WO2012102199A1 - Conductive microparticle, resin particle, and anisotropic conductive material using same - Google Patents

Conductive microparticle, resin particle, and anisotropic conductive material using same Download PDF

Info

Publication number
WO2012102199A1
WO2012102199A1 PCT/JP2012/051184 JP2012051184W WO2012102199A1 WO 2012102199 A1 WO2012102199 A1 WO 2012102199A1 JP 2012051184 W JP2012051184 W JP 2012051184W WO 2012102199 A1 WO2012102199 A1 WO 2012102199A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
resin particles
particles
monomer
meth
Prior art date
Application number
PCT/JP2012/051184
Other languages
French (fr)
Japanese (ja)
Inventor
和明 松本
直記 小林
佐々木 令晋
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020137016539A priority Critical patent/KR101454194B1/en
Priority to CN201280006245.4A priority patent/CN103329217B/en
Priority to JP2012529465A priority patent/JP5140209B2/en
Publication of WO2012102199A1 publication Critical patent/WO2012102199A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to fine conductive fine particles, and particularly relates to conductive fine particles that can reduce the occurrence of short circuits when used for electrical connection.
  • An anisotropic conductive material is a material in which conductive fine particles are mixed with a binder resin, for example, anisotropic conductive paste (ACP), anisotropic conductive film (ACF), anisotropic conductive ink, anisotropic conductive.
  • ACP anisotropic conductive paste
  • ACF anisotropic conductive film
  • anisotropic conductive ink anisotropic conductive.
  • the conductive fine particles used for the anisotropic conductive material those obtained by coating the surfaces of the metal particles and the resin particles as the base material with a conductive metal layer are used.
  • the conductive fine particles having a small particle size for example, microspheres made of a resin or an inorganic compound, having an average particle size of 0.5 to 2.5 ⁇ m and a particle size CV value of 20% or less were used as a base material.
  • Conductive fine particles have been proposed (Patent Document 1).
  • a conductive particle having a particle diameter of 1 to 2 ⁇ m is disclosed (Patent Document 2).
  • JP 2000-30526 A Japanese Patent No. 4154919
  • connection area is smaller than when the particle size is large, so that the initial resistance value is increased and a stable connection state can be maintained. There was a tendency to not.
  • the present invention has been made in view of the above circumstances, and is a fine conductive fine particle that has a low initial resistance and can maintain a stable connection state, and a base material for the conductive fine particle.
  • An object of the present invention is to provide resin particles used in the above and an anisotropic conductive material using the conductive fine particles.
  • the present inventors have intensively studied to solve the above problems. As a result, it is important to relatively increase the ratio of the connection area to the particle diameter in order to ensure a stable current amount equivalent to that when the particle diameter is large while reducing the particle diameter of the conductive fine particles. In order to achieve this, it is possible to form an indentation (specifically, slightly deform when connecting) so that the adhesion between the conductive metal layer and the connected body (electrode) is sufficiently maintained in the connected state. It has been found that it is only necessary to improve the characteristic of forming an indentation at the time.
  • the compressive elastic modulus (10% K value) when the particle diameter is displaced by 10% is 12,000 N / mm 2. It has been found that the conductive fine particles based on the resin particles as described above can form a sufficient indentation on the connected body (electrode), and the present invention has been completed.
  • the present invention has the following configuration.
  • the number-based average dispersed particle diameter of the resin particles is 2.0 ⁇ m or more, and the compression elastic modulus (10% K value) when the diameter of the resin particles is displaced by 10% is 17,000 N / mm 2.
  • the number-based average dispersed particle diameter of the resin particles is less than 2.0 ⁇ m, and the compression modulus (10% K value) when the diameter of the resin particles is displaced by 10% is 19,600 N / mm 2.
  • the conductive fine particle according to (1) which is super.
  • the conductive fine particles according to any one of (1) to (5) which have an insulating resin layer on at least a part of the surface.
  • the number-based average dispersed particle diameter is 1.0 ⁇ m or more and 2.5 ⁇ m or less, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is 12,000 N / mm 2 or more. Characteristic resin particles.
  • the number-based average dispersed particle diameter is 2.0 ⁇ m or more, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is 17,000 N / mm 2 or more (7 ) Resin particles.
  • the number-based average dispersed particle diameter is less than 2.0 ⁇ m, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is more than 19,600 N / mm 2 (7 ) Resin particles.
  • An anisotropic conductive material comprising the conductive fine particles according to any one of (1) to (6) dispersed in a binder resin.
  • an indentation can be formed at a low pressure with respect to the connected body (electrode), thereby improving the adhesion between the conductive metal layer and the connected body and securing a large connection area. Therefore, it is possible to develop a sufficiently low initial resistance value while maintaining a small diameter, and to maintain a stable connection state.
  • Conductive fine particles The conductive fine particles of the present invention have a base material composed of resin particles and at least one conductive metal layer formed on the surface of the base material.
  • the present invention aims to improve fine conductive fine particles. Therefore, in the present invention, the resin particles used as the base material for the conductive fine particles have a small particle diameter, and the number-based average dispersed particle diameter is 1.0 ⁇ m or more, preferably 1.1 ⁇ m or more, more preferably 1.2 ⁇ m or more. More preferably, it is 1.3 ⁇ m or more, 2.5 ⁇ m or less, preferably 2.3 ⁇ m or less, more preferably 2.1 ⁇ m or less, and further preferably 1.9 ⁇ m or less. If the average dispersed particle diameter of the resin particles (base material) is within this range, fine conductive fine particles can be obtained, which can be suitably used for electrical connection of electrodes and wirings that are miniaturized and narrowed.
  • the number-based variation coefficient (CV value) of the dispersed particle diameter of the resin particles (base material) is preferably 10.0% or less, more preferably 8.0% or less, and still more preferably 5.0. % Or less, more preferably 4.5% or less, particularly preferably 4.0% or less, and most preferably 3.0% or less.
  • the resin particles having a small variation coefficient of the dispersed particle diameter are not only uniform in the primary particle diameter, but also have a very high monodispersibility of the primary particle diameter. Therefore, by using such resin particles as a base material, conductive fine particles having a uniform particle diameter and suppressed aggregation can be obtained.
  • the average dispersion particle diameter based on the number of resin particles in the present invention and the coefficient of variation thereof are values measured by a Coulter counter, and the measurement method will be described later in Examples.
  • the resin particle preferably has a particle diameter at an integrated value of 90% of 2.6 ⁇ m or less, more preferably 2.2 ⁇ m or less, and even more preferably 2.0 ⁇ m or less in a number-based integrated distribution curve. . Similar to the average dispersed particle size, the particle size at the integrated value of 90% means the particle size at which the integrated number value is 90% in the number integrated distribution curve measured by a Coulter counter.
  • the resin particles used as the base material have a compressive elastic modulus (10% K value) of 12,000 N / mm 2 or more when the diameter is displaced by 10%. If the 10% K value of the resin particles is within this range, a sufficient indentation can be formed on the connected body (electrode), thereby improving the adhesion between the conductive metal layer and the connected body and providing a large connection. An area can be secured.
  • 10% K value of the resin particles is preferably 14,000N / mm 2 or more, more preferably 15,000N / mm 2 or more, more preferably 17,000N / mm 2 or more, more preferably 20000 N / mm 2 It is above, Preferably it is 50,000 N / mm ⁇ 2 > or less, More preferably, it is 40,000 N / mm ⁇ 2 > or less.
  • the number-average resin particle-based average dispersed particle diameter is 2.0 ⁇ m or more and 2.5 ⁇ m or less
  • the compression modulus (10 % K value) is 17,000 N / mm 2 or more
  • the number-based average dispersed particle diameter of the resin particles is 1.0 ⁇ m or more and less than 2.0 ⁇ m
  • the diameter of the resin particles is 10
  • the compressive elastic modulus (10% K value) when% displacement is over 19,600 N / mm 2 (greater than 19,600 N / mm 2 ).
  • the 10% K value of the resin particles is in the above-mentioned range of 12,000 N / mm 2 or more, a connection structure having a low connection resistance value regardless of the pressure conditions during anisotropic conductive connection due to good indentation forming ability.
  • the 10% K value of the resin particles can be measured using a known microcompression tester.
  • a known microcompression tester for example, “MCT-W500” manufactured by Shimadzu Corporation
  • MCT-W500 manufactured by Shimadzu Corporation
  • the compression load (N) when the particles are deformed until the compression displacement becomes 10% of the particle diameter It is preferable to measure the compression displacement (mm) and adopt a value obtained based on the following formula.
  • E compression elastic modulus (N / mm 2 )
  • F compression load (N)
  • S compression displacement (mm)
  • R radius of particle (mm)
  • the resin particles used as a base material preferably have a compressive fracture deformation rate of 30% or more. Since such resin particles have a restoring force in a state of being largely compressed and deformed, the connection area can be further increased.
  • the compression fracture deformation rate of the resin particles is more preferably 40% or more, and further preferably 50% or more. As for the upper limit of the compression fracture deformation rate, it is preferable that there is no fracture point, but it can also be used at 80% or less (particularly 70% or less).
  • the compression fracture deformation rate is a load applied at a load load rate of 2.2295 mN / sec in the center direction of the particles at room temperature using a known micro-compression tester (for example, “MCT-W500” manufactured by Shimadzu Corporation).
  • the compression displacement ( ⁇ m) when the particles are broken is measured, and is a value calculated by the following formula.
  • “MCT-W500” manufactured by Shimadzu Corporation is used as a micro-compression tester, measurement is preferably performed in the “standard surface detection” mode provided in the tester.
  • Compression fracture change rate (%) [compression displacement ( ⁇ m) / particle diameter ( ⁇ m)] ⁇ 100
  • the resin particles used as a base material preferably have a compressive elastic modulus (30% K value) smaller than the 10% K value when the diameter of the resin particles is displaced by 30%. If the 30% K value is 10% K value or higher, a high pressure is required to secure the area due to deformation, but the particles break at this high pressure, and the restoring force of the particles is lost, resulting in connection stability. May decrease. Conversely, if the 30% K value of the resin particles is smaller than the 10% K value, large compression deformation can be secured at low pressure. Specifically, the 30% K value / 10% K value is preferably 0.9 or less, more preferably 0.8 or less, and even more preferably 0.7 or less. Further, in addition to biting into the electrode at the initial stage of compression, the 30% K value / 10% K value is preferably 0.3 or more, and more preferably 0.4 or more, in that the electrode biting property can be further improved.
  • the compression modulus (20% K value) when the diameter of the resin particles is displaced by 20% is preferably smaller than the 10% K value, and the value of 20% K value / 10% K value is Preferably it is 0.8 or less, More preferably, it is 0.7 or less, Preferably it is 0.4 or more, More preferably, it is 0.5 or more.
  • the compressive elastic modulus (40% K value) when the diameter of the resin particles is displaced by 40% is preferably 2.0 or less, more preferably 1.0 or less, and preferably 0.4 or more, 0.5 or more is more preferable.
  • the 20% K value, 30% K value, and 40% K value of the resin particles are 20%, 30%, or 40% of the particle diameter in the compression test similar to the 10% K value.
  • the compressive load (N) and the compressive displacement (mm) when the particles are deformed up to can be measured and obtained based on the same formula as the 10% K value.
  • the resin particles (base material) need only contain a resin component, and are not limited to particles composed only of organic materials, but may be particles composed of organic-inorganic composite materials. By using resin particles as a base material, conductive fine particles having excellent elastic deformation characteristics can be obtained.
  • the organic material constituting the resin particles include polyolefins such as polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, polyisobutylene and polybutadiene; vinyl heavy resins such as styrene resins, acrylic resins and styrene-acrylic resins.
  • Polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; polyamides; polyimides; phenol formaldehyde resins; melamine formaldehyde resins; melamine benzoguanamine formaldehyde resins; urea formaldehyde resins;
  • the organic / inorganic composite material include a material containing the organic material and a polysiloxane skeleton (for example, a material in which a polysiloxane skeleton and a vinyl polymer are combined).
  • the material constituting the resin particles is appropriately selected from a wide range of materials so that the average particle diameter and the 10% K value can be controlled within the above-described ranges.
  • the material which comprises these resin particles may be used independently, and 2 or more types may be used together.
  • a material containing at least one of a vinyl polymer and a polysiloxane skeleton is preferable.
  • Resin particles composed of a material containing a vinyl polymer have an organic skeleton formed by polymerizing vinyl groups, and are excellent in elastic deformation during pressure connection.
  • skeleton is excellent in the contact pressure with respect to a to-be-connected body at the time of pressure connection.
  • resin particles composed of a material in which a polysiloxane skeleton and a vinyl polymer are combined are preferable because they are excellent in elastic deformability and contact pressure, and the connection reliability of the obtained conductive fine particles becomes more excellent.
  • the vinyl polymer is obtained by polymerizing a vinyl group-containing monomer (radical polymerization).
  • the “vinyl group” includes not only a carbon-carbon double bond but also a (meth) acryloxy group, an allyl group.
  • a substituent having a polymerizable carbon-carbon double bond such as an isopropenyl group, a vinylphenyl group, and an isopropenylphenyl group is also included.
  • (meth) acryloyl group”, “(meth) acryloxy group”, “(meth) acrylate” or “(meth) acryl” are respectively “one or both of acryloyl group and methacryloyl group”, “One or both of acryloxy group and methacryloxy group”, “one or both of acrylate and methacrylate” and “one or both of acrylic and methacryl” shall be indicated.
  • the vinyl group-containing monomer includes a monomer having one vinyl group in one molecule (1), one vinyl group in one molecule and a functional group other than vinyl groups (such as a carboxyl group and a hydroxy group).
  • the monomer (1) is a vinyl non-crosslinkable monomer.
  • Monomer (2) can form a cross-linked structure when a reactive (bonding) group such as a carboxyl group, a hydroxy group, or an alkoxy group is present in another monomer.
  • the monomer (3) is a vinyl-based crosslinkable monomer. These monomers (1) to (3) may be used alone or in combination of two or more.
  • Examples of the monomer (1) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl ( (Meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) Alkyl (meth) acrylates such as acrylate and 2-ethylhexyl (meth) acrylate; cyclopropyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate.
  • Examples of the monomer (2) (vinyl-based crosslinkable monomer or vinyl-based non-crosslinkable monomer) include monomers having a carboxyl group such as (meth) acrylic acid; 2-hydroxyethyl ( A single group having a hydroxy group such as a hydroxy group-containing (meth) acrylate such as (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, or a hydroxy group-containing styrene such as p-hydroxystyrene.
  • monomers having a carboxyl group such as (meth) acrylic acid
  • 2-hydroxyethyl A single group having a hydroxy group such as a hydroxy group-containing (meth) acrylate such as (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, or a hydroxy group-containing styrene such as p-hydroxystyren
  • alkoxy group-containing (meth) acrylates such as 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, alkoxystyrenes such as p-methoxystyrene, etc.
  • Examples of the monomer (3) include allyl (meth) acrylates such as allyl (meth) acrylate; ethylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,3-butylene di (meth) acrylate Alkanediol di (meth) acrylate such as: diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, pentadecaethylene glycol di (meth) acrylate, pentacontactor ethylene glycol Di (meta) Di (meth) acrylates such as polyalkylene glycol di (meth) acrylates such as polyalkylene
  • the polysiloxane skeleton is obtained by hydrolytic condensation of a silane monomer, and the silane monomer is roughly classified into a silane non-crosslinkable monomer and a silane crosslinkable monomer.
  • the Examples of the silane-based non-crosslinkable monomer include bifunctional silane-based monomers such as dimethyldimethoxysilane and dialkylsilane such as dimethyldiethoxysilane; and trialkylsilanes such as trimethylmethoxysilane and trimethylethoxysilane. And monofunctional silane-based monomers. These silane non-crosslinkable monomers may be used alone or in combination of two or more.
  • the silane-based crosslinkable monomer is not particularly limited as long as it can form a crosslinked structure.
  • Examples of the crosslinked structure formed by the silane-based crosslinking monomer include those that crosslink an organic polymer skeleton (for example, a vinyl polymer skeleton) and an organic polymer skeleton (first form); a polysiloxane skeleton; One that crosslinks a polysiloxane skeleton (second form); one that crosslinks an organic polymer skeleton and a polysiloxane skeleton (third form).
  • Examples of those that can form the first form include dimethyldivinylsilane, methyltrivinylsilane, and tetravinylsilane.
  • Examples of what can form the second form include tetrafunctional silane monomers such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane And trifunctional silane monomers such as ethyltrimethoxysilane and ethyltriethoxysilane.
  • Those that can form the third form include, for example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Those having a (meth) acryloyl group such as 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxyethoxypropyltrimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, p -Having a vinyl group such as styryltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Those having an epoxy group such as a silane; 3-
  • the resin particles are preferably made of a material containing at least one of a vinyl polymer and a polysiloxane skeleton.
  • the monomer component to be contained is polymerized.
  • the resin particles are composed of a material containing at least one of a crosslinked vinyl polymer and a crosslinked polysiloxane skeleton. It is preferable that the resin particles satisfy the following conditions.
  • a vinyl-based crosslinkable monomer and a silane are first used as a monomer component for forming resin particles.
  • the total content thereof is 20% by mass or more based on the total amount of monomer components ( (Preferably 30% by mass or more, more preferably 50% by mass or more) (Condition A).
  • condition B the total of the silane crosslinkable monomer and the silane noncrosslinkable monomer is less than 95% by mass in all monomer components (condition B), or silane
  • condition C silane
  • the total of the system crosslinkable monomer and the silane noncrosslinkable monomer is 95% by mass or more in the total monomer components so that the obtained particles are not heated at a temperature of 200 ° C. or higher ( Condition C). That is, when the condition A and the condition B are satisfied or the condition A and the condition C are satisfied, resin particles having a 10% K value of 12,000 N / mm 2 or more can be obtained. Specifically, when the above condition A is satisfied, the resin particles are crosslinked with at least one of a vinyl crosslinkable monomer and a silane crosslinkable monomer.
  • the resin particles are crosslinked mainly with a vinyl-based crosslinking monomer
  • crosslinking with a silane-based crosslinking monomer is mainly performed.
  • the silane crosslinking monomer forms a siloxane bond by a condensation reaction to form a crosslinked structure, but the condensation reaction may not sufficiently proceed at the stage after polymerization. Therefore, when a large amount of silane crosslinkable monomer is used, it is recommended that the resin particles after polymerization be baked (heat treatment at a high temperature). However, depending on the degree of thermal history of the resin particles after polymerization, the 10% K value may be greatly reduced. Therefore, in the case of the above condition C, it is necessary to limit heating to the resin particles after polymerization.
  • the heating specified in the condition C is intended for all heat treatments performed on the particles after synthesizing the resin particles, and the above-described firing (condensation reaction derived from the silane monomer (siloxane bond) In addition to heating performed for the purpose of promoting formation), for example, heating during drying after synthesis of resin particles is targeted.
  • the heating specified by the above condition C it is preferable to set the heating temperature to a predetermined range and the heating atmosphere to an inert gas atmosphere such as nitrogen.
  • the heating conditions for the polymer particles after polymerization are not limited, but when heated, the heating should be performed within the temperature range below the thermal decomposition temperature. Is preferred.
  • the atmosphere during the heat treatment is an inert gas atmosphere such as nitrogen.
  • the monomer component satisfying the condition A and the condition B or the condition A and the condition C includes at least one of a vinyl-based crosslinkable monomer and a silane-based crosslinkable monomer.
  • the vinyl crosslinkable monomer and the silane crosslinkable monomer that are more suitable for controlling the 10% K value to 12,000 N / mm 2 or more with certainty will be described below.
  • the above-mentioned monomer (3) is preferable in order to more reliably control the 10% K value.
  • a monomer having two or more (meth) acryloyl groups in one molecule that is, a monomer having two or more acryloyl groups in one molecule or two or more methacryloyl groups in one molecule.
  • Monomer) and one or both of styrenic polyfunctional monomers are more preferred.
  • the monomer having two or more (meth) acryloyl groups in one molecule has two (meth) acryloyl groups in one molecule in that resin particles having a high 10% K value are easily obtained.
  • Preferred monomers (di (meth) acrylates) are preferred.
  • alkanediol di (meth) acrylate and polyalkylene glycol di (meth) acrylate are more preferable, and in particular, there is little decrease in particle strength after coating the conductive metal layer. Therefore, alkanediol di (meth) acrylate is preferable.
  • di (meth) acrylates molecules having 6 to 14 atoms present between carbon-carbon double bonds (C ⁇ C) in two (meth) acryloyl groups.
  • a di (meth) acrylate having a structure is particularly preferred.
  • styrenic polyfunctional monomer resin particles having a high 10% K value are easily obtained, and a single monomer having two vinyl groups in one molecule in that there is little decrease in particle strength after coating with a conductive metal layer.
  • (Bifunctional vinyl group-containing monomer) is preferable, and divinylbenzene is particularly preferable.
  • the content of the vinyl-based crosslinkable monomer in the monomer component for forming the resin particles is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the 10% K value can be more reliably controlled to 12,000 N / mm 2 or more.
  • the above-described silane-based crosslinkable monomer that can form the crosslinked structure of the third form is a particle having high hardness. Is preferable because it is easy to obtain.
  • the resin particle contains a polysiloxane skeleton formed by hydrolysis and condensation of a silane monomer containing the silane crosslinkable monomer.
  • the polysiloxane skeleton formed by hydrolyzing and condensing at least the silane-based crosslinkable monomer capable of forming the crosslinked structure of the third form is a carbon-carbon capable of radical polymerization. It has a skeleton derived from a polymerizable polysiloxane having a double bond (for example, vinyl group, (meth) acryloyl group).
  • silane-based crosslinkable monomer capable of forming the crosslinked structure of the third form those having a (meth) acryloyl group, those having a vinyl group, or those having an epoxy group are preferred, and more preferably ( Those having a (meth) acryloyl group and those having a vinyl group, more preferably those having a (meth) acryloyl group.
  • those having a (meth) acryloyl group 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane are particularly preferable, and among those having a vinyl group, vinyltrimethoxysilane is particularly preferable.
  • the monomer component satisfying the condition A and the condition B or the condition A and the condition C includes at least one of a vinyl crosslinkable monomer and a silane crosslinkable monomer. It can also contain at least one of a crosslinkable monomer and a silane non-crosslinkable monomer.
  • a vinyl-based non-crosslinkable monomer is preferable because compression deformation characteristics such as recovery characteristics (restorability) and fracture strength can be easily controlled.
  • the above-described monomer (1) is preferable, and more preferably, alkyl (meth) acrylates, cycloalkyl (meth) acrylates, aromatic ring-containing (meth) acrylates. , A styrene-based monofunctional monomer.
  • alkyl (meth) acrylates having an alkyl group having 4 or less carbon atoms, 6 carbon atoms in that a resin particle having a high 10% K value can be easily obtained while controlling recovery characteristics (restorability) and fracture strength.
  • Cycloalkyl (meth) acrylates having the following cycloalkyl and styrenic monofunctional monomers are preferred, and styrenic monofunctional monomers are particularly preferred for obtaining resin particles having a high 10% K value.
  • styrene monofunctional monomer styrene is more preferable because resin particles having a high 10% K value can be easily obtained.
  • alkyl (meth) acrylates having an alkyl group having 4 or less carbon atoms n-butyl acrylate, n-butyl methacrylate, and methyl methacrylate are preferable.
  • cycloalkyl (meth) acrylates having a cycloalkyl having 6 or less carbon atoms cyclohexyl acrylate and cyclohexyl methacrylate are preferable.
  • the monomer (3) when the monomer (1) contains a styrenic monofunctional monomer, the monomer (3) has a monomer having two or more (meth) acryloyl groups in one molecule or a styrene-based polyfunctional monomer. An embodiment containing a functional monomer is preferred.
  • a monomer component suitable for controlling the 10% K value of the resin particles as described above to 12,000 N / mm 2 or more is (i) having a vinyl crosslinkable monomer and a silane crosslinkable monomer.
  • a form having no monomer is (ii) a form having a silane crosslinking monomer and no vinyl crosslinking monomer, (iii) a vinyl crosslinking monomer and a silane crosslinking monomer It is roughly classified into a form having a mer.
  • Particularly preferred combinations of monomers in the respective forms are as follows.
  • form having a vinyl crosslinkable monomer and a silane crosslinkable monomer a silane crosslinkable monomer having a (meth) acryloyl group, and a styrene polyfunctional monomer A combination with di (meth) acrylate having 6 to 14 atoms present between carbon-carbon double bonds (C ⁇ C) in two (meth) acryloyl groups, or A combination of a silane crosslinkable monomer having a (meth) acryloyl group, a styrene polyfunctional monomer, and a styrene monofunctional monomer.
  • the 10% K value of the resin particles is 10% as described above in order to make the 10% K value of the resin particles 17,000 N / mm 2 or more
  • the following condition x and the following condition a is satisfied, or the following condition x and the following condition b1 are satisfied.
  • the combination of the condition A and the condition C is selected as a condition for making the 10% K value 12,000 N / mm 2 or more, the condition x and the condition a are satisfied.
  • Condition x The content of the silane crosslinkable monomer in the monomer component for forming the resin particles is 50% by mass or more based on the total amount of the monomer components, or the silane crosslinkable single amount If the content of the body is less than 50% by mass with respect to the total amount of monomer components, the content of the vinyl-based crosslinkable monomer in the monomer component is 35% by mass or more with respect to the total amount of monomer components. is there.
  • Condition a The content of ethyl vinyl benzene in the monomer component for forming the resin particles is 1% by mass or less based on the total amount of the monomer component.
  • Condition b1 A monomer for forming resin particles when the content of ethyl vinyl benzene in the monomer component for forming resin particles exceeds 1% by mass with respect to the total amount of monomer components
  • the content of the vinyl crosslinkable monomer in the component is 80% by mass or more based on the total amount of the monomer components, and the resin particles are heated at 200 ° C. or higher.
  • the crosslinking degree can be further improved by 50% by mass or more of the silane-based crosslinking monomer or 35% by mass or more of the vinyl-based crosslinking monomer.
  • the content of ethyl vinyl benzene that does not contribute to crosslinking in the monomer component is controlled to 1% by mass or less (the above condition a), or the content of ethyl vinyl benzene exceeds 1% by mass. If present, in order to compensate for this, the content of the vinyl-based crosslinkable monomer is set to 80% by mass or more, and the crosslinking is promoted by predetermined heating (the above condition b1). This ensures higher cross-linking.
  • the 10% K value of the resin particles is larger than 19,600 N / mm 2 as described above.
  • the condition for satisfying 10% K value of 12,000 N / mm 2 or more (satisfying both condition A and condition B, or satisfying both condition A and condition C)
  • the above condition a or the following condition b2 is satisfied.
  • the condition A and the condition C are selected as conditions for setting the 10% K value to 12,000 N / mm 2 or more, the condition a is satisfied.
  • Condition b2 a monomer for forming resin particles when the content of ethyl vinyl benzene in the monomer component for forming resin particles exceeds 1% by mass with respect to the total amount of monomer components
  • the content of the vinyl crosslinkable monomer in the component is 35% by mass or more based on the total amount of the monomer components, and the resin particles are heated at 200 ° C. or higher.
  • the 10% K value is increased even at a relatively low degree of crosslinking as compared with the case where the particle size is large. be able to. That is, the degree of cross-linking required to further increase the 10% K value tends to decrease as the particle size decreases.
  • the above-mentioned condition x is not necessary, and even when the content of ethylvinylbenzene exceeds 1% by mass, By setting the content of the system crosslinkable monomer to 35% by mass or more (the above condition b2), higher crosslinking is ensured.
  • a vinyl-based crosslinkable monomer is included as a monomer component for forming the resin particles.
  • a monomer having two vinyl groups in one molecule (bifunctional vinyl) of 50% by mass or more (more preferably 60% by mass or more, more preferably 70% by mass or more) of the vinyl-based crosslinkable monomer.
  • Group-containing monomer the bifunctional vinyl group-containing monomer is 40% by mass or more (more preferably 50% by mass or more) in the crosslinkable monomer (total amount of vinyl crosslinkable monomer and silane crosslinkable monomer). It is also effective to set the compression fracture deformation rate and 20% to 40% K value in the above-described ranges.
  • the method for producing the resin particles is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, dispersion polymerization, seed polymerization, sol-gel seed polymerization, and the like.
  • the particle diameter of the resin particles is within the predetermined range described above.
  • a method of classifying resin particles after synthesizing them by a seed polymerization method is preferably employed.
  • resin particles having a small particle size distribution can be obtained.
  • the average particle diameter can be adjusted to a desired range by classifying the synthesized resin particles and removing coarse particles.
  • the seed polymerization method includes a seed particle preparation step, an absorption step, and a polymerization step.
  • seed particles may be prepared from the vinyl monomer, and particles composed of an organic material and a material having a polysiloxane skeleton are synthesized.
  • seed particles may be prepared from the silane monomer.
  • a conventionally used method can be employed, and examples thereof include soap-free emulsion polymerization and dispersion polymerization.
  • a styrene monofunctional monomer such as styrene
  • a monomer component for forming seed particles it is preferable to use a styrene monofunctional monomer such as styrene as a monomer component for forming seed particles.
  • silane-based monomer As a method for preparing seed particles (polysiloxane particles) from a silane-based monomer, there may be mentioned a method of hydrolyzing in a solvent containing water and performing condensation polymerization.
  • silane monomer the above-mentioned silane crosslinkable monomer and silane noncrosslinkable monomer can be used.
  • a silane-based crosslinkable monomer having a radical polymerizable group is used as the silane monomer, and polymerizable polysiloxane particles (radically polymerizable) are used.
  • Particles having a polysiloxane skeleton having a group) may be prepared.
  • Hydrolysis and polycondensation can employ any method such as batch, split, and continuous.
  • basic catalysts such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, and alkaline earth metal hydroxide can be preferably used as the catalyst.
  • an organic solvent can be contained in addition to water and the catalyst.
  • the organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone, Examples thereof include ketones such as methyl ethyl ketone; esters such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
  • hydrolytic condensation anionic, cationic and nonionic surfactants and polymer dispersants such as polyvinyl alcohol and polyvinylpyrrolidone can be used in combination. These may be used alone or in combination of two or more.
  • Hydrolytic condensation is performed by mixing a silane monomer as a raw material and a solvent containing a catalyst, water, and an organic solvent, and then at a temperature of 0 ° C. to 100 ° C., preferably 0 ° C. to 70 ° C., for 30 minutes or more. It can carry out by stirring for 100 hours or less.
  • the monomer component is absorbed by the seed particles.
  • the method of absorption is not particularly limited as long as it proceeds in the presence of the monomer component in the presence of seed particles. Therefore, the monomer component may be added to the solvent in which the seed particles are dispersed, or the seed particles may be added to the solvent containing the monomer component. Especially, it is preferable to add a monomer component in the solvent which disperse
  • the method of adding the monomer component to the reaction solution without taking out the seed particles obtained in the hydrolysis and condensation step from the reaction solution (seed particle dispersion) does not complicate the process and increases productivity. It is preferable because it is excellent.
  • the timing of addition of the monomer component is not particularly limited, and may be added all at once, may be added in several times, or may be fed at an arbitrary rate.
  • either the monomer component alone or the monomer component solution may be added, but the monomer component is previously added to water or an aqueous medium with an emulsifier. It is preferable to mix the emulsified and emulsified liquid with the seed particles because absorption into the seed particles is performed more efficiently.
  • the emulsifier is not particularly limited.
  • an anionic surfactant polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkyl
  • Nonionic surfactants such as amines, glycerin fatty acid esters, and oxyethylene-oxypropylene block polymers are preferable because they can stabilize the dispersed state of the seed particles after absorbing the seed particles and monomer components.
  • These emulsifiers may be used alone or in combination of two or more.
  • water or a water-soluble organic solvent that is 0.3 to 10 times the mass of the monomer component.
  • the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone And ketones such as methyl ethyl ketone; esters such as ethyl acetate;
  • the absorption step is preferably performed in the temperature range of 0 ° C. to 60 ° C. with stirring for 5 minutes to 720 minutes. These conditions may be set as appropriate depending on the type of seed particles and monomers used, and these conditions may be used alone or in combination of two or more.
  • the absorption process for determining whether the monomer component has been absorbed by the seed particles, for example, before adding the monomer component and after completion of the absorption step, observe the particles with a microscope and absorb the monomer component. It can be easily determined by confirming that the particle size is increased.
  • the monomer component absorbed by the seed particles is subjected to a polymerization reaction.
  • the seed particles are a polymerizable polysiloxane
  • the absorbed monomer component and the radical polymerizable group of the polymerizable polysiloxane skeleton are polymerized to form a polysiloxane skeleton and a vinyl polymer.
  • the polymerization method is not particularly limited, for example, a method using a radical polymerization initiator can be mentioned, and the radical polymerization initiator is not particularly limited.
  • These radical polymerization initiators may be used alone or in combination of two or more.
  • the reaction temperature for carrying out radical polymerization is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. If the reaction temperature is too low, the degree of polymerization does not increase sufficiently and the mechanical properties of the composite particles tend to be insufficient. On the other hand, if the reaction temperature is too high, aggregation between particles occurs during the polymerization. It tends to happen easily.
  • the reaction time for performing radical polymerization may be appropriately changed according to the type of polymerization initiator to be used, but is usually preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 600 minutes or less. More preferably, it is 300 minutes or less. When the reaction time is too short, the degree of polymerization may not be sufficiently increased, and when the reaction time is too long, aggregation tends to occur between particles.
  • the number-based average dispersed particle size of the resin particles after synthesis is preferably 1.1 ⁇ m or more, more preferably 1.2 ⁇ m or more, still more preferably 1.3 ⁇ m or more, and preferably 3.0 ⁇ m or less, more preferably 2 0.8 ⁇ m or less, more preferably 2.7 ⁇ m or less.
  • the number-based variation coefficient of the dispersed particle diameter is preferably 10% or less, more preferably 9% or less, and still more preferably 7% or less.
  • the resin particles synthesized as described above are preferably subjected to classification so as to have a predetermined particle diameter, if necessary.
  • the classification method is not particularly limited, for example, sieving with an electroforming sieve, etc .; filtration using a filter such as a membrane filter, a pleat filter, a ceramic membrane filter, etc .; a known apparatus for classification by the interaction of mass difference and fluid resistance difference ( Gravity classifier based on the principle of gravity difference such as particle fall velocity, (half) free vortex centrifugal classification based on the balance of centrifugal force and air drag by free vortex or semi-free vortex, rotating classification blade (rotor) Classification using a centrifugal classification with rotating blades based on the balance between the centrifugal force generated by the generated rotating flow and the drag force caused by air.
  • classification using an electric sieve is preferable from the viewpoint of classification accuracy and productivity.
  • the liquid medium include water; alcohols such as methanol, ethanol, propanol and butanol; hydrocarbons such as hexane and octane; aromatic hydrocarbons such as benzene, toluene and xylene; These may be used alone or in combination of two or more. Among these, alcohols and hydrocarbons are preferable, and methanol and hexane are more preferable.
  • various dispersants may be added to the liquid medium.
  • the amount of the liquid medium used is preferably 100 parts by mass or more, more preferably 200 parts by mass or more, still more preferably 500 parts by mass or more, and preferably 10,000 parts by mass or less, relative to 100 parts by mass of the resin particles. Preferably it is 5000 mass parts or less, More preferably, it is 2000 mass parts or less.
  • the method for dispersing the resin particles in the liquid medium is not particularly limited, for example, a method of dispersing by irradiating ultrasonic waves; a method of dispersing by a normal dispersing device, a high speed stirring device, a shearing dispersing device such as a colloid mill or a homogenizer, and the like. And the like.
  • the dispersion liquid temperature at the time of passing through the electroformed sieve is not particularly limited and may be appropriately adjusted according to the liquid medium to be used, but is usually 0 ° C. or higher and 100 ° C. or lower.
  • the liquid temperature of the dispersion is naturally less than the boiling point of the liquid medium. What is necessary is just to change the dimension of the sieve hole of an electroforming sieve according to the desired average particle diameter and a coefficient of variation. By performing classification using an electric sieve, coarse particles can be removed, and the coefficient of variation of the particle diameter of the resin particles can be reduced.
  • the resin particles classified as necessary are usually dried, and in some cases, subjected to the above-described firing (heat treatment).
  • the heat treatment such as drying or baking may be performed according to a known method, but as described above, the silane-based crosslinkable monomer and the silane-based non-crosslinkable in the monomer component for forming the resin particles.
  • the monomer content exceeds a predetermined amount, it is important to limit the temperature in such heat treatment to less than 200 ° C.
  • the shape of the resin particles (base material) obtained as described above is not particularly limited, and may be any of, for example, a spherical shape, a spheroid shape, a confetti shape, a thin plate shape, a needle shape, an eyebrow shape, and the like. Spherical shape is preferable, but spherical shape is particularly preferable.
  • the conductive fine particles of the present invention have at least one conductive metal layer formed on the substrate (resin particle) surface.
  • the metal constituting the conductive metal layer is not particularly limited.
  • gold, nickel, palladium, silver, copper, and tin are preferable because they become conductive fine particles having excellent conductivity.
  • nickel, nickel alloys Ni—Au, Ni—Pd, Ni—Pd—Au, Ni—Ag
  • copper, copper alloys Cu and Fe, Co, Ni, Zn, Sn, In
  • silver, silver alloy Ag and Fe, Co, Ni, Zn, Sn, In, Ga, Tl, Zr, W, Mo, Rh, Ru, Ir, Au, Bi Alloy with at least one metal element selected from the group consisting of Al, Mn, Mg, P and B, preferably Ag—Ni, Ag—Sn, Ag—Zn
  • tin, tin alloy eg Sn— Ag, Sn-Cu, Sn-Cu-Ag, Sn-Zn, Sn-S ,
  • the conductive metal layer is preferably composed of nickel or a nickel alloy, more preferably a nickel alloy, among the metals and alloys described above.
  • the resin particles used as the base material are designed to be harder, thereby improving the indentation forming ability and obtaining the desired effect. In order to make this effect easier to express, the conductivity of the surface of the conductive fine particles is improved. It is desirable that the conductive metal layer has an appropriate hardness that can follow the substrate. If it is a metal layer comprised of nickel or a nickel alloy, it will have a hardness that is more suitable for exhibiting the effects of the present invention.
  • the nickel alloy constituting the conductive metal layer is particularly a Ni alloy (Ni—P alloy, Ni—B alloy, Ni) containing at least one of phosphorus (P) and boron (B) as an alloy component.
  • -PB alloy more preferably an alloy containing phosphorus (P).
  • the total content of phosphorus (P) and boron (B) is 100 masses in total of Ni, P, and B in the alloy.
  • the content of phosphorus (P) alone is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more with respect to the total of 100% by mass of Ni, P, and B in the alloy. is there.
  • the content of boron (B) alone is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more with respect to the total of 100% by mass of Ni, P and B in the alloy. is there.
  • the electrical resistance value of the conductive metal layer may increase.
  • the total content of phosphorus (P) and boron (B) in the nickel alloy is preferably 15% by mass or less when the total mass of Ni, P, and B in the alloy is 100% by mass, for the same reason. Therefore, the P content in the nickel alloy is preferably 15% by mass or less, and the B content in the nickel alloy is preferably 10% by mass or less.
  • the P content and B content in the nickel alloy can be controlled by adjusting the P concentration, B concentration, pH, etc. of the electroless nickel plating solution used when forming the conductive metal layer.
  • the nickel alloy which comprises a conductive metal layer may contain other metal components other than phosphorus (P) and boron (B).
  • P phosphorus
  • B boron
  • a hardly oxidizable metal element such as Au or Pd is preferable because it does not impair the effect of the nickel alloy.
  • the conductive metal layer may be a single layer or multiple layers. In the case of multiple layers, for example, nickel (nickel alloy) -gold, nickel (nickel alloy) -palladium, nickel (nickel alloy) ) -Palladium-gold, nickel (nickel alloy) -silver and the like are preferred.
  • the thickness of the conductive metal layer is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, further preferably 0.05 ⁇ m or more, preferably 0.20 ⁇ m or less, more preferably 0.18 ⁇ m or less, More preferably, it is 0.15 micrometer or less, More preferably, it is 0.12 micrometer or less, Most preferably, it is 0.080 micrometer or less.
  • the conductive fine particles of the present invention in which the resin particles as the base material have a fine particle diameter, when the conductive metal layer has a thickness within the above range, the conductive fine particles are used as an anisotropic conductive material. Stable electrical connection can be maintained.
  • the method for forming the conductive metal layer is not particularly limited, for example, a method in which the surface of the substrate is plated by an electroless plating method, an electrolytic plating method, or the like; physical properties such as vacuum deposition, ion plating, ion sputtering on the surface of the substrate A method of forming a conductive metal layer by a general vapor deposition method; Among these, the electroless plating method is particularly preferable in that a conductive metal layer can be easily formed without requiring a large-scale apparatus.
  • the conductive metal layer only needs to cover at least a part of the surface of the resin particles, but the surface of the conductive metal layer has no substantial cracks or conductive metal layer. Is preferably absent.
  • substantially cracked or a surface on which no conductive metal layer is formed means that when the surface of any 10,000 conductive fine particles is observed using an electron microscope (magnification 1000 times), It means that the crack of the conductive metal layer and the exposure on the surface of the resin particles are not substantially visually observed.
  • the conductive metal layer is preferably smooth and has no protrusions.
  • the number of protrusions having a height of 0.05 ⁇ m or more from the surface of the conductive metal layer is preferably less than 10 per conductive fine particle, and more preferably less than 5. It is particularly preferable that the number is less than 2.
  • the protruding portion is made of the same metal or alloy as the conductive metal layer, and means a portion where the conductive metal layer and the metal or alloy constituting the protruding portion are integrated. . If there is a protrusion integrated with the same metal or alloy as the conductive metal layer, the protrusion may become the starting point of the crack, causing the metal layer to break and the resistance value during electrical connection to increase. .
  • the conductive metal layer does not have metal fine particles due to abnormal precipitation, or even if it has adhered, the number of adhesion is small.
  • the number of metal fine particles attached is preferably less than 2 per conductive fine particle.
  • the number average particle diameter of the conductive fine particles of the present invention is preferably 1.1 ⁇ m or more, more preferably 1.2 ⁇ m or more, further preferably 1.3 ⁇ m or more, particularly preferably 1.4 ⁇ m or more, and 2.8 ⁇ m or less. Is preferably 2.6 ⁇ m or less, more preferably 2.4 ⁇ m or less, and particularly preferably 2.2 ⁇ m or less. If the number average particle diameter is within this range, it can be suitably used for electrical connection of miniaturized and narrowed electrodes and wirings.
  • the number average particle size of the conductive fine particles was determined using a flow type particle image analyzer (“FPIA (registered trademark) -3000” manufactured by Sysmex Corporation), and the average particle size based on the number of 3000 particles. Is preferably adopted.
  • FPIA registered trademark
  • the conductive fine particles of the present invention preferably have a compressive elastic modulus (10% K value) of 12,000 N / mm 2 or more and 200,000 N / mm 2 or less when the diameter is displaced by 10%. More preferably 14,000N / mm 2 or more, more preferably 15,000N / mm 2 or more, more preferably 17,000N / mm 2 or more, more preferably 20000 N / mm 2 or more, more preferably 150 , N / mm 2 or less, more preferably 100,000 N / mm 2 or less, and most preferably 75,000 N / mm 2 or less.
  • the 10% K value of the conductive fine particles is within this range, a sufficient indentation can be formed on the connected body (electrode), thereby improving the adhesion between the conductive metal layer and the connected body, It is possible to secure a connection area.
  • the 10% K value of the conductive fine particles can be measured in the same manner as the 10% K value of the resin particles.
  • the conductive fine particles of the present invention can also have an insulating resin layer on at least a part of the surface. That is, the aspect which provided the insulating resin layer further on the surface of the said electroconductive metal layer may be sufficient.
  • the insulating resin layer is further laminated on the conductive metal layer on the surface in this way, it is possible to prevent the lateral conduction that is likely to occur when a high-density circuit is formed or when a terminal is connected.
  • the insulating resin layer is not particularly limited as long as the insulating property between the particles of the conductive fine particles can be secured, and the insulating resin layer can be easily collapsed or peeled off by a certain pressure and / or heating.
  • polyolefins such as polyethylene; (meth) acrylate polymers and copolymers such as polymethyl (meth) acrylate; thermoplastic resins such as polystyrene; and cross-linked products thereof; epoxy resins, phenol resins, amino resins (melamine resins, etc.) And the like; and water-soluble resins such as polyvinyl alcohol and mixtures thereof.
  • the base particle itself may be destroyed before the insulating resin layer is destroyed. Therefore, it is preferable to use an uncrosslinked or relatively low degree of crosslinking resin for the insulating resin layer.
  • the insulating resin layer may be a single layer or a plurality of layers. For example, a single or a plurality of film-like layers may be formed, or a layer in which particles having insulating, granular, spherical, lump, scale or other shapes are attached to the surface of the conductive metal layer. Further, it may be a layer formed by chemically modifying the surface of the conductive metal layer, or a combination thereof.
  • the thickness of the insulating resin layer is preferably 0.01 ⁇ m or more and 1 ⁇ m or less, more preferably 0.02 ⁇ m or more and 0.5 ⁇ m or less, and further preferably 0.03 ⁇ m or more and 0.4 ⁇ m or less. When the thickness of the insulating resin layer is within the above range, the electrical insulation between the particles becomes good while maintaining the conduction characteristics by the conductive particles.
  • the anisotropic conductive material of the present invention comprises the conductive fine particles of the present invention dispersed in a binder resin.
  • the form of the anisotropic conductive material is not particularly limited, and examples thereof include various forms such as an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, and an anisotropic conductive ink. By providing these anisotropic conductive materials between opposing substrates or between electrode terminals, good electrical connection can be achieved.
  • the anisotropic conductive material using the conductive fine particles of the present invention includes a conductive material for a liquid crystal display element (conductive spacer and composition thereof).
  • the binder resin is not particularly limited as long as it is an insulating resin, and examples thereof include thermoplastic resins such as acrylic resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers; monomers and oligomers having a glycidyl group; Examples thereof include a curable resin composition that is cured by a reaction with a curing agent such as isocyanate; a curable resin composition that is cured by light or heat;
  • the anisotropic conductive material of the present invention can be obtained by dispersing the conductive fine particles of the present invention in the binder resin to obtain a desired form.
  • the binder resin and the conductive fine particles are separately provided. You may connect by making electroconductive fine particles exist with a binder resin between the base material to be used and connecting between electrode terminals.
  • the content of the conductive fine particles may be appropriately determined according to the use.
  • the volume of the anisotropic conductive material is preferably 1% by volume or more, more preferably Is 2% by volume or more, more preferably 5% by volume or more, preferably 50% by volume or less, more preferably 30% by volume or less, and still more preferably 20% by volume or less. If the content of the conductive fine particles is too small, it may be difficult to obtain sufficient electrical continuity. On the other hand, if the content of the conductive fine particles is too large, the conductive fine particles are in contact with each other, and anisotropy is caused. The function as a conductive material may be difficult to be exhibited.
  • the film thickness in the anisotropic conductive material of the present invention about the film thickness in the anisotropic conductive material of the present invention, the coating thickness of the paste or adhesive, the printed film thickness, etc., the particle diameter of the conductive fine particles of the present invention to be used and the specifications of the electrode to be connected.
  • ⁇ Number average particle diameter of conductive fine particles After adding 17.5 parts of 1.4% aqueous solution of polyoxyethylene oleyl ether (“Emulgen 430” manufactured by Kao Corporation) as an emulsifier to 0.05 parts of conductive fine particles and dispersing for 10 minutes with ultrasound, Using a flow particle image analyzer (“FPIA (registered trademark) -3000” manufactured by Sysmex Corporation), the particle diameter ( ⁇ m) of 3000 particles was measured to determine the number average particle diameter.
  • FPIA registered trademark
  • P ⁇ Phosphorus (P) content of conductive metal layer>
  • the conductive metal layer (plating film) of the conductive fine particles is dissolved using aqua regia and analyzed with an inductively coupled plasma emission spectrometer (ICP) (“ICPE-9000” manufactured by Shimadzu Corporation).
  • ICP inductively coupled plasma emission spectrometer
  • the Ni mass and the P mass contained per 1 g of the conductive metal layer were determined from the results, and the P content (%) was calculated based on the following formula. Note that none of the conductive metal layers formed in the following examples contain boron (B).
  • P content (% by mass) P mass ⁇ 100 / (Ni mass + P mass)
  • V-65 V-65
  • emulsification dispersion Two hours after the start of emulsification dispersion, the obtained emulsion was added to an emulsion of polysiloxane particles (seed particles), and further stirred. One hour after the addition of the emulsified liquid, the mixed liquid was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were absorbed and absorbed.
  • Resin particles (11) were obtained in the same manner as in Production Example 10 except that the heat treatment was not performed.
  • Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
  • Resin particles (13) were produced in the same manner as in Production Example 1, except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2.
  • Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
  • Resin particles (14) were produced in the same manner as in Production Example 1 except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2.
  • Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
  • the obtained emulsified liquid is put into a four-necked flask equipped with a condenser, a thermometer, and a dripping port, diluted by adding 500 parts of ion-exchanged water, and then heated to 65 ° C. in a nitrogen atmosphere. The mixture was held at 65 ° C. for 2 hours to perform radical polymerization of the monomer component.
  • the emulsion after radical polymerization is subjected to solid-liquid separation, and the resulting cake is washed with ion-exchanged water and methanol, and then wet classification is repeated, followed by vacuum drying at 120 ° C. for 2 hours to produce resin particles (23). did.
  • Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
  • Resin particles (24) were produced in the same manner as in Production Example 23, except that the monomer component was changed to 100 parts of 1,9-nonanediol dimethacrylate.
  • Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
  • Resin particles (26) were produced in the same manner as in Production Example 23, except that the monomer components were changed to 40 parts ethylene glycol dimethacrylate, 40 parts styrene, and 20 parts t-butyl methacrylate.
  • Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
  • Example 1 The resin particles (1) used as a base material are subjected to etching treatment with sodium hydroxide, then sensitized by contacting with a tin dichloride solution, and then activated by immersing in a palladium dichloride solution. Palladium nuclei were formed by the method (sensitizing-activation method). Next, 2 parts of resin particles with palladium nuclei formed were added to 400 parts of ion-exchanged water, and after ultrasonic dispersion treatment, the resulting resin particle suspension was heated in a 70 ° C. hot bath.
  • Example 2 to 20 and Comparative Examples 1 to 2 Conductive fine particles were produced in the same manner as in Example 1 except that the resin particles shown in Table 4 or 5 were used as the substrate.
  • the film thickness of the conductive metal layer in the obtained conductive fine particles was as shown in Table 4 or Table 5.
  • Resin particles (23) are used as the base material, and the electroless plating solution has a nickel sulfate hexahydrate concentration of 50 g / L, a sodium hypophosphite monohydrate concentration of 20 g / L, and a sodium citrate concentration of 50 g. / L, and conductive fine particles were produced in the same manner as in Example 1 except that an electroless nickel plating solution whose pH was adjusted to 7.5 with an aqueous sodium hydroxide solution was used.
  • the film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
  • Example 22 Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (24) were used as the base material.
  • the film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
  • Example 23 Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (25) were used as the substrate.
  • the film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
  • Example 24 Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (26) were used as the base material.
  • the film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
  • Example 25 Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (26) were used as the base material and the pH value of the electroless plating solution was changed to 11.0 (adjusted with an aqueous sodium hydroxide solution). .
  • the film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
  • an anisotropic conductive material (anisotropic conductive film) was produced by the following method, and the performance was The method was evaluated. That is, 1 part of conductive fine particles, 100 parts of an epoxy resin (“JER828” manufactured by Mitsubishi Chemical) as a binder resin, and 2 parts of a curing agent (“Sun Aid (registered trademark) SI-150” manufactured by Sanshin Chemical Co., Ltd.) 100 parts of toluene was added, 50 parts of zirconia beads having a diameter of 1 mm were further added, and the mixture was stirred and dispersed at 300 rpm for 10 minutes using two stainless steel stirring blades. And the anisotropic conductive film was obtained by apply
  • an epoxy resin (“JER828” manufactured by Mitsubishi Chemical) as a binder resin
  • a curing agent (“Sun Aid (registered trademark) SI-150” manufactured by Sanshin Chemical Co., Ltd.) 100
  • the obtained anisotropic conductive film was sandwiched between an entire aluminum vapor-deposited glass substrate having resistance measurement lines and a polyimide film substrate having a copper pattern formed on a 20 ⁇ m pitch, and two pressures (high pressure: 7 MPa).
  • the connection structure (high-pressure connection structure and low-pressure connection structure) was produced by pressure bonding at 185 ° C. under a low pressure of 2 MPa. Then, the initial resistance value A between the electrodes of the obtained connection structure is measured. When the initial resistance value A is less than 3 ⁇ , “ ⁇ ”, when it is 3 ⁇ or more and 5 ⁇ or less, “ ⁇ ”, when it exceeds 5 ⁇ . “ ⁇ ” was evaluated.
  • the surface of the electrode on the side in contact with the anisotropic conductive film after low-pressure (2 MPa) pressure bonding was observed with a metal microscope (magnification: 1000 times). Was evaluated as “ ⁇ ”.
  • the resistance value B was measured in the same manner as the initial resistance value A, and the resistance value increase rate ( %).
  • Resistance value increase rate (%) [(BA) / A] ⁇ 100
  • TMP-3EO-A Trimethylolpropane EO modified (3 mol) triacrylate
  • TMP-6EO-A Trimethylolpropane EO modified (6 mol) triacrylate
  • HXDA 1,6-hexanediol diacrylate
  • MPMDMS 3-methacrylic Roxypropylmethyldimethoxysilane (“KBM502” manufactured by Shin-Etsu Silicone) 1,9-ND: 1,9-nonanediol dimethacrylate
  • TMP-A trimethylolpropane triacrylate
  • EGDMA ethylene glycol dimethacrylate
  • tBMA t-butyl methacrylate
  • the conductive fine particles of the present invention are suitably used for anisotropic conductive materials such as anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, anisotropic conductive inks, and the like.

Abstract

Provided is a conductive microparticle that has a low initial resistance value and can maintain a stable connected state while being a minute conductive microparticle. This conductive microparticle has a base material formed from a resin particle and at least one conductive metal layer formed on the surface of the base material. This conductive microparticle is characterized by the number-based average dispersed particle size for the resin particle being 1.0 - 2.5 µm and the modulus of compressive elasticity when the diameter of the resin particle is displaced 10% (10% K value) being 12,000 N/mm2 or greater.

Description

導電性微粒子、樹脂粒子及びそれを用いた異方性導電材料Conductive fine particles, resin particles and anisotropic conductive material using the same
 本発明は、微細な導電性微粒子に関するものであり、特に、電気接続に用いた場合のショートの発生を低減できる導電性微粒子に関する。 The present invention relates to fine conductive fine particles, and particularly relates to conductive fine particles that can reduce the occurrence of short circuits when used for electrical connection.
 従来、電子機器の組み立てにおいて、対向する多数の電極や配線間の電気的接続を行うために、異方性導電材料による接続方式が採用されている。異方性導電材料は、導電性微粒子をバインダー樹脂等に混合した材料であり、例えば異方性導電ペースト(ACP)、異方性導電フィルム(ACF)、異方性導電インク、異方性導電シート等がある。ここで異方性導電材料に用いられる導電性微粒子としては、金属粒子や基材とする樹脂粒子の表面を導電性金属層で被覆したものが使用されている。 Conventionally, in assembling electronic devices, a connection method using an anisotropic conductive material has been adopted in order to electrically connect a large number of opposing electrodes and wires. An anisotropic conductive material is a material in which conductive fine particles are mixed with a binder resin, for example, anisotropic conductive paste (ACP), anisotropic conductive film (ACF), anisotropic conductive ink, anisotropic conductive. There are sheets. Here, as the conductive fine particles used for the anisotropic conductive material, those obtained by coating the surfaces of the metal particles and the resin particles as the base material with a conductive metal layer are used.
 ところで、近年、電子機器の小型化、高機能化が益々進展している。それに伴い、電気機器に搭載される電子部品の小型化、高密度実装化が進んでおり、電子回路における電極や配線は一層微細化、狭小化する流れにある。そして、上述したように電子回路の電極や配線の微細化、狭小化が進展するなか、異方性導電材料に用いられる導電性微粒子についても、粒子径がより小さなものが要求されている。 By the way, in recent years, miniaturization and high functionality of electronic devices have been progressing more and more. Along with this, electronic components mounted on electric devices are being downsized and mounted with high density, and electrodes and wirings in electronic circuits are becoming finer and narrower. As described above, with the progress of miniaturization and narrowing of the electrodes and wirings of electronic circuits, conductive fine particles used for anisotropic conductive materials are also required to have a smaller particle diameter.
 粒子径の小さな導電性微粒子としては、例えば、樹脂や無機化合物からなり、平均粒子径が0.5~2.5μm、粒子径のCV値が20%以下である微球を基材として用いた導電性微粒子が提案されている(特許文献1)。また、有機高分子からなる核体に、所定の厚みで金属メッキを施した導電粒子において、導電粒子の径に応じて良好な接続抵抗が得られる導電粒子の硬度が異なることが報告されており、その中で、粒子直径が1~2μmの導電粒子が開示されている(特許文献2)。 As the conductive fine particles having a small particle size, for example, microspheres made of a resin or an inorganic compound, having an average particle size of 0.5 to 2.5 μm and a particle size CV value of 20% or less were used as a base material. Conductive fine particles have been proposed (Patent Document 1). In addition, it has been reported that in conductive particles obtained by subjecting a core made of an organic polymer to metal plating with a predetermined thickness, the hardness of the conductive particles from which good connection resistance is obtained depends on the diameter of the conductive particles. Among them, a conductive particle having a particle diameter of 1 to 2 μm is disclosed (Patent Document 2).
特開2000-30526号公報JP 2000-30526 A 特許第4154919号公報Japanese Patent No. 4154919
 しかしながら、従来のように導電性微粒子の粒子径を単に小さくした場合、粒子径が大きい場合に比して、接続面積が小さくなるため、初期抵抗値が高くなったり、安定した接続状態が維持できなかったりする傾向があった。 However, when the particle size of the conductive fine particles is simply reduced as in the past, the connection area is smaller than when the particle size is large, so that the initial resistance value is increased and a stable connection state can be maintained. There was a tendency to not.
 本発明は上記事情に鑑みてなされたものであり、微細な導電性微粒子でありながら、初期抵抗値が低く、しかも安定した接続状態を維持しうる導電性微粒子と、かかる導電性微粒子の基材に用いる樹脂粒子と、この導電性微粒子を用いた異方性導電材料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a fine conductive fine particle that has a low initial resistance and can maintain a stable connection state, and a base material for the conductive fine particle. An object of the present invention is to provide resin particles used in the above and an anisotropic conductive material using the conductive fine particles.
 本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、導電性微粒子の粒子径を微細にしつつ、粒子径が大きい場合と同等の電流量を安定して確保するためには、粒子径に対する接続面積比を相対的に高くすることが重要であり、それを実現するには、接続状態で導電性金属層と被接続体(電極)との密着が充分に保たれるよう圧痕形成能(具体的には、接続する際、僅かに変形させた時点で圧痕を形成できる特性)を高めればよいことを見出した。そして、個数基準の平均分散粒子径が1.0μm以上2.5μm以下の範囲である場合に、粒子径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上となる樹脂粒子を基材とする導電性微粒子であれば、被接続体(電極)に対して充分な圧痕を形成できることを見出し、本発明を完成した。 The present inventors have intensively studied to solve the above problems. As a result, it is important to relatively increase the ratio of the connection area to the particle diameter in order to ensure a stable current amount equivalent to that when the particle diameter is large while reducing the particle diameter of the conductive fine particles. In order to achieve this, it is possible to form an indentation (specifically, slightly deform when connecting) so that the adhesion between the conductive metal layer and the connected body (electrode) is sufficiently maintained in the connected state. It has been found that it is only necessary to improve the characteristic of forming an indentation at the time. When the number-based average dispersed particle diameter is in the range of 1.0 μm to 2.5 μm, the compressive elastic modulus (10% K value) when the particle diameter is displaced by 10% is 12,000 N / mm 2. It has been found that the conductive fine particles based on the resin particles as described above can form a sufficient indentation on the connected body (electrode), and the present invention has been completed.
 すなわち、本発明は以下の構成からなる。
 (1)樹脂粒子からなる基材と、該基材の表面に形成された少なくとも一層の導電性金属層とを有する導電性微粒子であって、前記樹脂粒子の個数基準の平均分散粒子径が1.0μm以上2.5μm以下であり、前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上であることを特徴とする導電性微粒子。
 (2)前記樹脂粒子の個数基準の平均分散粒子径が2.0μm以上であり、前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が17,000N/mm2以上である前記(1)に記載の導電性微粒子。
 (3)前記樹脂粒子の個数基準の平均分散粒子径が2.0μm未満であり、前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が19,600N/mm2超である前記(1)に記載の導電性微粒子。
 (4)前記樹脂粒子の圧縮破壊変形率が30%以上である前記(1)~(3)のいずれかに記載の導電性微粒子。
 (5)前記樹脂粒子の直径が30%変位したときの圧縮弾性率(30%K値)が前記10%K値より小さい前記(1)~(4)のいずれかに記載の導電性微粒子。
 (6)表面の少なくとも一部に絶縁性樹脂層を有する前記(1)~(5)のいずれかに記載の導電性微粒子。
 (7)導電性微粒子の基材として用いられる粒子であって、
 個数基準の平均分散粒子径が1.0μm以上2.5μm以下であり、粒子の直径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上であることを特徴とする樹脂粒子。
 (8)個数基準の平均分散粒子径が2.0μm以上であり、粒子の直径が10%変位したときの圧縮弾性率(10%K値)が17,000N/mm2以上である前記(7)に記載の樹脂粒子。
 (9)個数基準の平均分散粒子径が2.0μm未満であり、粒子の直径が10%変位したときの圧縮弾性率(10%K値)が19,600N/mm2超である前記(7)に記載の樹脂粒子。
 (10)圧縮破壊変形率が30%以上である前記(7)~(9)のいずれかに記載の樹脂粒子。
 (11)粒子の直径が30%変位したときの圧縮弾性率(30%K値)が前記10%K値より小さい前記(7)~(10)のいずれかに記載の樹脂粒子。
 (12)前記(1)~(6)のいずれかに記載の導電性微粒子がバインダー樹脂に分散してなることを特徴とする異方性導電材料。
That is, the present invention has the following configuration.
(1) Conductive fine particles having a base material composed of resin particles and at least one conductive metal layer formed on the surface of the base material, wherein the number-based average dispersed particle diameter of the resin particles is 1 Conductive fine particles having a compression elastic modulus (10% K value) of 12,000 N / mm 2 or more when the diameter of the resin particles is displaced by 10% from 0.0 μm to 2.5 μm.
(2) The number-based average dispersed particle diameter of the resin particles is 2.0 μm or more, and the compression elastic modulus (10% K value) when the diameter of the resin particles is displaced by 10% is 17,000 N / mm 2. The conductive fine particles according to (1) above.
(3) The number-based average dispersed particle diameter of the resin particles is less than 2.0 μm, and the compression modulus (10% K value) when the diameter of the resin particles is displaced by 10% is 19,600 N / mm 2. The conductive fine particle according to (1), which is super.
(4) The conductive fine particles according to any one of (1) to (3), wherein the compression fracture deformation rate of the resin particles is 30% or more.
(5) The conductive fine particles according to any one of (1) to (4), wherein a compression elastic modulus (30% K value) when the diameter of the resin particles is displaced by 30% is smaller than the 10% K value.
(6) The conductive fine particles according to any one of (1) to (5), which have an insulating resin layer on at least a part of the surface.
(7) Particles used as a base material for conductive fine particles,
The number-based average dispersed particle diameter is 1.0 μm or more and 2.5 μm or less, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is 12,000 N / mm 2 or more. Characteristic resin particles.
(8) The number-based average dispersed particle diameter is 2.0 μm or more, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is 17,000 N / mm 2 or more (7 ) Resin particles.
(9) The number-based average dispersed particle diameter is less than 2.0 μm, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is more than 19,600 N / mm 2 (7 ) Resin particles.
(10) The resin particle according to any one of (7) to (9), wherein the compressive fracture deformation rate is 30% or more.
(11) The resin particle according to any one of (7) to (10), wherein a compression elastic modulus (30% K value) when the particle diameter is displaced by 30% is smaller than the 10% K value.
(12) An anisotropic conductive material comprising the conductive fine particles according to any one of (1) to (6) dispersed in a binder resin.
 本発明の導電性微粒子によれば、被接続体(電極)に対して低圧でも圧痕を形成でき、これにより導電性金属層と被接続体との密着性を高め、かつ大きな接続面積を確保することが可能となるので、小径化しつつ、充分に低い初期抵抗値を発現させ、しかも安定した接続状態を維持することができる。 According to the conductive fine particles of the present invention, an indentation can be formed at a low pressure with respect to the connected body (electrode), thereby improving the adhesion between the conductive metal layer and the connected body and securing a large connection area. Therefore, it is possible to develop a sufficiently low initial resistance value while maintaining a small diameter, and to maintain a stable connection state.
1.導電性微粒子
 本発明の導電性微粒子は、樹脂粒子からなる基材と、該基材の表面に形成された少なくとも一層の導電性金属層とを有する。
1. Conductive fine particles The conductive fine particles of the present invention have a base material composed of resin particles and at least one conductive metal layer formed on the surface of the base material.
 本発明は微細な導電性微粒子の改良を目的とする。したがって、本発明において、導電性微粒子の基材となる樹脂粒子は粒子径が小さく、その個数基準の平均分散粒子径は1.0μm以上、好ましくは1.1μm以上、より好ましくは1.2μm以上、さらに好ましくは1.3μm以上であり、2.5μm以下、好ましくは2.3μm以下、より好ましくは2.1μm以下、さらに好ましくは1.9μm以下である。樹脂粒子(基材)の平均分散粒子径がこの範囲内であれば、微細な導電性微粒子が得られ、微細化、狭小化された電極や配線の電気接続に対して、好適に使用できる。 The present invention aims to improve fine conductive fine particles. Therefore, in the present invention, the resin particles used as the base material for the conductive fine particles have a small particle diameter, and the number-based average dispersed particle diameter is 1.0 μm or more, preferably 1.1 μm or more, more preferably 1.2 μm or more. More preferably, it is 1.3 μm or more, 2.5 μm or less, preferably 2.3 μm or less, more preferably 2.1 μm or less, and further preferably 1.9 μm or less. If the average dispersed particle diameter of the resin particles (base material) is within this range, fine conductive fine particles can be obtained, which can be suitably used for electrical connection of electrodes and wirings that are miniaturized and narrowed.
 また前記樹脂粒子(基材)の分散粒子径の個数基準の変動係数(CV値)は、10.0%以下であることが好ましく、より好ましくは8.0%以下、さらに好ましくは5.0%以下、一層好ましくは4.5%以下、特に好ましくは4.0%以下、最も好ましくは3.0%以下である。このように分散粒子径の変動係数が小さい樹脂粒子は、単に一次粒子径の大きさが揃っているだけでなく、一次粒子径の単一分散性が極めて高い。そのため、このような樹脂粒子を基材として用いることにより、粒子径が揃っており、かつ凝集が抑制された導電性微粒子が得られる。
 なお、本発明でいう樹脂粒子の個数基準の平均分散粒子径やその変動係数等は、コールターカウンターにより測定した値であり、測定方法については実施例において後述する。
The number-based variation coefficient (CV value) of the dispersed particle diameter of the resin particles (base material) is preferably 10.0% or less, more preferably 8.0% or less, and still more preferably 5.0. % Or less, more preferably 4.5% or less, particularly preferably 4.0% or less, and most preferably 3.0% or less. As described above, the resin particles having a small variation coefficient of the dispersed particle diameter are not only uniform in the primary particle diameter, but also have a very high monodispersibility of the primary particle diameter. Therefore, by using such resin particles as a base material, conductive fine particles having a uniform particle diameter and suppressed aggregation can be obtained.
The average dispersion particle diameter based on the number of resin particles in the present invention and the coefficient of variation thereof are values measured by a Coulter counter, and the measurement method will be described later in Examples.
 さらに、導電性微粒子において、粗大粒子が存在していると、異方性導電材料として長期間保管した際に粗大粒子が沈降してしまい、導電性微粒子の凝集の原因となるおそれがある。そのため、前記樹脂粒子は、粗大粒子が除去されていることが好ましい。すなわち、前記樹脂粒子は、個数基準の積算分布曲線において、積算値90%における粒子径が2.6μm以下であることが好ましく、より好ましくは2.2μm以下、さらに好ましくは2.0μm以下である。積算値90%における粒子径は、平均分散粒子径と同様、コールターカウンターにより測定した個数積算分布曲線において、個数積算値が90%となる粒子径を意味する。 Furthermore, if the conductive fine particles are present as coarse particles, the coarse particles may settle when stored as an anisotropic conductive material for a long period of time, which may cause aggregation of the conductive fine particles. Therefore, it is preferable that coarse particles are removed from the resin particles. That is, the resin particle preferably has a particle diameter at an integrated value of 90% of 2.6 μm or less, more preferably 2.2 μm or less, and even more preferably 2.0 μm or less in a number-based integrated distribution curve. . Similar to the average dispersed particle size, the particle size at the integrated value of 90% means the particle size at which the integrated number value is 90% in the number integrated distribution curve measured by a Coulter counter.
 本発明において基材とする前記樹脂粒子は、その直径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上であることが重要である。樹脂粒子の10%K値がこの範囲であれば、被接続体(電極)に対して充分な圧痕を形成でき、これにより導電性金属層と被接続体との密着性を高め、かつ大きな接続面積を確保することが可能となる。樹脂粒子の10%K値は、好ましくは14,000N/mm2以上、より好ましくは15,000N/mm2以上、さらに好ましくは17,000N/mm2以上、一層好ましくは20,000N/mm2以上であり、好ましくは50,000N/mm2以下、より好ましくは40,000N/mm2以下である。 In the present invention, it is important that the resin particles used as the base material have a compressive elastic modulus (10% K value) of 12,000 N / mm 2 or more when the diameter is displaced by 10%. If the 10% K value of the resin particles is within this range, a sufficient indentation can be formed on the connected body (electrode), thereby improving the adhesion between the conductive metal layer and the connected body and providing a large connection. An area can be secured. 10% K value of the resin particles is preferably 14,000N / mm 2 or more, more preferably 15,000N / mm 2 or more, more preferably 17,000N / mm 2 or more, more preferably 20000 N / mm 2 It is above, Preferably it is 50,000 N / mm < 2 > or less, More preferably, it is 40,000 N / mm < 2 > or less.
 本発明の好ましい態様においては、前記樹脂粒子の個数基準の平均分散粒子径が2.0μm以上、2.5μm以下であり、且つ前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が17,000N/mm2以上であるか、あるいは、前記樹脂粒子の個数基準の平均分散粒子径が1.0μm以上、2.0μm未満であり、且つ前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が19,600N/mm2超(19,600N/mm2より大きい)である。かかる態様であれば、異方導電接続状態における抵抗値の経時的上昇が抑えられ、優れた接続信頼性が得られるといった効果も奏する。つまり、樹脂粒子の10%K値が上述した12,000N/mm2以上の範囲にあれば、良好な圧痕形成能によって異方導電接続時の圧力条件に依らず接続抵抗値の低い接続構造体が得られるが、さらに、高い接続信頼性を得るためには、さらに樹脂粒子の粒子径に応じて好適な10%K値の範囲が存在するのである。 In a preferred aspect of the present invention, the number-average resin particle-based average dispersed particle diameter is 2.0 μm or more and 2.5 μm or less, and the compression modulus (10 % K value) is 17,000 N / mm 2 or more, or the number-based average dispersed particle diameter of the resin particles is 1.0 μm or more and less than 2.0 μm, and the diameter of the resin particles is 10 The compressive elastic modulus (10% K value) when% displacement is over 19,600 N / mm 2 (greater than 19,600 N / mm 2 ). With such an aspect, an increase in the resistance value with time in the anisotropic conductive connection state can be suppressed, and excellent connection reliability can be obtained. That is, if the 10% K value of the resin particles is in the above-mentioned range of 12,000 N / mm 2 or more, a connection structure having a low connection resistance value regardless of the pressure conditions during anisotropic conductive connection due to good indentation forming ability. However, in order to obtain higher connection reliability, there is a preferable 10% K value range depending on the particle diameter of the resin particles.
 なお、前記樹脂粒子の10%K値は、公知の微小圧縮試験機を用いて測定することができるが、好ましくは、公知の微小圧縮試験機(例えば、島津製作所製「MCT-W500」など)を用い、室温で粒子の中心方向へ荷重負荷速度2.2295mN/secで荷重をかける圧縮試験において、圧縮変位が粒子径の10%となるまで粒子を変形させたときの圧縮荷重(N)と圧縮変位(mm)を測定し、下記式に基づき求めた値を採用することが好ましい。 The 10% K value of the resin particles can be measured using a known microcompression tester. Preferably, a known microcompression tester (for example, “MCT-W500” manufactured by Shimadzu Corporation) is used. In a compression test in which a load is applied at a load load rate of 2.2295 mN / sec at room temperature at room temperature, the compression load (N) when the particles are deformed until the compression displacement becomes 10% of the particle diameter It is preferable to measure the compression displacement (mm) and adopt a value obtained based on the following formula.
Figure JPOXMLDOC01-appb-M000001

(ここで、E:圧縮弾性率(N/mm2)、F:圧縮荷重(N)、S:圧縮変位(mm)、R:粒子の半径(mm)である。)
Figure JPOXMLDOC01-appb-M000001

(Here, E: compression elastic modulus (N / mm 2 ), F: compression load (N), S: compression displacement (mm), R: radius of particle (mm))
 本発明において基材とする前記樹脂粒子は、その圧縮破壊変形率が30%以上であることが好ましい。このような樹脂粒子は、大きく圧縮変形した状態で復元力を有するので、接続面積をより高めることができる。樹脂粒子の圧縮破壊変形率は、より好ましくは40%以上、さらに好ましくは50%以上である。圧縮破壊変形率の上限については、破壊点がないことが好ましいが、80%以下(特に70%以下)でも使用可能である。なお、圧縮破壊変形率とは、公知の微小圧縮試験機(例えば、島津製作所製「MCT-W500」など)を用い、室温で粒子の中心方向へ荷重負荷速度2.2295mN/secで荷重をかける圧縮試験において、粒子が破壊に至ったときの圧縮変位(μm)を測定し、下記式により算出される値である。例えば、微小圧縮試験機として島津製作所製「MCT-W500」を用いる場合には、当該試験機が備える「標準表面検出」モードで測定することが好ましい。
   圧縮破壊変化率(%)=[圧縮変位(μm)/粒子径(μm)]×100
In the present invention, the resin particles used as a base material preferably have a compressive fracture deformation rate of 30% or more. Since such resin particles have a restoring force in a state of being largely compressed and deformed, the connection area can be further increased. The compression fracture deformation rate of the resin particles is more preferably 40% or more, and further preferably 50% or more. As for the upper limit of the compression fracture deformation rate, it is preferable that there is no fracture point, but it can also be used at 80% or less (particularly 70% or less). The compression fracture deformation rate is a load applied at a load load rate of 2.2295 mN / sec in the center direction of the particles at room temperature using a known micro-compression tester (for example, “MCT-W500” manufactured by Shimadzu Corporation). In the compression test, the compression displacement (μm) when the particles are broken is measured, and is a value calculated by the following formula. For example, when “MCT-W500” manufactured by Shimadzu Corporation is used as a micro-compression tester, measurement is preferably performed in the “standard surface detection” mode provided in the tester.
Compression fracture change rate (%) = [compression displacement (μm) / particle diameter (μm)] × 100
 また本発明において基材とする前記樹脂粒子は、前記樹脂粒子の直径が30%変位したときの圧縮弾性率(30%K値)が前記10%K値より小さいことが好ましい。30%K値が10%K値以上であると、変形による面積を確保するために高い圧力が必要となるが、この高圧で粒子が割れてしまい、粒子の復元力が失われて接続安定性が低下することがある。逆に、樹脂粒子の30%K値が10%K値より小さいと、低圧で大きな圧縮変形を確保することができる。具体的には、30%K値/10%K値の値が0.9以下となることが好ましく、より好ましくは0.8以下、さらに好ましくは0.7以下となるのがよい。また圧縮初期の電極への食い込みに加え、さらに電極食い込み性を向上させることができる点で、30%K値/10%K値の値は0.3以上が好ましく、0.4以上が好ましい。 In the present invention, the resin particles used as a base material preferably have a compressive elastic modulus (30% K value) smaller than the 10% K value when the diameter of the resin particles is displaced by 30%. If the 30% K value is 10% K value or higher, a high pressure is required to secure the area due to deformation, but the particles break at this high pressure, and the restoring force of the particles is lost, resulting in connection stability. May decrease. Conversely, if the 30% K value of the resin particles is smaller than the 10% K value, large compression deformation can be secured at low pressure. Specifically, the 30% K value / 10% K value is preferably 0.9 or less, more preferably 0.8 or less, and even more preferably 0.7 or less. Further, in addition to biting into the electrode at the initial stage of compression, the 30% K value / 10% K value is preferably 0.3 or more, and more preferably 0.4 or more, in that the electrode biting property can be further improved.
 同様の理由から、樹脂粒子の直径が20%変位したときの圧縮弾性率(20%K値)は、前記10%K値より小さいことが好ましく、20%K値/10%K値の値は好ましくは0.8以下、より好ましくは0.7以下であり、好ましくは0.4以上、より好ましくは0.5以上である。また、樹脂粒子の直径が40%変位したときの圧縮弾性率(40%K値)も同様の理由から、2.0以下が好ましく、1.0以下がより好ましく、0.4以上が好ましく、0.5以上がより好ましい。加熱接続時には圧縮変形率が30%~50%程度に圧縮した状態に加圧接続することが接続信頼性の高い接続状態を得るうえで望ましく、そのため、10%K値のみならず、20%K値、30%K値、40%K値についても上述した範囲にあることが好ましい。 For the same reason, the compression modulus (20% K value) when the diameter of the resin particles is displaced by 20% is preferably smaller than the 10% K value, and the value of 20% K value / 10% K value is Preferably it is 0.8 or less, More preferably, it is 0.7 or less, Preferably it is 0.4 or more, More preferably, it is 0.5 or more. Further, for the same reason, the compressive elastic modulus (40% K value) when the diameter of the resin particles is displaced by 40% is preferably 2.0 or less, more preferably 1.0 or less, and preferably 0.4 or more, 0.5 or more is more preferable. In order to obtain a connection state with high connection reliability, it is desirable to press-connect in a state where the compression deformation rate is compressed to about 30% to 50% at the time of heating connection. Therefore, not only the 10% K value but also 20% K The value, 30% K value, and 40% K value are also preferably in the above-described ranges.
 なお、前記樹脂粒子の20%K値、30%K値および40%K値は、上記10%K値と同様の圧縮試験において、圧縮変位が粒子径の20%、30%もしくは40%となるまで粒子を変形させたときの圧縮荷重(N)と圧縮変位(mm)を測定し、上記10%K値と同様の式に基づき求めることができる。 The 20% K value, 30% K value, and 40% K value of the resin particles are 20%, 30%, or 40% of the particle diameter in the compression test similar to the 10% K value. The compressive load (N) and the compressive displacement (mm) when the particles are deformed up to can be measured and obtained based on the same formula as the 10% K value.
 前記樹脂粒子(基材)は、樹脂成分を含んでいればよく、有機材料のみから構成される粒子に限られず、有機無機複合材料から構成される粒子でもよい。樹脂粒子を基材とすることで、弾性変形特性に優れた導電性微粒子が得られる。
 前記樹脂粒子を構成する有機材料としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;スチレン系樹脂、アクリル系樹脂、スチレン-アクリル樹脂等のビニル重合体;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;ポリアミド;ポリイミド;フェノールホルムアルデヒド樹脂;メラミンホルムアルデヒド樹脂;メラミンベンゾグアナミンホルムアルデヒド樹脂;尿素ホルムアルデヒド樹脂;シリコーン樹脂等が挙げられる。また、有機無機複合材料としては、前記有機材料とポリシロキサン骨格とを含む材料(例えば、ポリシロキサン骨格とビニル重合体が複合化されてなる材料等)が挙げられる。このように前記樹脂粒子を構成する材料は、幅広い材料の中から、平均粒子径および10%K値を上述した範囲に制御しうるように適宜選択される。これらの樹脂粒子を構成する材料は、単独で用いられてもよく、2種以上が併用されてもよい。
The resin particles (base material) need only contain a resin component, and are not limited to particles composed only of organic materials, but may be particles composed of organic-inorganic composite materials. By using resin particles as a base material, conductive fine particles having excellent elastic deformation characteristics can be obtained.
Examples of the organic material constituting the resin particles include polyolefins such as polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, polyisobutylene and polybutadiene; vinyl heavy resins such as styrene resins, acrylic resins and styrene-acrylic resins. Polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; polyamides; polyimides; phenol formaldehyde resins; melamine formaldehyde resins; melamine benzoguanamine formaldehyde resins; urea formaldehyde resins; Examples of the organic / inorganic composite material include a material containing the organic material and a polysiloxane skeleton (for example, a material in which a polysiloxane skeleton and a vinyl polymer are combined). Thus, the material constituting the resin particles is appropriately selected from a wide range of materials so that the average particle diameter and the 10% K value can be controlled within the above-described ranges. The material which comprises these resin particles may be used independently, and 2 or more types may be used together.
 前記樹脂粒子を構成する材料としては、ビニル重合体およびポリシロキサン骨格の少なくとも一方を含むものが好ましい。ビニル重合体を含む材料で構成された樹脂粒子は、ビニル基が重合して形成された有機系骨格を有し、加圧接続時の弾性変形に優れる。また、ポリシロキサン骨格を含む材料で構成された樹脂粒子は、加圧接続時において被接続体に対する接触圧に優れる。特に、ポリシロキサン骨格とビニル重合体を複合化した材料で構成された樹脂粒子は、弾性変形性及び接触圧に優れ、得られる導電性微粒子の接続信頼性がより優れたものとなるため好ましい。 As the material constituting the resin particles, a material containing at least one of a vinyl polymer and a polysiloxane skeleton is preferable. Resin particles composed of a material containing a vinyl polymer have an organic skeleton formed by polymerizing vinyl groups, and are excellent in elastic deformation during pressure connection. Moreover, the resin particle comprised with the material containing polysiloxane frame | skeleton is excellent in the contact pressure with respect to a to-be-connected body at the time of pressure connection. In particular, resin particles composed of a material in which a polysiloxane skeleton and a vinyl polymer are combined are preferable because they are excellent in elastic deformability and contact pressure, and the connection reliability of the obtained conductive fine particles becomes more excellent.
 前記ビニル重合体はビニル基含有単量体を重合(ラジカル重合)したものであり、本発明において「ビニル基」には、炭素-炭素二重結合のみならず、(メタ)アクリロキシ基、アリル基、イソプロペニル基、ビニルフェニル基、イソプロペニルフェニル基のような重合性炭素-炭素二重結合を有する置換基も含まれるものとする。なお、本明細書において「(メタ)アクリロイル基」、「(メタ)アクリロキシ基」、「(メタ)アクリレート」または「(メタ)アクリル」は夫々、「アクリロイル基、メタクリロイル基の一方または両方」、「アクリロキシ基、メタクリロキシ基の一方または両方」、「アクリレート、メタクリレートの一方または両方」や「アクリル、メタクリルの一方または両方」を示すものとする。 The vinyl polymer is obtained by polymerizing a vinyl group-containing monomer (radical polymerization). In the present invention, the “vinyl group” includes not only a carbon-carbon double bond but also a (meth) acryloxy group, an allyl group. In addition, a substituent having a polymerizable carbon-carbon double bond such as an isopropenyl group, a vinylphenyl group, and an isopropenylphenyl group is also included. In the present specification, “(meth) acryloyl group”, “(meth) acryloxy group”, “(meth) acrylate” or “(meth) acryl” are respectively “one or both of acryloyl group and methacryloyl group”, “One or both of acryloxy group and methacryloxy group”, “one or both of acrylate and methacrylate” and “one or both of acrylic and methacryl” shall be indicated.
 前記ビニル基含有単量体には、1分子中に一個のビニル基を有する単量体(1)、1分子中に一個のビニル基とビニル基以外の官能基(カルボキシル基、ヒドロキシ基等のプロトン性水素含有基、アルコキシ基等の末端官能基等)を有する単量体(2)、1分子中に2個以上のビニル基を有する単量体(3)が含まれる。ここで、単量体(1)はビニル系非架橋性単量体である。単量体(2)は、カルボキシル基、ヒドロキシ基、アルコキシ基等の反応(結合)相手となる基が他の単量体に存在する場合には架橋構造を形成し得るので、ビニル系架橋性単量体となるが、反応相手となる基が他の単量体に存在しない場合には、ビニル系非架橋性単量体となる。単量体(3)はビニル系架橋性単量体である。これらの単量体(1)~(3)は単独で使用してもよいし、2種以上を併用してもよい。 The vinyl group-containing monomer includes a monomer having one vinyl group in one molecule (1), one vinyl group in one molecule and a functional group other than vinyl groups (such as a carboxyl group and a hydroxy group). A monomer (2) having a protonic hydrogen-containing group, a terminal functional group such as an alkoxy group) and the like (2), and a monomer (3) having two or more vinyl groups in one molecule. Here, the monomer (1) is a vinyl non-crosslinkable monomer. Monomer (2) can form a cross-linked structure when a reactive (bonding) group such as a carboxyl group, a hydroxy group, or an alkoxy group is present in another monomer. When it becomes a monomer but the group to be a reaction partner does not exist in other monomers, it becomes a vinyl-based non-crosslinkable monomer. The monomer (3) is a vinyl-based crosslinkable monomer. These monomers (1) to (3) may be used alone or in combination of two or more.
 前記単量体(1)(ビニル系非架橋性単量体)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;シクロプロピル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、シクロウンデシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、フェネチル(メタ)アクリレート等の芳香環含有(メタ)アクリレート類;スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-t-ブチルスチレン等のアルキルスチレン類、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等のハロゲン基含有スチレン類等のスチレン系単官能モノマー;等が挙げられる。 Examples of the monomer (1) (vinyl-based non-crosslinkable monomer) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl ( (Meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) Alkyl (meth) acrylates such as acrylate and 2-ethylhexyl (meth) acrylate; cyclopropyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate Cycloalkyl (meth) acrylates such as cycloundecyl (meth) acrylate, cyclododecyl (meth) acrylate, isobornyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth ) Aromatic ring-containing (meth) acrylates such as acrylate, tolyl (meth) acrylate, phenethyl (meth) acrylate; styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, pt -Styrene monofunctional monomers such as alkylstyrenes such as butylstyrene, halogen group-containing styrenes such as o-chlorostyrene, m-chlorostyrene, and p-chlorostyrene;
 前記単量体(2)(ビニル系架橋性単量体またはビニル系非架橋性単量体)としては、例えば、(メタ)アクリル酸等のカルボキシル基を有する単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリレート類、p-ヒドロキシスチレン等のヒドロキシ基含有スチレン類等のヒドロキシ基を有する単量体;2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート等のアルコキシ基含有(メタ)アクリレート類、p-メトキシスチレン等のアルコキシスチレン類等のアルコキシ基を有する単量体;等が挙げられる。 Examples of the monomer (2) (vinyl-based crosslinkable monomer or vinyl-based non-crosslinkable monomer) include monomers having a carboxyl group such as (meth) acrylic acid; 2-hydroxyethyl ( A single group having a hydroxy group such as a hydroxy group-containing (meth) acrylate such as (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, or a hydroxy group-containing styrene such as p-hydroxystyrene. Isomers; alkoxy group-containing (meth) acrylates such as 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, alkoxystyrenes such as p-methoxystyrene, etc. A monomer having an alkoxy group of
 前記単量体(3)(ビニル系架橋性単量体)としては、例えば、アリル(メタ)アクリレート等のアリル(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,3-ブチレンジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート、ペンタコンタヘクタエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート類;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート類;ジペンタエリスリトールヘキサ(メタ)アクリレート等のヘキサ(メタ)アクリレート類;ジビニルベンゼン、ジビニルナフタレン、及びこれらの誘導体等の芳香族炭化水素系架橋剤(好ましくはジビニルベンゼン等のスチレン系多官能モノマー);N,N-ジビニルアニリン、ジビニルエーテル、ジビニルサルファイド、ジビニルスルホン酸等のヘテロ原子含有架橋剤;等が挙げられる。 Examples of the monomer (3) (vinyl-based crosslinkable monomer) include allyl (meth) acrylates such as allyl (meth) acrylate; ethylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,3-butylene di (meth) acrylate Alkanediol di (meth) acrylate such as: diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, pentadecaethylene glycol di (meth) acrylate, pentacontactor ethylene glycol Di (meta) Di (meth) acrylates such as polyalkylene glycol di (meth) acrylates such as acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate; trimethylolpropane tri Tri (meth) acrylates such as (meth) acrylate; Tetra (meth) acrylates such as pentaerythritol tetra (meth) acrylate; Hexa (meth) acrylates such as dipentaerythritol hexa (meth) acrylate; Divinylbenzene, divinyl Aromatic hydrocarbon crosslinking agents such as naphthalene and derivatives thereof (preferably styrenic polyfunctional monomers such as divinylbenzene); N, N-divinylaniline, divinyl ether, di Alkenyl sulfide, hetero atom-containing crosslinking agents such as divinyl sulfonic acid; and the like.
 前記ポリシロキサン骨格は、シラン系単量体を加水分解縮合することで得られ、前記シラン系単量体は、シラン系非架橋性単量体とシラン系架橋性単量体とに大別される。
 前記シラン系非架橋性単量体として、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルキルシラン等の2官能性シラン系単量体;トリメチルメトキシシラン、トリメチルエトキシシラン等のトリアルキルシラン等の1官能性シラン系単量体等が挙げられる。これらのシラン系非架橋性単量体は単独で使用してもよいし、2種以上を併用してもよい。
The polysiloxane skeleton is obtained by hydrolytic condensation of a silane monomer, and the silane monomer is roughly classified into a silane non-crosslinkable monomer and a silane crosslinkable monomer. The
Examples of the silane-based non-crosslinkable monomer include bifunctional silane-based monomers such as dimethyldimethoxysilane and dialkylsilane such as dimethyldiethoxysilane; and trialkylsilanes such as trimethylmethoxysilane and trimethylethoxysilane. And monofunctional silane-based monomers. These silane non-crosslinkable monomers may be used alone or in combination of two or more.
 前記シラン系架橋性単量体は、架橋構造を形成し得るものであれば、特に限定されない。シラン系架橋性単量体により形成される架橋構造としては、有機重合体骨格(例えば、ビニル系重合体骨格)と有機重合体骨格とを架橋するもの(第一の形態);ポリシロキサン骨格とポリシロキサン骨格とを架橋するもの(第二の形態);有機重合体骨格とポリシロキサン骨格とを架橋するもの(第三の形態);が挙げられる。 The silane-based crosslinkable monomer is not particularly limited as long as it can form a crosslinked structure. Examples of the crosslinked structure formed by the silane-based crosslinking monomer include those that crosslink an organic polymer skeleton (for example, a vinyl polymer skeleton) and an organic polymer skeleton (first form); a polysiloxane skeleton; One that crosslinks a polysiloxane skeleton (second form); one that crosslinks an organic polymer skeleton and a polysiloxane skeleton (third form).
 第一の形態を形成し得るものとしては、例えば、ジメチルジビニルシラン、メチルトリビニルシラン、テトラビニルシラン等が挙げられる。第二の形態を形成し得るものとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等の4官能性シラン系単量体;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等の3官能性シラン系単量体等が挙げられる。第三の形態を形成し得るものとしては、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシエトキシプロピルトリメトキシシラン等の(メタ)アクリロイル基を有するもの;ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン等のビニル基を有するもの;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基を有するもの;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノ基を有するもの;が挙げられる。これらのシラン系架橋性単量体は単独で使用してもよいし、2種以上を併用してもよい。 Examples of those that can form the first form include dimethyldivinylsilane, methyltrivinylsilane, and tetravinylsilane. Examples of what can form the second form include tetrafunctional silane monomers such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane And trifunctional silane monomers such as ethyltrimethoxysilane and ethyltriethoxysilane. Those that can form the third form include, for example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Those having a (meth) acryloyl group such as 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxyethoxypropyltrimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, p -Having a vinyl group such as styryltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Those having an epoxy group such as a silane; 3-aminopropyltrimethoxysilane, those having an amino group such as 3-aminopropyltriethoxysilane; and the like. These silane crosslinking monomers may be used alone or in combination of two or more.
 以上のように、前記樹脂粒子は、ビニル重合体およびポリシロキサン骨格の少なくとも一方を含む材料で構成されることが好ましい。つまり、ビニル重合体を形成するビニル系架橋性単量体やビニル系非架橋性単量体、もしくは、ポリシロキサン骨格を形成するシラン系架橋性単量体やシラン系非架橋性単量体を含む単量体成分が重合されたものであることが好ましい。その中でも特に、樹脂粒子の10%K値を12,000N/mm2以上に制御するうえでは、樹脂粒子は架橋されたビニル重合体および架橋されたポリシロキサン骨格の少なくとも一方を含む材料で構成されることが好ましく、それには樹脂粒子は以下の条件を満たすことが好ましい。 As described above, the resin particles are preferably made of a material containing at least one of a vinyl polymer and a polysiloxane skeleton. In other words, a vinyl crosslinkable monomer or vinyl noncrosslinkable monomer that forms a vinyl polymer, or a silane crosslinkable monomer or silane noncrosslinkable monomer that forms a polysiloxane skeleton. It is preferable that the monomer component to be contained is polymerized. In particular, in order to control the 10% K value of the resin particles to 12,000 N / mm 2 or more, the resin particles are composed of a material containing at least one of a crosslinked vinyl polymer and a crosslinked polysiloxane skeleton. It is preferable that the resin particles satisfy the following conditions.
 すなわち、前記樹脂粒子の10%K値を12,000N/mm2以上とするには、例えば、まず始めに樹脂粒子を形成するための単量体成分として、ビニル系架橋性単量体およびシラン系架橋性単量体の少なくとも一方(以下、纏めて単に「架橋性単量体」と称することもある)を用い、その合計の含有量が単量体成分総量に対して20質量%以上(好ましくは30質量%以上、より好ましくは50質量%以上)含むようにする(条件A)。そして、この条件Aを満足させつつ、さらにシラン系架橋性単量体とシラン系非架橋性単量体との合計を全単量体成分中95質量%未満とする(条件B)、もしくはシラン系架橋性単量体とシラン系非架橋性単量体との合計を全単量体成分中95質量%以上として、得られた粒子が200℃以上の温度で加熱されていないようにする(条件C)。つまり、上記条件Aおよび上記条件Bを満たすか、上記条件Aおよび上記条件Cを満たすことにより、12,000N/mm2以上の10%K値を有する樹脂粒子を得ることができる。詳しくは、上記条件Aを満たすと、ビニル系架橋性単量体およびシラン系架橋性単量体の少なくとも一方によって一定の架橋がなされた樹脂粒子となる。そして、上記条件Bでは、樹脂粒子の架橋はビニル系架橋単量体主体で行われることになり、上記条件Cでは、シラン系架橋単量体による架橋が主体となる。
 ところで、シラン系架橋単量体は、縮合反応によりシロキサン結合を形成し、架橋構造を構成するが、重合後の段階では縮合反応が充分に進行していないことがある。そのため、シラン系架橋性単量体を多く使用した場合には、重合後の樹脂粒子に焼成(高温での加熱処理)を施すことが推奨される。しかし、重合後の樹脂粒子の熱履歴の程度によっては10%K値が大きく低下することがある。したがって、上記条件Cの場合には、重合後の樹脂粒子への加熱を制限することが必要になる。
That is, in order to set the 10% K value of the resin particles to 12,000 N / mm 2 or more, for example, as a monomer component for forming resin particles, a vinyl-based crosslinkable monomer and a silane are first used. Using at least one of the system crosslinkable monomers (hereinafter sometimes simply referred to as “crosslinkable monomer”), the total content thereof is 20% by mass or more based on the total amount of monomer components ( (Preferably 30% by mass or more, more preferably 50% by mass or more) (Condition A). And while satisfying the condition A, the total of the silane crosslinkable monomer and the silane noncrosslinkable monomer is less than 95% by mass in all monomer components (condition B), or silane The total of the system crosslinkable monomer and the silane noncrosslinkable monomer is 95% by mass or more in the total monomer components so that the obtained particles are not heated at a temperature of 200 ° C. or higher ( Condition C). That is, when the condition A and the condition B are satisfied or the condition A and the condition C are satisfied, resin particles having a 10% K value of 12,000 N / mm 2 or more can be obtained. Specifically, when the above condition A is satisfied, the resin particles are crosslinked with at least one of a vinyl crosslinkable monomer and a silane crosslinkable monomer. Under the condition B, the resin particles are crosslinked mainly with a vinyl-based crosslinking monomer, and under the condition C, crosslinking with a silane-based crosslinking monomer is mainly performed.
By the way, the silane crosslinking monomer forms a siloxane bond by a condensation reaction to form a crosslinked structure, but the condensation reaction may not sufficiently proceed at the stage after polymerization. Therefore, when a large amount of silane crosslinkable monomer is used, it is recommended that the resin particles after polymerization be baked (heat treatment at a high temperature). However, depending on the degree of thermal history of the resin particles after polymerization, the 10% K value may be greatly reduced. Therefore, in the case of the above condition C, it is necessary to limit heating to the resin particles after polymerization.
 上記条件Cで規定する加熱は、樹脂粒子を合成した後に粒子に対して行われる全ての加熱処理を対象とするものであり、上述した焼成(シラン系単量体に由来する縮合反応(シロキサン結合形成)を進める目的で行う加熱等)のみならず、例えば、樹脂粒子を合成した後の乾燥時の加熱などを対象とする。
 なお、上記条件Cで規定する加熱の際には、加熱温度を所定の範囲にするとともに、加熱雰囲気を、窒素などの不活性ガス雰囲気にすることが好ましい。
 一方、上記条件A且つ上記条件Bを満足する樹脂粒子については、重合後の樹脂粒子への加熱条件が制約されるものではないが、加熱する際には熱分解温度以下の温度範囲で行うことが好ましい。また、この場合も加熱処理する際の雰囲気については、窒素などの不活性ガス雰囲気にすることが好ましい。
The heating specified in the condition C is intended for all heat treatments performed on the particles after synthesizing the resin particles, and the above-described firing (condensation reaction derived from the silane monomer (siloxane bond) In addition to heating performed for the purpose of promoting formation), for example, heating during drying after synthesis of resin particles is targeted.
In the heating specified by the above condition C, it is preferable to set the heating temperature to a predetermined range and the heating atmosphere to an inert gas atmosphere such as nitrogen.
On the other hand, for the resin particles that satisfy the above conditions A and B, the heating conditions for the polymer particles after polymerization are not limited, but when heated, the heating should be performed within the temperature range below the thermal decomposition temperature. Is preferred. Also in this case, it is preferable that the atmosphere during the heat treatment is an inert gas atmosphere such as nitrogen.
 上記条件Aと上記条件B、または上記条件Aと上記条件Cを満たす単量体成分は、ビニル系架橋性単量体およびシラン系架橋性単量体の少なくとも一方を含むものであるが、樹脂粒子の10%K値をより確実に12,000N/mm2以上に制御するためにより好適なビニル系架橋性単量体、シラン系架橋性単量体について、以下に説明する。 The monomer component satisfying the condition A and the condition B or the condition A and the condition C includes at least one of a vinyl-based crosslinkable monomer and a silane-based crosslinkable monomer. The vinyl crosslinkable monomer and the silane crosslinkable monomer that are more suitable for controlling the 10% K value to 12,000 N / mm 2 or more with certainty will be described below.
 前記ビニル系架橋性単量体としては、10%K値をより確実に制御するうえでは、上述した単量体(3)が好ましい。中でも、1分子中に2個以上の(メタ)アクリロイル基を有する単量体(すなわち、1分子中に2個以上のアクリロイル基を有する単量体または1分子中に2個以上のメタクリロイル基を有する単量体)、スチレン系多官能モノマーの一方または両方がより好ましい。 As the vinyl-based crosslinkable monomer, the above-mentioned monomer (3) is preferable in order to more reliably control the 10% K value. Among them, a monomer having two or more (meth) acryloyl groups in one molecule (that is, a monomer having two or more acryloyl groups in one molecule or two or more methacryloyl groups in one molecule). Monomer) and one or both of styrenic polyfunctional monomers are more preferred.
 前記1分子中に2個以上の(メタ)アクリロイル基を有する単量体としては、10%K値の高い樹脂粒子が得られ易い点で、1分子中に2個の(メタ)アクリロイル基を有する単量体(ジ(メタ)アクリレート類)が好ましい。ジ(メタ)アクリレート類の中では、同様の理由から、アルカンジオールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレートがより好ましく、特に、導電性金属層被覆後の粒子強度の低下が少ないことから、アルカンジオールジ(メタ)アクリレートが好ましい。さらにジ(メタ)アクリレート類の中では、2個の(メタ)アクリロイル基における炭素-炭素二重結合(C=C)の間に連なって存在する原子の数が6個~14個である分子構造を有するジ(メタ)アクリレートが特に好ましい。なお、ここで炭素-炭素二重結合の間に連なって存在する原子の数としては、炭素-炭素二重結合(C=C)自身の炭素原子はカウントしないものとし、(メタ)アクリロイル基間を繋ぐ原子鎖が複数存在する場合には最短の原子鎖における原子数とする。 The monomer having two or more (meth) acryloyl groups in one molecule has two (meth) acryloyl groups in one molecule in that resin particles having a high 10% K value are easily obtained. Preferred monomers (di (meth) acrylates) are preferred. Among the di (meth) acrylates, for the same reason, alkanediol di (meth) acrylate and polyalkylene glycol di (meth) acrylate are more preferable, and in particular, there is little decrease in particle strength after coating the conductive metal layer. Therefore, alkanediol di (meth) acrylate is preferable. Further, among di (meth) acrylates, molecules having 6 to 14 atoms present between carbon-carbon double bonds (C═C) in two (meth) acryloyl groups. A di (meth) acrylate having a structure is particularly preferred. Here, the number of atoms existing continuously between the carbon-carbon double bonds shall not count the carbon atoms of the carbon-carbon double bond (C = C) itself, and between (meth) acryloyl groups When there are a plurality of atomic chains connecting the two, the number of atoms in the shortest atomic chain is taken.
 前記スチレン系多官能モノマーとしては、10%K値の高い樹脂粒子が得られ易く、導電性金属層被覆後の粒子強度の低下が少ない点で1分子中に2個のビニル基を有する単量体(2官能ビニル基含有単量体)が好ましく、中でもジビニルベンゼンが好ましい。 As the styrenic polyfunctional monomer, resin particles having a high 10% K value are easily obtained, and a single monomer having two vinyl groups in one molecule in that there is little decrease in particle strength after coating with a conductive metal layer. (Bifunctional vinyl group-containing monomer) is preferable, and divinylbenzene is particularly preferable.
 樹脂粒子を形成するための単量体成分に占めるビニル系架橋性単量体の含有量は、10質量%以上が好ましく、より好ましくは30質量%以上、さらに好ましくは50質量%以上である。ビニル系架橋性単量体の含有量がこの範囲であると、10%K値をより確実に12,000N/mm2以上に制御できる。 The content of the vinyl-based crosslinkable monomer in the monomer component for forming the resin particles is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more. When the content of the vinyl crosslinking monomer is within this range, the 10% K value can be more reliably controlled to 12,000 N / mm 2 or more.
 前記シラン系架橋性単量体としては、10%K値をより確実に制御するうえでは、上述した第三の形態の架橋構造を形成し得るシラン系架橋性単量体が、硬度の高い粒子が得られやすく好ましい。前記シラン系架橋性単量体を用いる場合、樹脂粒子は、シラン系架橋性単量体を含むシラン系単量体を加水分解及び縮合することにより形成されたポリシロキサン骨格を含有するものであることが好ましいのであるが、少なくとも前記第三の形態の架橋構造を形成し得るシラン系架橋性単量体を加水分解及び縮合することにより形成されたポリシロキサン骨格は、ラジカル重合可能な炭素-炭素二重結合(例えば、ビニル基、(メタ)アクリロイル基)を有する重合性ポリシロキサン由来の骨格を有することになる。 As the silane-based crosslinkable monomer, in order to more reliably control the 10% K value, the above-described silane-based crosslinkable monomer that can form the crosslinked structure of the third form is a particle having high hardness. Is preferable because it is easy to obtain. When the silane crosslinkable monomer is used, the resin particle contains a polysiloxane skeleton formed by hydrolysis and condensation of a silane monomer containing the silane crosslinkable monomer. Preferably, the polysiloxane skeleton formed by hydrolyzing and condensing at least the silane-based crosslinkable monomer capable of forming the crosslinked structure of the third form is a carbon-carbon capable of radical polymerization. It has a skeleton derived from a polymerizable polysiloxane having a double bond (for example, vinyl group, (meth) acryloyl group).
 前記第三の形態の架橋構造を形成し得るシラン系架橋性単量体としては、(メタ)アクリロイル基を有するもの、ビニル基を有するもの、またはエポキシ基を有するものが好ましく、より好ましくは(メタ)アクリロイル基を有するもの、ビニル基を有するものであり、さらに好ましくは(メタ)アクリロイル基を有するものである。(メタ)アクリロイル基を有するものの中では、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシランが特に好ましく、ビニル基を有するものの中では、ビニルトリメトキシシランが特に好ましい。 As the silane-based crosslinkable monomer capable of forming the crosslinked structure of the third form, those having a (meth) acryloyl group, those having a vinyl group, or those having an epoxy group are preferred, and more preferably ( Those having a (meth) acryloyl group and those having a vinyl group, more preferably those having a (meth) acryloyl group. Among those having a (meth) acryloyl group, 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane are particularly preferable, and among those having a vinyl group, vinyltrimethoxysilane is particularly preferable.
 上記条件Aと上記条件B、または上記条件Aと上記条件Cを満たす単量体成分は、ビニル系架橋性単量体およびシラン系架橋性単量体の少なくとも一方を含むものであるが、ビニル系非架橋性単量体およびシラン系非架橋性単量体の少なくとも一方を含むこともできる。特に、ビニル系非架橋性単量体を含有させると、回復特性(復元性)や破壊強度などの圧縮変形特性を制御しやすくなるので好ましい。 The monomer component satisfying the condition A and the condition B or the condition A and the condition C includes at least one of a vinyl crosslinkable monomer and a silane crosslinkable monomer. It can also contain at least one of a crosslinkable monomer and a silane non-crosslinkable monomer. In particular, the inclusion of a vinyl-based non-crosslinkable monomer is preferable because compression deformation characteristics such as recovery characteristics (restorability) and fracture strength can be easily controlled.
 前記ビニル系非架橋性単量体としては、上述した単量体(1)が好ましく、より好ましくは、アルキル(メタ)アクリレート類、シクロアルキル(メタ)アクリレート類、芳香環含有(メタ)アクリレート類、スチレン系単官能モノマーである。中でも、回復特性(復元性)や破壊強度を制御しつつ、10%K値の高い樹脂粒子が得られやすい点で、炭素数4以下のアルキル基を有するアルキル(メタ)アクリレート類、炭素数6以下のシクロアルキルを有するシクロアルキル(メタ)アクリレート類、スチレン系単官能モノマーが好ましく、特に10%K値が高い樹脂粒子とするうえではスチレン系単官能モノマーが好ましい。
 スチレン系単官能モノマーとしては、10%K値の高い樹脂粒子が得られ易い点で、スチレンがより好ましい。炭素数4以下のアルキル基を有するアルキル(メタ)アクリレート類の中ではn-ブチルアクリレート、n-ブチルメタクリレート、メチルメタクリレートが好ましい。炭素数6以下のシクロアルキルを有するシクロアルキル(メタ)アクリレート類の中ではシクロヘキシルアクリレート、シクロヘキシルメタクリレートが好ましい。
 例えば前記単量体(1)としてスチレン系単官能モノマーを含む場合には、前記単量体(3)として1分子中に2個以上の(メタ)アクリロイル基を有する単量体またはスチレン系多官能モノマーとを含む態様が好ましい。
As the vinyl non-crosslinkable monomer, the above-described monomer (1) is preferable, and more preferably, alkyl (meth) acrylates, cycloalkyl (meth) acrylates, aromatic ring-containing (meth) acrylates. , A styrene-based monofunctional monomer. Among them, alkyl (meth) acrylates having an alkyl group having 4 or less carbon atoms, 6 carbon atoms in that a resin particle having a high 10% K value can be easily obtained while controlling recovery characteristics (restorability) and fracture strength. Cycloalkyl (meth) acrylates having the following cycloalkyl and styrenic monofunctional monomers are preferred, and styrenic monofunctional monomers are particularly preferred for obtaining resin particles having a high 10% K value.
As the styrene monofunctional monomer, styrene is more preferable because resin particles having a high 10% K value can be easily obtained. Among alkyl (meth) acrylates having an alkyl group having 4 or less carbon atoms, n-butyl acrylate, n-butyl methacrylate, and methyl methacrylate are preferable. Among the cycloalkyl (meth) acrylates having a cycloalkyl having 6 or less carbon atoms, cyclohexyl acrylate and cyclohexyl methacrylate are preferable.
For example, when the monomer (1) contains a styrenic monofunctional monomer, the monomer (3) has a monomer having two or more (meth) acryloyl groups in one molecule or a styrene-based polyfunctional monomer. An embodiment containing a functional monomer is preferred.
 以上のような樹脂粒子の10%K値を12,000N/mm2以上に制御するうえで好適な単量体成分は、(i)ビニル系架橋性単量体を有しシラン系架橋性単量体を有さない形態、(ii)シラン系架橋性単量体を有しビニル系架橋性単量体を有さない形態、(iii)ビニル系架橋性単量体およびシラン系架橋性単量体を有する形態、に大別される。各形態における特に好ましい単量体の組み合わせは以下の通りである。
  (i)の形態(ビニル系架橋性単量体を有しシラン系架橋性単量体を有さない形態)の場合;2個の(メタ)アクリロイル基における炭素-炭素二重結合(C=C)の間に連なって存在する原子の数(ただし、炭素-炭素二重結合(C=C)の炭素原子はカウントしないものとし、(メタ)アクリロイル基間を繋ぐ原子鎖が複数存在する場合には最短の原子鎖における原子数とする)が6個~14個であるジ(メタ)アクリレートと、単官能スチレンモノマーとの組み合わせ。
  (ii)の形態(シラン系架橋性単量体を有しビニル系架橋性単量体を有さない形態)の場合;分子内に(メタ)アクリロイル基またはビニル基を有するシラン系架橋性単量体同士の組み合わせ(例えば、3-メタクリロキシプロピルトリメトキシシランと3-メタクリロキシプロピルメチルジメトキシシランとの組み合わせ)。
  (iii)の形態(ビニル系架橋性単量体およびシラン系架橋性単量体を有する形態)の場合;(メタ)アクリロイル基を有するシラン系架橋性単量体と、スチレン系多官能モノマーと、2個の(メタ)アクリロイル基における炭素-炭素二重結合(C=C)の間に連なって存在する原子の数が6個~14個であるジ(メタ)アクリレートとの組み合わせ、または、(メタ)アクリロイル基を有するシラン系架橋性単量体と、スチレン系多官能モノマーと、スチレン系単官能モノマーとの組み合わせ。
A monomer component suitable for controlling the 10% K value of the resin particles as described above to 12,000 N / mm 2 or more is (i) having a vinyl crosslinkable monomer and a silane crosslinkable monomer. A form having no monomer, (ii) a form having a silane crosslinking monomer and no vinyl crosslinking monomer, (iii) a vinyl crosslinking monomer and a silane crosslinking monomer It is roughly classified into a form having a mer. Particularly preferred combinations of monomers in the respective forms are as follows.
In the case of the form of (i) (form having a vinyl-based crosslinkable monomer and not having a silane-based crosslinkable monomer); carbon-carbon double bonds (C = C) in two (meth) acryloyl groups C) The number of atoms existing in succession (however, carbon atoms of carbon-carbon double bonds (C = C) are not counted, and there are multiple atomic chains connecting (meth) acryloyl groups) Is a combination of di (meth) acrylate having 6 to 14 atoms and the monofunctional styrene monomer.
In the case of the form (ii) (form having a silane crosslinkable monomer and no vinyl crosslinkable monomer); a silane crosslinkable monomer having a (meth) acryloyl group or vinyl group in the molecule A combination of monomers (for example, a combination of 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane).
In the case of the form (iii) (form having a vinyl crosslinkable monomer and a silane crosslinkable monomer); a silane crosslinkable monomer having a (meth) acryloyl group, and a styrene polyfunctional monomer A combination with di (meth) acrylate having 6 to 14 atoms present between carbon-carbon double bonds (C═C) in two (meth) acryloyl groups, or A combination of a silane crosslinkable monomer having a (meth) acryloyl group, a styrene polyfunctional monomer, and a styrene monofunctional monomer.
 前記樹脂粒子の個数基準の平均分散粒子径が2.0μm以上、2.5μm以下である場合に、樹脂粒子の10%K値を17,000N/mm2以上とするには、上述した10%K値を12,000N/mm2以上にするための条件(条件Aと条件Bの両方を満たすこと、または、条件Aと条件Cの両方を満たすこと)に加えて、下記条件xと下記条件aとを満足させるか、もしくは、下記条件xと下記条件b1とを満足させる。ただし、10%K値を12,000N/mm2以上にするための条件として条件Aおよび条件Cの組合せを選択する場合には、条件xと条件aとを満足させる。
  条件x:樹脂粒子を形成するための単量体成分中のシラン系架橋性単量体の含有量が単量体成分総量に対して50質量%以上であるか、該シラン系架橋性単量体の含有量が単量体成分総量に対して50質量%未満であれば単量体成分中のビニル系架橋性単量体の含有量が単量体成分総量に対して35質量%以上である。
  条件a:樹脂粒子を形成するための単量体成分中のエチルビニルベンゼンの含有量が単量体成分総量に対して1質量%以下である。
  条件b1:樹脂粒子を形成するための単量体成分中のエチルビニルベンゼンの含有量が単量体成分総量に対して1質量%を超える場合には、樹脂粒子を形成するための単量体成分中のビニル系架橋性単量体の含有量が単量体成分総量に対して80質量%以上であり、且つ樹脂粒子を200℃以上で加熱する。
When the average dispersed particle diameter based on the number of the resin particles is 2.0 μm or more and 2.5 μm or less, the 10% K value of the resin particles is 10% as described above in order to make the 10% K value of the resin particles 17,000 N / mm 2 or more In addition to the conditions for satisfying the K value of 12,000 N / mm 2 or more (satisfying both condition A and condition B, or satisfying both condition A and condition C), the following condition x and the following condition a is satisfied, or the following condition x and the following condition b1 are satisfied. However, when the combination of the condition A and the condition C is selected as a condition for making the 10% K value 12,000 N / mm 2 or more, the condition x and the condition a are satisfied.
Condition x: The content of the silane crosslinkable monomer in the monomer component for forming the resin particles is 50% by mass or more based on the total amount of the monomer components, or the silane crosslinkable single amount If the content of the body is less than 50% by mass with respect to the total amount of monomer components, the content of the vinyl-based crosslinkable monomer in the monomer component is 35% by mass or more with respect to the total amount of monomer components. is there.
Condition a: The content of ethyl vinyl benzene in the monomer component for forming the resin particles is 1% by mass or less based on the total amount of the monomer component.
Condition b1: A monomer for forming resin particles when the content of ethyl vinyl benzene in the monomer component for forming resin particles exceeds 1% by mass with respect to the total amount of monomer components The content of the vinyl crosslinkable monomer in the component is 80% by mass or more based on the total amount of the monomer components, and the resin particles are heated at 200 ° C. or higher.
 前記樹脂粒子の粒子径が比較的大きい場合(すなわち、個数基準の平均分散粒子径が2.0μm以上である場合)、10%K値をさらに高めるためにより高い架橋度が必要になる。上記条件xを満たすと、50質量%以上のシラン系架橋性単量体か、あるいは35質量%以上のビニル系架橋性単量体によって、架橋度をさらに向上させることができる。加えて、単量体成分の中で架橋に寄与しないエチルビニルベンゼンの含有量を1質量%以下に制御しておくか(上記条件a)、エチルビニルベンゼンの含有量が1質量%を超えるのであれば、それを補うために、ビニル系架橋性単量体の含有量を80質量%以上とし、且つ所定の加熱によって架橋を促進する(上記条件b1)。これにより、より高い架橋が確保される。 When the particle diameter of the resin particles is relatively large (that is, when the number-based average dispersed particle diameter is 2.0 μm or more), a higher degree of crosslinking is required to further increase the 10% K value. When the above condition x is satisfied, the crosslinking degree can be further improved by 50% by mass or more of the silane-based crosslinking monomer or 35% by mass or more of the vinyl-based crosslinking monomer. In addition, the content of ethyl vinyl benzene that does not contribute to crosslinking in the monomer component is controlled to 1% by mass or less (the above condition a), or the content of ethyl vinyl benzene exceeds 1% by mass. If present, in order to compensate for this, the content of the vinyl-based crosslinkable monomer is set to 80% by mass or more, and the crosslinking is promoted by predetermined heating (the above condition b1). This ensures higher cross-linking.
 一方、前記樹脂粒子の個数基準の平均分散粒子径が1.0μm以上、2.0μm未満である場合に、樹脂粒子の10%K値を19,600N/mm2より大きくするには、上述した10%K値を12,000N/mm2以上にするための条件(条件Aと条件Bの両方を満たすこと、または、条件Aと条件Cの両方を満たすこと、)に加えて、上記条件aを満足させるか、もしくは、下記条件b2を満足させる。ただし、10%K値を12,000N/mm2以上にするための条件として条件Aおよび条件Cを選択する場合には、上記条件aを満足させる。
  条件b2:樹脂粒子を形成するための単量体成分中のエチルビニルベンゼンの含有量が単量体成分総量に対して1質量%を超える場合には、樹脂粒子を形成するための単量体成分中のビニル系架橋性単量体の含有量が単量体成分総量に対して35質量%以上であり、且つ樹脂粒子を200℃以上で加熱する。
On the other hand, when the average dispersion particle size based on the number of the resin particles is 1.0 μm or more and less than 2.0 μm, the 10% K value of the resin particles is larger than 19,600 N / mm 2 as described above. In addition to the condition for satisfying 10% K value of 12,000 N / mm 2 or more (satisfying both condition A and condition B, or satisfying both condition A and condition C), the above condition a Or the following condition b2 is satisfied. However, when the condition A and the condition C are selected as conditions for setting the 10% K value to 12,000 N / mm 2 or more, the condition a is satisfied.
Condition b2: a monomer for forming resin particles when the content of ethyl vinyl benzene in the monomer component for forming resin particles exceeds 1% by mass with respect to the total amount of monomer components The content of the vinyl crosslinkable monomer in the component is 35% by mass or more based on the total amount of the monomer components, and the resin particles are heated at 200 ° C. or higher.
 前記樹脂粒子の粒子径が小さい場合(すなわち、個数基準の平均分散粒子径が2.0μm未満である場合)、粒子径が大きい場合に比べると、比較的低い架橋度でも10%K値を高めることができる。つまり、10%K値をさらに高めるために必要になる架橋度は、粒子径が小さいほど低くなる傾向がある。したがって、樹脂粒子の個数基準の平均分散粒子径が2.0μm未満である場合には、上述した条件xは必要とせず、かつ、エチルビニルベンゼンの含有量が1質量%を超えるときも、ビニル系架橋性単量体の含有量は35質量%以上とすること(上記条件b2)で、より高い架橋が確保される。 When the particle size of the resin particles is small (that is, when the number-based average dispersed particle size is less than 2.0 μm), the 10% K value is increased even at a relatively low degree of crosslinking as compared with the case where the particle size is large. be able to. That is, the degree of cross-linking required to further increase the 10% K value tends to decrease as the particle size decreases. Therefore, when the number-based average dispersed particle size of the resin particles is less than 2.0 μm, the above-mentioned condition x is not necessary, and even when the content of ethylvinylbenzene exceeds 1% by mass, By setting the content of the system crosslinkable monomer to 35% by mass or more (the above condition b2), higher crosslinking is ensured.
 また前記樹脂粒子の圧縮破壊変形率および20%~40%K値を上述した範囲とするには、例えば、樹脂粒子を形成するための単量体成分としてビニル系架橋性単量体を含有させ、このビニル系架橋性単量体のうち50質量%以上(より好ましくは60質量%以上、さらに好ましくは70質量%以上)を1分子中にビニル基を2個有する単量体(2官能ビニル基含有単量体)とすればよい。さらには、2官能ビニル基含有単量体を架橋性単量体(ビニル系架橋性単量体およびシラン系架橋性単量体の総量)中40質量%以上(より好ましくは50質量%以上、さらに好ましくは60質量%以上)とすることも、圧縮破壊変形率および20%~40%K値を上述した範囲とするうえで有効である。 In order to set the compression fracture deformation rate and 20% to 40% K value of the resin particles within the above-described range, for example, a vinyl-based crosslinkable monomer is included as a monomer component for forming the resin particles. A monomer having two vinyl groups in one molecule (bifunctional vinyl) of 50% by mass or more (more preferably 60% by mass or more, more preferably 70% by mass or more) of the vinyl-based crosslinkable monomer. Group-containing monomer). Furthermore, the bifunctional vinyl group-containing monomer is 40% by mass or more (more preferably 50% by mass or more) in the crosslinkable monomer (total amount of vinyl crosslinkable monomer and silane crosslinkable monomer). It is also effective to set the compression fracture deformation rate and 20% to 40% K value in the above-described ranges.
 前記樹脂粒子の製造方法としては、特に制限はなく、乳化重合、懸濁重合、分散重合、シード重合、ゾルゲルシード重合法等が挙げられるが、前記樹脂粒子の粒子径を上述した所定の範囲にするには、例えば、シード重合法により樹脂粒子を合成した後、分級する方法等が好ましく採用される。樹脂粒子の合成にシード重合法を採用することにより、粒度分布の小さい樹脂粒子が得られる。さらに、合成後の樹脂粒子を分級し粗粒子を除去することにより、平均粒子径を所望の範囲に調整することができる。 The method for producing the resin particles is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, dispersion polymerization, seed polymerization, sol-gel seed polymerization, and the like. The particle diameter of the resin particles is within the predetermined range described above. For example, a method of classifying resin particles after synthesizing them by a seed polymerization method is preferably employed. By employing a seed polymerization method for the synthesis of resin particles, resin particles having a small particle size distribution can be obtained. Furthermore, the average particle diameter can be adjusted to a desired range by classifying the synthesized resin particles and removing coarse particles.
 前記シード重合法は、シード粒子調製工程、吸収工程、重合工程を含む。なお、例えば、有機材料のみから構成される粒子を合成する場合には、前記ビニル系単量体からシード粒子を調製すればよく、有機材料とポリシロキサン骨格を有する材料から構成される粒子を合成する場合には、前記シラン系単量体からシード粒子(ポリシロキサン粒子)を調製すればよい。 The seed polymerization method includes a seed particle preparation step, an absorption step, and a polymerization step. For example, when synthesizing particles composed only of an organic material, seed particles may be prepared from the vinyl monomer, and particles composed of an organic material and a material having a polysiloxane skeleton are synthesized. In this case, seed particles (polysiloxane particles) may be prepared from the silane monomer.
 ビニル系単量体からシード粒子を調製する方法は、従来用いられる方法を採用することができ、例えば、ソープフリー乳化重合、分散重合等が挙げられる。この場合、シード粒子を形成する単量体成分としてスチレン等のスチレン系単官能モノマーを用いることが好ましい。 As a method of preparing seed particles from a vinyl monomer, a conventionally used method can be employed, and examples thereof include soap-free emulsion polymerization and dispersion polymerization. In this case, it is preferable to use a styrene monofunctional monomer such as styrene as a monomer component for forming seed particles.
 シラン系単量体からシード粒子(ポリシロキサン粒子)を調製する方法としては、水を含む溶媒中で加水分解して縮重合させる方法が挙げられる。前記シラン系単量体としては、上述したシラン系架橋性単量体、シラン系非架橋性単量体を用いることができる。また、ポリシロキサン骨格とビニル重合体を複合化させる場合には、シラン系単量体として、ラジカル重合性基を有するシラン系架橋性単量体を使用し、重合性ポリシロキサン粒子(ラジカル重合性基を有するポリシロキサン骨格を有する粒子)を調製すればよい。加水分解と縮重合は、一括、分割、連続等、任意の方法を採用できる。加水分解し、縮重合させるにあたっては、触媒としてアンモニア、尿素、エタノールアミン、テトラメチルアンモニウムハイドロオキサイド、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の塩基性触媒を好ましく用いることができる。 As a method for preparing seed particles (polysiloxane particles) from a silane-based monomer, there may be mentioned a method of hydrolyzing in a solvent containing water and performing condensation polymerization. As the silane monomer, the above-mentioned silane crosslinkable monomer and silane noncrosslinkable monomer can be used. When a polysiloxane skeleton and a vinyl polymer are combined, a silane-based crosslinkable monomer having a radical polymerizable group is used as the silane monomer, and polymerizable polysiloxane particles (radically polymerizable) are used. Particles having a polysiloxane skeleton having a group) may be prepared. Hydrolysis and polycondensation can employ any method such as batch, split, and continuous. In the hydrolysis and condensation polymerization, basic catalysts such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, and alkaline earth metal hydroxide can be preferably used as the catalyst.
 前記水を含む溶媒中には、水や触媒以外に有機溶剤を含めることができる。有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類;イソオクタン、シクロへキサン等の(シクロ)パラフィン類;ベンゼン、トルエン等の芳香族炭化水素類等を挙げることができる。これらは単独で用いても2種以上を併用してもよい。 In the solvent containing water, an organic solvent can be contained in addition to water and the catalyst. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone, Examples thereof include ketones such as methyl ethyl ketone; esters such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
 加水分解縮合ではまた、アニオン性、カチオン性、非イオン性の界面活性剤や、ポリビニルアルコール、ポリビニルピロリドン等の高分子分散剤を併用することもできる。これらは単独で用いても2種以上を併用してもよい。加水分解縮合は、原料となるシラン系単量体と、触媒や水及び有機溶剤を含む溶媒を混合した後、温度0℃以上100℃以下、好ましくは0℃以上70℃以下で、30分以上100時間以下撹拌することにより行うことができる。 In the hydrolytic condensation, anionic, cationic and nonionic surfactants and polymer dispersants such as polyvinyl alcohol and polyvinylpyrrolidone can be used in combination. These may be used alone or in combination of two or more. Hydrolytic condensation is performed by mixing a silane monomer as a raw material and a solvent containing a catalyst, water, and an organic solvent, and then at a temperature of 0 ° C. to 100 ° C., preferably 0 ° C. to 70 ° C., for 30 minutes or more. It can carry out by stirring for 100 hours or less.
 前記吸収工程では、シード粒子に単量体成分を吸収させる。吸収させる方法は、シード粒子の存在下に、単量体成分を存在させた状態で進行するものであれば特に限定されない。したがって、シード粒子を分散させた溶媒中に単量体成分を加えてもよいし、単量体成分を含む溶媒中にシード粒子を加えてもよい。なかでも、前者のように、予めシード粒子を分散させた溶媒中に、単量体成分を加えるのが好ましい。特に、加水分解、縮合工程で得られたシード粒子を反応液(シード粒子分散液)から取り出すことなく、この反応液に単量体成分を加える方法は、工程が複雑にならず、生産性に優れるため好ましい。 In the absorption step, the monomer component is absorbed by the seed particles. The method of absorption is not particularly limited as long as it proceeds in the presence of the monomer component in the presence of seed particles. Therefore, the monomer component may be added to the solvent in which the seed particles are dispersed, or the seed particles may be added to the solvent containing the monomer component. Especially, it is preferable to add a monomer component in the solvent which disperse | distributed seed particle | grains previously like the former. In particular, the method of adding the monomer component to the reaction solution without taking out the seed particles obtained in the hydrolysis and condensation step from the reaction solution (seed particle dispersion) does not complicate the process and increases productivity. It is preferable because it is excellent.
 前記吸収工程において、単量体成分の添加のタイミングは特に限定されず、一括で加えてもよいし、数回に分けて加えてもよいし、任意の速度でフィードしてもよい。また、単量体成分を加えるにあたっては、単量体成分のみを添加しても単量体成分の溶液を添加してもいずれでもよいが、単量体成分を予め乳化剤で水又は水性媒体に乳化分散させた乳化液をシード粒子に混合することが、シード粒子への吸収がより効率よく行われるため好ましい。 In the absorption step, the timing of addition of the monomer component is not particularly limited, and may be added all at once, may be added in several times, or may be fed at an arbitrary rate. In addition, when adding the monomer component, either the monomer component alone or the monomer component solution may be added, but the monomer component is previously added to water or an aqueous medium with an emulsifier. It is preferable to mix the emulsified and emulsified liquid with the seed particles because absorption into the seed particles is performed more efficiently.
 前記乳化剤は特に限定されないが、例えば、アニオン性界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等のノニオン性界面活性剤が、シード粒子、単量体成分を吸収した後のシード粒子の分散状態を安定化させることもできるので好ましい。これらの乳化剤は、1種のみを使用しても2種以上を併用してもよい。 The emulsifier is not particularly limited. For example, an anionic surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkyl Nonionic surfactants such as amines, glycerin fatty acid esters, and oxyethylene-oxypropylene block polymers are preferable because they can stabilize the dispersed state of the seed particles after absorbing the seed particles and monomer components. These emulsifiers may be used alone or in combination of two or more.
 また、単量体成分を乳化剤で乳化分散させる際には、単量体成分の質量に対して0.3倍以上10倍以下の水や水溶性有機溶剤を使用するのが好ましい。前記水溶性有機溶剤としては、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類等が挙げられる。 Further, when emulsifying and dispersing the monomer component with an emulsifier, it is preferable to use water or a water-soluble organic solvent that is 0.3 to 10 times the mass of the monomer component. Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone And ketones such as methyl ethyl ketone; esters such as ethyl acetate;
 吸収工程は、0℃以上60℃以下の温度範囲で、5分間以上720分間以下、撹拌しながら行うのが好ましい。これらの条件は、用いるシード粒子や単量体の種類等によって、適宜設定すればよく、これらの条件は1種のみ、あるいは2種以上を合わせて採用してもよい。吸収工程において、単量体成分がシード粒子に吸収されたかどうかの判断については、例えば、単量体成分を加える前及び吸収段階終了後に、顕微鏡により粒子を観察し、単量体成分の吸収により粒子径が大きくなっていることを確認することで容易に判断できる。 The absorption step is preferably performed in the temperature range of 0 ° C. to 60 ° C. with stirring for 5 minutes to 720 minutes. These conditions may be set as appropriate depending on the type of seed particles and monomers used, and these conditions may be used alone or in combination of two or more. In the absorption process, for determining whether the monomer component has been absorbed by the seed particles, for example, before adding the monomer component and after completion of the absorption step, observe the particles with a microscope and absorb the monomer component. It can be easily determined by confirming that the particle size is increased.
 重合工程では、シード粒子に吸収された単量体成分を重合反応させる。ここで、シード粒子が重合性ポリシロキサンである場合には、吸収させた単量体成分と重合性ポリシロキサン骨格が有するラジカル重合性基とが重合して、ポリシロキサン骨格とビニル重合体とが複合化する。重合方法は特に限定されないが、例えば、ラジカル重合開始剤を用いる方法が挙げられ、前記ラジカル重合開始剤としては、特に限定されないが、例えば、過酸化物系開始剤や、アゾ系開始剤等が使用可能である。これらラジカル重合開始剤は、単独で用いても2種以上を併用してもよい。 In the polymerization step, the monomer component absorbed by the seed particles is subjected to a polymerization reaction. Here, when the seed particles are a polymerizable polysiloxane, the absorbed monomer component and the radical polymerizable group of the polymerizable polysiloxane skeleton are polymerized to form a polysiloxane skeleton and a vinyl polymer. Combine. Although the polymerization method is not particularly limited, for example, a method using a radical polymerization initiator can be mentioned, and the radical polymerization initiator is not particularly limited. For example, a peroxide-based initiator, an azo-based initiator, etc. It can be used. These radical polymerization initiators may be used alone or in combination of two or more.
 ラジカル重合を行う際の反応温度は40℃以上が好ましく、より好ましくは50℃以上であり、100℃以下が好ましく、より好ましくは80℃以下である。反応温度が低すぎる場合には、重合度が十分に上がらず複合粒子の機械的特性が不充分となる傾向があり、一方、反応温度が高すぎる場合には、重合中に粒子間の凝集が起こりやすくなる傾向がある。なお、ラジカル重合を行う際の反応時間は、用いる重合開始剤の種類に応じて適宜変更すればよいが、通常、5分以上が好ましく、より好ましくは10分以上であり、600分以下が好ましく、より好ましくは300分以下である。反応時間が短すぎる場合には、重合度が十分に上がらない場合があり、反応時間が長すぎる場合には、粒子間で凝集が起こり易くなる傾向がある。 The reaction temperature for carrying out radical polymerization is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. If the reaction temperature is too low, the degree of polymerization does not increase sufficiently and the mechanical properties of the composite particles tend to be insufficient. On the other hand, if the reaction temperature is too high, aggregation between particles occurs during the polymerization. It tends to happen easily. The reaction time for performing radical polymerization may be appropriately changed according to the type of polymerization initiator to be used, but is usually preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 600 minutes or less. More preferably, it is 300 minutes or less. When the reaction time is too short, the degree of polymerization may not be sufficiently increased, and when the reaction time is too long, aggregation tends to occur between particles.
 合成後の樹脂粒子の個数基準の平均分散粒子径は1.1μm以上が好ましく、より好ましくは1.2μm以上、さらに好ましくは1.3μm以上であり、3.0μm以下が好ましく、より好ましくは2.8μm以下、さらに好ましくは2.7μm以下である。また、分散粒子径の個数基準の変動係数は10%以下が好ましく、より好ましくは9%以下、さらに好ましくは7%以下である。 The number-based average dispersed particle size of the resin particles after synthesis is preferably 1.1 μm or more, more preferably 1.2 μm or more, still more preferably 1.3 μm or more, and preferably 3.0 μm or less, more preferably 2 0.8 μm or less, more preferably 2.7 μm or less. The number-based variation coefficient of the dispersed particle diameter is preferably 10% or less, more preferably 9% or less, and still more preferably 7% or less.
 上記のようにして合成した樹脂粒子は、必要に応じて、所定の粒子径となるように分級に供することが好ましい。分級方法は特に限定されず、例えば、電成ふるい等によるふるい分け;メンブランフィルター、プリーツフィルター、セラミック膜フィルター等のフィルターを使用した濾過;質量差及び流体抵抗差の相互作用によって分級する公知の装置(粒子の落下速度等の重力差が原理である重力分級機、自由渦又は半自由渦による遠心力と空気抗力の釣り合いを原理とする(半)自由渦遠心分級、回転する分級羽根(ローター)によってつくられる回転流によって生じる遠心力と空気による抗力の釣り合いを原理とする回転羽根付き遠心分級)を用いた分級;等が挙げられる。これらの中でも、分級精度と生産性の観点から電成ふるいを用いた分級が好ましい。 The resin particles synthesized as described above are preferably subjected to classification so as to have a predetermined particle diameter, if necessary. The classification method is not particularly limited, for example, sieving with an electroforming sieve, etc .; filtration using a filter such as a membrane filter, a pleat filter, a ceramic membrane filter, etc .; a known apparatus for classification by the interaction of mass difference and fluid resistance difference ( Gravity classifier based on the principle of gravity difference such as particle fall velocity, (half) free vortex centrifugal classification based on the balance of centrifugal force and air drag by free vortex or semi-free vortex, rotating classification blade (rotor) Classification using a centrifugal classification with rotating blades based on the balance between the centrifugal force generated by the generated rotating flow and the drag force caused by air. Among these, classification using an electric sieve is preferable from the viewpoint of classification accuracy and productivity.
 電成ふるいを用いて分級する場合、樹脂粒子を液状媒体に分散させた分散体を電成ふるいに通過させることが好ましい。前記液状媒体としては、例えば、水;メタノール、エタノール、プロパノール、ブタノール等のアルコール類;ヘキサン、オクタン等の炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アルコール類、炭化水素類が好ましく、メタノール、ヘキサンがより好ましい。なお、樹脂粒子の分散性を高めるために、液状媒体に各種分散剤を添加してもよい。 When classifying using an electroformed sieve, it is preferable to pass a dispersion in which resin particles are dispersed in a liquid medium through the electroformed sieve. Examples of the liquid medium include water; alcohols such as methanol, ethanol, propanol and butanol; hydrocarbons such as hexane and octane; aromatic hydrocarbons such as benzene, toluene and xylene; These may be used alone or in combination of two or more. Among these, alcohols and hydrocarbons are preferable, and methanol and hexane are more preferable. In order to improve the dispersibility of the resin particles, various dispersants may be added to the liquid medium.
 前記液状媒体の使用量は、樹脂粒子100質量部に対して、100質量部以上が好ましく、より好ましくは200質量部以上、さらに好ましくは500質量部以上であり、10000質量部以下が好ましく、より好ましくは5000質量部以下、さらに好ましくは2000質量部以下である。樹脂粒子を液状媒体に分散させる方法は特に限定されず、例えば、超音波を照射させて分散させる方法;通常攪拌装置、高速攪拌装置、コロイドミル又はホモジナイザーのような剪断分散装置等により分散させる方法;等が挙げられる。 The amount of the liquid medium used is preferably 100 parts by mass or more, more preferably 200 parts by mass or more, still more preferably 500 parts by mass or more, and preferably 10,000 parts by mass or less, relative to 100 parts by mass of the resin particles. Preferably it is 5000 mass parts or less, More preferably, it is 2000 mass parts or less. The method for dispersing the resin particles in the liquid medium is not particularly limited, for example, a method of dispersing by irradiating ultrasonic waves; a method of dispersing by a normal dispersing device, a high speed stirring device, a shearing dispersing device such as a colloid mill or a homogenizer, and the like. And the like.
 電成ふるいを通過させる際の分散体液温は、特に限定されず、使用する液状媒体に応じて適宜調整すればよいが、通常は0℃以上100℃以下である。なお、分散体の液温は、当然、液状媒体の沸点未満である。電成ふるいのふるい孔の寸法は、所望とする平均粒子径、変動係数に応じて変更すればよい。電成ふるいによる分級を行うことにより、粗大粒子を除去することができ、樹脂粒子の粒子径の変動係数を小さくすることができる。 The dispersion liquid temperature at the time of passing through the electroformed sieve is not particularly limited and may be appropriately adjusted according to the liquid medium to be used, but is usually 0 ° C. or higher and 100 ° C. or lower. The liquid temperature of the dispersion is naturally less than the boiling point of the liquid medium. What is necessary is just to change the dimension of the sieve hole of an electroforming sieve according to the desired average particle diameter and a coefficient of variation. By performing classification using an electric sieve, coarse particles can be removed, and the coefficient of variation of the particle diameter of the resin particles can be reduced.
 合成後、必要に応じて分級された樹脂粒子は、通常、乾燥され、場合によっては上述した焼成(加熱処理)に付される。乾燥や焼成などの加熱処理については、公知の方法に従って行えばよいが、上述したように、樹脂粒子を形成するための単量体成分中のシラン系架橋性単量体およびシラン系非架橋性単量体の含有割合が所定の量を超える場合には、このような加熱処理における温度を200℃未満に制限することが重要である。 After the synthesis, the resin particles classified as necessary are usually dried, and in some cases, subjected to the above-described firing (heat treatment). The heat treatment such as drying or baking may be performed according to a known method, but as described above, the silane-based crosslinkable monomer and the silane-based non-crosslinkable in the monomer component for forming the resin particles. When the monomer content exceeds a predetermined amount, it is important to limit the temperature in such heat treatment to less than 200 ° C.
 以上のようにして得られた樹脂粒子(基材)の形状は、特に限定されるものではなく、例えば、球状、回転楕円体状、金平糖状、薄板状、針状、まゆ状等のいずれでも良いが、球状が好ましく、特に真球状が好ましい。 The shape of the resin particles (base material) obtained as described above is not particularly limited, and may be any of, for example, a spherical shape, a spheroid shape, a confetti shape, a thin plate shape, a needle shape, an eyebrow shape, and the like. Spherical shape is preferable, but spherical shape is particularly preferable.
 本発明の導電性微粒子は、基材(樹脂粒子)表面に形成された少なくとも一層の導電性金属層を有する。導電性金属層を構成する金属としては特に限定されないが、例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ニッケル、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム及びニッケル-リン、ニッケル-ホウ素等の金属や金属化合物、及び、これらの合金等が挙げられる。これらの中でも、金、ニッケル、パラジウム、銀、銅、錫が導電性に優れた導電性微粒子となることから好ましい。また、安価な点で、ニッケル、ニッケル合金(Ni-Au、Ni-Pd、Ni-Pd-Au、Ni-Ag);銅、銅合金(CuとFe、Co、Ni、Zn、Sn、In、Ga、Tl、Zr、W、Mo、Rh、Ru、Ir、Ag、Au、Bi、Al、Mn、Mg,P、Bからなる群から選択される少なくとも1種の金属元素との合金、好ましくはAg、Ni、Sn、Znとの合金);銀、銀合金(AgとFe、Co、Ni、Zn、Sn、In、Ga、Tl、Zr、W、Mo、Rh、Ru、Ir、Au、Bi、Al、Mn、Mg、P、Bからなる群から選択される少なくとも1種の金属元素との合金、好ましくはAg-Ni、Ag-Sn、Ag-Zn);錫、錫合金(たとえばSn-Ag、Sn-Cu、Sn-Cu-Ag、Sn-Zn、Sn-Sb、Sn-Bi-Ag、Sn-Bi-In、Sn-Au、Sn-Pb等)等が好ましい。 The conductive fine particles of the present invention have at least one conductive metal layer formed on the substrate (resin particle) surface. The metal constituting the conductive metal layer is not particularly limited. For example, gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, nickel, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt Indium, nickel-phosphorus, nickel-boron and other metals and metal compounds, and alloys thereof. Among these, gold, nickel, palladium, silver, copper, and tin are preferable because they become conductive fine particles having excellent conductivity. Also, in terms of inexpensiveness, nickel, nickel alloys (Ni—Au, Ni—Pd, Ni—Pd—Au, Ni—Ag); copper, copper alloys (Cu and Fe, Co, Ni, Zn, Sn, In, An alloy with at least one metal element selected from the group consisting of Ga, Tl, Zr, W, Mo, Rh, Ru, Ir, Ag, Au, Bi, Al, Mn, Mg, P, B, preferably Ag, Ni, Sn, Zn alloy); silver, silver alloy (Ag and Fe, Co, Ni, Zn, Sn, In, Ga, Tl, Zr, W, Mo, Rh, Ru, Ir, Au, Bi Alloy with at least one metal element selected from the group consisting of Al, Mn, Mg, P and B, preferably Ag—Ni, Ag—Sn, Ag—Zn; tin, tin alloy (eg Sn— Ag, Sn-Cu, Sn-Cu-Ag, Sn-Zn, Sn-S , Sn-Bi-Ag, Sn-Bi-In, Sn-Au, Sn-Pb, etc.) and the like are preferable.
 導電性金属層は、上述した金属や合金の中でも特に、ニッケルまたはニッケル合金で構成されることが好ましく、ニッケル合金で構成されることがより好ましい。本発明は基材とする樹脂粒子を硬めに設計することにより圧痕形成能を高めて所期の効果を得るものであるが、この効果をより発現させやすくする上では、導電性微粒子表面の導電性金属層は基材に追随しうる適度な硬さを有していることが望まれる。ニッケルまたはニッケル合金で構成された金属層であれば、本発明の効果を発現させるのにより適した硬さを有することとなる。このような観点から、導電性金属層を構成するニッケル合金としては特に、リン(P)およびホウ素(B)の少なくとも一方を合金成分とするNi合金(Ni-P合金、Ni-B合金、Ni-P-B合金)が好ましく、より好ましくはリン(P)を含む合金がよい。リン(P)やホウ素(B)を含有することにより、ニッケル合金は軟らかくなり、導電性金属層は基材に追随しやすくなる。 The conductive metal layer is preferably composed of nickel or a nickel alloy, more preferably a nickel alloy, among the metals and alloys described above. In the present invention, the resin particles used as the base material are designed to be harder, thereby improving the indentation forming ability and obtaining the desired effect. In order to make this effect easier to express, the conductivity of the surface of the conductive fine particles is improved. It is desirable that the conductive metal layer has an appropriate hardness that can follow the substrate. If it is a metal layer comprised of nickel or a nickel alloy, it will have a hardness that is more suitable for exhibiting the effects of the present invention. From this point of view, the nickel alloy constituting the conductive metal layer is particularly a Ni alloy (Ni—P alloy, Ni—B alloy, Ni) containing at least one of phosphorus (P) and boron (B) as an alloy component. -PB alloy), more preferably an alloy containing phosphorus (P). By containing phosphorus (P) and boron (B), the nickel alloy becomes soft and the conductive metal layer easily follows the base material.
 導電性金属層を構成するニッケル合金がリン(P)やホウ素(B)を含む場合、リン(P)およびホウ素(B)の合計含有量は、合金中のNi、P、Bの合計100質量%に対して、4質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは6質量%以上である。リン(P)単独の含有量は、合金中のNi、P、Bの合計100質量%に対して、4質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは6質量%以上である。ホウ素(B)単独の含有量は、合金中のNi、P、Bの合計100質量%に対して、4質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは6質量%以上である。リン(P)やホウ素(B)の含有量が多いほど、ニッケル合金が軟らかくなり、本発明の効果が発揮されやすくなる。ただし、ニッケル合金中のリン(P)やホウ素(B)の含有量があまりに多すぎると、導電性金属層の電気抵抗値が高くなる場合がある。したがって、ニッケル合金中のリン(P)およびホウ素(B)の合計含有量は、合金中のNi、P、Bの合計質量を100質量%としたときに15質量%以下が好ましく、同様の理由から、ニッケル合金中のP含有量は15質量%以下が好ましく、ニッケル合金中のB含有量は10質量%以下が好ましい。なお、ニッケル合金中のP含有量およびB含有量は、導電性金属層を形成する際に用いる無電解ニッケルめっき液のP濃度、B濃度、pH等を調整することにより制御できる。 When the nickel alloy constituting the conductive metal layer contains phosphorus (P) or boron (B), the total content of phosphorus (P) and boron (B) is 100 masses in total of Ni, P, and B in the alloy. % Is preferably 4% by mass or more, more preferably 5% by mass or more, and still more preferably 6% by mass or more. The content of phosphorus (P) alone is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more with respect to the total of 100% by mass of Ni, P, and B in the alloy. is there. The content of boron (B) alone is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more with respect to the total of 100% by mass of Ni, P and B in the alloy. is there. The greater the content of phosphorus (P) and boron (B), the softer the nickel alloy, and the more easily the effects of the present invention are exhibited. However, if the content of phosphorus (P) or boron (B) in the nickel alloy is too large, the electrical resistance value of the conductive metal layer may increase. Therefore, the total content of phosphorus (P) and boron (B) in the nickel alloy is preferably 15% by mass or less when the total mass of Ni, P, and B in the alloy is 100% by mass, for the same reason. Therefore, the P content in the nickel alloy is preferably 15% by mass or less, and the B content in the nickel alloy is preferably 10% by mass or less. The P content and B content in the nickel alloy can be controlled by adjusting the P concentration, B concentration, pH, etc. of the electroless nickel plating solution used when forming the conductive metal layer.
 なお、導電性金属層を構成するニッケル合金はリン(P)やホウ素(B)以外の他の金属成分を含んでいてもよい。他の金属成分としては、Au、Pdなどの難酸化性金属元素が、ニッケル合金の効果を損なわない点から好ましい。 In addition, the nickel alloy which comprises a conductive metal layer may contain other metal components other than phosphorus (P) and boron (B). As the other metal component, a hardly oxidizable metal element such as Au or Pd is preferable because it does not impair the effect of the nickel alloy.
 また、導電性金属層は、単層でもよいし複層であってもよく、複層の場合には、例えば、ニッケル(ニッケル合金)-金、ニッケル(ニッケル合金)-パラジウム、ニッケル(ニッケル合金)-パラジウム-金、ニッケル(ニッケル合金)-銀等の組合せが好ましく挙げられる。 The conductive metal layer may be a single layer or multiple layers. In the case of multiple layers, for example, nickel (nickel alloy) -gold, nickel (nickel alloy) -palladium, nickel (nickel alloy) ) -Palladium-gold, nickel (nickel alloy) -silver and the like are preferred.
 前記導電性金属層の厚さは、0.01μm以上が好ましく、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上であり、0.20μm以下が好ましく、より好ましくは0.18μm以下、さらに好ましくは0.15μm以下、一層好ましくは、0.12μm以下、特に好ましくは0.080μm以下である。基材とする樹脂粒子が微細な粒子径である本発明の導電性微粒子においては、導電性金属層の厚さが上記範囲内であれは、導電性微粒子を異方性導電材料として用いる際に、安定した電気的接続が維持できる。 The thickness of the conductive metal layer is preferably 0.01 μm or more, more preferably 0.03 μm or more, further preferably 0.05 μm or more, preferably 0.20 μm or less, more preferably 0.18 μm or less, More preferably, it is 0.15 micrometer or less, More preferably, it is 0.12 micrometer or less, Most preferably, it is 0.080 micrometer or less. In the conductive fine particles of the present invention in which the resin particles as the base material have a fine particle diameter, when the conductive metal layer has a thickness within the above range, the conductive fine particles are used as an anisotropic conductive material. Stable electrical connection can be maintained.
 導電性金属層の形成方法は特に限定されず、例えば、基材表面に無電解メッキ法、電解メッキ法等によってメッキを施す方法;基材表面に真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着方法により導電性金属層を形成する方法;等により形成できる。これらの中でも特に無電解メッキ法が、大掛かりな装置を必要とせず容易に導電性金属層を形成できる点で好ましい。 The method for forming the conductive metal layer is not particularly limited, for example, a method in which the surface of the substrate is plated by an electroless plating method, an electrolytic plating method, or the like; physical properties such as vacuum deposition, ion plating, ion sputtering on the surface of the substrate A method of forming a conductive metal layer by a general vapor deposition method; Among these, the electroless plating method is particularly preferable in that a conductive metal layer can be easily formed without requiring a large-scale apparatus.
 なお、前記導電性金属層は、樹脂粒子表面の少なくとも一部を被覆していればよいが、導電性金属層の表面には、実質的な割れや、導電性金属層が形成されていない面が存在しないことが好ましい。ここで、「実質的な割れや、導電性金属層が形成されていない面」とは、電子顕微鏡(倍率1000倍)を用いて任意の10000個の導電性微粒子の表面を観察したときに、導電性金属層の割れ、および、樹脂粒子表面の露出が、実質的に目視で観察されないことを意味する。 The conductive metal layer only needs to cover at least a part of the surface of the resin particles, but the surface of the conductive metal layer has no substantial cracks or conductive metal layer. Is preferably absent. Here, “substantially cracked or a surface on which no conductive metal layer is formed” means that when the surface of any 10,000 conductive fine particles is observed using an electron microscope (magnification 1000 times), It means that the crack of the conductive metal layer and the exposure on the surface of the resin particles are not substantially visually observed.
 前記導電性金属層は、平滑で突起部を有しないことが好ましい。具体的には、導電性金属層表面からの高さが0.05μm以上である突起部の数が、導電性微粒子1個あたり10個未満であることが好ましく、さらに5個未満であることが好ましく、特に2個未満であることが好ましい。ここで突起部とは、導電性金属層と同様の金属又は合金で構成されており、該導電性金属層と突起部を構成する金属又は合金が一体となっている部分を意味するものとする。導電性金属層と同じ金属又は合金で一体となっている突起部が存在すると、該突起部がクラックの基点となって金属層が割れ、電気的接続の際の抵抗値が高くなる虞がある。また、前記導電性金属層には、異常析出による金属微粒子が付着していないか、付着していても、その付着数が少ないことが好ましい。具体的には、金属微粒子の付着数が導電性微粒子1個あたり2個未満であることが好ましい。 The conductive metal layer is preferably smooth and has no protrusions. Specifically, the number of protrusions having a height of 0.05 μm or more from the surface of the conductive metal layer is preferably less than 10 per conductive fine particle, and more preferably less than 5. It is particularly preferable that the number is less than 2. Here, the protruding portion is made of the same metal or alloy as the conductive metal layer, and means a portion where the conductive metal layer and the metal or alloy constituting the protruding portion are integrated. . If there is a protrusion integrated with the same metal or alloy as the conductive metal layer, the protrusion may become the starting point of the crack, causing the metal layer to break and the resistance value during electrical connection to increase. . Further, it is preferable that the conductive metal layer does not have metal fine particles due to abnormal precipitation, or even if it has adhered, the number of adhesion is small. Specifically, the number of metal fine particles attached is preferably less than 2 per conductive fine particle.
 本発明の導電性微粒子の個数平均粒子径は、1.1μm以上が好ましく、より好ましくは1.2μm以上、さらに好ましくは1.3μm以上、特に好ましくは1.4μm以上であり、2.8μm以下が好ましく、より好ましくは2.6μm以下、さらに好ましくは2.4μm以下、特に好ましくは2.2μm以下である。個数平均粒子径がこの範囲内であれば、微細化、狭小化された電極や配線の電気接続に対して、好適に使用できる。
 なお、導電性微粒子の個数平均粒子径としては、フロー式粒子像解析装置(シスメックス社製「FPIA(登録商標)-3000」)を用いて求めた、3000個の粒子の個数基準の平均粒子径を採用することが好ましい。
The number average particle diameter of the conductive fine particles of the present invention is preferably 1.1 μm or more, more preferably 1.2 μm or more, further preferably 1.3 μm or more, particularly preferably 1.4 μm or more, and 2.8 μm or less. Is preferably 2.6 μm or less, more preferably 2.4 μm or less, and particularly preferably 2.2 μm or less. If the number average particle diameter is within this range, it can be suitably used for electrical connection of miniaturized and narrowed electrodes and wirings.
The number average particle size of the conductive fine particles was determined using a flow type particle image analyzer (“FPIA (registered trademark) -3000” manufactured by Sysmex Corporation), and the average particle size based on the number of 3000 particles. Is preferably adopted.
 本発明の導電性微粒子は、その直径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上、200,000N/mm2以下であることが好ましい。より好ましくは14,000N/mm2以上、さらに好ましくは15,000N/mm2以上、一層好ましくは17,000N/mm2以上、さらに好ましくは20,000N/mm2以上であり、より好ましくは150,000N/mm2以下、さらに好ましくは100,000N/mm2以下、最も好ましくは75,000N/mm2以下である。導電性微粒子の10%K値がこの範囲であれば、被接続体(電極)に対して充分な圧痕を形成でき、これにより導電性金属層と被接続体との密着性を高め、かつ大きな接続面積を確保することが可能となる。なお、導電性微粒子の10%K値は、樹脂粒子の10%K値と同様にして測定することができる。 The conductive fine particles of the present invention preferably have a compressive elastic modulus (10% K value) of 12,000 N / mm 2 or more and 200,000 N / mm 2 or less when the diameter is displaced by 10%. More preferably 14,000N / mm 2 or more, more preferably 15,000N / mm 2 or more, more preferably 17,000N / mm 2 or more, more preferably 20000 N / mm 2 or more, more preferably 150 , N / mm 2 or less, more preferably 100,000 N / mm 2 or less, and most preferably 75,000 N / mm 2 or less. If the 10% K value of the conductive fine particles is within this range, a sufficient indentation can be formed on the connected body (electrode), thereby improving the adhesion between the conductive metal layer and the connected body, It is possible to secure a connection area. The 10% K value of the conductive fine particles can be measured in the same manner as the 10% K value of the resin particles.
 本発明の導電性微粒子は、表面の少なくとも一部に絶縁性樹脂層を有することもできる。つまり、前記導電性金属層の表面にさらに絶縁性樹脂層を設けた態様であってもよい。このように表面の導電性金属層にさらに絶縁性樹脂層が積層されていると、高密度回路の形成時や端子接続時などに生じやすい横導通を防ぐことができる。 The conductive fine particles of the present invention can also have an insulating resin layer on at least a part of the surface. That is, the aspect which provided the insulating resin layer further on the surface of the said electroconductive metal layer may be sufficient. When the insulating resin layer is further laminated on the conductive metal layer on the surface in this way, it is possible to prevent the lateral conduction that is likely to occur when a high-density circuit is formed or when a terminal is connected.
 前記絶縁性樹脂層としては、導電性微粒子の粒子間における絶縁性が確保でき、一定の圧力及び/又は加熱により容易にその絶縁性樹脂層が崩壊あるいは剥離するものであれば特に限定されず、例えば、ポリエチレンなどのポリオレフィン類;ポリメチル(メタ)アクリレートなどの(メタ)アクリレート重合体および共重合体;ポリスチレン;等の熱可塑性樹脂やその架橋物;エポキシ樹脂、フェノール樹脂、アミノ樹脂(メラミン樹脂等)等の熱硬化性樹脂;ポリビニルアルコール等の水溶性樹脂およびこれらの混合物;等が挙げられる。但し、基材粒子に比べて絶縁性樹脂層が硬過ぎる場合には、絶縁性樹脂層の破壊よりも先に基材粒子自体が破壊してしまうおそれがある。したがって、絶縁性樹脂層には、未架橋または比較的架橋度の低い樹脂を用いることが好ましい。 The insulating resin layer is not particularly limited as long as the insulating property between the particles of the conductive fine particles can be secured, and the insulating resin layer can be easily collapsed or peeled off by a certain pressure and / or heating. For example, polyolefins such as polyethylene; (meth) acrylate polymers and copolymers such as polymethyl (meth) acrylate; thermoplastic resins such as polystyrene; and cross-linked products thereof; epoxy resins, phenol resins, amino resins (melamine resins, etc.) And the like; and water-soluble resins such as polyvinyl alcohol and mixtures thereof. However, when the insulating resin layer is too hard compared to the base particle, the base particle itself may be destroyed before the insulating resin layer is destroyed. Therefore, it is preferable to use an uncrosslinked or relatively low degree of crosslinking resin for the insulating resin layer.
 前記絶縁性樹脂層は、単層であっても、複数の層からなるものであってもよい。例えば、単一又は複数の皮膜状の層が形成されていてもよいし、絶縁性を有する粒状、球状、塊状、鱗片状その他の形状の粒子を導電性金属層の表面に付着させた層であってもよいし、さらには、導電性金属層の表面を化学修飾することにより形成された層であってもよく、または、これらが組み合わされたものであってもよい。絶縁性樹脂層の厚さは0.01μm以上1μm以下が好ましく、より好ましくは0.02μm以上、0.5μm以下、さらに好ましくは0.03μm以上、0.4μm以下である。絶縁性樹脂層の厚さが前記範囲内であれば、導電性粒子による導通特性を良好に維持しつつ、粒子間の電気絶縁性が良好となる。 The insulating resin layer may be a single layer or a plurality of layers. For example, a single or a plurality of film-like layers may be formed, or a layer in which particles having insulating, granular, spherical, lump, scale or other shapes are attached to the surface of the conductive metal layer. Further, it may be a layer formed by chemically modifying the surface of the conductive metal layer, or a combination thereof. The thickness of the insulating resin layer is preferably 0.01 μm or more and 1 μm or less, more preferably 0.02 μm or more and 0.5 μm or less, and further preferably 0.03 μm or more and 0.4 μm or less. When the thickness of the insulating resin layer is within the above range, the electrical insulation between the particles becomes good while maintaining the conduction characteristics by the conductive particles.
2.異方性導電材料
 本発明の異方性導電材料は、上記本発明の導電性微粒子がバインダー樹脂に分散してなる。異方性導電材料の形態は特に限定されず、例えば、異方性導電フィルム、異方性導電ペースト、異方性導電接着剤、異方性導電インクなど様々な形態が挙げられる。これらの異方性導電材料を相対向する基材同士や電極端子間に設けることにより、良好な電気的接続が可能になる。なお、本発明の導電性微粒子を用いた異方性導電材料には、液晶表示素子用導通材料(導通スペーサーおよびその組成物)も含まれる。
2. Anisotropic conductive material The anisotropic conductive material of the present invention comprises the conductive fine particles of the present invention dispersed in a binder resin. The form of the anisotropic conductive material is not particularly limited, and examples thereof include various forms such as an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, and an anisotropic conductive ink. By providing these anisotropic conductive materials between opposing substrates or between electrode terminals, good electrical connection can be achieved. The anisotropic conductive material using the conductive fine particles of the present invention includes a conductive material for a liquid crystal display element (conductive spacer and composition thereof).
 前記バインダー樹脂としては、絶縁性の樹脂であれば特に限定されず、例えば、アクリル樹脂、エチレン-酢酸ビニル樹脂、スチレン-ブタジエンブロック共重合体などの熱可塑性樹脂;グリシジル基を有するモノマーやオリゴマーおよびイソシアネートなどの硬化剤との反応により硬化する硬化性樹脂組成物;光や熱により硬化する硬化性樹脂組成物;等が挙げられる。
 なお、本発明の異方性導電材料は、前記バインダー樹脂中に本発明の導電性微粒子を分散させ、所望の形態とすることで得られるが、例えば、バインダー樹脂と導電性微粒子とを別々に使用し、接続しようとする基材間や電極端子間に導電性微粒子をバインダー樹脂とともに存在させることによって接続してもかまわない。
The binder resin is not particularly limited as long as it is an insulating resin, and examples thereof include thermoplastic resins such as acrylic resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers; monomers and oligomers having a glycidyl group; Examples thereof include a curable resin composition that is cured by a reaction with a curing agent such as isocyanate; a curable resin composition that is cured by light or heat;
The anisotropic conductive material of the present invention can be obtained by dispersing the conductive fine particles of the present invention in the binder resin to obtain a desired form. For example, the binder resin and the conductive fine particles are separately provided. You may connect by making electroconductive fine particles exist with a binder resin between the base material to be used and connecting between electrode terminals.
 本発明の異方性導電材料において、導電性微粒子の含有量は、用途に応じて適宜決定すればよいが、例えば、異方性導電材料の全量に対して1体積%以上が好ましく、より好ましくは2体積%以上、さらに好ましくは5体積%以上であり、50体積%以下が好ましく、より好ましくは30体積%以下、さらに好ましくは20体積%以下である。導電性微粒子の含有量が少なすぎると、充分な電気的導通が得られ難い場合があり、一方、導電性微粒子の含有量が多すぎると、導電性微粒子同士が接触してしまい、異方性導電材料としての機能が発揮され難い場合がある。 In the anisotropic conductive material of the present invention, the content of the conductive fine particles may be appropriately determined according to the use. For example, the volume of the anisotropic conductive material is preferably 1% by volume or more, more preferably Is 2% by volume or more, more preferably 5% by volume or more, preferably 50% by volume or less, more preferably 30% by volume or less, and still more preferably 20% by volume or less. If the content of the conductive fine particles is too small, it may be difficult to obtain sufficient electrical continuity. On the other hand, if the content of the conductive fine particles is too large, the conductive fine particles are in contact with each other, and anisotropy is caused. The function as a conductive material may be difficult to be exhibited.
 本発明の異方性導電材料におけるフィルム膜厚、ペーストや接着剤の塗工膜厚、印刷膜厚等については、使用する本発明の導電性微粒子の粒子径と、接続すべき電極の仕様とを考慮し、接続すべき電極間に導電性微粒子が狭持され、且つ接続すべき電極が形成された接合基板同士の空隙がバインダー樹脂層により充分に満たされるように、適宜設定することが好ましい。 About the film thickness in the anisotropic conductive material of the present invention, the coating thickness of the paste or adhesive, the printed film thickness, etc., the particle diameter of the conductive fine particles of the present invention to be used and the specifications of the electrode to be connected In consideration of the above, it is preferable to appropriately set so that the conductive fine particles are sandwiched between the electrodes to be connected and the gap between the bonding substrates on which the electrodes to be connected are formed is sufficiently filled with the binder resin layer. .
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention. In the following, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
1.物性測定方法
 各種物性の測定は以下の方法で行った。
 <シード粒子および樹脂粒子の平均分散粒子径>
 樹脂粒子0.005部に、乳化剤であるポリオキシエチレンアルキルエーテル硫酸エステルアンモニウム塩(第一工業製薬株式会社製「ハイテノール(登録商標)N-08」)の1%水溶液20部を加え、超音波で10分間分散させた後、粒度分布測定装置(ベックマンコールター社製「コールターマルチサイザーIII型」)を用いて、30000個の粒子の粒子径(μm)を測定し、個数基準の平均分散粒子径を求めた。
1. Physical property measurement method Various physical properties were measured by the following methods.
<Average dispersed particle size of seed particles and resin particles>
20 parts of a 1% aqueous solution of polyoxyethylene alkyl ether sulfate ammonium salt (Daiichi Kogyo Seiyaku Co., Ltd. “Hitenol (registered trademark) N-08”) as an emulsifier is added to 0.005 part of resin particles. After being dispersed for 10 minutes by sonic waves, the particle size (μm) of 30000 particles was measured using a particle size distribution analyzer (“Coulter Multisizer III type” manufactured by Beckman Coulter, Inc.), and the number-based average dispersed particles The diameter was determined.
 <導電性微粒子の個数平均粒子径>
 導電性微粒子0.05部に、乳化剤であるポリオキシエチレンオレイルエーテル(「エマルゲン430」花王株式会社製)の1.4%水溶液17.5部を加え、超音波で10分間分散させた後、フロー式粒子像解析装置(シスメックス社製「FPIA(登録商標)-3000」)を用いて、3000個の粒子の粒子径(μm)を測定し、個数平均粒子径を求めた。
<Number average particle diameter of conductive fine particles>
After adding 17.5 parts of 1.4% aqueous solution of polyoxyethylene oleyl ether (“Emulgen 430” manufactured by Kao Corporation) as an emulsifier to 0.05 parts of conductive fine particles and dispersing for 10 minutes with ultrasound, Using a flow particle image analyzer (“FPIA (registered trademark) -3000” manufactured by Sysmex Corporation), the particle diameter (μm) of 3000 particles was measured to determine the number average particle diameter.
 <導電性金属層の膜厚>
 フロー式粒子像解析装置(シスメックス社製「FPIA(登録商標)-3000」)を用いて、基材粒子(樹脂粒子)3000個の個数平均粒子径X(μm)および導電性微粒子3000個の個数平均粒子径Y(μm)を測定した。そして、下記式に従って導電性金属層の膜厚を算出した。
  導電性金属層膜厚(μm)=(Y-X)/2
<Film thickness of conductive metal layer>
Using a flow type particle image analyzer (“FPIA (registered trademark) -3000” manufactured by Sysmex Corporation), the number average particle diameter X (μm) of 3000 base particles (resin particles) and the number of 3000 conductive fine particles The average particle size Y (μm) was measured. And the film thickness of the electroconductive metal layer was computed according to the following formula.
Conductive metal layer thickness (μm) = (Y−X) / 2
 <導電性金属層のリン(P)含有量>
 導電性微粒子の導電性金属層(メッキ膜)を王水を用いて溶解させ、誘導結合プラズマ発光分光分析装置(ICP)(島津製作所社製「ICPE-9000」)で分析し、得られた定量結果より導電性金属層1g当たりに含まれるNi質量とP質量とを求め、下記式に基づきP含有量(%)を算出した。なお、以下の実施例で形成した導電性金属層には、いずれもホウ素(B)は含まれない。
   P含有量(質量%)=P質量×100/(Ni質量+P質量)
<Phosphorus (P) content of conductive metal layer>
The conductive metal layer (plating film) of the conductive fine particles is dissolved using aqua regia and analyzed with an inductively coupled plasma emission spectrometer (ICP) (“ICPE-9000” manufactured by Shimadzu Corporation). The Ni mass and the P mass contained per 1 g of the conductive metal layer were determined from the results, and the P content (%) was calculated based on the following formula. Note that none of the conductive metal layers formed in the following examples contain boron (B).
P content (% by mass) = P mass × 100 / (Ni mass + P mass)
 <樹脂粒子の10%~40%K値および圧縮破壊変形率>
 微小圧縮試験機(島津製作所社製「MCT-W500」)を用いて、室温(25℃)において、試料台(材質:SKS材平板)上に散布した粒子1個について、直径50μmの円形平板圧子(材質:ダイヤモンド)を用いて、「標準表面検出」モードで、粒子の中心方向へ一定の負荷速度(2.2295mN/秒)で荷重をかけた。そして、圧縮変位が粒子径の10%、20%、30%及び40%となったときの荷重(mN)、並びに、粒子が変形により破壊したときの変位量(μm)を測定した。得られた圧縮荷重、粒子の圧縮変位及び粒子径から、K値を算出した。なお、測定は各試料について、異なる10個の粒子に対して行い、平均した値を測定値とした。
<10% to 40% K value and compressive fracture deformation rate of resin particles>
Using a micro-compression tester (“MCT-W500” manufactured by Shimadzu Corporation), a circular flat plate indenter with a diameter of 50 μm is used for one particle dispersed on a sample table (material: SKS flat plate) at room temperature (25 ° C.). Using (material: diamond), a load was applied at a constant load speed (2.2295 mN / sec) toward the center of the particles in the “standard surface detection” mode. Then, the load (mN) when the compression displacement became 10%, 20%, 30%, and 40% of the particle diameter, and the displacement amount (μm) when the particles were broken by deformation were measured. The K value was calculated from the obtained compressive load, the compression displacement of the particles, and the particle diameter. In addition, the measurement was performed on 10 different particles for each sample, and the average value was used as the measurement value.
2.導電性微粒子の製造
2-1.基材粒子(樹脂粒子)の作製
 (製造例1)
 冷却管、温度計、滴下口を備えた四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール600部を入れ、攪拌下、滴下口から、重合性シラン化合物(単量体成分)として3-メタクリロキシプロピルトリメトキシシラン(MPTMS)40部を添加し、3-メタクリロキシプロピルトリメトキシシランの加水分解、縮合反応を行って、メタクリロイル基を有するポリシロキサン粒子(シード粒子)の乳濁液を調製した。このポリシロキサン粒子の個数基準の平均分散粒子径は0.94μmであった。
2. 2. Production of conductive fine particles 2-1. Preparation of substrate particles (resin particles) (Production Example 1)
In a four-necked flask equipped with a condenser, a thermometer, and a dripping port, 1800 parts of ion-exchanged water, 24 parts of 25% aqueous ammonia, and 600 parts of methanol are placed under stirring and a polymerizable silane compound (simple 40 parts of 3-methacryloxypropyltrimethoxysilane (MPTMS) is added as a monomer component), and hydrolysis and condensation reactions of 3-methacryloxypropyltrimethoxysilane are carried out to produce polysiloxane particles having methacryloyl groups (seed particles). ) Emulsion was prepared. The number-based average dispersed particle size of the polysiloxane particles was 0.94 μm.
 次いで、乳化剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製「ハイテノール(登録商標)NF-08」)の20%水溶液3.0部をイオン交換水120部に溶解した溶液に、吸収モノマー(単量体成分)としてスチレン(St)60部および1,6-ヘキサンジオールジメタクリレート(HXDMA)60部と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製「V-65」)1.6部とを溶解した溶液を加え、乳化分散させて吸収モノマーの乳化液を調製した。乳化分散の開始から2時間後、得られた乳化液を、ポリシロキサン粒子(シード粒子)の乳濁液中に添加して、さらに攪拌を行った。乳化液の添加から1時間後、混合液をサンプリングして顕微鏡で観察を行ったところ、ポリシロキサン粒子が吸収モノマーを吸収して肥大化していることが確認された。 Next, 3.0 parts of a 20% aqueous solution of polyoxyethylene styrenated phenyl ether sulfate ammonium salt (“Hitenol (registered trademark) NF-08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as an emulsifier is dissolved in 120 parts of ion-exchange water. In this solution, 60 parts of styrene (St) and 60 parts of 1,6-hexanediol dimethacrylate (HXDMA) as absorption monomers (monomer components) and 2,2′-azobis (2,4-dimethylvaleronitrile) A solution in which 1.6 parts (Wako Pure Chemical Industries, Ltd. “V-65”) was dissolved was added and emulsified and dispersed to prepare an emulsion of an absorbing monomer. Two hours after the start of emulsification dispersion, the obtained emulsion was added to an emulsion of polysiloxane particles (seed particles), and further stirred. One hour after the addition of the emulsified liquid, the mixed liquid was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were absorbed and absorbed.
 次いで、ポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩の20%水溶液8.0部を加え、窒素雰囲気下で反応液を65℃まで昇温させて、65℃で2時間保持し、単量体成分のラジカル重合を行った。ラジカル重合後の乳濁液を固液分離し、得られたケーキをイオン交換水、メタノールで洗浄した後、窒素雰囲気下120℃で2時間真空乾燥し、樹脂粒子(1)を得た。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。 Next, 8.0 parts of a 20% aqueous solution of polyoxyethylene styrenated phenyl ether sulfate ammonium salt was added, and the reaction solution was heated to 65 ° C. under a nitrogen atmosphere and held at 65 ° C. for 2 hours. The components were radically polymerized. The emulsion after radical polymerization was subjected to solid-liquid separation, and the obtained cake was washed with ion-exchanged water and methanol, and then vacuum-dried at 120 ° C. for 2 hours in a nitrogen atmosphere to obtain resin particles (1). Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例2)
 吸収モノマーの種類と使用量(質量部)を表1に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下280℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(2)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 2)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 1, and the resin particles obtained by drying were further heat-treated at 280 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (2) were produced in the same manner as in Example 1. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例3)
 ポリシロキサン粒子乳濁液を調製するにあたり、イオン交換水の使用量を1750部に、メタノールの使用量を650部にそれぞれ変更したこと以外は、製造例2と同様にして樹脂粒子(3)を作製した。このときポリシロキサン粒子乳濁液中のポリシロキサン粒子の個数基準の平均分散粒子径は1.17μmであった。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 3)
In preparing the polysiloxane particle emulsion, the resin particles (3) were prepared in the same manner as in Production Example 2 except that the amount of ion exchange water was changed to 1750 parts and the amount of methanol used was changed to 650 parts. Produced. At this time, the average dispersed particle size based on the number of polysiloxane particles in the polysiloxane particle emulsion was 1.17 μm. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例4)
 吸収モノマーの種類と使用量(質量部)を表1に示すように変更したこと以外は、製造例1と同様にして樹脂粒子(4)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 4)
Resin particles (4) were produced in the same manner as in Production Example 1 except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 1. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例5)
 吸収モノマーの種類と使用量(質量部)を表1に示すように変更するとともに、乾燥するにあたり窒素雰囲気下80℃で12時間真空乾燥したこと以外は、製造例1と同様にして樹脂粒子(5)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 5)
Resin particles (in the same manner as in Production Example 1) except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 1 and were dried in vacuum at 80 ° C. for 12 hours in a nitrogen atmosphere. 5) was produced. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例6)
 重合性シラン化合物および吸収モノマーの種類と使用量(質量部)を表1に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下320℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(6)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 6)
While changing the kind and amount (parts by mass) of the polymerizable silane compound and the absorption monomer as shown in Table 1, the resin particles obtained by drying were further subjected to heat treatment at 320 ° C. for 1 hour in a nitrogen atmosphere. Except for this, resin particles (6) were produced in the same manner as in Production Example 1. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例7)
 加熱処理を施さなかったこと以外は、製造例6と同様にして樹脂粒子(7)を得た。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 7)
Resin particles (7) were obtained in the same manner as in Production Example 6 except that the heat treatment was not performed. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例8)
 吸収モノマーの種類と使用量(質量部)を表1に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下280℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(8)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 8)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 1, and the resin particles obtained by drying were further heat-treated at 280 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (8) were produced in the same manner as in Example 1. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例9)
 ポリシロキサン粒子乳濁液を調製するにあたり、イオン交換水の使用量を2100部に、メタノールの使用量を300部にそれぞれ変更したこと以外は、製造例8と同様にして樹脂粒子(9)を作製した。このときポリシロキサン粒子乳濁液中のポリシロキサン粒子の個数基準の平均分散粒子径は0.83μmであった。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 9)
In preparing the polysiloxane particle emulsion, resin particles (9) were prepared in the same manner as in Production Example 8 except that the amount of ion-exchanged water was changed to 2100 parts and the amount of methanol used was changed to 300 parts. Produced. At this time, the average dispersed particle size based on the number of polysiloxane particles in the polysiloxane particle emulsion was 0.83 μm. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例10)
 吸収モノマーの種類と使用量(質量部)を表1に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下280℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(10)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 10)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 1, and the resin particles obtained by drying were further heat-treated at 280 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (10) were produced in the same manner as in Example 1. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例11)
 加熱処理を施さなかったこと以外は、製造例10と同様にして樹脂粒子(11)を得た。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 11)
Resin particles (11) were obtained in the same manner as in Production Example 10 except that the heat treatment was not performed. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例12)
 ポリシロキサン粒子乳濁液を調製するにあたり、イオン交換水の使用量を2100部に、メタノールの使用量を300部にそれぞれ変更したこと以外は、製造例10と同様にして樹脂粒子(12)を作製した。このときポリシロキサン粒子乳濁液中のポリシロキサン粒子の個数基準の平均分散粒子径は0.83μmであった。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表1に示すとおりであった。
(Production Example 12)
In preparing the polysiloxane particle emulsion, the resin particles (12) were prepared in the same manner as in Production Example 10 except that the amount of ion-exchanged water was changed to 2100 parts and the amount of methanol used was changed to 300 parts. Produced. At this time, the average dispersed particle size based on the number of polysiloxane particles in the polysiloxane particle emulsion was 0.83 μm. Table 1 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value, and compression fracture deformation rate of the obtained resin particles.
 (製造例13)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更したこと以外は、製造例1と同様にして樹脂粒子(13)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 13)
Resin particles (13) were produced in the same manner as in Production Example 1, except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例14)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更したこと以外は、製造例1と同様にして樹脂粒子(14)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 14)
Resin particles (14) were produced in the same manner as in Production Example 1 except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例15)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下230℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(15)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 15)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2, and the resin particles obtained by drying were further heat-treated at 230 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (15) were produced in the same manner as in Example 1. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例16)
 加熱処理を施さなかったこと以外は、製造例15と同様にして樹脂粒子(16)を得た。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 16)
Resin particles (16) were obtained in the same manner as in Production Example 15 except that the heat treatment was not performed. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例17)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下230℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(17)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 17)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2, and the resin particles obtained by drying were further heat-treated at 230 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (17) were produced in the same manner as in Example 1. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例18)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下300℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(18)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 18)
Manufacture except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2, and the resin particles obtained by drying were further heat-treated at 300 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (18) were produced in the same manner as in Example 1. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例19)
 加熱処理を施さなかったこと以外は、製造例18と同様にして樹脂粒子(19)を得た。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 19)
Resin particles (19) were obtained in the same manner as in Production Example 18 except that the heat treatment was not performed. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例20)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下230℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(20)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 20)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2, and the resin particles obtained by drying were further heat-treated at 230 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (20) were produced in the same manner as in Example 1. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例21)
 吸収モノマーの種類と使用量(質量部)を表2に示すように変更するとともに、乾燥して得られた樹脂粒子にさらに窒素雰囲気下230℃で1時間加熱処理を施したこと以外は、製造例1と同様にして樹脂粒子(21)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 21)
Manufactured except that the type and amount (parts by mass) of the absorbing monomer were changed as shown in Table 2, and the resin particles obtained by drying were further heat-treated at 230 ° C. for 1 hour in a nitrogen atmosphere. Resin particles (21) were produced in the same manner as in Example 1. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例22)
 ポリシロキサン粒子乳濁液を調製するにあたり、イオン交換水の使用量を1600部に、メタノールの使用量を800部にそれぞれ変更し、吸収モノマーの種類と使用量(質量部)を表2に示すように変更したこと以外は、製造例1と同様にして樹脂粒子(22)を作製した。このときポリシロキサン粒子乳濁液中のポリシロキサン粒子の個数基準の平均分散粒子径は1.43μmであった。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表2に示すとおりであった。
(Production Example 22)
In preparing the polysiloxane particle emulsion, the amount of ion-exchanged water used was changed to 1600 parts, the amount of methanol used was changed to 800 parts, and the type and amount (parts by weight) of the absorbing monomer are shown in Table 2. Resin particles (22) were produced in the same manner as in Production Example 1 except for the above changes. At this time, the average dispersed particle size based on the number of polysiloxane particles in the polysiloxane particle emulsion was 1.43 μm. Table 2 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例23)
 乳化剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製「ハイテノール(登録商標)NF-08」)の20%水溶液10部をイオン交換水300部に溶解した溶液に、1,9-ノナンジオールジメタクリレート50部およびスチレン50部からなる単量体成分と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製「V-65」)2.0部との混合溶液を加え、乳化分散させて単量体成分の乳化液を調製した。得られた乳化液を、冷却管、温度計、滴下口を備えた四つ口フラスコに入れ、イオン交換水500部を加えて希釈した後、窒素雰囲気下で反応液を65℃まで昇温させて、65℃で2時間保持し、単量体成分のラジカル重合を行った。ラジカル重合後の乳濁液を固液分離し、得られたケーキをイオン交換水、メタノールで洗浄した後、湿式分級を繰り返し、120℃で2時間真空乾燥させて、樹脂粒子(23)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表3に示すとおりであった。
(Production Example 23)
In a solution obtained by dissolving 10 parts of a 20% aqueous solution of polyoxyethylene styrenated phenyl ether sulfate ammonium salt (Daiichi Kogyo Seiyaku "Hytenol (registered trademark) NF-08") as an emulsifier in 300 parts of ion-exchanged water, A monomer component comprising 50 parts of 1,9-nonanediol dimethacrylate and 50 parts of styrene and 2,2′-azobis (2,4-dimethylvaleronitrile) (“V-65” manufactured by Wako Pure Chemical Industries, Ltd.) A mixed solution with 2.0 parts was added and emulsified and dispersed to prepare an emulsion of monomer components. The obtained emulsified liquid is put into a four-necked flask equipped with a condenser, a thermometer, and a dripping port, diluted by adding 500 parts of ion-exchanged water, and then heated to 65 ° C. in a nitrogen atmosphere. The mixture was held at 65 ° C. for 2 hours to perform radical polymerization of the monomer component. The emulsion after radical polymerization is subjected to solid-liquid separation, and the resulting cake is washed with ion-exchanged water and methanol, and then wet classification is repeated, followed by vacuum drying at 120 ° C. for 2 hours to produce resin particles (23). did. Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例24)
 単量体成分を、1,9-ノナンジオールジメタクリレート100部に変更したこと以外は製造例23と同様にして、樹脂粒子(24)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表3に示すとおりであった。
(Production Example 24)
Resin particles (24) were produced in the same manner as in Production Example 23, except that the monomer component was changed to 100 parts of 1,9-nonanediol dimethacrylate. Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例25)
 単量体成分を、トリメチロールプロパントリアクリレート75部およびジビニルベンゼン(新日鐡化学社製「DVB960」:ジビニルベンゼン96%、エチルビニルベンゼン4%含有品)25部に変更したこと以外は製造例23と同様にして、樹脂粒子(25)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表3に示すとおりであった。
(Production Example 25)
Production examples except that the monomer components were changed to 75 parts of trimethylolpropane triacrylate and 25 parts of divinylbenzene (“DVB960” manufactured by Nippon Steel Chemical Co., Ltd .: 96% divinylbenzene, 4% ethylvinylbenzene). In the same manner as in No. 23, resin particles (25) were produced. Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
 (製造例26)
 単量体成分を、エチレングリコールジメタクリレート40部、スチレン40部およびt-ブチルメタクリレート20部に変更したこと以外は製造例23と同様にして、樹脂粒子(26)を作製した。得られた樹脂粒子の平均分散粒子径、10%K値、20%K値、30%K値、40%K値および圧縮破壊変形率は表3に示すとおりであった。
(Production Example 26)
Resin particles (26) were produced in the same manner as in Production Example 23, except that the monomer components were changed to 40 parts ethylene glycol dimethacrylate, 40 parts styrene, and 20 parts t-butyl methacrylate. Table 3 shows the average dispersed particle size, 10% K value, 20% K value, 30% K value, 40% K value and compression fracture deformation rate of the obtained resin particles.
2-2.導電性微粒子の作製(導電性金属層の形成)
 (実施例1)
 基材とする樹脂粒子(1)に、水酸化ナトリウムによるエッチング処理を施した後、二塩化スズ溶液に接触させることによりセンシタイジングし、次いで二塩化パラジウム溶液に浸漬させることによりアクチベーティングする方法(センシタイジング-アクチベーション法)によって、パラジウム核を形成させた。次に、パラジウム核を形成させた樹脂粒子2部をイオン交換水400部に添加し、超音波分散処理を行った後、得られた樹脂粒子懸濁液を70℃の温浴で加温した。このように懸濁液を加温した状態で、別途70℃に加温した無電解めっき液(日本カニゼン(株)製「シューマーS680」)600部を加えることにより、無電解ニッケルめっき反応を生じさせた。水素ガスの発生が終了したことを確認した後、固液分離を行い、イオン交換水、メタノールの順で洗浄し、100℃で2時間真空乾燥して、ニッケルめっきを施した粒子を得た。次いで、得られたニッケルめっき粒子を、シアン化金カリウムを含有する置換金めっき液に加え、ニッケル層表面にさらに金めっきを施すことにより、導電性微粒子を得た。得られた導電性微粒子における導電性金属層の膜厚は表4に示すとおりであった。
2-2. Production of conductive fine particles (formation of conductive metal layer)
Example 1
The resin particles (1) used as a base material are subjected to etching treatment with sodium hydroxide, then sensitized by contacting with a tin dichloride solution, and then activated by immersing in a palladium dichloride solution. Palladium nuclei were formed by the method (sensitizing-activation method). Next, 2 parts of resin particles with palladium nuclei formed were added to 400 parts of ion-exchanged water, and after ultrasonic dispersion treatment, the resulting resin particle suspension was heated in a 70 ° C. hot bath. By adding 600 parts of electroless plating solution (“Schumar S680” manufactured by Nippon Kanisen Co., Ltd.) separately heated to 70 ° C. with the suspension heated in this way, an electroless nickel plating reaction occurs. I let you. After confirming that the generation of hydrogen gas was completed, solid-liquid separation was performed, followed by washing with ion-exchanged water and methanol in that order, and vacuum drying at 100 ° C. for 2 hours to obtain nickel-plated particles. Next, the obtained nickel plating particles were added to a displacement gold plating solution containing potassium gold cyanide, and gold plating was further performed on the surface of the nickel layer to obtain conductive fine particles. The film thickness of the conductive metal layer in the obtained conductive fine particles was as shown in Table 4.
 (実施例2~20および比較例1~2)
 基材として表4または表5に示す樹脂粒子を用いたこと以外は、実施例1と同様にして導電性微粒子を作製した。得られた導電性微粒子における導電性金属層の膜厚は表4または表5に示すとおりであった。
(Examples 2 to 20 and Comparative Examples 1 to 2)
Conductive fine particles were produced in the same manner as in Example 1 except that the resin particles shown in Table 4 or 5 were used as the substrate. The film thickness of the conductive metal layer in the obtained conductive fine particles was as shown in Table 4 or Table 5.
 (実施例21)
 基材として樹脂粒子(23)を用い、無電解めっき液として、硫酸ニッケル六水和物濃度が50g/L、次亜リン酸ナトリウム一水和物濃度が20g/L、クエン酸ナトリウム濃度が50g/Lであり、水酸化ナトリウム水溶液でpHを7.5に調整した無電解ニッケルめっき液を用いたこと以外は、実施例1と同様にして導電性微粒子を作製した。得られた導電性微粒子における導電性金属層の膜厚およびリン含有量は表6に示すとおりであった。
(Example 21)
Resin particles (23) are used as the base material, and the electroless plating solution has a nickel sulfate hexahydrate concentration of 50 g / L, a sodium hypophosphite monohydrate concentration of 20 g / L, and a sodium citrate concentration of 50 g. / L, and conductive fine particles were produced in the same manner as in Example 1 except that an electroless nickel plating solution whose pH was adjusted to 7.5 with an aqueous sodium hydroxide solution was used. The film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
 (実施例22)
 基材として樹脂粒子(24)を用いたこと以外は、実施例21と同様にして導電性微粒子を作製した。得られた導電性微粒子における導電性金属層の膜厚およびリン含有量は表6に示すとおりであった。
(Example 22)
Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (24) were used as the base material. The film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
 (実施例23)
 基材として樹脂粒子(25)を用いたこと以外は、実施例21と同様にして導電性微粒子を作製した。得られた導電性微粒子における導電性金属層の膜厚およびリン含有量は表6に示すとおりであった。
(Example 23)
Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (25) were used as the substrate. The film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
 (実施例24)
 基材として樹脂粒子(26)を用いたこと以外は、実施例21と同様にして導電性微粒子を作製した。得られた導電性微粒子における導電性金属層の膜厚およびリン含有量は表6に示すとおりであった。
(Example 24)
Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (26) were used as the base material. The film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
 (実施例25)
 基材として樹脂粒子(26)を用い、無電解めっき液のpH値を11.0に変更(水酸化ナトリウム水溶液で調整)したこと以外は、実施例21と同様にして導電性微粒子を作製した。得られた導電性微粒子における導電性金属層の膜厚およびリン含有量は表6に示すとおりであった。
(Example 25)
Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (26) were used as the base material and the pH value of the electroless plating solution was changed to 11.0 (adjusted with an aqueous sodium hydroxide solution). . The film thickness and phosphorus content of the conductive metal layer in the obtained conductive fine particles were as shown in Table 6.
3.異方性導電材料の作製と評価
 各実施例および比較例で得られた導電性微粒子を用い、下記の方法で異方性導電材料(異方性導電フィルム)を作製し、その性能を下記の方法で評価した。
 すなわち、導電性微粒子1部に、バインダー樹脂としてのエポキシ樹脂(三菱化学製「JER828」)100部と、硬化剤(三新化学社製「サンエイド(登録商標)SI-150」)2部と、トルエン100部とを加え、さらにφ1mmのジルコニアビーズ50部を加えて、ステンレス製の2枚攪拌羽根を用いて300rpmで10分間攪拌して分散させた。そして、得られたペースト状組成物をバーコーターにて剥離処理を施したPETフィルム上に塗布し乾燥させることにより異方性導電フィルムを得た。
3. Production and Evaluation of Anisotropic Conductive Material Using the conductive fine particles obtained in each Example and Comparative Example, an anisotropic conductive material (anisotropic conductive film) was produced by the following method, and the performance was The method was evaluated.
That is, 1 part of conductive fine particles, 100 parts of an epoxy resin (“JER828” manufactured by Mitsubishi Chemical) as a binder resin, and 2 parts of a curing agent (“Sun Aid (registered trademark) SI-150” manufactured by Sanshin Chemical Co., Ltd.) 100 parts of toluene was added, 50 parts of zirconia beads having a diameter of 1 mm were further added, and the mixture was stirred and dispersed at 300 rpm for 10 minutes using two stainless steel stirring blades. And the anisotropic conductive film was obtained by apply | coating and drying the obtained paste-form composition on PET film which gave the peeling process with the bar coater.
 得られた異方性導電フィルムを、抵抗測定用の線を有した全面アルミ蒸着ガラス基板と20μmピッチに銅パターンを形成したポリイミドフィルム基板との間に挟みこみ、2通りの圧力(高圧:7MPa、低圧:2MPa)下、185℃で圧着することにより、接続構造体(高圧接続構造体および低圧接続構造体)を作製した。
 そして、得られた接続構造体について電極間の初期抵抗値Aを測定し、初期抵抗値Aが3Ω未満の場合を「◎」、3Ω以上5Ω以下の場合を「○」、5Ωを超える場合を「×」、と評価した。また、低圧(2MPa)圧着後における異方性導電フィルムが接触した側の電極表面を金属顕微鏡(倍率:1000倍)で観察し、圧痕が観察されたものを「○」、圧痕が確認されなかったものを「×」、と評価した。
The obtained anisotropic conductive film was sandwiched between an entire aluminum vapor-deposited glass substrate having resistance measurement lines and a polyimide film substrate having a copper pattern formed on a 20 μm pitch, and two pressures (high pressure: 7 MPa). The connection structure (high-pressure connection structure and low-pressure connection structure) was produced by pressure bonding at 185 ° C. under a low pressure of 2 MPa.
Then, the initial resistance value A between the electrodes of the obtained connection structure is measured. When the initial resistance value A is less than 3Ω, “◎”, when it is 3Ω or more and 5Ω or less, “◯”, when it exceeds 5Ω. “×” was evaluated. In addition, the surface of the electrode on the side in contact with the anisotropic conductive film after low-pressure (2 MPa) pressure bonding was observed with a metal microscope (magnification: 1000 times). Was evaluated as “×”.
 さらに、得られた低圧接続構造体を85℃、85%RHの雰囲気下に500時間放置した後、上記初期抵抗値Aと同様に抵抗値Bを測定し、下記式に基づき抵抗値上昇率(%)を求めた。抵抗値上昇率(%)が1%以下の場合を「◎」、1%を超え3%以下の場合を「○」、3%を超える場合を「×」、と評価した。
   抵抗値上昇率(%)=[(B-A)/A]×100
Furthermore, after the obtained low-pressure connection structure was left in an atmosphere of 85 ° C. and 85% RH for 500 hours, the resistance value B was measured in the same manner as the initial resistance value A, and the resistance value increase rate ( %). A case where the rate of increase in resistance value (%) was 1% or less was evaluated as “◎”, a case where it exceeded 1% and 3% or less was evaluated as “◯”, and a case where it exceeded 3% was evaluated as “X”.
Resistance value increase rate (%) = [(BA) / A] × 100
 なお、表1、表2、表3においては、下記の略号を用いた。
MPTMS:3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製「KBM503」)
VTMS:ビニルトリメトキシシラン(信越シリコーン社製「KBM1003」)
St:スチレン
HXDMA:1,6-ヘキサンジオールジメタクリレート
DVB:ジビニルベンゼン(新日鐡化学社製「DVB960」:ジビニルベンゼン96%、エチルビニルベンゼン4%含有品;ちなみに、表中、DVBの使用量として記載の数値は、実際に使用した「DVB960」の量であり、組成として記載の数値は、実質的に含有されるジビニルベンゼンに基づき算出した値である。
TMP-3EO-A:トリメチロールプロパンEO変性(3モル)トリアクリレート
TMP-6EO-A:トリメチロールプロパンEO変性(6モル)トリアクリレート
HXDA::1,6-ヘキサンジオールジアクリレート
MPMDMS:3-メタクリロキシプロピルメチルジメトキシシラン(信越シリコーン社製「KBM502」)
1,9-ND:1,9-ノナンジオールジメタクリレート
TMP-A:トリメチロールプロパントリアクリレート
EGDMA::エチレングリコールジメタクリレート
tBMA:t-ブチルメタクリレート
In Table 1, Table 2, and Table 3, the following abbreviations were used.
MPTMS: 3-methacryloxypropyltrimethoxysilane (“KBM503” manufactured by Shin-Etsu Silicone)
VTMS: Vinyltrimethoxysilane (“KBM1003” manufactured by Shin-Etsu Silicone)
St: styrene HXDMA: 1,6-hexanediol dimethacrylate DVB: divinylbenzene (“DVB960” manufactured by Nippon Steel Chemical Co., Ltd .: a product containing 96% divinylbenzene and 4% ethylvinylbenzene; The numerical value described as is the amount of “DVB960” actually used, and the numerical value described as the composition is a value calculated based on divinylbenzene contained substantially.
TMP-3EO-A: Trimethylolpropane EO modified (3 mol) triacrylate TMP-6EO-A: Trimethylolpropane EO modified (6 mol) triacrylate HXDA :: 1,6-hexanediol diacrylate MPMDMS: 3-methacrylic Roxypropylmethyldimethoxysilane (“KBM502” manufactured by Shin-Etsu Silicone)
1,9-ND: 1,9-nonanediol dimethacrylate TMP-A: trimethylolpropane triacrylate EGDMA :: ethylene glycol dimethacrylate tBMA: t-butyl methacrylate
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の導電性微粒子は、例えば、異方性導電フィルム、異方性導電ペースト、異方性導電接着剤、異方性導電インク等の異方性導電材料に好適に用いられる。 The conductive fine particles of the present invention are suitably used for anisotropic conductive materials such as anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, anisotropic conductive inks, and the like.

Claims (12)

  1.  樹脂粒子からなる基材と、該基材の表面に形成された少なくとも一層の導電性金属層とを有する導電性微粒子であって、
     前記樹脂粒子の個数基準の平均分散粒子径が1.0μm~2.5μmであり、前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上であることを特徴とする導電性微粒子。
    Conductive fine particles having a base material composed of resin particles and at least one conductive metal layer formed on the surface of the base material,
    The average dispersed particle diameter based on the number of the resin particles is 1.0 μm to 2.5 μm, and the compressive elastic modulus (10% K value) when the diameter of the resin particles is displaced by 10% is 12,000 N / mm 2. Conductive fine particles characterized by the above.
  2.  前記樹脂粒子の個数基準の平均分散粒子径が2.0μm以上であり、前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が17,000N/mm2以上である請求項1に記載の導電性微粒子。 The number-based average dispersed particle diameter of the resin particles is 2.0 μm or more, and the compression modulus (10% K value) when the diameter of the resin particles is displaced by 10% is 17,000 N / mm 2 or more. The conductive fine particles according to claim 1.
  3.  前記樹脂粒子の個数基準の平均分散粒子径が2.0μm未満であり、前記樹脂粒子の直径が10%変位したときの圧縮弾性率(10%K値)が19,600N/mm2超である請求項1に記載の導電性微粒子。 The number-based average dispersed particle diameter of the resin particles is less than 2.0 μm, and the compressive elastic modulus (10% K value) when the diameter of the resin particles is displaced by 10% is more than 19,600 N / mm 2. The conductive fine particles according to claim 1.
  4.  前記樹脂粒子の圧縮破壊変形率が30%以上である請求項1~3のいずれかに記載の導電性微粒子。 The conductive fine particles according to any one of claims 1 to 3, wherein the resin particles have a compressive fracture deformation rate of 30% or more.
  5.  前記樹脂粒子の直径が30%変位したときの圧縮弾性率(30%K値)が前記10%K値より小さい請求項1~4のいずれかに記載の導電性微粒子。 5. The conductive fine particles according to claim 1, wherein a compression elastic modulus (30% K value) when the diameter of the resin particles is displaced by 30% is smaller than the 10% K value.
  6.  表面の少なくとも一部に絶縁性樹脂層を有する請求項1~5のいずれかに記載の導電性微粒子。 6. The conductive fine particles according to claim 1, which have an insulating resin layer on at least a part of the surface.
  7.  導電性微粒子の基材として用いられる粒子であって、
     個数基準の平均分散粒子径が1.0μm~2.5μmであり、粒子の直径が10%変位したときの圧縮弾性率(10%K値)が12,000N/mm2以上であることを特徴とする樹脂粒子。
    Particles used as a base material for conductive fine particles,
    The number-based average dispersed particle diameter is 1.0 μm to 2.5 μm, and the compressive elastic modulus (10% K value) when the particle diameter is displaced by 10% is 12,000 N / mm 2 or more. Resin particles.
  8.  個数基準の平均分散粒子径が2.0μm以上であり、粒子の直径が10%変位したときの圧縮弾性率(10%K値)が17,000N/mm2以上である請求項7に記載の樹脂粒子。 8. The number-based average dispersed particle diameter is 2.0 μm or more, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is 17,000 N / mm 2 or more. Resin particles.
  9.  個数基準の平均分散粒子径が2.0μm未満であり、粒子の直径が10%変位したときの圧縮弾性率(10%K値)が19,600N/mm2超である請求項7に記載の樹脂粒子。 8. The number-based average dispersed particle diameter is less than 2.0 μm, and the compression elastic modulus (10% K value) when the particle diameter is displaced by 10% is more than 19,600 N / mm 2 . Resin particles.
  10.  圧縮破壊変形率が30%以上である請求項7~9のいずれかに記載の樹脂粒子。 The resin particle according to any one of claims 7 to 9, having a compression fracture deformation rate of 30% or more.
  11.  粒子の直径が30%変位したときの圧縮弾性率(30%K値)が前記10%K値より小さい請求項7~10のいずれかに記載の樹脂粒子。 The resin particles according to any one of claims 7 to 10, wherein a compression elastic modulus (30% K value) when the particle diameter is displaced by 30% is smaller than the 10% K value.
  12.  請求項1~6のいずれかに記載の導電性微粒子がバインダー樹脂に分散してなることを特徴とする異方性導電材料。 An anisotropic conductive material comprising the conductive fine particles according to any one of claims 1 to 6 dispersed in a binder resin.
PCT/JP2012/051184 2011-01-25 2012-01-20 Conductive microparticle, resin particle, and anisotropic conductive material using same WO2012102199A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137016539A KR101454194B1 (en) 2011-01-25 2012-01-20 Conductive microparticle, resinparticle, and anisotropic conductive material using same
CN201280006245.4A CN103329217B (en) 2011-01-25 2012-01-20 Electrically conductive microparticle and resin particle and employ their anisotropic conductive material
JP2012529465A JP5140209B2 (en) 2011-01-25 2012-01-20 Conductive fine particles, resin particles and anisotropic conductive material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-013403 2011-01-25
JP2011013403 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012102199A1 true WO2012102199A1 (en) 2012-08-02

Family

ID=46580768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051184 WO2012102199A1 (en) 2011-01-25 2012-01-20 Conductive microparticle, resin particle, and anisotropic conductive material using same

Country Status (5)

Country Link
JP (1) JP5140209B2 (en)
KR (1) KR101454194B1 (en)
CN (1) CN103329217B (en)
TW (1) TW201241072A (en)
WO (1) WO2012102199A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212105A (en) * 2013-04-04 2014-11-13 積水化学工業株式会社 Conductive particle, conductive material and connection structure
KR20150001634A (en) * 2013-06-25 2015-01-06 제일모직주식회사 Anisotropic conductive film, image display device and semiconductor device comprising the same
KR101534841B1 (en) * 2012-11-07 2015-07-07 제일모직주식회사 Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JP2015155532A (en) * 2014-01-14 2015-08-27 積水化学工業株式会社 Base particle, conductive particle, conductive material and connection structure
CN114644768A (en) * 2020-12-17 2022-06-21 德山金属株式会社 High-strength bead and conductive particle using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
WO2017086452A1 (en) * 2015-11-20 2017-05-26 積水化学工業株式会社 Particles, connecting material and connection structure
JP6186019B2 (en) * 2016-01-13 2017-08-23 株式会社山王 Conductive fine particles and method for producing conductive fine particles
JP2017147163A (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Conductive paste and conductive film formed using the same
CN109983543B (en) * 2017-03-30 2021-07-02 积水化学工业株式会社 Conductive particle, conductive material, and connection structure
JP2019179647A (en) * 2018-03-30 2019-10-17 デクセリアルズ株式会社 Conductive material, and manufacturing method of connection body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155539A (en) * 1999-11-29 2001-06-08 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive adhesive and conductive connector
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2006040546A (en) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd Conductive particulate
JP2006107881A (en) * 2004-10-04 2006-04-20 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP2007035575A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and joint structural body
JP2009135086A (en) * 2007-11-01 2009-06-18 Hitachi Chem Co Ltd Conductive particle, insulating coating conductive particle, method of manufacturing the same, and anisotropically conductive adhesive

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275181A1 (en) * 2004-05-27 2008-11-06 Sumitomo Electric Industries, Ltd Block Copolymerized Polyimide Ink Composition for Printing
JP2006028242A (en) * 2004-07-13 2006-02-02 Tomoegawa Paper Co Ltd Adhesive tape for electronic part, and electronic part
SG119379A1 (en) * 2004-08-06 2006-02-28 Nippon Catalytic Chem Ind Resin composition method of its composition and cured formulation
CN101153212A (en) * 2006-09-14 2008-04-02 信越化学工业株式会社 Set of resin compositions for preparing system-in-package type semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2001155539A (en) * 1999-11-29 2001-06-08 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive adhesive and conductive connector
JP2006040546A (en) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd Conductive particulate
JP2006107881A (en) * 2004-10-04 2006-04-20 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP2007035575A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and joint structural body
JP2009135086A (en) * 2007-11-01 2009-06-18 Hitachi Chem Co Ltd Conductive particle, insulating coating conductive particle, method of manufacturing the same, and anisotropically conductive adhesive

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534841B1 (en) * 2012-11-07 2015-07-07 제일모직주식회사 Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JP2014212105A (en) * 2013-04-04 2014-11-13 積水化学工業株式会社 Conductive particle, conductive material and connection structure
KR20150001634A (en) * 2013-06-25 2015-01-06 제일모직주식회사 Anisotropic conductive film, image display device and semiconductor device comprising the same
KR101676527B1 (en) 2013-06-25 2016-11-16 제일모직주식회사 Anisotropic conductive film, image display device and semiconductor device comprising the same
JP2015155532A (en) * 2014-01-14 2015-08-27 積水化学工業株式会社 Base particle, conductive particle, conductive material and connection structure
JP2019173015A (en) * 2014-01-14 2019-10-10 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP7007322B2 (en) 2014-01-14 2022-02-10 積水化学工業株式会社 Base particles, conductive particles, conductive materials and connecting structures
JP2022040212A (en) * 2014-01-14 2022-03-10 積水化学工業株式会社 Substrate particle, conductive particle, conductive material and connection structure
CN114644768A (en) * 2020-12-17 2022-06-21 德山金属株式会社 High-strength bead and conductive particle using same
JP2022096613A (en) * 2020-12-17 2022-06-29 株式会社ドクサンハイメタル High-strength beads and conductive particles based on the same
JP7352610B2 (en) 2020-12-17 2023-09-28 ドク サン ネオルクス カンパニー リミテッド High-strength beads and conductive particles using them

Also Published As

Publication number Publication date
KR101454194B1 (en) 2014-10-27
CN103329217A (en) 2013-09-25
KR20130114188A (en) 2013-10-16
CN103329217B (en) 2016-06-29
JPWO2012102199A1 (en) 2014-06-30
TW201241072A (en) 2012-10-16
JP5140209B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5140209B2 (en) Conductive fine particles, resin particles and anisotropic conductive material using the same
JP5583647B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014192051A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP5998048B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5856379B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5998032B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5956906B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6002026B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583714B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014207193A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583654B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5998018B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5951977B2 (en) Conductive fine particles
JP6397552B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5581276B2 (en) Conductive fine particles
JP7414404B2 (en) Base material particles for conductive particles, their use and manufacturing method
JP2016094555A (en) Polymer fine particle, conductive fine particle and anisotropic conductive material
JP2012190560A (en) Conductive particulate, and anisotropic conductive material using the same
JP6446514B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP7241526B2 (en) Substrate Particles for Conductive Particles, Use and Production Method Thereof
JP7220548B2 (en) Substrate particles for conductive particles and use thereof
JP5581231B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2020193239A (en) Resin particle for conductive fine particle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012529465

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137016539

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739666

Country of ref document: EP

Kind code of ref document: A1