JP2006196411A - Conductive fine particle and anisotropic conductive material - Google Patents

Conductive fine particle and anisotropic conductive material Download PDF

Info

Publication number
JP2006196411A
JP2006196411A JP2005009375A JP2005009375A JP2006196411A JP 2006196411 A JP2006196411 A JP 2006196411A JP 2005009375 A JP2005009375 A JP 2005009375A JP 2005009375 A JP2005009375 A JP 2005009375A JP 2006196411 A JP2006196411 A JP 2006196411A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
conductive
particles
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009375A
Other languages
Japanese (ja)
Inventor
Shinya Uenoyama
伸也 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005009375A priority Critical patent/JP2006196411A/en
Publication of JP2006196411A publication Critical patent/JP2006196411A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive fine particles capable of securing excellent conduction when heating and crimping electrode terminals when trying to connect them, and an anisotropic conductive material using the conductive fine particles. <P>SOLUTION: A conductive metal layer is formed on the surface of a cross-linked resin particle to obtain this conductive fine particles. The average particle diameter of the conductive fine particles is 2.5-4.5 μm, and its compressive elasticity modulus (20% K value) measured under an environment heated at 150°C when the diameter of the conductive fine particles is compressively deformed by 20% is 882-4410 N/mm<SP>2</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性微粒子及び異方性導電材料に関し、詳しくは、加熱圧着時に良好な導通を確保することができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料に関する。   The present invention relates to a conductive fine particle and an anisotropic conductive material, and particularly relates to a conductive fine particle capable of ensuring good conduction during thermocompression bonding, and an anisotropic conductive material using the conductive fine particle.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。   The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。   These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between opposing substrates and electrode terminals.

上記異方性導電材料に用いられる導電性微粒子としては、従来から、金属粒子の他、樹脂粒子や有機質無機質複合粒子を芯粒子としてその表面に無電解メッキ法により金メッキ等を施した金属メッキ粒子が用いられている。樹脂粒子を芯粒子とした金属メッキ粒子については、例えば、特許文献1に記載されている。   Conventionally, as the conductive fine particles used in the anisotropic conductive material, metal plated particles in which resin particles and organic / inorganic composite particles are used as core particles in addition to metal particles and the surfaces thereof are subjected to gold plating by an electroless plating method. Is used. For example, Patent Document 1 discloses metal plating particles having resin particles as core particles.

これらの導電性微粒子のなかで、金属粒子は、金属メッキ樹脂粒子や金属メッキ有機質無機質複合粒子に比べ、硬く、金バンプにくい込んでしまい、また復元性が乏しいため、基板やバンプの高さのばらつきを吸収できず、接続信頼性が低いのに対し、金属メッキ樹脂粒子や金属メッキ有機質無機質複合粒子は、金属粒子より柔らかく、復元力も高いため、電極端子間を比較的高い信頼性で接続することができる。   Among these conductive fine particles, metal particles are harder and harder to embed gold bumps than metal-plated resin particles and metal-plated organic-inorganic-inorganic composite particles. While the dispersion cannot be absorbed and the connection reliability is low, the metal-plated resin particles and metal-plated organic-inorganic inorganic composite particles are softer than metal particles and have a high restoring force, so the electrode terminals are connected with relatively high reliability. be able to.

特公平3−44149号公報Japanese Examined Patent Publication No. 3-44149

しかしながら、金属メッキされた導電性微粒子は、バインダー樹脂等と混ぜ合わされて、例えば異方性導電フィルムとして用いられているが、電極端子間に異方性導電フィルムを挟み、加熱しながら圧着することにより電極端子間を接続しようとしたときに、圧着する際の加熱温度により導電性微粒子の圧縮特性が変わり、導通が不安定になることがあった。   However, the metal-plated conductive fine particles are mixed with a binder resin or the like and used, for example, as an anisotropic conductive film. The anisotropic conductive film is sandwiched between electrode terminals, and is heated and pressed. When the electrode terminals are to be connected with each other, the compression characteristics of the conductive fine particles change depending on the heating temperature at the time of pressure bonding, and conduction may become unstable.

本発明は、上記現状に鑑み、電極端子間を接続しようとしたときに、加熱圧着時に良好な導通を確保することができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料を提供することを目的とする。   In view of the above situation, the present invention provides a conductive fine particle capable of ensuring good conduction during thermocompression bonding when connecting electrode terminals, and an anisotropic conductive material using the conductive fine particle. The purpose is to provide.

上記目的を達成するために請求項1記載の発明は、架橋樹脂粒子の表面に導電性金属層が形成された導電性微粒子であって、導電性微粒子の平均粒子径が2.5〜4.5μmであり、150℃加熱環境下で測定した導電性微粒子直径を20%圧縮変形させたときの圧縮弾性率(20%K値)が882〜4410N/mm2 である導電性微粒子を提供する。 In order to achieve the above object, the invention according to claim 1 is a conductive fine particle in which a conductive metal layer is formed on the surface of a crosslinked resin particle, and the average particle size of the conductive fine particle is 2.5 to 4. Provided is a conductive fine particle that is 5 μm and has a compressive elastic modulus (20% K value) of 882 to 4410 N / mm 2 when the conductive fine particle diameter measured in a 150 ° C. heating environment is 20% compression deformed.

また、請求項2記載の発明は、請求項1記載の導電性微粒子が樹脂バインダーに分散されてなる異方性導電材料を提供する。   The invention according to claim 2 provides an anisotropic conductive material in which the conductive fine particles according to claim 1 are dispersed in a resin binder.

以下、本発明の詳細を説明する。
本発明の導電性微粒子は、架橋樹脂粒子の表面に導電性金属層が形成されたものである。
Details of the present invention will be described below.
The conductive fine particles of the present invention are those in which a conductive metal layer is formed on the surface of the crosslinked resin particles.

本発明の導電性微粒子の芯粒子となる架橋樹脂粒子を得る方法は特に限定されず、例えば、乳化重合、懸濁重合、シード重合、分散重合、分散シード重合等の重合法による方法等が挙げられる。なかでも、重合後の架橋樹脂粒子を分級せずとも均一な粒子径の架橋樹脂粒子が得られるのでシード重合法が好ましい。なお、シード重合法については、例えば、特開2000−230005号公報等が知られている。   The method for obtaining the cross-linked resin particles to be the core particles of the conductive fine particles of the present invention is not particularly limited, and examples thereof include methods by polymerization methods such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization. It is done. Of these, the seed polymerization method is preferred because crosslinked resin particles having a uniform particle diameter can be obtained without classifying the crosslinked resin particles after polymerization. In addition, about seed polymerization method, Unexamined-Japanese-Patent No. 2000-230005 etc. are known, for example.

上記シード重合法の具体的方法としては、例えば、シード粒子を分散した水中に、エチレン性不飽和単量体からなる水性エマルジョンと、油溶性重合開始剤の水性エマルジョンとを添加し、シード粒子にエチレン性不飽和単量体及び油溶性重合開始剤を吸収させた後、エチレン性不飽和単量体を重合する方法が挙げられる。   As a specific method of the seed polymerization method, for example, an aqueous emulsion composed of an ethylenically unsaturated monomer and an aqueous emulsion of an oil-soluble polymerization initiator are added to water in which seed particles are dispersed, and the seed particles are added to the seed particles. A method of polymerizing the ethylenically unsaturated monomer after absorbing the ethylenically unsaturated monomer and the oil-soluble polymerization initiator is mentioned.

なお、シード粒子の重量平均分子量は20000以下が好ましい。また、上記エチレン性不飽和単量体は、シード粒子1重量部に対して10〜500重量部とすることが好ましい。   The weight average molecular weight of the seed particles is preferably 20000 or less. Moreover, it is preferable that the said ethylenically unsaturated monomer shall be 10-500 weight part with respect to 1 weight part of seed particles.

本発明における架橋樹脂粒子を形成するために用いるエチレン性不飽和単量体は、架橋性単量体が含有されていれば特に限定されない。従って、架橋性単量体のみから形成されていてもよいが、架橋性単量体に加えて非架橋性単量体が併用されてもよい。   The ethylenically unsaturated monomer used for forming the crosslinked resin particles in the present invention is not particularly limited as long as it contains a crosslinkable monomer. Therefore, although it may be formed only from a crosslinkable monomer, in addition to a crosslinkable monomer, a non-crosslinkable monomer may be used together.

上記架橋性単量体としては、例えば、ジビニルベンゼン及びその誘導体、ブタジエン、イソプレン等の共役ジエン類、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類等が挙げられる。ここで、(メタ)アクリレートとはメタクリレート又はアクリレートを意味する。上記架橋性単量体は、単独で使用してもよく、2種類以上を併用してもよい。   Examples of the crosslinkable monomer include divinylbenzene and its derivatives, conjugated dienes such as butadiene and isoprene, polytetramethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like. Examples include functional (meth) acrylates. Here, (meth) acrylate means methacrylate or acrylate. The said crosslinkable monomer may be used independently and may use 2 or more types together.

上記非架橋性単量体としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル、アクリロニトリル等の不飽和ニトリル類、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート等の単官能(メタ)アクリレート類等が挙げられる。上記非架橋性単量体は、単独で使用してもよく、2種類以上を併用してもよい。   Examples of the non-crosslinkable monomer include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene; unsaturated nitriles such as vinyl chloride and acrylonitrile, isobutyl ( And monofunctional (meth) acrylates such as (meth) acrylate and isooctyl (meth) acrylate. The said non-crosslinkable monomer may be used independently and may use 2 or more types together.

上記油溶性重合開始剤としては特に限定されず、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。   The oil-soluble polymerization initiator is not particularly limited. For example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butyl peroxide Organic peroxides such as oxy-2-ethylhexanoate and di-t-butyl peroxide; azos such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4-dimethylvaleronitrile) System compounds and the like.

上記油溶性重合開始剤の使用量は、エチレン性不飽和単量体100重量部に対して、0.1〜3重量部であることが好ましい。   The amount of the oil-soluble polymerization initiator used is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the ethylenically unsaturated monomer.

また、重合に際しては必要に応じて界面活性剤、分散安定剤を用いてもよい。   In the polymerization, a surfactant and a dispersion stabilizer may be used as necessary.

本発明の導電性微粒子は、架橋樹脂粒子を芯粒子とした表面に導電性金属層が被覆された粒子である。   The conductive fine particles of the present invention are particles in which a conductive metal layer is coated on the surface having crosslinked resin particles as core particles.

上記導電性金属層に使用される金属は特に限定されず、例えば、ニッケル、金、銀、銅、コバルト又はこれらを主成分とする合金等が挙げられる。   The metal used for the said conductive metal layer is not specifically limited, For example, nickel, gold | metal | money, silver, copper, cobalt or the alloy etc. which have these as a main component are mentioned.

上記導電性金属層は、例えば、無電解メッキ等により芯粒子を金属メッキして形成することができる。なお、金属メッキは単一の金属層であっても複数の金属からなる複層であってもよい。   The conductive metal layer can be formed by, for example, metal plating of core particles by electroless plating or the like. The metal plating may be a single metal layer or a multilayer composed of a plurality of metals.

本発明の導電性微粒子における導電性金属層の厚さは0.02〜5μmが好ましい。導電性金属層の厚さが0.02μm未満であると、金属層が薄く導電性が得られにくい。また、導電性金属層の厚さが5μmを超えると導電性微粒子が硬くなりすぎ電極端子間の間隔に追随して導電性微粒子が変形し難くなる。   The thickness of the conductive metal layer in the conductive fine particles of the present invention is preferably 0.02 to 5 μm. When the thickness of the conductive metal layer is less than 0.02 μm, the metal layer is thin and it is difficult to obtain conductivity. On the other hand, if the thickness of the conductive metal layer exceeds 5 μm, the conductive fine particles become too hard, and the conductive fine particles are difficult to deform following the distance between the electrode terminals.

上記導電性金属層の厚さは、例えば透過電子顕微鏡(TEM)による導電性微粒子の断面観察により求めることができる。倍率としては、観察しやすい倍率を選べばよいが、例えば5万倍が用いられる。   The thickness of the conductive metal layer can be obtained, for example, by observing a cross section of the conductive fine particles with a transmission electron microscope (TEM). As the magnification, a magnification that is easy to observe may be selected. For example, 50,000 times is used.

本発明においては、導電性微粒子の平均粒子径が、2.5〜4.5μmであることが必要である。平均粒子径が2.5μm未満であると、導電性金属層を形成する際に凝集が生じやすく、単粒子としにくくなることがあり、平均粒子径が4.5μmを超えると、異方性導電材料として微細な配線を有する基板等の電極端子間で用いられる範囲を超えてしまうことがある。   In the present invention, the average particle size of the conductive fine particles needs to be 2.5 to 4.5 μm. When the average particle diameter is less than 2.5 μm, aggregation is likely to occur when forming the conductive metal layer, and it may be difficult to form single particles. When the average particle diameter exceeds 4.5 μm, anisotropic conductive It may exceed the range used between electrode terminals such as a substrate having fine wiring as a material.

また、導電性微粒子のCV値(粒子径分布の標準偏差を平均粒子径で除して百分率とした値)が、10%以下であることが好ましい。CV値が10%以下であると、導電性微粒子と電極端子との接触面積のばらつきが小さく安定した接続が得られやすい。   The CV value of the conductive fine particles (value obtained by dividing the standard deviation of the particle size distribution by the average particle size as a percentage) is preferably 10% or less. When the CV value is 10% or less, variation in the contact area between the conductive fine particles and the electrode terminal is small, and a stable connection is easily obtained.

本発明においては、150℃加熱環境下で測定した、導電性微粒子直径を20%圧縮変形させたときの圧縮弾性率(以下、20%K値ともいう)が、882〜4410N/mm2 であることが必要である。
本発明の導電性微粒子は、加熱圧着時に良好な導通を確保するため特定の硬さであることが重要であり、例えば異方性導電フィルムとして用いられた際に、150℃加熱環境下で測定した、20%K値が、882〜4410N/mm2 であることにより、加熱圧着時に、硬すぎて接触面積が狭くなったりして導通が不安定になることがなく、また、軟らかすぎて導電性微粒子と電極端子との間のバインダー樹脂が排除されなかったり復元力が低いため基板やバンプの高さのばらつきを吸収できなかったりして導通が不安定になることがない。また、例えば異方性導電フィルムを加熱圧着する際には、通常150℃以上に加熱され圧着されるが、本発明の導電性微粒子は、150℃程度の比較的低温に加熱温度が設定されていても良好な導通を確保することができる。
In the present invention, the compression elastic modulus (hereinafter also referred to as 20% K value) measured in a 150 ° C. heating environment when the conductive fine particle diameter is 20% compression deformed is 882 to 4410 N / mm 2 . It is necessary.
It is important that the conductive fine particles of the present invention have a specific hardness in order to ensure good conduction during thermocompression bonding. For example, when used as an anisotropic conductive film, the measurement is performed in a 150 ° C. heating environment. In addition, when the 20% K value is 882 to 4410 N / mm 2, it is not too hard and the contact area becomes narrow at the time of thermocompression bonding, and conduction is not unstable, and it is too soft and conductive. The conductive resin does not become unstable because the binder resin between the conductive fine particles and the electrode terminal is not excluded or the restoring force is low, so that variations in the height of the substrate and bumps cannot be absorbed. For example, when thermocompression bonding is performed on an anisotropic conductive film, it is usually heated to 150 ° C. or higher, and the conductive fine particles of the present invention have a heating temperature set to a relatively low temperature of about 150 ° C. However, good conduction can be ensured.

本発明における、20%K値は、微小圧縮試験器(Fischer H−100、Fischer社製)を用いて一辺が50μmの四角柱の平滑端面で、上記導電性微粒子を圧縮速度0.33mN/秒、最大試験荷重40mNで圧縮し求めることができる。なお、測定は150℃加熱環境下で行う。150℃加熱環境下での測定は、測定台を150℃に設定されたホットプレートとし、ホットプレートの上に導電性微粒子をのせて行う。   In the present invention, the 20% K value is a smooth end surface of a square column with a side of 50 μm using a micro compression tester (Fischer H-100, manufactured by Fischer), and the conductive fine particles are compressed at a rate of 0.33 mN / sec. Compressed with a maximum test load of 40 mN. The measurement is performed in a 150 ° C. heating environment. The measurement in a 150 ° C. heating environment is performed by using a hot plate set at 150 ° C. and placing conductive fine particles on the hot plate.

上記20%K値については下記式より求めることができる。
K=(3/√2)・F・S-3/2・R-1/2
F:導電性微粒子の20%圧縮変形における荷重値(N)
S:導電性微粒子の20%圧縮変形における圧縮変位(mm)
R:導電性微粒子の半径(mm)
The 20% K value can be obtained from the following equation.
K = (3 / √2) ・ F ・ S -3/2・ R -1/2
F: Load value at 20% compression deformation of conductive fine particles (N)
S: Compression displacement (mm) in 20% compression deformation of conductive fine particles
R: Radius of conductive fine particles (mm)

本発明の導電性微粒子について、上記の特定の硬さにする方法は、芯粒子である架橋樹脂粒子の架橋密度を調節することにより達成することができる。すなわち、芯粒子を形成するエチレン性不飽和単量体の種類を選択することにより制御できる。   With respect to the conductive fine particles of the present invention, the above-described method for obtaining a specific hardness can be achieved by adjusting the crosslinking density of the crosslinked resin particles as the core particles. That is, it can be controlled by selecting the type of ethylenically unsaturated monomer that forms the core particles.

本発明の異方性導電材料は、上述した本発明の導電性微粒子が樹脂バインダーに分散されてなるものである。   The anisotropic conductive material of the present invention is obtained by dispersing the above-described conductive fine particles of the present invention in a resin binder.

上記異方性導電材料としては、本発明の導電性微粒子が樹脂バインダーに分散されていれば特に限定されるものではなく、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等が挙げられる。   The anisotropic conductive material is not particularly limited as long as the conductive fine particles of the present invention are dispersed in a resin binder. For example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive An adhesive, an anisotropic conductive film, an anisotropic conductive sheet, etc. are mentioned.

本発明の異方性導電材料の作製方法としては、特に限定されるものではないが、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して導電性組成物を作製した後、この導電性組成物を必要に応じて有機溶媒中に均一に溶解(分散)させるか、又は加熱溶融させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、作製しようとする異方性導電材料の種類に対応して、適宜の作製方法をとればよい。また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを、混合することなく、別々に用いて異方性導電材料としてもよい。   The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and mixed and dispersed uniformly. For example, a method of using an anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., or adding the conductive fine particles of the present invention to an insulating resin binder and mixing them uniformly. After preparing the conductive composition, the conductive composition is uniformly dissolved (dispersed) in an organic solvent as necessary, or heated and melted to release a release material such as release paper or release film. Applying to the mold processing surface so as to have a predetermined film thickness, and performing drying or cooling as necessary, for example, an anisotropic conductive film, an anisotropic conductive sheet, etc. Depending on the type of anisotropic conductive material to be produced, Manufacturing methods may Taking. Further, the insulating resin binder and the conductive fine particles of the present invention may be used separately without being mixed to form an anisotropic conductive material.

上記絶縁性の樹脂バインダーの樹脂としては、特に限定されるものではないが、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型等のいずれの硬化形態であってもよい。   The resin of the insulating resin binder is not particularly limited. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene -Thermoplastic resins such as vinyl acetate copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene blocks Thermoplastic block copolymers such as copolymers, styrene-isoprene-styrene block copolymers, and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber ( Rubbers). These resins may be used alone or in combination of two or more. The curable resin may be in any curing form such as a room temperature curing type, a thermosetting type, a photocuring type, and a moisture curing type.

本発明の異方性導電材料には、絶縁性の樹脂バインダー、及び、本発明の導電性微粒子に加えるに、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の1種又は2種以上が併用されてもよい。   In addition to the insulating resin binder and the conductive fine particles of the present invention, the anisotropic conductive material of the present invention includes, for example, a bulking agent, a softening agent, etc. 1 type of various additives such as additives (plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Or 2 or more types may be used together.

本発明の導電性微粒子は、上述の構成よりなるので、電極端子間を接続しようとしたときに、加熱圧着時に良好な導通を確保することができるものを得ることができる。特に、圧着させる際の加熱温度が150℃程度の比較的低温に設定されていても良好な導通を確保することができる。
また、該導電性微粒子を用いた異方性導電材料は、電極端子間を接続しようとしたときに、加熱圧着時に良好な導通を確保することができる。
Since the conductive fine particles of the present invention have the above-described configuration, it is possible to obtain one that can ensure good conduction during thermocompression bonding when trying to connect the electrode terminals. In particular, even when the heating temperature at the time of pressure bonding is set to a relatively low temperature of about 150 ° C., good conduction can be ensured.
In addition, the anisotropic conductive material using the conductive fine particles can ensure good conduction during thermocompression bonding when attempting to connect the electrode terminals.

以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
シード粒子として0.8μmのスチレン粒子5gと、イオン交換水500gと、5重量%のポリビニルアルコール水溶液100gとを混合し超音波を加え分散させた後、セパラブルフラスコに入れて均一に撹拌した。
次に、ポリテトラメチレングリコールジアクリレート128g、ジビニルベンゼン32gを、油溶性重合開始剤(日本油脂社製、「ナイパーBW」)12g、ラウリル硫酸トリエタノールアミン9g、エタノール118gを添加したイオン交換水1035gより調製した乳化液をセパラブルフラスコに加え、12時間撹拌を行いシード粒子にモノマーを吸収させた。
その後、5重量%のポリビニルアルコール水溶液500gを加え窒素ガスを導入しオートクレーブ中にて85℃、9時間反応させ平均粒子径4μmの架橋樹脂粒子を得た。
得られた架橋樹脂粒子の表面に無電解ニッケルメッキを行い、約0.08μmのニッケルメッキ層を形成させた。更に、置換金メッキを行い、約0.03μmの金メッキ層をニッケルメッキ層の上に形成させ導電性微粒子を得た。
得られた導電性微粒子について、150℃加熱環境下で測定した、20%K値を求めた。測定結果を表1に示した。
Example 1
After mixing 5 g of 0.8 μm styrene particles as seed particles, 500 g of ion-exchanged water and 100 g of a 5 wt% polyvinyl alcohol aqueous solution and applying ultrasonic waves to disperse, the mixture was placed in a separable flask and stirred uniformly.
Next, 128 g of polytetramethylene glycol diacrylate and 32 g of divinylbenzene, 1035 g of ion-exchanged water to which 12 g of an oil-soluble polymerization initiator (manufactured by NOF Corporation, “NIPER BW”), 9 g of triethanolamine lauryl sulfate, and 118 g of ethanol were added. The prepared emulsion was added to a separable flask and stirred for 12 hours to allow the seed particles to absorb the monomer.
Thereafter, 500 g of a 5% by weight aqueous polyvinyl alcohol solution was added, nitrogen gas was introduced, and the mixture was reacted in an autoclave at 85 ° C. for 9 hours to obtain crosslinked resin particles having an average particle size of 4 μm.
Electroless nickel plating was performed on the surface of the obtained crosslinked resin particles to form a nickel plating layer of about 0.08 μm. Further, substitution gold plating was performed, and a gold plating layer of about 0.03 μm was formed on the nickel plating layer to obtain conductive fine particles.
About the obtained electroconductive fine particles, 20% K value measured in 150 degreeC heating environment was calculated | required. The measurement results are shown in Table 1.

(比較例1)
シード粒子として0.8μmのスチレン粒子5gと、イオン交換水500gと、5重量%のポリビニルアルコール水溶液100gとを混合し超音波を加え分散させた後、セパラブルフラスコに入れて均一に撹拌した。
次に、ジビニルベンゼン150gを、油溶性重合開始剤(日本油脂社製、「パーブチルZ」)12g、ラウリル硫酸トリエタノールアミン9g、エタノール118gを添加したイオン交換水1035gより調製した乳化液をセパラブルフラスコに加え、12時間撹拌を行いシード粒子にモノマーを吸収させた。
その後、5重量%のポリビニルアルコール水溶液500gを加え窒素ガスを導入しオートクレーブ中にて130℃、9時間反応させ平均粒子径4μmの架橋樹脂粒子を得た。
得られた架橋樹脂粒子の表面に無電解ニッケルメッキを行い、約0.08μmのニッケルメッキ層を形成させた。更に、置換金メッキを行い、約0.03μmの金メッキ層をニッケルメッキ層の上に形成させ導電性微粒子を得た。
得られた導電性微粒子について、150℃加熱環境下で測定した、20%K値を求めた。測定結果を表1に示した。
(Comparative Example 1)
After mixing 5 g of 0.8 μm styrene particles as seed particles, 500 g of ion-exchanged water, and 100 g of 5 wt% polyvinyl alcohol aqueous solution and applying ultrasonic waves to disperse, the mixture was placed in a separable flask and stirred uniformly.
Next, an emulsion prepared by using 1035 g of ion-exchanged water to which 150 g of divinylbenzene was added 12 g of an oil-soluble polymerization initiator (“Perbutyl Z” manufactured by NOF Corporation), 9 g of triethanolamine lauryl sulfate and 118 g of ethanol was separable. In addition to the flask, the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer.
Thereafter, 500 g of a 5% by weight aqueous polyvinyl alcohol solution was added, nitrogen gas was introduced, and the mixture was reacted in an autoclave at 130 ° C. for 9 hours to obtain crosslinked resin particles having an average particle size of 4 μm.
Electroless nickel plating was performed on the surface of the obtained crosslinked resin particles to form a nickel plating layer of about 0.08 μm. Further, substitution gold plating was performed, and a gold plating layer of about 0.03 μm was formed on the nickel plating layer to obtain conductive fine particles.
About the obtained electroconductive fine particles, 20% K value measured in 150 degreeC heating environment was calculated | required. The measurement results are shown in Table 1.

(異方性導電材料の導電性評価)
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及びトルエン100重量部に、実施例1又は比較例1で得られた導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cm2 とした。
その後、導電性微粒子を含有する接着フィルムを、導電性微粒子を含有させずに得た接着フィルムと常温で貼り合わせ厚さ17μmで2層構造の異方性導電フィルムを得た。
(Evaluation of conductivity of anisotropic conductive materials)
As a resin binder resin, 100 parts by weight of an epoxy resin (manufactured by Yuka Shell Epoxy, “Epicoat 828”), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene are obtained in Example 1 or Comparative Example 1. The conductive fine particles are added and mixed thoroughly using a planetary stirrer, and then coated on the release film so that the thickness after drying becomes 7 μm, and toluene is evaporated to contain the conductive fine particles. An adhesive film was obtained. In addition, the compounding quantity of electroconductive fine particles made content in a film 50,000 piece / cm < 2 >.
Thereafter, an adhesive film containing conductive fine particles was bonded to an adhesive film obtained without containing conductive fine particles at room temperature to obtain a two-layer anisotropic conductive film having a thickness of 17 μm.

得られた異方性導電フィルムを5×5mmの大きさに切断した。また、一方に抵抗測定用の引き回し線を持つ、幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極が形成されたガラス基板を2枚用意した。異方性導電フィルムを一方のガラス基板のほぼ中央に貼り付けた後、他方のガラス基板を異方性導電フィルムが貼り付けられたガラス基板の電極パターンと重なるように位置あわせをして貼り合わせた。
2枚のガラス基板を、圧力10N、温度150℃の条件で熱圧着した後、電極間の抵抗値を測定した。測定は、実施例1又は比較例1で得られた導電性微粒子を用いた異方性導電フィルムについてそれぞれ行った。評価結果を表1に示した。
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. In addition, two glass substrates having a lead wire for resistance measurement on which an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm was formed were prepared. After attaching the anisotropic conductive film to the center of one glass substrate, align the other glass substrate so that it overlaps the electrode pattern of the glass substrate to which the anisotropic conductive film is attached. It was.
Two glass substrates were thermocompression bonded under the conditions of a pressure of 10 N and a temperature of 150 ° C., and then the resistance value between the electrodes was measured. The measurement was performed for each anisotropic conductive film using the conductive fine particles obtained in Example 1 or Comparative Example 1. The evaluation results are shown in Table 1.

Figure 2006196411
Figure 2006196411

表1より、実施例で得られた導電性微粒子を用いた異方性導電フィルムは、150℃加熱環境下で測定した20%K値が特定の範囲の、特定の硬さであり、抵抗値が低く良好な導通となっている。   From Table 1, the anisotropic conductive film using the conductive fine particles obtained in Examples has a specific hardness with a 20% K value measured in a heating environment at 150 ° C. in a specific range, and a resistance value. Is low and good conduction.

本発明によれば、電極端子間を接続しようとしたときに、加熱圧着時に良好な導通を確保することができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, when trying to connect between electrode terminals, the electroconductive fine particle which can ensure favorable conduction | electrical_connection at the time of thermocompression bonding, and the anisotropic conductive material using this electroconductive fine particle can be provided.

Claims (2)

架橋樹脂粒子の表面に導電性金属層が形成された導電性微粒子であって、導電性微粒子の平均粒子径が2.5〜4.5μmであり、150℃加熱環境下で測定した導電性微粒子直径を20%圧縮変形させたときの圧縮弾性率(20%K値)が882〜4410N/mm2 であることを特徴とする導電性微粒子。 Conductive fine particles in which a conductive metal layer is formed on the surface of the crosslinked resin particles, and the conductive fine particles have an average particle diameter of 2.5 to 4.5 μm and measured under a 150 ° C. heating environment. Conductive fine particles characterized by having a compression modulus (20% K value) of 882 to 4410 N / mm 2 when the diameter is 20% compression deformed. 請求項1記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。

An anisotropic conductive material comprising the conductive fine particles according to claim 1 dispersed in a resin binder.

JP2005009375A 2005-01-17 2005-01-17 Conductive fine particle and anisotropic conductive material Pending JP2006196411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009375A JP2006196411A (en) 2005-01-17 2005-01-17 Conductive fine particle and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009375A JP2006196411A (en) 2005-01-17 2005-01-17 Conductive fine particle and anisotropic conductive material

Publications (1)

Publication Number Publication Date
JP2006196411A true JP2006196411A (en) 2006-07-27

Family

ID=36802301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009375A Pending JP2006196411A (en) 2005-01-17 2005-01-17 Conductive fine particle and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP2006196411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222785A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film
JP2008222786A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film for circuit connection
WO2009017200A1 (en) * 2007-08-02 2009-02-05 Hitachi Chemical Company, Ltd. Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
JP2012156127A (en) * 2011-01-06 2012-08-16 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
WO2021230212A1 (en) * 2020-05-13 2021-11-18 昭和電工マテリアルズ株式会社 Conductive adhesive, method for producing circuit connection structure, and circuit connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222785A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film
JP2008222786A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film for circuit connection
WO2009017200A1 (en) * 2007-08-02 2009-02-05 Hitachi Chemical Company, Ltd. Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
JP2012156127A (en) * 2011-01-06 2012-08-16 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
WO2021230212A1 (en) * 2020-05-13 2021-11-18 昭和電工マテリアルズ株式会社 Conductive adhesive, method for producing circuit connection structure, and circuit connection structure
CN115516057A (en) * 2020-05-13 2022-12-23 昭和电工材料株式会社 Conductive adhesive, method for manufacturing circuit connection structure, and circuit connection structure

Similar Documents

Publication Publication Date Title
KR101612564B1 (en) Polymer particle, conductive particle, anisotropic conductive material, and connection structure
KR101609403B1 (en) Polymer particle, conductive particle, anisotropic conductive material and connection structure
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
TWI385676B (en) An anisotropic conductive material, a connecting structure, and a method for manufacturing the same
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
JP2009507336A (en) Insulating conductive particles and anisotropic conductive adhesive film using the same
JP6061443B2 (en) Anisotropic conductive adhesive film, connection structure and manufacturing method thereof
JP2011040189A (en) Conductive particle, anisotropic conductive material, and connection structure
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP2007188727A (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP7016611B2 (en) Conductive particles, conductive materials, and connecting structures
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP5185839B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP2005327510A (en) Conductive fine particle and anisotropic conductive material
JP4391836B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4674119B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2010238419A (en) Conductive particles and manufacturing method therefor
JP2005325383A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP3869785B2 (en) Insulating coating conductive fine particles and conductive connection structure
JPH087658A (en) Anisotropic conductive adhesive film
JP2005325382A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material
JP5511513B2 (en) Method for producing conductive particles and conductive particles produced thereby