対して、非導電性微粒子Bの平均粒子径が1/10以下である請求項1記載の導電性微粒子を提供する。 Further, an invention according to claim 2 wherein, relative to the average particle size of the non-conductive fine particles A, provide a conductive fine particle according to claim 1, wherein the average particle size of the non-conductive fine particles B is less than 1/10 To do.

また、請求項記載の発明は、非導電性微粒子Aの平均粒子径が10μm以下である請求項1又は2に記載の導電性微粒子を提供する。 The invention according to claim 3 provides the conductive fine particles according to claim 1 or 2 , wherein the non-conductive fine particles A have an average particle diameter of 10 μm or less.

また、請求項記載の発明は、非導電性微粒子Aの表面に非導電性微粒子Bが10個以上結合している請求項1〜のいずれか1項に記載の導電性微粒子を提供する。 The invention according to claim 4 provides the conductive fine particles according to any one of claims 1 to 3 , wherein 10 or more non-conductive fine particles B are bonded to the surface of the non-conductive fine particles A. .

また、請求項記載の発明は、請求項1〜のいずれか1項に記載の導電性微粒子が樹脂バインダーに分散されてなる異方性導電材料を提供する。 The invention according to claim 5 provides an anisotropic conductive material in which the conductive fine particles according to any one of claims 1 to 4 are dispersed in a resin binder.

以下、本発明の詳細を説明する。
本発明の導電性微粒子は、非導電性微粒子Aの表面に非導電性微粒子Aより小さい非導電性微粒子Bが結合した複合微粒子の表面に、金属メッキを施してなるものである。
更に、本発明の導電性微粒子は、導電性微粒子を10%圧縮変形させたときの圧縮弾性率(10%K値)が5000〜8500N/mm2 で、かつ30%圧縮変形させたときの圧縮弾性率(30%K値)が1500〜3000N/mm2であることが必要である。
Details of the present invention will be described below.
The conductive fine particles of the present invention are obtained by applying metal plating to the surface of composite fine particles in which non-conductive fine particles B smaller than non-conductive fine particles A are bonded to the surface of non-conductive fine particles A.
Furthermore, the conductive fine particles of the present invention have a compressive elastic modulus (10% K value) of 5000 to 8500 N / mm 2 when the conductive fine particles are subjected to 10% compression deformation, and compression when 30% compression deformation is performed. The elastic modulus (30% K value) needs to be 1500 to 3000 N / mm 2 .

導電性微粒子を10%圧縮変形させたときの圧縮弾性率(以下、10%K値とも称す)が5000〜8500N/mm2 で、かつ30%圧縮変形させたときの圧縮弾性率(以下、30%K値とも称す)が1500〜3000N/mm2とすることにより、10%圧縮程度の低圧縮時は複合微粒子の非導電性微粒子Bにより形成された突起によってバインダー樹脂の排除性が高く、かつ、電極端子と導電性微粒子が接触した後、30%圧縮程度に圧縮率を上げていったときには突起が変形し、電極端子と導電性微粒子との接続面積が増えて接続抵抗値が低く、導電信頼性に優れた導電性微粒子を得ることができる。 The compressive elastic modulus when the conductive fine particles are 10% compressively deformed (hereinafter also referred to as 10% K value) is 5000 to 8500 N / mm 2 and the compressive elastic modulus when 30% compressively deformed (hereinafter 30). % K value) is set to 1500 to 3000 N / mm 2, and when the compression is as low as 10% compression, the protrusion formed by the non-conductive fine particles B of the composite fine particles has a high exclusion property of the binder resin, and When the compression rate is increased to about 30% after the electrode terminal and the conductive fine particles are in contact, the protrusion is deformed, the connection area between the electrode terminal and the conductive fine particle is increased, the connection resistance value is low, and the conductive Conductive fine particles having excellent reliability can be obtained.

上記10%K値が5000N/mm2 未満であると、10%圧縮程度の低圧縮時において、軟らかすぎて突起によるバインダー樹脂の排除性が十分でないことがあり、8500N/mm2を超えると、硬すぎて電極等を傷つけたりすることがある。 When the 10% K value is less than 5000 N / mm 2 , it may be too soft at the time of low compression of about 10% compression, and the exclusion property of the binder resin due to the protrusion may not be sufficient, and when it exceeds 8500 N / mm 2 , It may be too hard to damage the electrode.

上記30%K値が1500N/mm2 未満であると、更に30%圧縮程度に圧縮したときに、やはり軟らかすぎて突起によるバインダー樹脂の排除性が十分でないことがあり、3000N/mm2を超えると、硬すぎて突起が変形しにくく接続面積が増えにくいことがある。 When the 30% K value is less than 1500 N / mm 2, when it is further compressed to about 30% compression, it is still too soft and the exclusion of the binder resin by the protrusions may not be sufficient, and exceeds 3000 N / mm 2 . In some cases, the protrusions are too hard to deform and the connection area is difficult to increase.

本発明においては、導電性微粒子を10%圧縮変形させたときの圧縮弾性率、すなわち10%K値、及び、導電性微粒子を30%圧縮変形させたときの圧縮弾性率、すなわち30%K値を測定することが重要である。なお、上記測定は、非導電性微粒子Aの表面に非導電性微粒子Bが結合した複合微粒子の表面に金属メッキを施した導電性微粒子について行い、非導電性微粒子Aと非導電性微粒子Bとを含む導電性微粒子全体として行われる。すなわち、測定は、非導電性微粒子Aだけでなく非導電性微粒子Bが挟み込まれて圧縮されたときの測定値を採用することとする。   In the present invention, the compression elastic modulus when the conductive fine particles are 10% compressed and deformed, that is, 10% K value, and the compression elastic modulus when the conductive fine particles are compressed and deformed by 30%, that is, 30% K value. It is important to measure The above measurement was performed on conductive fine particles obtained by metal plating on the surface of composite fine particles in which non-conductive fine particles B were bonded to the surface of non-conductive fine particles A, and non-conductive fine particles A, non-conductive fine particles B, and Conductive fine particles as a whole. That is, the measurement adopts a measured value when not only the non-conductive fine particles A but also the non-conductive fine particles B are sandwiched and compressed.

本発明における、10%K値及び30%K値は、微小圧縮試験器(Fischer H−100、Fischer社製)を用いて一辺が50μmの四角柱の平滑端面で、上記導電性微粒子を圧縮速度0.33mN/秒、最大試験荷重40mNで圧縮し求めることができる。なお、10%K値は導電性微粒子直径を10%圧縮変形させたときの圧縮弾性率であり、30%K値は導電性微粒子直径を30%圧縮変形させたときの圧縮弾性率である。   In the present invention, the 10% K value and the 30% K value are obtained by compressing the conductive fine particles on the smooth end surface of a square column having a side of 50 μm using a micro compression tester (Fischer H-100, manufactured by Fischer). It can be determined by compressing at 0.33 mN / sec and a maximum test load of 40 mN. The 10% K value is the compression elastic modulus when the conductive fine particle diameter is 10% compression deformed, and the 30% K value is the compression elastic modulus when the conductive fine particle diameter is 30% compressive deformed.

10%K値については下記式より求めることができる。
K=(3/√2)・F1・S1-3/2・R-1/2
F1:導電性微粒子の10%圧縮変形における荷重値(N)
S1:導電性微粒子の10%圧縮変形における圧縮変位(mm)
R :導電性微粒子の半径(mm)
The 10% K value can be obtained from the following equation.
K = (3 / √2) ・ F1 ・ S1 -3/2・ R -1/2
F1: Load value at 10% compression deformation of conductive fine particles (N)
S1: Compression displacement (mm) in 10% compression deformation of conductive fine particles
R: radius of conductive fine particles (mm)

30%K値については下記式より求めることができる。
K=(3/√2)・F2・S2-3/2・R-1/2
F2:導電性微粒子の30%圧縮変形における荷重値(N)
S2:導電性微粒子の30%圧縮変形における圧縮変位(mm)
R :導電性微粒子の半径(mm)
The 30% K value can be obtained from the following equation.
K = (3 / √2) ・ F2 ・ S2 -3/2・ R -1/2
F2: Load value at 30% compression deformation of conductive fine particles (N)
S2: Compression displacement (mm) in 30% compression deformation of conductive fine particles
R: radius of conductive fine particles (mm)

本発明の導電性微粒子における複合微粒子は、非導電性微粒子Aの表面に非導電性微粒子Aより小さい非導電性微粒子Bが結合したものである。   The composite fine particles in the conductive fine particles of the present invention are those in which non-conductive fine particles B smaller than the non-conductive fine particles A are bonded to the surface of the non-conductive fine particles A.

上記非導電性微粒子Aの表面に非導電性微粒子Bを結合させる方法は、特に限定されず、例えば、接着剤を用いる方法、非導電性微粒子Bを融着させる方法、非導電性微粒子Aの表面上に非導電性微粒子Bをファンデアワールス力により集積させ付着させる方法、容器の回転等による機械的な作用により非導電性微粒子Aの表面上に非導電性微粒子Bを付着させる方法等が挙げられる。   The method for bonding the nonconductive fine particles B to the surface of the nonconductive fine particles A is not particularly limited. For example, the method using an adhesive, the method of fusing the nonconductive fine particles B, the nonconductive fine particles A A method of accumulating and adhering non-conductive fine particles B on the surface by van der Waals force, a method of adhering non-conductive fine particles B on the surface of non-conductive fine particles A by a mechanical action such as rotation of a container, etc. Can be mentioned.

上記非導電性微粒子Aは、適度の圧縮特性を有するものであり、非導電性微粒子Bよりも硬い微粒子が好ましく、架橋樹脂微粒子からなるThe non-conductive fine particles A is state, and are not having an appropriate compression characteristics, hard particles is favored over the non-conductive fine particles B, comprising a crosslinked resin fine particles.

上記非導電性微粒子Aを得る方法は特に限定されず、例えば、懸濁重合、シード重合、分散重合、分散シード重合、乳化重合等の重合法による方法等が挙げられる。   A method for obtaining the non-conductive fine particles A is not particularly limited, and examples thereof include a method using a polymerization method such as suspension polymerization, seed polymerization, dispersion polymerization, dispersion seed polymerization, emulsion polymerization, or the like.

上記架橋樹脂微粒子を形成するためには、架橋性単量体が含有されていれば特に限定されず、架橋性単量体のみから形成されていてもよいし、架橋性単量体に加えて非架橋性単量体が併用されてもよい。   In order to form the cross-linked resin fine particles, there is no particular limitation as long as a cross-linkable monomer is contained. A non-crosslinkable monomer may be used in combination.

上記架橋性単量体としては、例えば、ジビニルベンゼン及びその誘導体、ブタジエン、イソプレン等の共役ジエン類、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類等が挙げられる。ここで、(メタ)アクリレートとはメタクリレート又はアクリレートを意味する。上記架橋性単量体は、単独で使用してもよく、2種類以上を併用してもよい。   Examples of the crosslinkable monomer include divinylbenzene and its derivatives, conjugated dienes such as butadiene and isoprene, polytetramethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like. Examples include functional (meth) acrylates. Here, (meth) acrylate means methacrylate or acrylate. The said crosslinkable monomer may be used independently and may use 2 or more types together.

上記非架橋性単量体としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル、アクリロニトリル等の不飽和ニトリル類、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート等の単官能(メタ)アクリレート類等が挙げられる。上記非架橋性単量体は、単独で使用してもよく、2種類以上を併用してもよい。   Examples of the non-crosslinkable monomer include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene; unsaturated nitriles such as vinyl chloride and acrylonitrile, isobutyl ( And monofunctional (meth) acrylates such as (meth) acrylate and isooctyl (meth) acrylate. The said non-crosslinkable monomer may be used independently and may use 2 or more types together.

上記非導電性微粒子Bは、適度の圧縮特性を有するものであり、非導電性微粒子Aよりも軟らかい微粒子が好ましく、非架橋樹脂微粒子からなるThe non-conductive fine particles B is state, and are not having an appropriate compression characteristics, soft particles is favored over the non-conductive fine particles A, consisting of non-crosslinked resin particles.

上記非導電性微粒子Bを得る方法は特に限定されず、例えば、懸濁重合、シード重合、分散重合、分散シード重合、乳化重合等の重合法による方法等が挙げられる。   The method for obtaining the non-conductive fine particles B is not particularly limited, and examples thereof include a method using a polymerization method such as suspension polymerization, seed polymerization, dispersion polymerization, dispersion seed polymerization, emulsion polymerization, or the like.

上記非架橋樹脂微粒子を形成するためには、非架橋性単量体のみから形成されていれば特に限定されない。
上記非架橋性単量体としては、上述の非導電性微粒子Aの非架橋性単量体で述べたものが挙げられる。
In order to form the said non-crosslinked resin fine particle, if it is formed only from the non-crosslinkable monomer, it will not specifically limit.
Examples of the non-crosslinkable monomer include those described above for the non-crosslinkable monomer of the non-conductive fine particles A.

従って、本発明の導電性微粒子は、非導電性微粒子Aが架橋樹脂微粒子からなり、非導電性微粒子Bが非架橋樹脂微粒子からなることが好ましい。   Accordingly, in the conductive fine particles of the present invention, it is preferable that the nonconductive fine particles A are made of crosslinked resin fine particles and the nonconductive fine particles B are made of non-crosslinked resin fine particles.

本発明においては、非導電性微粒子Bは、非導電性微粒子Aより小さいものであることが必要であり、非導電性微粒子Aの平均粒子径に対して、1/10以下の平均粒子径であることが好ましい。
非導電性微粒子Bの平均粒子径が非導電性微粒子Aの平均粒子径より小さく、特に、1/10以下であることにより、導電性微粒子全体としての粒子径が揃い、電極間に挟み込んで使用されたときに、良好な接続を得ることができる。
In the present invention, the non-conductive fine particles B need to be smaller than the non-conductive fine particles A, and have an average particle size of 1/10 or less with respect to the average particle size of the non-conductive fine particles A. Preferably there is.
The average particle size of the non-conductive fine particles B is smaller than the average particle size of the non-conductive fine particles A, in particular, 1/10 or less, so that the particle size of the conductive fine particles as a whole is uniform and sandwiched between the electrodes. When done, a good connection can be obtained.

従って、本発明の導電性微粒子は、非導電性微粒子Aの平均粒子径に対して、非導電性微粒子Bの平均粒子径が1/10以下であることが好ましい。   Therefore, in the conductive fine particles of the present invention, the average particle diameter of the nonconductive fine particles B is preferably 1/10 or less of the average particle diameter of the nonconductive fine particles A.

上記非導電性微粒子Aの形状は、特に限定されず、例えば、球状、楕円球状等が挙げられる。なかでも、球状が好ましい。
上記非導電性微粒子Aの平均粒子径は、特に限定されないが、10μm以下が好ましく、1〜5μmがより好ましい。非導電性微粒子Aの平均粒子径が10μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。
The shape of the nonconductive fine particles A is not particularly limited, and examples thereof include a spherical shape and an elliptical spherical shape. Of these, spherical is preferable.
The average particle diameter of the nonconductive fine particles A is not particularly limited, but is preferably 10 μm or less, and more preferably 1 to 5 μm. When the average particle diameter of the non-conductive fine particles A exceeds 10 μm, the range used as the anisotropic conductive material between the substrate electrodes may be exceeded.

従って、本発明の導電性微粒子は、非導電性微粒子Aの平均粒子径が10μm以下であることが好ましい。   Therefore, the conductive fine particles of the present invention preferably have an average particle size of the nonconductive fine particles A of 10 μm or less.

上記非導電性微粒子Bの形状は、特に限定されず、例えば、球状、楕円球状、円盤状、円柱状、立方体、直方体、四面体等が挙げられる。
上記非導電性微粒子Bの平均粒子径は、特に限定されないが、0.1〜1μmが好ましい。非導電性微粒子Bの平均粒子径が0.1μm未満であると、非導電性微粒子Bを結合させ突起とした効果が得られにくく、1μmを超えると、導電性微粒子全体としての粒子径の均一さが損なわれ、電極間に挟み込んで使用されたときに、良好な接続を得にくくなることがある。
The shape of the nonconductive fine particles B is not particularly limited, and examples thereof include a spherical shape, an elliptical spherical shape, a disc shape, a cylindrical shape, a cube, a rectangular parallelepiped, and a tetrahedron.
The average particle diameter of the non-conductive fine particles B is not particularly limited, but is preferably 0.1 to 1 μm. If the average particle size of the non-conductive fine particles B is less than 0.1 μm, it is difficult to obtain the effect of bonding the non-conductive fine particles B to form protrusions. If the average particle size exceeds 1 μm, the particle size of the entire conductive fine particles is uniform. When it is used while being sandwiched between electrodes, it may be difficult to obtain a good connection.

本発明において、非導電性微粒子Aの表面に非導電性微粒子Bが結合し存在する個数(以下、非導電性微粒子Bの存在個数とも称す)は、10個以上であることが好ましい。非導電性微粒子Bの存在個数が10個以上であると、本発明の導電性微粒子を異方性導電材料として用いた接続時に、導電性微粒子がどのような方向に向いても、非導電性微粒子Bによる突起が電極と接触し、良好な接続状態となることができる。
非導電性微粒子Bの存在個数の制御は、例えば、非導電性微粒子Aに対して、添加する非導電性微粒子Bの量を変化させれば容易に行うことができる。
In the present invention, the number of nonconductive fine particles B bonded to the surface of the nonconductive fine particles A (hereinafter also referred to as the number of nonconductive fine particles B) is preferably 10 or more. When the number of the non-conductive fine particles B is 10 or more, the conductive fine particles of the present invention are non-conductive regardless of the direction in which the conductive fine particles are oriented at the time of connection using the conductive fine particles as an anisotropic conductive material. Protrusions due to the fine particles B come into contact with the electrodes, and a good connection state can be obtained.
Control of the number of non-conductive fine particles B can be easily performed by changing the amount of non-conductive fine particles B to be added to the non-conductive fine particles A, for example.

従って、本発明の導電性微粒子は、非導電性微粒子Aの表面に非導電性微粒子Bが10個以上結合していることが好ましい。   Therefore, in the conductive fine particles of the present invention, it is preferable that 10 or more non-conductive fine particles B are bonded to the surface of the non-conductive fine particles A.

本発明の導電性微粒子は、非導電性微粒子Aの表面に非導電性微粒子Bが結合した複合微粒子の表面に金属メッキを施してなるものである。
従って、上記導電性微粒子は、非導電性微粒子Aの表面に非導電性微粒子Bを結合させ形成された突起をそのまま残して、表面に金属メッキを施して得られたものとなる。
The conductive fine particles of the present invention are obtained by performing metal plating on the surface of the composite fine particles in which the nonconductive fine particles B are bonded to the surface of the nonconductive fine particles A.
Therefore, the conductive fine particles are obtained by performing metal plating on the surface while leaving the protrusions formed by bonding the nonconductive fine particles B on the surface of the nonconductive fine particles A as they are.

上記金属メッキに使用される金属は、特に限定されず、例えば、ニッケル、金、銀、銅、コバルト又はこれらを主成分とする合金等が挙げられる。   The metal used for the said metal plating is not specifically limited, For example, nickel, gold | metal | money, silver, copper, cobalt or the alloy etc. which have these as a main component are mentioned.

上記金属メッキを施す方法は、上記複合微粒子である基材微粒子が非導電性微粒子であるため、無電解メッキによる方法が好ましい。なかでも、無電解ニッケルメッキによる方法がより好適に用いられる。なお、金属メッキは単一の金属層であっても複数の金属からなる複層であってもよい。   The method of applying the metal plating is preferably an electroless plating method because the substrate fine particles that are the composite fine particles are non-conductive fine particles. Especially, the method by electroless nickel plating is used more suitably. The metal plating may be a single metal layer or a multilayer composed of a plurality of metals.

上記無電解ニッケルメッキによる方法としては、例えば、次亜リン酸ナトリウムを還元剤として構成される無電解ニッケルメッキ液を所定の方法にしたがって建浴、加温したところに、触媒付与された基材微粒子を浸漬し、Ni2++H2PO2 -+H2O→Ni+H2PO3 -+2H+ からなる還元反応でニッケル層を析出させる方法等が挙げられる。 Examples of the electroless nickel plating method include a base material provided with a catalyst when an electroless nickel plating solution composed of sodium hypophosphite as a reducing agent is bathed and heated according to a predetermined method. Examples include a method in which fine particles are immersed and a nickel layer is deposited by a reduction reaction of Ni 2+ + H 2 PO 2 + H 2 O → Ni + H 2 PO 3 + 2H + .

上記触媒付与を行う方法としては、例えば、基材微粒子に、アルカリ脱脂、酸中和、二塩化スズ(SnCl2 )溶液におけるセンシタイジング、二塩化パラジウム(PdCl2)溶液におけるアクチベイチングからなる無電解メッキ前処理工程を行う方法等が挙げられる。なお、センシタイジングとは、非導電性物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、Sn2++Pd2+→Sn4++Pd0なる反応を非導電性物質表面に起こしてパラジウムを無電解メッキの触媒核とする工程である。 Examples of the method for imparting the catalyst include alkali degreasing, acid neutralization, sensitizing in a tin dichloride (SnCl 2 ) solution, and activation in a palladium dichloride (PdCl 2 ) solution. Examples include a method of performing an electroless plating pretreatment step. Sensitizing is a process of adsorbing Sn 2+ ions on the surface of a non-conductive substance, and activating is a reaction of Sn 2+ + Pd 2+ → Sn 4+ + Pd 0, which is non-conductive. This is a process in which palladium is generated on the surface of the material and used as a catalyst core for electroless plating.

上記金属メッキのメッキ被膜の膜厚は、0.02〜5μmが好ましい。メッキ被膜の膜厚が0.02μm未満であると、金属層が薄く導電性が得られにくい。また、メッキ被膜の膜厚が5μmを超えると、基材微粒子を構成する非導電性物質と、メッキにより形成された金属とが、熱膨張率を異にするため、メッキ被膜が剥がれやすくなることがある。   The thickness of the metal plating plating film is preferably 0.02 to 5 μm. When the thickness of the plating film is less than 0.02 μm, the metal layer is thin and it is difficult to obtain conductivity. In addition, when the thickness of the plating film exceeds 5 μm, the non-conductive material constituting the substrate fine particles and the metal formed by plating have different coefficients of thermal expansion, so that the plating film is easily peeled off. There is.

本発明の導電性微粒子は、最表面を金層とするメッキ被膜が形成されてなることが好ましい。最表面を金層とすることにより、接続抵抗値の低減化や表面の安定化を図ることができる。なお、メッキ被膜の最表面がすでに金層である場合は、あらためて金層を形成しなくても、接続抵抗値の低減化や表面の安定化を図ることができる。   The conductive fine particles of the present invention are preferably formed with a plating film having the outermost surface as a gold layer. By making the outermost surface a gold layer, the connection resistance value can be reduced and the surface can be stabilized. When the outermost surface of the plating film is already a gold layer, the connection resistance value can be reduced and the surface can be stabilized without forming a gold layer again.

上記金層は、無電解メッキ、置換メッキ、電気メッキ等の公知の方法により形成することができる。   The gold layer can be formed by a known method such as electroless plating, displacement plating, or electroplating.

上記金層の膜厚は、特に限定されないが、1〜100nmが好ましく、より好ましくは1〜50nmである。1nm未満であると、例えば下地ニッケル層の酸化を防止することが困難となることがあり、接続抵抗値が高くなったりすることがある。100nmを超えると、例えば置換メッキの場合下地ニッケル層を侵食し基材微粒子と下地ニッケル層との密着を悪くすることがある。   Although the film thickness of the said gold layer is not specifically limited, 1-100 nm is preferable, More preferably, it is 1-50 nm. If it is less than 1 nm, for example, it may be difficult to prevent oxidation of the underlying nickel layer, and the connection resistance value may increase. When the thickness exceeds 100 nm, for example, in the case of displacement plating, the underlying nickel layer may be eroded and adhesion between the substrate fine particles and the underlying nickel layer may be deteriorated.

本発明における導電性微粒子の各種特性、例えば、メッキ被膜の膜厚、金層の膜厚、非導電性微粒子Aの平均粒子径、非導電性微粒子Bの平均粒子径、非導電性微粒子Bの存在個数等は、電子顕微鏡による導電性微粒子の粒子観察又は断面観察により得ることができる。   Various characteristics of the conductive fine particles in the present invention, for example, the thickness of the plating film, the thickness of the gold layer, the average particle size of the non-conductive fine particles A, the average particle size of the non-conductive fine particles B, the non-conductive fine particle B The existence number can be obtained by observing particles or cross sections of conductive fine particles with an electron microscope.

上記断面観察を行うための試料の作製法としては、例えば、導電性微粒子を熱硬化型の樹脂に埋め込み加熱硬化させ、所定の研磨紙や研磨剤を用いて観察可能な鏡面状態にまで試料を研磨する方法等が挙げられる。   As a method for preparing a sample for performing the cross-sectional observation, for example, conductive fine particles are embedded in a thermosetting resin and cured by heating, and the sample is brought into a mirror surface state that can be observed using a predetermined abrasive paper or abrasive. The method etc. which grind | polish are mentioned.

導電性微粒子の粒子観察は、走査電子顕微鏡(SEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、5000倍で観察することにより行う。また、導電性微粒子の断面観察は、透過電子顕微鏡(TEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、5万倍で観察することにより行う。   The observation of the conductive fine particles is performed with a scanning electron microscope (SEM). As the magnification, an easily observable magnification may be selected. For example, the observation is performed at 5000 times. Further, the cross-sectional observation of the conductive fine particles is performed with a transmission electron microscope (TEM), and as the magnification, an easily observable magnification may be selected. For example, the observation is performed at 50,000 times.

上記導電性微粒子のメッキ被膜、及び金層の平均膜厚は、無作為に選んだ10個の導電性微粒子について測定し、それを算術平均した膜厚である。なお、個々の導電性微粒子の膜厚にむらがある場合には、その最大膜厚と最小膜厚を測定し、算術平均した値を膜厚とする。   The average film thickness of the conductive fine particle plating film and the gold layer is a film thickness obtained by arithmetically averaging 10 randomly selected conductive fine particles. In addition, when the film thickness of each electroconductive fine particle has nonuniformity, the maximum film thickness and the minimum film thickness are measured, and let the film thickness be the arithmetic average value.

上記非導電性微粒子A、及び非導電性微粒子Bの平均粒子径は、それぞれ無作為に選んだ10個の非導電性微粒子A又は非導電性微粒子Bについて粒子径を測定し、それを算術平均したものとする。   The average particle diameters of the non-conductive fine particles A and the non-conductive fine particles B are measured for 10 randomly selected non-conductive fine particles A or non-conductive fine particles B, and the arithmetic average is obtained. Shall be.

上記非導電性微粒子Bの存在個数は、無作為に選んだ50個の導電性微粒子について、非導電性微粒子Bによる突起の個数をカウントし、1個の導電性微粒子当たりの個数に換算して、存在個数とする。   The number of the non-conductive fine particles B is calculated by counting the number of protrusions formed by the non-conductive fine particles B for 50 randomly selected conductive fine particles and converting them to the number per one conductive fine particle. , The existing number.

本発明の異方性導電材料は、上述した本発明の導電性微粒子が樹脂バインダーに分散されてなるものである。   The anisotropic conductive material of the present invention is obtained by dispersing the above-described conductive fine particles of the present invention in a resin binder.

上記異方性導電材料としては、本発明の導電性微粒子が樹脂バインダーに分散されていれば特に限定されるものではなく、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等が挙げられる。   The anisotropic conductive material is not particularly limited as long as the conductive fine particles of the present invention are dispersed in a resin binder. For example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive An adhesive, an anisotropic conductive film, an anisotropic conductive sheet, etc. are mentioned.

本発明の異方性導電材料の作製方法としては、特に限定されるものではないが、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して導電性組成物を作製した後、この導電性組成物を必要に応じて有機溶媒中に均一に溶解(分散)させるか、又は加熱溶融させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、作製しようとする異方性導電材料の種類に対応して、適宜の作製方法をとればよい。また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを、混合することなく、別々に用いて異方性導電材料としてもよい。   The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and mixed and dispersed uniformly. For example, a method of using an anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., or adding the conductive fine particles of the present invention to an insulating resin binder and mixing them uniformly. After preparing the conductive composition, the conductive composition is uniformly dissolved (dispersed) in an organic solvent as necessary, or heated and melted to release a release material such as release paper or release film. Applying to the mold processing surface so as to have a predetermined film thickness, and performing drying or cooling as necessary, for example, an anisotropic conductive film, an anisotropic conductive sheet, etc. Depending on the type of anisotropic conductive material to be produced, Manufacturing methods may Taking. Further, the insulating resin binder and the conductive fine particles of the present invention may be used separately without being mixed to form an anisotropic conductive material.

上記絶縁性の樹脂バインダーの樹脂としては、特に限定されるものではないが、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型等のいずれの硬化形態であってもよい。   The resin of the insulating resin binder is not particularly limited. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene -Thermoplastic resins such as vinyl acetate copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene blocks Thermoplastic block copolymers such as copolymers, styrene-isoprene-styrene block copolymers, and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber ( Rubbers). These resins may be used alone or in combination of two or more. The curable resin may be in any curing form such as a room temperature curing type, a thermosetting type, a photocuring type, and a moisture curing type.

本発明の異方性導電材料には、絶縁性の樹脂バインダー、及び、本発明の導電性微粒子に加えるに、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の1種又は2種以上が併用されてもよい。   In addition to the insulating resin binder and the conductive fine particles of the present invention, the anisotropic conductive material of the present invention includes, for example, a bulking agent, a softening agent, etc. 1 type of various additives such as additives (plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Or 2 or more types may be used together.

本発明の導電性微粒子は、上述の構成よりなるので、接続抵抗値が低く、導電信頼性に優れたものを得ることができる。また、該導電性微粒子を用いた異方性導電材料は、接続抵抗値が低く、導電信頼性に優れたものを得ることが可能となった。   Since the conductive fine particles of the present invention have the above-described configuration, it is possible to obtain one having a low connection resistance value and excellent conductivity reliability. In addition, the anisotropic conductive material using the conductive fine particles has a low connection resistance value and can be obtained with excellent conductivity reliability.

以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

(非導電性微粒子Aの作製)
シード粒子として0.75μmのスチレン粒子5gと、イオン交換水500gと、5重量%のポリビニルアルコール水溶液100gとを混合し超音波を加え分散させた後、セパラブルフラスコに入れて均一に撹拌した。
次に、ポリテトラメチレングリコールジアクリレート128g、ジビニルベンゼン32gを、油溶性重合開始剤12g、ラウリル硫酸トリエタノールアミン9g、エタノール118gを添加したイオン交換水1035gより調製した乳化液をセパラブルフラスコに加え、12時間撹拌を行いシード粒子にモノマーを吸収させた。
その後、5重量%のポリビニルアルコール水溶液500gを加え窒素ガスを導入しオートクレーブ中にて130℃、9時間反応させ、平均粒子径が3.75μmの架橋樹脂微粒子からなる非導電性微粒子Aを得た。
(Preparation of non-conductive fine particles A)
5 g of 0.75 μm styrene particles as seed particles, 500 g of ion-exchanged water, and 100 g of a 5 wt% aqueous polyvinyl alcohol solution were mixed and dispersed by applying ultrasonic waves, and then placed in a separable flask and uniformly stirred.
Next, 128 g of polytetramethylene glycol diacrylate and 32 g of divinylbenzene were added to the separable flask with an emulsion prepared from 1035 g of ion-exchanged water to which 12 g of an oil-soluble polymerization initiator, 9 g of triethanolamine lauryl sulfate, and 118 g of ethanol were added. The mixture was stirred for 12 hours to allow the seed particles to absorb the monomer.
Thereafter, 500 g of a 5 wt% aqueous polyvinyl alcohol solution was added, nitrogen gas was introduced, and the mixture was reacted in an autoclave at 130 ° C. for 9 hours to obtain nonconductive fine particles A composed of crosslinked resin fine particles having an average particle size of 3.75 μm. .

(非導電性微粒子B1の作製)
スチレン95重量%、及びメタクリル酸5重量%を混合溶解し、得られたモノマー混合物100重量部を70℃まで昇温した後、ラジカル重合開始剤として過硫酸カリウム2重量部を加え、更に70℃で12時間加熱反応させ、非架橋樹脂微粒子を得た。その後、乾燥して、平均粒子径が0.3μm、CV値(粒子径分布の標準偏差を平均粒子径で除して百分率とした値)が3%の非架橋樹脂微粒子からなる非導電性微粒子B1を得た。
(Preparation of non-conductive fine particles B1)
After mixing and dissolving 95% by weight of styrene and 5% by weight of methacrylic acid, 100 parts by weight of the resulting monomer mixture was heated to 70 ° C., 2 parts by weight of potassium persulfate was added as a radical polymerization initiator, and further 70 ° C. For 12 hours to obtain non-crosslinked resin fine particles. Thereafter, the particles are dried and non-conductive fine particles comprising non-crosslinked resin fine particles having an average particle size of 0.3 μm and a CV value (a value obtained by dividing the standard deviation of the particle size distribution by the average particle size as a percentage) is 3%. B1 was obtained.

(非導電性微粒子B2の作製)
スチレン75重量%、ジビニルベンゼン20重量%、及びメタクリル酸5重量%を混合溶解し、得られたモノマー混合物100重量部を70℃まで昇温した後、ラジカル重合開始剤として過硫酸カリウム2重量部を加え、更に70℃で12時間加熱反応させ、架橋樹脂微粒子を得た。その後、乾燥して、平均粒子径が0.3μm、CV値が3%の架橋樹脂微粒子からなる非導電性微粒子B2を得た。
(Preparation of non-conductive fine particles B2)
After mixing and dissolving 75% by weight of styrene, 20% by weight of divinylbenzene and 5% by weight of methacrylic acid, 100 parts by weight of the resulting monomer mixture was heated to 70 ° C., and then 2 parts by weight of potassium persulfate as a radical polymerization initiator. Was further added and reacted at 70 ° C. for 12 hours to obtain crosslinked resin fine particles. Thereafter, drying was performed to obtain non-conductive fine particles B2 made of crosslinked resin fine particles having an average particle size of 0.3 μm and a CV value of 3%.

(実施例1)
(複合微粒子の作製)
ハイブリダイザにより、非導電性微粒子Aの表面に非導電性微粒子B1を付着させて、表面に突起を持った複合微粒子を得た。
Example 1
(Preparation of composite fine particles)
A non-conductive fine particle B1 was attached to the surface of the non-conductive fine particle A by a hybridizer to obtain composite fine particles having protrusions on the surface.

(無電解ニッケルメッキ工程)
得られた複合微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた複合微粒子を得た。
得られたパラジウムを付着させた複合微粒子を更に水1200mlで希釈し、メッキ安定剤4mlを添加後、この水溶液に硫酸ニッケル450g/l、次亜リン酸ナトリウム150g/l、クエン酸ナトリウム116g/l、メッキ安定剤6mlの混合溶液120mlを8定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
次いで、更に硫酸ニッケル450g/l、次亜リン酸ナトリウム150g/l、クエン酸ナトリウム116g/l、メッキ安定剤35mlの混合溶液650mlを定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥してニッケルメッキされた導電性微粒子を得た。
(Electroless nickel plating process)
10 g of the obtained composite fine particles were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, composite fine particles having palladium adhered to the particle surface were obtained.
The obtained composite fine particles adhered with palladium were further diluted with 1200 ml of water, and after adding 4 ml of plating stabilizer, nickel sulfate 450 g / l, sodium hypophosphite 150 g / l, sodium citrate 116 g / l 120 ml of a mixed solution of 6 ml of plating stabilizer was added through an 8 metering pump. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed.
Subsequently, a further 650 ml of a mixed solution of 450 g / l of nickel sulfate, 150 g / l of sodium hypophosphite, 116 g / l of sodium citrate, and 35 ml of plating stabilizer was added through a metering pump. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed.
Next, the plating solution was filtered, and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated conductive fine particles.

(金メッキ工程)
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Gold plating process)
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

得られた導電性微粒子について、ニッケルの平均膜厚、及び金の平均膜厚を透過電子顕微鏡(TEM)による断面観察により求め、非導電性微粒子B1の存在個数を走査電子顕微鏡(SEM)による粒子観察により求めた。
また、得られた導電性微粒子について、10%K値、及び30%K値を微小圧縮試験器(Fischer H−100、Fischer社製)を用いて測定した。
これらの結果を表1に示した。
With respect to the obtained conductive fine particles, the average film thickness of nickel and the average film thickness of gold are determined by cross-sectional observation with a transmission electron microscope (TEM), and the number of non-conductive fine particles B1 is determined with a scanning electron microscope (SEM). It was determined by observation.
Moreover, about the obtained electroconductive fine particles, 10% K value and 30% K value were measured using the micro compression tester (Fischer H-100, product made by Fischer).
These results are shown in Table 1.

(比較例1)
(複合微粒子の作製)
ハイブリダイザにより、非導電性微粒子Aの表面に非導電性微粒子B2を付着させて、表面に突起を持った複合微粒子を得た。
(Comparative Example 1)
(Preparation of composite fine particles)
A non-conductive fine particle B2 was adhered to the surface of the non-conductive fine particle A by a hybridizer to obtain composite fine particles having protrusions on the surface.

無電解ニッケルメッキ工程、及び金メッキ工程を実施例1と同様にして行い、導電性微粒子を得た。   The electroless nickel plating step and the gold plating step were performed in the same manner as in Example 1 to obtain conductive fine particles.

得られた導電性微粒子について、実施例1と同様にして、ニッケルの平均膜厚、金の平均膜厚、非導電性微粒子B2の存在個数、10%K値、及び30%K値を求めた。これらの結果を表1に示した。   About the obtained electroconductive fine particles, it carried out similarly to Example 1, and calculated | required the average film thickness of nickel, the average film thickness of gold | metal | money, the number of nonelectroconductive microparticles B2, the 10% K value, and the 30% K value. . These results are shown in Table 1.

(比較例2)
複合微粒子の作製は行わなかった。
無電解ニッケルメッキ工程において、複合微粒子を用いず、代わりに非導電性微粒子Aを用いたこと、及び、最初に添加するメッキ安定剤4mlの代わりにメッキ安定剤1mlとし、その後はメッキ安定剤を添加しなかったこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。無電解ニッケルメッキ工程では、メッキ液の自己分解が起こっており、自己分解によるニッケル塊がニッケル被膜と同時に形成されており、ニッケル塊(粒子径が約0.3μm程度の塊状)が突起になっていた。
その後、金メッキ工程を実施例1と同様にして行い、導電性微粒子を得た。
(Comparative Example 2)
Preparation of composite fine particles was not performed.
In the electroless nickel plating process, composite fine particles were not used, but non-conductive fine particles A were used instead, and 1 ml of plating stabilizer was used instead of 4 ml of the plating stabilizer added first, and then the plating stabilizer was used. Nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that no addition was made. In the electroless nickel plating process, the plating solution self-decomposes, and a nickel lump by self-decomposition is formed at the same time as the nickel coating, and the nickel lump (bulk shape with a particle size of about 0.3 μm) becomes a protrusion. It was.
Thereafter, the gold plating step was performed in the same manner as in Example 1 to obtain conductive fine particles.

得られた導電性微粒子について、実施例1と同様にして、ニッケルの平均膜厚、金の平均膜厚、ニッケル塊の存在個数、10%K値、及び30%K値を求めた。これらの結果を表1に示した。   About the obtained electroconductive fine particles, it carried out similarly to Example 1, and calculated | required the average film thickness of nickel, the average film thickness of gold | metal | money, the number of nickel lump presence, 10% K value, and 30% K value. These results are shown in Table 1.

(接続抵抗値の評価)
エポキシ系接着剤(三井化学社製、「ストラクトボンドXN−5A」)に、得られた導電性微粒子2重量%、及びシリカ微粒子1重量%の割合で混合して、異方性導電接着剤とした。
この異方性導電接着剤を、300μmピッチ幅でITO電極が形成されたガラス板(20mm×40mm)上のほぼ中央にスクリーン印刷により塗布した。もう一方の、300μmピッチ幅でITO電極が形成されたガラス板(20mm×40mm)を、電極部分が垂直に重なるように重ね合わせた後、325kPaの圧力を加え、160℃で5分間加熱圧縮し貼り合わせた。このとき、圧縮率(%)と接続抵抗値(Ω)とを測定した。接続抵抗値は、単粒子当たりに換算した粒子抵抗値(Ω/個)で、圧縮率10%と圧縮率30%となるようにシリカ微粒子の粒子径を変えて値を求めた。これらの結果を表1に示した。
(Evaluation of connection resistance)
An anisotropic conductive adhesive is mixed with an epoxy adhesive (Mitsui Chemicals Co., Ltd., “Struct Bond XN-5A”) at a ratio of 2% by weight of the obtained conductive fine particles and 1% by weight of silica fine particles. did.
This anisotropic conductive adhesive was applied by screen printing almost at the center on a glass plate (20 mm × 40 mm) on which ITO electrodes were formed with a pitch width of 300 μm. The other glass plate (20 mm x 40 mm) on which ITO electrodes were formed with a 300 μm pitch width was overlaid so that the electrode parts overlap vertically, and then a pressure of 325 kPa was applied, and heat compression was performed at 160 ° C. for 5 minutes. Pasted together. At this time, the compression rate (%) and the connection resistance value (Ω) were measured. The connection resistance value was a particle resistance value (Ω / piece) converted per single particle, and the value was obtained by changing the particle diameter of the silica fine particles so that the compression rate was 10% and the compression rate was 30%. These results are shown in Table 1.

Figure 0004662748
Figure 0004662748

表1より、実施例で得られた導電性微粒子を用いたものは、圧縮率が10%でも30%でも粒子抵抗値が十分低いものであった。従って、本発明の導電性微粒子は、接続抵抗値が低く、導電信頼性に優れていることがわかる。   From Table 1, the particles using the conductive fine particles obtained in the Examples had sufficiently low particle resistance values even when the compression rate was 10% or 30%. Therefore, it can be seen that the conductive fine particles of the present invention have a low connection resistance value and excellent conductivity reliability.

本発明によれば、接続抵抗値が低く、導電信頼性に優れた導電性微粒子、及び該導電性微粒子を用いた接続抵抗値が低く、導電信頼性に優れた異方性導電材料を提供できる。   According to the present invention, it is possible to provide conductive fine particles having a low connection resistance value and excellent conductive reliability, and an anisotropic conductive material having a low connection resistance value using the conductive fine particles and excellent conductive reliability. .

Claims (5)

異方性導電材料に用いられ、非導電性微粒子Aの表面に非導電性微粒子Aより小さい非導電性微粒子Bが結合した複合微粒子の表面に、金属メッキを施してなる導電性微粒子であって、
非導電性微粒子Aが架橋性単量体を用いた架橋樹脂微粒子からなり、非導電性微粒子Bが非架橋性単量体を用いた非架橋樹脂微粒子からなり、
前記架橋性単量体として、ジビニルベンゼン、共役ジエン類又は多官能(メタ)アクリレート類が用いられており、前記非架橋性単量体として、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン、塩化ビニル、不飽和ニトリル類又は単官能(メタ)アクリレート類が用いられており、
導電性微粒子を10%圧縮変形させたときの圧縮弾性率(10%K値)が5000〜8500N/mmで、かつ30%圧縮変形させたときの圧縮弾性率(30%K値)が1500〜3000N/mmであることを特徴とする導電性微粒子。
Conductive fine particles which are used for anisotropic conductive materials and are obtained by performing metal plating on the surface of composite fine particles in which non-conductive fine particles B smaller than non-conductive fine particles A are bonded to the surface of non-conductive fine particles A. ,
The non-conductive fine particles A consist of cross-linked resin fine particles using a cross-linkable monomer, the non-conductive fine particles B consist of non-cross-linked resin fine particles using a non-cross-linkable monomer,
As the crosslinking monomer, divinylbenzene, Conjugate dienes or polyfunctional (meth) acrylates have been used, as the non-crosslinkable monomer, styrene, alpha-methyl styrene, p- methyl styrene, p-chlorostyrene, chloromethylstyrene , vinyl chloride, unsaturated nitriles or monofunctional (meth) acrylates are used,
The compressive elastic modulus (10% K value) when the conductive fine particles are 10% compressively deformed is 5000 to 8500 N / mm 2 , and the compressive elastic modulus (30% K value) when 30% compressively deformed is 1500. Conductive fine particles characterized by being -3000 N / mm 2 .
非導電性微粒子Aの平均粒子径に対して、非導電性微粒子Bの平均粒子径が1/10以下であることを特徴とする請求項1に記載の導電性微粒子。   2. The conductive fine particles according to claim 1, wherein the average particle diameter of the nonconductive fine particles B is 1/10 or less of the average particle diameter of the nonconductive fine particles A. 3. 非導電性微粒子Aの平均粒子径が10μm以下であることを特徴とする請求項1又は2に記載の導電性微粒子。   The conductive fine particles according to claim 1 or 2, wherein the non-conductive fine particles A have an average particle size of 10 µm or less. 非導電性微粒子Aの表面に非導電性微粒子Bが10個以上結合していることを特徴とする請求項1〜3のいずれか1項に記載の導電性微粒子。   The conductive fine particles according to any one of claims 1 to 3, wherein 10 or more nonconductive fine particles B are bonded to the surface of the nonconductive fine particles A. 請求項1〜4のいずれか1項に記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。   An anisotropic conductive material comprising the conductive fine particles according to any one of claims 1 to 4 dispersed in a resin binder.
JP2004291653A 2004-10-04 2004-10-04 Conductive fine particles and anisotropic conductive materials Expired - Fee Related JP4662748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291653A JP4662748B2 (en) 2004-10-04 2004-10-04 Conductive fine particles and anisotropic conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291653A JP4662748B2 (en) 2004-10-04 2004-10-04 Conductive fine particles and anisotropic conductive materials

Publications (2)

Publication Number Publication Date
JP2006107881A JP2006107881A (en) 2006-04-20
JP4662748B2 true JP4662748B2 (en) 2011-03-30

Family

ID=36377343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291653A Expired - Fee Related JP4662748B2 (en) 2004-10-04 2004-10-04 Conductive fine particles and anisotropic conductive materials

Country Status (1)

Country Link
JP (1) JP4662748B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130088187A (en) * 2007-08-02 2013-08-07 히타치가세이가부시끼가이샤 Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
JP5010417B2 (en) * 2007-10-02 2012-08-29 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particles and anisotropic conductive material using the same
JP5210236B2 (en) * 2009-04-24 2013-06-12 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure
JP5466022B2 (en) * 2010-01-19 2014-04-09 株式会社日本触媒 Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5476262B2 (en) * 2010-09-14 2014-04-23 積水化学工業株式会社 Connection structure and method for manufacturing connection structure
WO2012102199A1 (en) * 2011-01-25 2012-08-02 株式会社日本触媒 Conductive microparticle, resin particle, and anisotropic conductive material using same
JP2022175801A (en) * 2021-05-14 2022-11-25 デクセリアルズ株式会社 Conductive particle and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436902A (en) * 1990-06-01 1992-02-06 Sekisui Fine Chem Kk Conductive fine grain and conductive adhesive
JPH0855514A (en) * 1993-12-16 1996-02-27 Shin Etsu Polymer Co Ltd Conductive particle and anisotropic conductive adhesive using it
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device
JP2004165123A (en) * 2002-09-24 2004-06-10 Sekisui Chem Co Ltd Conductive particulate, its manufacturing method, and conductive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436902A (en) * 1990-06-01 1992-02-06 Sekisui Fine Chem Kk Conductive fine grain and conductive adhesive
JPH0855514A (en) * 1993-12-16 1996-02-27 Shin Etsu Polymer Co Ltd Conductive particle and anisotropic conductive adhesive using it
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device
JP2004165123A (en) * 2002-09-24 2004-06-10 Sekisui Chem Co Ltd Conductive particulate, its manufacturing method, and conductive material

Also Published As

Publication number Publication date
JP2006107881A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
TW557237B (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
JP4920698B2 (en) Conductive particles for anisotropic conductive connection
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
KR100722493B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film Using the Same
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP4860163B2 (en) Method for producing conductive fine particles
WO2006019154A1 (en) Conductive fine particles and anisotropic conductive material
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
TW200826120A (en) Conductive particles and method of preparing the same
JP3739232B2 (en) Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles
JP2009259804A (en) Coated conductive particulate, anisotropic conductive material, and conductive connection structure
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP2005149764A (en) Covered conductive particle, anisotropic conductive material, and conductive connection structure
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007188727A (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP4088137B2 (en) Conductive fine particles and anisotropic conductive materials
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP5535507B2 (en) Conductive particles and manufacturing method thereof
JP2003208813A (en) Conductive fine grain and anisotropic conductive material
JP2005327509A (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

R151 Written notification of patent or utility model registration

Ref document number: 4662748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees