JP2005327510A - Conductive fine particle and anisotropic conductive material - Google Patents

Conductive fine particle and anisotropic conductive material Download PDF

Info

Publication number
JP2005327510A
JP2005327510A JP2004142852A JP2004142852A JP2005327510A JP 2005327510 A JP2005327510 A JP 2005327510A JP 2004142852 A JP2004142852 A JP 2004142852A JP 2004142852 A JP2004142852 A JP 2004142852A JP 2005327510 A JP2005327510 A JP 2005327510A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
conductive
particles
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004142852A
Other languages
Japanese (ja)
Inventor
Shinya Uenoyama
伸也 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004142852A priority Critical patent/JP2005327510A/en
Publication of JP2005327510A publication Critical patent/JP2005327510A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive fine particles capable of properly connecting electrode terminals to be connected to each other even when the distance between them is irregular, and having excellent connection reliability; and to provide an anisotropic conductive material using the conductive fine particles. <P>SOLUTION: These conductive fine particles manufactured by forming conductive metal layers on surfaces of resin particles are a mixture of conductive fine particles 1 and conductive fine particles 2 different in both a 10%K value and fracture strain. Each conductive fine particle 1 has a 10%K value satisfying the following expression (1) and the fracture strain less than 50%. Each conductive fine particle 2 has a 10%K value satisfying the following expression (2) and the fracture strain not less than 50%. In the conductive fine particles, the weights of the two kinds of them are the same, or either of them is excessively included by not more than 20 wt.%. 10%K value of the conductive fine particles 1: K<SB>1</SB>(N/mm<SP>2</SP>)>15,680R<SB>1</SB>(μm)<SP>-7/10</SP>(1). 10%K value of the conductive fine particles 2: K<SB>2</SB>(N/mm<SP>2</SP>)>11,530R<SB>2</SB>(μm)<SP>-3/5</SP>(2). In expressions, R1: particle diameter of the conductive fine particles 1; and R2: particle diameter of the conductive fine particles 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性微粒子及び異方性導電材料に関し、詳しくは、接続すべき電極端子間の間隔に広狭がある場合でも良好に接続することができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料に関する。   The present invention relates to a conductive fine particle and an anisotropic conductive material. Specifically, the conductive fine particle that can be connected well even when the interval between electrode terminals to be connected is wide and narrow, and the conductive fine particle are used. The present invention relates to an anisotropic conductive material.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。   The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。   These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between opposing substrates and electrode terminals.

上記異方性導電材料に用いられる導電性微粒子としては、従来から、金属粒子、プラスチック粒子や有機質無機質複合粒子を芯粒子としてその表面に無電解メッキ法にて金メッキ等を施した金属メッキ粒子が用いられている。有機質無機質複合粒子を芯粒子とした金属メッキ粒子については、例えば、特許文献1に記載されている。   Conventionally, as the conductive fine particles used for the anisotropic conductive material, metal plated particles in which metal particles, plastic particles, or organic / inorganic composite particles are used as core particles and the surface thereof is subjected to gold plating by an electroless plating method are used. It is used. For example, Patent Document 1 describes metal plating particles having organic-inorganic composite particles as core particles.

上記金属粒子は、金属メッキプラスチック粒子や金属メッキ有機質無機質複合粒子に比べ、硬く、金バンプにくい込んでしまい、また復元性が乏しいため、基板やバンプの高さのばらつきを吸収できず、接続信頼性が低いのに対し、金属メッキプラスチック粒子や金属メッキ有機質無機質複合粒子は、金属粒子より柔らかく、復元力も高いため、基板やバンプの高さにばらつきがある場合でも電極端子間を比較的高い信頼性で接続することができる。   Compared to metal-plated plastic particles and metal-plated organic-inorganic inorganic composite particles, the above metal particles are harder and harder to bump into gold bumps, and because they have poor recoverability, they cannot absorb variations in the height of the substrate and bumps, and connection reliability In contrast, metal-plated plastic particles and metal-plated organic-inorganic inorganic composite particles are softer and more resilient than metal particles, so even if the board or bump height varies, there is relatively high reliability between electrode terminals. Can be connected by sex.

特開2003−183337号公報JP 2003-183337 A

しかしながら、多層基板を作製する過程でベアチップ間を3次元実装により接続する場合などは、異方性導電接着剤や異方性導電樹脂シートを接続面に配置して圧着しても、電極構造によっては異方性導電接着剤や異方性導電樹脂シートでは接続が難しい場合がある。これは、例えば、積層される半導体チップの電極端子面の形状やこれと接続される基板側の電極端子面の形状は必ずしも平面ではなく凹凸のある電極端子となっている場合があるからである。従って、場合によっては、対向する電極端子間の間隔が他の接続箇所に比べて狭かったり、逆に離れていたりしていることがあり、電極端子間の間隙の広い部位では圧着条件の設定が難しく設定が適当でなければ接続不良が起こることがある。   However, when connecting between bare chips by three-dimensional mounting in the process of manufacturing a multilayer substrate, even if an anisotropic conductive adhesive or anisotropic conductive resin sheet is placed on the connection surface and crimped, depending on the electrode structure May be difficult to connect with an anisotropic conductive adhesive or an anisotropic conductive resin sheet. This is because, for example, the shape of the electrode terminal surface of the semiconductor chip to be stacked or the shape of the electrode terminal surface on the substrate side connected to the semiconductor chip may not necessarily be a flat surface but may be an uneven electrode terminal. . Therefore, in some cases, the interval between the opposing electrode terminals may be narrower than the other connection locations, or may be separated from each other. If it is difficult and the settings are not appropriate, poor connection may occur.

このような電極端子間の接続には、通常、電極端子間に高い圧着力が加わる条件で接続を行なっている。また、圧着時には一般的に150℃以上の温度がかかる。しかしながら、このような温度条件下、圧着力が強すぎると間隙の狭い電極端子間においては、金属メッキプラスチック粒子や金属メッキ有機質無機質複合粒子では、塑性変形したり破壊してしまい復元力が発生せず接続不良になる恐れがある。また、当然、圧着力が弱すぎると間隙の広い電極端子間においては、バインダー樹脂が集中して流入したりして、金属メッキ粒子と電極端子間のバインダー樹脂が排除されず接続不良になる恐れがある。
従って、対向する電極端子間の間隔が異なる電極端子面を異方性導電接着剤等の異方性導電材料で接続するには圧着条件の設定が難しいといった問題点がある。
Such connection between the electrode terminals is usually performed under a condition in which a high crimping force is applied between the electrode terminals. Further, a temperature of 150 ° C. or higher is generally applied at the time of pressure bonding. However, if the crimping force is too strong under such temperature conditions, the metal-plated plastic particles and metal-plated organic / inorganic composite particles may be plastically deformed or broken between the electrode terminals with a narrow gap to generate a restoring force. There is a risk of poor connection. Of course, if the pressure-bonding force is too weak, the binder resin concentrates and flows in between the electrode terminals with a wide gap, and the binder resin between the metal plating particles and the electrode terminals may not be excluded, resulting in poor connection. There is.
Accordingly, there is a problem that it is difficult to set the crimping conditions in order to connect the electrode terminal surfaces having different intervals between the opposing electrode terminals with an anisotropic conductive material such as an anisotropic conductive adhesive.

特に、ICチップのバンプとしてメッキバンプの他に簡便に低コストで作製できるスタッドバンプがあるが、一般的にメッキバンプの高さのばらつきが±2μmであるのに対してスタッドバンプの高さばらつきは±4μm程度と大きく、このため、スタッドバンプ付きのICチップを配線基板に実装する場合にも上述のような接続不良が生じている。   In particular, there are stud bumps that can be manufactured easily and at low cost in addition to plated bumps as bumps for IC chips. Generally, however, variations in the height of the stud bumps are ± 2 μm, whereas there are variations in the height of the stud bumps. Is as large as about ± 4 μm. For this reason, even when an IC chip with stud bumps is mounted on a wiring board, the above-mentioned connection failure occurs.

本発明は、上記現状に鑑み、接続すべき電極端子間の間隔に広狭がある場合でも良好に接続することができ接続信頼性に優れた導電性微粒子、及び該導電性微粒子を用いた異方性導電材料を提供することを目的とする。   In view of the above situation, the present invention provides conductive fine particles that can be connected satisfactorily even when the distance between electrode terminals to be connected is wide and narrow, and anisotropic using the conductive fine particles. An object is to provide a conductive material.

上記目的を達成するために請求項1記載の発明は、樹脂粒子の表面に導電性金属層が形成された導電性微粒子が、10%K値と破壊歪みとの両方が異なる、導電性微粒子1と導電性微粒子2との混合物であり、導電性微粒子1は、下記式(1)を満たす10%K値であり、かつ破壊歪みが50%未満であり、導電性微粒子2は、下記式(2)を満たす10%K値であり、かつ破壊歪みが50%以上であり、2種類の導電性微粒子は同重量で含有されているかあるいはいずれかの一方の導電性微粒子が他の導電性微粒子よりも20重量%以内の範囲で過剰に含有されている導電性微粒子を提供する。
導電性微粒子1の10%K値:K1 (N/mm2 )>
15680R1 (μm)-7/10 (1)
(R1 :導電性微粒子1の粒径)
導電性微粒子2の10%K値:K2 (N/mm2 )<
11530R2 (μm)-3/5 (2)
(R2 :導電性微粒子2の粒径)
In order to achieve the above object, according to the first aspect of the present invention, the conductive fine particle 1 in which the conductive metal layer is formed on the surface of the resin particle is different in both the 10% K value and the fracture strain. The conductive fine particles 1 have a 10% K value satisfying the following formula (1) and the fracture strain is less than 50%. The conductive fine particles 2 can be expressed by the following formula ( 2) 10% K value satisfying 2) and fracture strain is 50% or more, and the two kinds of conductive fine particles are contained in the same weight, or one of the conductive fine particles is another conductive fine particle. In addition, the present invention provides conductive fine particles that are excessively contained within a range of 20% by weight or less.
10% K value of conductive fine particles 1: K 1 (N / mm 2 )>
15680R 1 (μm) -7/10 (1)
(R 1 : particle diameter of conductive fine particles 1)
10% K value of conductive fine particles 2: K 2 (N / mm 2 ) <
11530R 2 (μm) -3/5 (2)
(R 2 : particle size of conductive fine particles 2)

また、請求項2記載の発明は、すくなくともいずれかの導電性微粒子が、表面に高さが0.04μm以上の突起を有する導電性微粒子である請求項1記載の導電性微粒子を提供する。   The invention according to claim 2 provides the conductive fine particles according to claim 1, wherein at least one of the conductive fine particles is a conductive fine particle having a protrusion having a height of 0.04 μm or more on the surface.

また、請求項3記載の発明は、請求項1又は2記載の導電性微粒子が樹脂バインダーに分散されてなる異方性導電材料を提供する。   The invention according to claim 3 provides an anisotropic conductive material in which the conductive fine particles according to claim 1 or 2 are dispersed in a resin binder.

以下、本発明の詳細を説明する。
本発明の導電性微粒子は、樹脂粒子の表面に導電性金属層が形成された導電性微粒子が、10%K値と破壊歪みとの両方が異なる、導電性微粒子1と導電性微粒子2との混合物である。すなわち、本発明の導電性微粒子は、異なる圧縮特性を有する2種類の導電性微粒子の混合物からなるものである。
Details of the present invention will be described below.
In the conductive fine particles of the present invention, the conductive fine particles in which the conductive metal layer is formed on the surface of the resin particles are different from each other in the conductive fine particles 1 and the conductive fine particles 2 in which both the 10% K value and the fracture strain are different. It is a mixture. That is, the conductive fine particles of the present invention are composed of a mixture of two types of conductive fine particles having different compression characteristics.

本発明の導電性微粒子の芯粒子となる樹脂粒子を得る方法は特に限定されず、例えば、乳化重合、懸濁重合、シード重合、分散重合、分散シード重合等の重合法による方法等が挙げられる。なかでも、重合後の樹脂粒子を分級せずとも均一な粒径の樹脂粒子が得られるのでシード重合法が好ましい。なお、シード重合法については、例えば、特開昭64−81810号公報等が知られている。   The method for obtaining the resin particles to be the core particles of the conductive fine particles of the present invention is not particularly limited, and examples thereof include methods by polymerization methods such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization. . Among these, the seed polymerization method is preferable because resin particles having a uniform particle diameter can be obtained without classifying the resin particles after polymerization. As for the seed polymerization method, for example, JP-A No. 64-81810 is known.

上記シード重合法の具体的方法としては、例えば、シード粒子を分散した水中に、エチレン性不飽和単量体からなる水性エマルジョンと、油溶性重合開始剤の水性エマルジョンとを添加し、シード粒子にエチレン性不飽和単量体及び油溶性重合開始剤を吸収させた後、エチレン性不飽和単量体を重合する方法が挙げられる。   As a specific method of the seed polymerization method, for example, an aqueous emulsion composed of an ethylenically unsaturated monomer and an aqueous emulsion of an oil-soluble polymerization initiator are added to water in which seed particles are dispersed, and the seed particles are added to the seed particles. A method of polymerizing the ethylenically unsaturated monomer after absorbing the ethylenically unsaturated monomer and the oil-soluble polymerization initiator is mentioned.

なお、シード粒子の重量平均分子量は20000以下が好ましい。また、上記エチレン性不飽和単量体は、シード粒子1重量部に対して10〜500重量部とすることが好ましい。   The weight average molecular weight of the seed particles is preferably 20000 or less. Moreover, it is preferable that the said ethylenically unsaturated monomer shall be 10-500 weight part with respect to 1 weight part of seed particles.

本発明における樹脂粒子を形成するために用いるエチレン性不飽和単量体は特に限定されず、架橋性単量体又は非架橋性単量体のみから形成されてもよいし、架橋性単量体に加えて非架橋性単量体が併用されてもよい。なかでも、適度な圧縮特性を得るためには架橋性単量体が含まれることが好ましい。また、比較的硬質な導電性微粒子1を得るためには硬質性の架橋性単量体を用いることが好ましく、比較的柔軟な導電性微粒子2を得るためには柔軟性の架橋性単量体を用いることが好ましい。   The ethylenically unsaturated monomer used for forming the resin particles in the present invention is not particularly limited, and may be formed only from a crosslinkable monomer or a non-crosslinkable monomer, or a crosslinkable monomer. In addition, a non-crosslinkable monomer may be used in combination. Among these, a crosslinkable monomer is preferably included in order to obtain appropriate compression characteristics. In order to obtain relatively hard conductive fine particles 1, it is preferable to use a hard crosslinkable monomer, and in order to obtain relatively flexible conductive fine particles 2, a flexible crosslinkable monomer. Is preferably used.

上記硬質性の架橋性単量体としては、例えば、ジビニルベンゼン及びその誘導体等のジビニルベンゼン系単量体等が挙げられる。また、上記柔軟性の架橋性単量体としては、例えば、ブタジエン、イソプレン等の共役ジエン類、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類等が挙げられる。ここで、(メタ)アクリレートとはメタクリレート又はアクリレートを意味する。上記架橋性単量体は、単独で使用してもよく、2種類以上を併用してもよい。   Examples of the hard crosslinkable monomer include divinylbenzene monomers such as divinylbenzene and derivatives thereof. Examples of the flexible crosslinkable monomer include polyfunctional groups such as conjugated dienes such as butadiene and isoprene, polytetramethylene glycol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate. Examples include (meth) acrylates. Here, (meth) acrylate means methacrylate or acrylate. The said crosslinkable monomer may be used independently and may use 2 or more types together.

上記非架橋性単量体としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル、アクリロニトリル等の不飽和ニトリル類、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート等の単官能(メタ)アクリレート類等が挙げられる。上記非架橋性単量体は、単独で使用してもよく、2種類以上を併用してもよい。   Examples of the non-crosslinkable monomer include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene; unsaturated nitriles such as vinyl chloride and acrylonitrile, isobutyl ( And monofunctional (meth) acrylates such as (meth) acrylate and isooctyl (meth) acrylate. The said non-crosslinkable monomer may be used independently and may use 2 or more types together.

上記油溶性重合開始剤としては特に限定されず、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。   The oil-soluble polymerization initiator is not particularly limited. For example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butyl peroxide Organic peroxides such as oxy-2-ethylhexanoate and di-t-butyl peroxide; azos such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4-dimethylvaleronitrile) System compounds and the like.

上記油溶性重合開始剤の使用量は、エチレン性不飽和単量体100重量部に対して、0.1〜3重量部であることが好ましい。   The amount of the oil-soluble polymerization initiator used is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the ethylenically unsaturated monomer.

また、重合に際しては必要に応じて界面活性剤、分散安定剤を用いてもよい。   In the polymerization, a surfactant and a dispersion stabilizer may be used as necessary.

本発明の導電性微粒子は、樹脂粒子を芯粒子とした表面に導電性金属層が被覆された粒子である。     The conductive fine particles of the present invention are particles in which a conductive metal layer is coated on the surface with resin particles as core particles.

上記導電性金属層に使用される金属は特に限定されず、例えば、ニッケル、金、銀、銅、コバルト又はこれらを主成分とする合金等が挙げられる。   The metal used for the said conductive metal layer is not specifically limited, For example, nickel, gold | metal | money, silver, copper, cobalt or the alloy etc. which have these as a main component are mentioned.

上記導電性金属層は、例えば、無電解メッキ等により芯粒子を金属メッキして形成することができる。なお、金属メッキは単一の金属層であっても複数の金属からなる複層であってもよい。   The conductive metal layer can be formed by, for example, metal plating of core particles by electroless plating or the like. The metal plating may be a single metal layer or a multilayer composed of a plurality of metals.

本発明の導電性微粒子における導電性金属層の厚さは0.02〜5μmが好ましい。導電性金属層の厚さが0.02μm未満であると、金属層が薄く導電性が得られにくい。また、導電性金属層の厚さが5μmを超えると導電性微粒子が硬くなりすぎ電極端子間の間隔に追随して導電性微粒子が変形し難くなる。   The thickness of the conductive metal layer in the conductive fine particles of the present invention is preferably 0.02 to 5 μm. When the thickness of the conductive metal layer is less than 0.02 μm, the metal layer is thin and it is difficult to obtain conductivity. On the other hand, if the thickness of the conductive metal layer exceeds 5 μm, the conductive fine particles become too hard, and the conductive fine particles are difficult to deform following the distance between the electrode terminals.

なお、本発明の導電性微粒子の粒径は、1〜10μmであることが好ましい。また、導電性微粒子と電極との接触面積のばらつきが小さく安定した接続が得られるため、CV値(粒径分布の標準偏差を平均粒径で除して百分率とした値)は、10%以下であることが好ましい。   In addition, it is preferable that the particle size of the electroconductive fine particles of this invention is 1-10 micrometers. Moreover, since the dispersion of the contact area between the conductive fine particles and the electrode is small and stable connection is obtained, the CV value (value obtained by dividing the standard deviation of the particle size distribution by the average particle size as a percentage) is 10% or less. It is preferable that

本発明における、10%K値、破壊歪み等の圧縮特性は、微小圧縮試験器を用いて求めることができる。
上記10%K値とは、例えば、特表平6−503180号公報に記載されているように、微小圧縮試験器(PCT−200、島津製作所社製)を用いてダイアモンド製の直径50μmの円柱の平滑端面で、上記導電性微粒子を圧縮速度2.65mN/秒、最大試験荷重98mNで圧縮し、下記式(3)より求められる値である。
K(N/mm2 )=(3/√2)×F×S-3/2×R-1/2 (3)
F:導電性微粒子の10%圧縮変形における荷重値(N)
S:導電性微粒子の10%圧縮変形における圧縮変位(mm)
R:導電性微粒子の半径(mm)
In the present invention, the compression characteristics such as 10% K value and fracture strain can be obtained using a micro compression tester.
The 10% K value is, for example, a cylinder made of diamond having a diameter of 50 μm using a micro compression tester (PCT-200, manufactured by Shimadzu Corporation) as described in JP-T-6-503180. The conductive fine particles are compressed at a compression speed of 2.65 mN / sec and a maximum test load of 98 mN on the smooth end surface, and a value obtained from the following formula (3).
K (N / mm 2 ) = (3 / √2) × F × S −3/2 × R −1/2 (3)
F: Load value at 10% compression deformation of conductive fine particles (N)
S: Compression displacement (mm) in 10% compression deformation of conductive fine particles
R: Radius of conductive fine particles (mm)

上記破壊歪みとは、10%K値の測定方法と同様の方法で測定し、圧縮の過程において粒子が破壊されたときの圧縮変位の、粒子径に対する割合であり、下記式(4)より求められる値である。
破壊歪み(%)=(B/D)×100 (4)
B:導電性微粒子が破壊されたときの圧縮変位(mm)
D:導電性微粒子の直径(mm)
The fracture strain is measured by the same method as the 10% K value measurement method, and is the ratio of the compression displacement to the particle diameter when the particles are broken during the compression process, and is obtained from the following equation (4). Value.
Fracture strain (%) = (B / D) × 100 (4)
B: Compression displacement (mm) when conductive fine particles are destroyed
D: Diameter of conductive fine particles (mm)

以下、本発明における10%K値及び破壊歪みの求め方を、図面を参照して説明する。図1に示すグラフは、2種類の導電性微粒子の圧縮特性を測定したチャートであり、横軸に変位、縦軸に荷重を表している。この測定例では、導電性微粒子の粒径は、共に4.2μmである。10%K値は、粒径の10%が圧縮変形されたとき(この測定例では0.42μm)の荷重値を用い、上記式(3)により求めることができる。破壊歪みは、圧縮により粒子破壊が起こったときの変曲点1での変位を用い、上記式(4)により求めることができる。   Hereinafter, a method for obtaining a 10% K value and fracture strain in the present invention will be described with reference to the drawings. The graph shown in FIG. 1 is a chart obtained by measuring the compression characteristics of two types of conductive fine particles, with the horizontal axis representing displacement and the vertical axis representing load. In this measurement example, the particle diameters of the conductive fine particles are both 4.2 μm. The 10% K value can be obtained by the above formula (3) using a load value when 10% of the particle diameter is compressed and deformed (0.42 μm in this measurement example). The fracture strain can be obtained by the above equation (4) using the displacement at the inflection point 1 when particle fracture occurs due to compression.

本発明においては、導電性微粒子1は、下記式(1)を満たす10%K値であり、かつ破壊歪みが50%未満であり、導電性微粒子2は、下記式(2)を満たす10%K値であり、かつ破壊歪みが50%以上であることが必要である。
導電性微粒子1の10%K値:K1 (N/mm2 )>
15680R1 (μm)-7/10 (1)
(R1 :導電性微粒子1の粒径)
導電性微粒子2の10%K値:K2 (N/mm2 )<
11530R2 (μm)-3/5 (2)
(R2 :導電性微粒子2の粒径)
In the present invention, the conductive fine particles 1 have a 10% K value satisfying the following formula (1) and the fracture strain is less than 50%, and the conductive fine particles 2 are 10% satisfying the following formula (2). It is necessary to have a K value and a fracture strain of 50% or more.
10% K value of conductive fine particles 1: K 1 (N / mm 2 )>
15680R 1 (μm) -7/10 (1)
(R 1 : particle diameter of conductive fine particles 1)
10% K value of conductive fine particles 2: K 2 (N / mm 2 ) <
11530R 2 (μm) -3/5 (2)
(R 2 : particle size of conductive fine particles 2)

導電性微粒子1の10%K値が上記式(1)の範囲であり、かつ破壊歪みが50%未満であると、導電性微粒子1は、比較的硬く、破壊歪みの小さいものとなる。また、導電性微粒子2の10%K値が上記式(2)の範囲であり、かつ破壊歪みが50%以上であると、導電性微粒子2は、比較的軟らかく、破壊歪みの大きいものとなる。従って、導電性微粒子1と導電性微粒子2とを混合して用いることにより、硬いものと軟らかいものとの異なる圧縮特性を有する2種類の導電性微粒子の混合物を用いることになる。これにより、接続すべき電極端子間の間隔に広狭のばらつきがある場合でも良好に接続することができる。   When the 10% K value of the conductive fine particles 1 is in the range of the above formula (1) and the fracture strain is less than 50%, the conductive fine particles 1 are relatively hard and have a small fracture strain. Further, when the 10% K value of the conductive fine particles 2 is in the range of the above formula (2) and the fracture strain is 50% or more, the conductive fine particles 2 are relatively soft and have a large fracture strain. . Therefore, by mixing and using the conductive fine particles 1 and the conductive fine particles 2, a mixture of two kinds of conductive fine particles having different compression characteristics between hard and soft ones is used. Thereby, even when there are wide and narrow variations in the distance between the electrode terminals to be connected, a good connection can be achieved.

本発明においては、導電性微粒子1及び導電性微粒子2の2種類の導電性微粒子は、同重量で含有されているかあるいはいずれかの一方の導電性微粒子が他の導電性微粒子よりも20重量%以内の範囲で過剰に含有されていることが必要である。   In the present invention, the two kinds of conductive fine particles, the conductive fine particles 1 and the conductive fine particles 2, are contained in the same weight, or any one of the conductive fine particles is 20% by weight than the other conductive fine particles. It is necessary to contain excessively within the range.

導電性微粒子1と導電性微粒子2との混合割合が上述の範囲を外れる場合は、電極端子間の間隔のばらつきに追随し難くなることがある。   When the mixing ratio of the conductive fine particles 1 and the conductive fine particles 2 is out of the above range, it may be difficult to follow the variation in the distance between the electrode terminals.

本発明の導電性微粒子は、芯粒子である樹脂粒子を形成する架橋性単量体と非架橋性単量体との割合を調整することにより、目的とするそれぞれの10%K値と、破壊歪みが得られる。   The conductive fine particles of the present invention can be obtained by adjusting the ratio of the crosslinkable monomer and the non-crosslinkable monomer that form the resin particles as the core particles, respectively, Distortion is obtained.

すなわち、導電性微粒子1となる導電性微粒子は芯粒子である樹脂粒子を硬質性の架橋性単量体を用いることにより得ることができる。よって、導電性微粒子1は、少なくとも樹脂粒子を形成するエチレン性不飽和単量体のうち硬質性の架橋性単量体を70重量%以上とすることが好ましい。   That is, the conductive fine particles to be the conductive fine particles 1 can be obtained by using resin particles that are core particles and using a hard crosslinkable monomer. Therefore, it is preferable that the conductive fine particles 1 contain 70% by weight or more of a hard crosslinkable monomer among at least ethylenically unsaturated monomers forming the resin particles.

また、導電性微粒子2となる導電性微粒子は芯粒子である樹脂粒子を柔軟性の架橋性単量体を用いることにより得ることができる。よって、導電性微粒子2は、少なくとも樹脂粒子を形成するエチレン性不飽和単量体のうち柔軟性の架橋性単量体を70重量%以上とすることが好ましい。   The conductive fine particles to be the conductive fine particles 2 can be obtained by using resin particles, which are core particles, using a flexible crosslinkable monomer. Therefore, it is preferable that the conductive fine particles 2 contain 70% by weight or more of a flexible crosslinkable monomer among ethylenically unsaturated monomers forming at least resin particles.

本発明の導電性微粒子は、導電性微粒子1及び導電性微粒子2のすくなくともいずれかの導電性微粒子が、表面に高さが0.04μm以上の突起を有することが好ましい。高さが0.04μm未満であるとバインダー樹脂を突き抜け難くなることがある。圧着時の圧着力が低いと導電性微粒子と電極端子とが離れ易く導電性微粒子と電極端子との接触面にバインダー樹脂が流入し易いが、導電性微粒子表面に突起を有すると、流入したバインダー樹脂を突き抜けて電極端子と接触できるため電極間隔の広い端子間であっても良好に接続できる。   In the conductive fine particles of the present invention, it is preferable that at least one of the conductive fine particles 1 and the conductive fine particles 2 has a protrusion having a height of 0.04 μm or more on the surface. If the height is less than 0.04 μm, it may be difficult to penetrate the binder resin. If the crimping force at the time of crimping is low, the conductive fine particles and the electrode terminals are easily separated from each other, and the binder resin tends to flow into the contact surface between the conductive fine particles and the electrode terminals. Since the resin can be penetrated and contacted with the electrode terminal, it can be connected well even between terminals having a wide electrode interval.

本発明の導電性微粒子の表面に突起を形成する方法は、特に限定されないが、例えば、芯粒子の表面に金属メッキする際にメッキ金属を異常析出させ突起を形成する方法、金属微粒子や樹脂微粒子を芯粒子に付着させた後、金属メッキする方法等が挙げられる。   The method for forming protrusions on the surface of the conductive fine particles of the present invention is not particularly limited. For example, when metal plating is performed on the surface of the core particles, a method of forming abnormal protrusions to form plating metal, metal fine particles or resin fine particles For example, there is a method of metal plating after adhering to the core particles.

本発明における導電性微粒子の導電性金属層の厚さ、及び導電性微粒子表面の突起の高さは、透過電子顕微鏡(TEM)による導電性微粒子の断面観察により求めることができる。倍率としては、観察しやすい倍率を選べばよいが、例えば5万倍が用いられる。
なお、上記導電性微粒子表面の突起の高さは、最表面を形成する基準表面から突起として現れている高さを測定し求めることができる。
In the present invention, the thickness of the conductive metal layer of the conductive fine particles and the height of the protrusions on the surface of the conductive fine particles can be determined by observing the cross section of the conductive fine particles with a transmission electron microscope (TEM). As the magnification, a magnification that is easy to observe may be selected. For example, 50,000 times is used.
The height of the protrusion on the surface of the conductive fine particles can be obtained by measuring the height appearing as a protrusion from the reference surface forming the outermost surface.

本発明の異方性導電材料は、上述した本発明の導電性微粒子が樹脂バインダーに分散されてなるものである。   The anisotropic conductive material of the present invention is obtained by dispersing the above-described conductive fine particles of the present invention in a resin binder.

上記異方性導電材料としては、本発明の導電性微粒子が樹脂バインダーに分散されていれば特に限定されるものではなく、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等が挙げられる。   The anisotropic conductive material is not particularly limited as long as the conductive fine particles of the present invention are dispersed in a resin binder. For example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive An adhesive, an anisotropic conductive film, an anisotropic conductive sheet, etc. are mentioned.

本発明の異方性導電材料の作製方法としては、特に限定されるものではないが、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して導電性組成物を作製した後、この導電性組成物を必要に応じて有機溶媒中に均一に溶解(分散)させるか、又は加熱溶融させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、作製しようとする異方性導電材料の種類に対応して、適宜の作製方法をとればよい。また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを、混合することなく、別々に用いて異方性導電材料としてもよい。   The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and mixed and dispersed uniformly. For example, a method of using an anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., or adding the conductive fine particles of the present invention to an insulating resin binder and mixing them uniformly. After preparing the conductive composition, the conductive composition is uniformly dissolved (dispersed) in an organic solvent as necessary, or heated and melted to release a release material such as release paper or release film. Applying to the mold processing surface so as to have a predetermined film thickness, and performing drying or cooling as necessary, for example, an anisotropic conductive film, an anisotropic conductive sheet, etc. Depending on the type of anisotropic conductive material to be produced, Manufacturing methods may Taking. Further, the insulating resin binder and the conductive fine particles of the present invention may be used separately without being mixed to form an anisotropic conductive material.

上記絶縁性の樹脂バインダーの樹脂としては、特に限定されるものではないが、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型等のいずれの硬化形態であってもよい。   The resin of the insulating resin binder is not particularly limited. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene -Thermoplastic resins such as vinyl acetate copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene blocks Thermoplastic block copolymers such as copolymers, styrene-isoprene-styrene block copolymers, and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber ( Rubbers). These resins may be used alone or in combination of two or more. The curable resin may be in any curing form such as a room temperature curing type, a thermosetting type, a photocuring type, and a moisture curing type.

本発明の異方性導電材料には、絶縁性の樹脂バインダー、及び、本発明の導電性微粒子に加えるに、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の1種又は2種以上が併用されてもよい。   In addition to the insulating resin binder and the conductive fine particles of the present invention, the anisotropic conductive material of the present invention includes, for example, a bulking agent, a softening agent, etc. 1 type of various additives such as additives (plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Or 2 or more types may be used together.

(作用)
本発明の導電性微粒子は、異なる圧縮特性を有する2種類の導電性微粒子の混合物からなっているため、電極間隔の広い部位においても電極間隔の狭い部位においても良好に接続できる。導電性微粒子1は、広い電極端子間において集中的に流入するバインダー樹脂をその硬質な特性によりバインダー樹脂を容易に排除して電極端子同士を良好に接続する。
(Function)
Since the conductive fine particles of the present invention are composed of a mixture of two kinds of conductive fine particles having different compressive properties, they can be connected well at a portion where the electrode interval is wide or a portion where the electrode interval is narrow. The conductive fine particles 1 easily remove the binder resin from the binder resin that flows intensively between the wide electrode terminals due to its hard characteristics, and connect the electrode terminals well.

一方、電極の狭い部位においては導電性微粒子2は、柔軟な特性により容易に圧縮され破壊歪みが大きい特性により復元力がなくなる程に破壊されないために電極端子同士を良好に接続する。また、狭い部位において導電性微粒子1は破壊歪みが小さいために圧縮過程において容易に破壊され端子間接続に悪い影響を及ぼすような復元力は発生しない。   On the other hand, in the narrow part of the electrode, the conductive fine particles 2 are easily compressed due to the flexible characteristics and are not broken to the extent that the restoring force disappears due to the characteristics with a large breaking strain, so that the electrode terminals are well connected. Further, since the conductive fine particles 1 have a small fracture strain in a narrow part, they are easily broken during the compression process, and no restoring force that adversely affects the connection between terminals is generated.

このため、本発明の導電性微粒子を使用した異方性導電材料は、適用可能な圧力範囲が広くなり、電極端子間の接続を行う場合に、バンプの高さのばらつき、基板の平坦度等に応じて適切な圧力条件を選択することが可能となる。   For this reason, the anisotropic conductive material using the conductive fine particles of the present invention has a wide applicable pressure range, and when connecting between electrode terminals, variation in bump height, flatness of the substrate, etc. It is possible to select an appropriate pressure condition according to the above.

本発明の導電性微粒子は、上述の構成よりなるので、接続すべき電極端子間の間隔に広狭がある場合でも良好に接続することができ接続信頼性に優れたものを得ることができる。また、該導電性微粒子を用いた異方性導電材料は、接続すべき電極端子間の間隔に広狭がある場合でも良好に接続することができ接続信頼性に優れる。   Since the conductive fine particles of the present invention have the above-described configuration, even when the distance between the electrode terminals to be connected is wide or narrow, it is possible to connect well and obtain an excellent connection reliability. Further, the anisotropic conductive material using the conductive fine particles can be connected well even when the distance between the electrode terminals to be connected is wide and excellent in connection reliability.

以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
(導電性微粒子1の作製)
シード粒子として0.8μmのスチレン粒子5gと、イオン交換水500gと、5重量%のポリビニルアルコール水溶液100gとを混合し超音波を加え分散させた後、セパラブルフラスコに入れて均一に撹拌した。
次に、ジビニルベンゼン160gを、油溶性重合開始剤である過酸化ベンゾイル12g、ラウリル硫酸トリエタノールアミン9g、エタノール118gを添加したイオン交換水1035gより調製した乳化液を数回に分けてセパラブルフラスコに加え、12時間撹拌を行いシード粒子にモノマーを吸収させた。
その後、5重量%のポリビニルアルコール水溶液500gを加え窒素ガスを導入し90℃、9時間反応させ平均粒径4μmの樹脂粒子を得た。
得られた樹脂粒子の表面に無電解ニッケルメッキを行い、約0.08μmのニッケルメッキ層を形成させた。更に、置換金メッキを行い、約0.03μmの金メッキ層をニッケルメッキ層の上に形成させ導電性微粒子1を得た。
得られた導電性微粒子1の10%K値は8938(N/mm2 )であり、破壊歪みは43%であった。なお、上記式(1)の右辺は5742(μm)-7/10であり、導電性微粒子1は上記式(1)を満たす10%K値であった。導電性微粒子1の圧縮特性を測定したチャートを図1に示した。
(Example 1)
(Preparation of conductive fine particles 1)
After mixing 5 g of 0.8 μm styrene particles as seed particles, 500 g of ion-exchanged water and 100 g of a 5 wt% polyvinyl alcohol aqueous solution and applying ultrasonic waves to disperse, the mixture was placed in a separable flask and stirred uniformly.
Next, a separable flask was obtained by dividing an emulsion prepared from 160 g of divinylbenzene from 1035 g of ion-exchanged water to which 12 g of benzoyl peroxide as an oil-soluble polymerization initiator, 9 g of lauryl sulfate triethanolamine and 118 g of ethanol were added. In addition, the seed particles were allowed to absorb the monomer by stirring for 12 hours.
Thereafter, 500 g of a 5% by weight aqueous polyvinyl alcohol solution was added, nitrogen gas was introduced, and the mixture was reacted at 90 ° C. for 9 hours to obtain resin particles having an average particle diameter of 4 μm.
Electroless nickel plating was performed on the surface of the obtained resin particles to form a nickel plating layer of about 0.08 μm. Further, substitution gold plating was performed, and a gold plating layer of about 0.03 μm was formed on the nickel plating layer to obtain conductive fine particles 1.
The obtained conductive fine particles 1 had a 10% K value of 8938 (N / mm 2 ) and a fracture strain of 43%. The right side of the above formula (1) was 5742 (μm) −7/10 , and the conductive fine particles 1 had a 10% K value satisfying the above formula (1). A chart in which the compression characteristics of the conductive fine particles 1 are measured is shown in FIG.

(導電性微粒子2の作製)
導電性微粒子1の作製において、ジビニルベンゼン160gを用いる代わりに、ポリテトラメチレングリコールジアクリレート132g及びジビニルベンゼン28gを用いたこと以外は同様にして導電性微粒子2を得た。
得られた導電性微粒子2の10%K値は4488(N/mm2 )であり、破壊歪みは57%であった。なお、上記式(2)の右辺は4874(μm)-3/5 であり、導電性微粒子2は上記式(2)を満たす10%K値であった。導電性微粒子2の圧縮特性を測定したチャートを図1に示した。
(Preparation of conductive fine particles 2)
In the production of the conductive fine particles 1, the conductive fine particles 2 were obtained in the same manner except that 132 g of polytetramethylene glycol diacrylate and 28 g of divinylbenzene were used instead of using 160 g of divinylbenzene.
The obtained conductive fine particles 2 had a 10% K value of 4488 (N / mm 2 ) and a fracture strain of 57%. The right side of the above formula (2) was 4874 (μm) −3/5 , and the conductive fine particles 2 had a 10% K value satisfying the above formula (2). A chart showing the compression characteristics of the conductive fine particles 2 is shown in FIG.

得られた導電性微粒子1と得られた導電性微粒子2とを同重量で混合し、導電性微粒子を得た。   The obtained conductive fine particles 1 and the obtained conductive fine particles 2 were mixed with the same weight to obtain conductive fine particles.

(実施例2)
実施例1と同様にして得られた2種類の樹脂粒子を用いた。得られた2種類の樹脂粒子の表面にそれぞれ無電解ニッケルメッキを行うときに、粒径約0.05μmのニッケル粒子を添加し、樹脂粒子表面に約0.08μmのニッケルメッキ層を形成させた。更に、置換金メッキを行い、約0.03μmの金メッキ層を形成して突起を有する導電性微粒子1及び導電性微粒子2を得た。得られた導電性微粒子1及び導電性微粒子2の表面にはニッケル粒子に由来する高さが0.05μmの突起が形成された。
得られた導電性微粒子1と得られた導電性微粒子2とを同重量で混合し、導電性微粒子を得た。
(Example 2)
Two types of resin particles obtained in the same manner as in Example 1 were used. When electroless nickel plating was performed on the surfaces of the two types of resin particles obtained, nickel particles having a particle size of about 0.05 μm were added to form a nickel plating layer of about 0.08 μm on the surface of the resin particles. . Further, substitution gold plating was performed to form a gold plating layer having a thickness of about 0.03 μm to obtain conductive fine particles 1 and conductive fine particles 2 having protrusions. Protrusions having a height of 0.05 μm derived from nickel particles were formed on the surfaces of the obtained conductive fine particles 1 and conductive fine particles 2.
The obtained conductive fine particles 1 and the obtained conductive fine particles 2 were mixed with the same weight to obtain conductive fine particles.

(比較例1)
実施例1で得られた導電性微粒子1のみを使用して導電性微粒子とした。
(Comparative Example 1)
Only the conductive fine particles 1 obtained in Example 1 were used to form conductive fine particles.

(比較例2)
実施例1で得られた導電性微粒子2のみを使用して導電性微粒子とした。
(Comparative Example 2)
Only the conductive fine particles 2 obtained in Example 1 were used to form conductive fine particles.

(実施例3)
フェノキシ樹脂(トルエン/酢酸エチル=50/50の混合溶剤に溶解)50重量%、エポキシ樹脂40重量%、潜在硬化剤10重量%の比率で混合したものに、実施例1で得られた導電性微粒子を10重量%となるように分散させ、PETフィルムに塗工装置を用いて塗布し、熱風乾燥によりACF(異方性導電フィルム)を作製した。
得られたACFを用いて、20μmの高さのスタッドバンプをもつICチップを配線基板に180℃で30秒間熱圧着することにより実装した。
実装したICチップをPCT試験(121℃、0.2026MPa、湿度100%の高温高湿槽内中に1000時間保持)を行い、導通が失われるまでの時間を計測した。評価結果を表1に示す。
(Example 3)
Conductivity obtained in Example 1 was mixed with 50% by weight of phenoxy resin (dissolved in a mixed solvent of toluene / ethyl acetate = 50/50), 40% by weight of epoxy resin, and 10% by weight of latent curing agent. Fine particles were dispersed so as to be 10% by weight, applied to a PET film using a coating apparatus, and ACF (anisotropic conductive film) was produced by hot air drying.
Using the obtained ACF, an IC chip having a stud bump with a height of 20 μm was mounted on the wiring board by thermocompression bonding at 180 ° C. for 30 seconds.
The mounted IC chip was subjected to a PCT test (maintained in a high-temperature and high-humidity tank at 121 ° C., 0.2026 MPa, 100% humidity for 1000 hours), and the time until continuity was lost was measured. The evaluation results are shown in Table 1.

(実施例4)
実施例2で得られた導電性微粒子を用いたこと以外は実施例3と同様にしてACFを作製し、同様にPCT試験を行い、導通が失われるまでの時間を計測した。評価結果を表1に示す。
Example 4
An ACF was prepared in the same manner as in Example 3 except that the conductive fine particles obtained in Example 2 were used, and a PCT test was similarly performed to measure the time until continuity was lost. The evaluation results are shown in Table 1.

(比較例3)
比較例1で得られた導電性微粒子を用いたこと以外は実施例3と同様にしてACFを作製し、同様にPCT試験を行い、導通が失われるまでの時間を計測した。評価結果を表1に示す。
(Comparative Example 3)
An ACF was prepared in the same manner as in Example 3 except that the conductive fine particles obtained in Comparative Example 1 were used, and a PCT test was similarly performed to measure the time until continuity was lost. The evaluation results are shown in Table 1.

(比較例4)
比較例2で得られた導電性微粒子を用いたこと以外は実施例3と同様にしてACFを作製し、同様にPCT試験を行い、導通が失われるまでの時間を計測した。評価結果を表1に示す。
(Comparative Example 4)
An ACF was produced in the same manner as in Example 3 except that the conductive fine particles obtained in Comparative Example 2 were used, and a PCT test was similarly conducted to measure the time until continuity was lost. The evaluation results are shown in Table 1.

Figure 2005327510
Figure 2005327510

表1より、実施例1と実施例2で得られた導電性微粒子を用いた実施例3と実施例4のACF(異方性導電フィルム)は、長時間導通状態が続いた。
一方、導電性微粒子1を単独で用いた場合の比較例3、及び導電性微粒子2を単独で用いた場合の比較例4は、短時間で導通が失われた。
このことより、導電性微粒子1、2は、その圧縮特性によりそれぞれ別に導通に寄与していることがわかる。
From Table 1, ACF (anisotropic conductive film) of Example 3 and Example 4 using the conductive fine particles obtained in Example 1 and Example 2 continued to be conductive for a long time.
On the other hand, in Comparative Example 3 in which the conductive fine particles 1 were used alone and in Comparative Example 4 in which the conductive fine particles 2 were used alone, conduction was lost in a short time.
From this, it can be seen that the conductive fine particles 1 and 2 contribute to conduction separately due to their compression characteristics.

本発明によれば、接続すべき電極端子間の間隔に広狭がある場合でも良好に接続することができ接続信頼性に優れた導電性微粒子、及び該導電性微粒子を用いた異方性導電材料を提供できる。   According to the present invention, conductive fine particles that can be connected well even when the distance between electrode terminals to be connected is wide and excellent in connection reliability, and an anisotropic conductive material using the conductive fine particles Can provide.

本発明における10%K値及び破壊歪みの求め方の説明図である。It is explanatory drawing of how to obtain | require 10% K value and fracture | rupture distortion in this invention.

符号の説明Explanation of symbols

1 変曲点   1 Inflection point

Claims (3)

樹脂粒子の表面に導電性金属層が形成された導電性微粒子が、10%K値と破壊歪みとの両方が異なる、導電性微粒子1と導電性微粒子2との混合物であり、
導電性微粒子1は、下記式(1)を満たす10%K値であり、かつ破壊歪みが50%未満であり、
導電性微粒子2は、下記式(2)を満たす10%K値であり、かつ破壊歪みが50%以上であり、
2種類の導電性微粒子は同重量で含有されているかあるいはいずれかの一方の導電性微粒子が他の導電性微粒子よりも20重量%以内の範囲で過剰に含有されていることを特徴とする導電性微粒子。
導電性微粒子1の10%K値:K1 (N/mm2 )>
15680R1 (μm)-7/10 (1)
(R1 :導電性微粒子1の粒径)
導電性微粒子2の10%K値:K2 (N/mm2 )<
11530R2 (μm)-3/5 (2)
(R2 :導電性微粒子2の粒径)
The conductive fine particles in which the conductive metal layer is formed on the surface of the resin particles are a mixture of the conductive fine particles 1 and the conductive fine particles 2 having different 10% K value and fracture strain.
The conductive fine particles 1 have a 10% K value satisfying the following formula (1), and the fracture strain is less than 50%.
The conductive fine particles 2 have a 10% K value satisfying the following formula (2), and the fracture strain is 50% or more.
The two kinds of conductive fine particles are contained in the same weight, or any one of the conductive fine particles is contained excessively within a range of 20% by weight or less than the other conductive fine particles. Fine particles.
10% K value of conductive fine particles 1: K 1 (N / mm 2 )>
15680R 1 (μm) -7/10 (1)
(R 1 : particle diameter of conductive fine particles 1)
10% K value of conductive fine particles 2: K 2 (N / mm 2 ) <
11530R 2 (μm) -3/5 (2)
(R 2 : particle size of conductive fine particles 2)
すくなくともいずれかの導電性微粒子が、表面に高さが0.04μm以上の突起を有する導電性微粒子であることを特徴とする請求項1記載の導電性微粒子。   2. The conductive fine particle according to claim 1, wherein at least one of the conductive fine particles is a conductive fine particle having a protrusion having a height of 0.04 [mu] m or more on the surface. 請求項1又は2記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。

An anisotropic conductive material, wherein the conductive fine particles according to claim 1 or 2 are dispersed in a resin binder.

JP2004142852A 2004-05-12 2004-05-12 Conductive fine particle and anisotropic conductive material Pending JP2005327510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142852A JP2005327510A (en) 2004-05-12 2004-05-12 Conductive fine particle and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142852A JP2005327510A (en) 2004-05-12 2004-05-12 Conductive fine particle and anisotropic conductive material

Publications (1)

Publication Number Publication Date
JP2005327510A true JP2005327510A (en) 2005-11-24

Family

ID=35473697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142852A Pending JP2005327510A (en) 2004-05-12 2004-05-12 Conductive fine particle and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP2005327510A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009017200A1 (en) * 2007-08-02 2010-10-21 日立化成工業株式会社 Circuit connection material, circuit member connection structure using the same, and circuit member connection method
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
JP2014127467A (en) * 2012-12-26 2014-07-07 Dokusan High Metal Co Ltd Conductive particle and conductive material containing conductive particle
KR101447125B1 (en) 2011-12-22 2014-10-06 제일모직 주식회사 Anisotropic conductive film
JP2016012560A (en) * 2014-06-06 2016-01-21 積水化学工業株式会社 Conductive material and connection structure
JP2017188482A (en) * 2012-12-31 2017-10-12 株式会社ドクサンハイメタル Conductive particles for touch screen panel, and conductive materials including the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
US9093196B2 (en) 2006-09-29 2015-07-28 Nisshinbo Holdings, Inc. Conductive particles and method of preparing the same
JPWO2009017200A1 (en) * 2007-08-02 2010-10-21 日立化成工業株式会社 Circuit connection material, circuit member connection structure using the same, and circuit member connection method
JP5316410B2 (en) * 2007-08-02 2013-10-16 日立化成株式会社 Circuit member connection structure
KR101447125B1 (en) 2011-12-22 2014-10-06 제일모직 주식회사 Anisotropic conductive film
JP2014127467A (en) * 2012-12-26 2014-07-07 Dokusan High Metal Co Ltd Conductive particle and conductive material containing conductive particle
JP2015122330A (en) * 2012-12-26 2015-07-02 株式会社ドクサンハイメタル Conductive particle and conductive material containing conductive particle
JP2017188482A (en) * 2012-12-31 2017-10-12 株式会社ドクサンハイメタル Conductive particles for touch screen panel, and conductive materials including the same
JP2016012560A (en) * 2014-06-06 2016-01-21 積水化学工業株式会社 Conductive material and connection structure

Similar Documents

Publication Publication Date Title
JP4669905B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
TWI385676B (en) An anisotropic conductive material, a connecting structure, and a method for manufacturing the same
WO2007026981A1 (en) Insulated conductive particles and anisotropic conductive adhesive film using the same
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
US20100206623A1 (en) Nonconductive adhesive composition and film and methods of making
JP2011040189A (en) Conductive particle, anisotropic conductive material, and connection structure
JP2012209097A (en) Anisotropic conductive material and connection structure
JP6061443B2 (en) Anisotropic conductive adhesive film, connection structure and manufacturing method thereof
KR20020008010A (en) Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
JP2007188727A (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP2008059914A (en) Resin fine particle, and conductive particulate
JP2005327510A (en) Conductive fine particle and anisotropic conductive material
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP5185839B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP5046689B2 (en) Anisotropic conductive adhesive film
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP4674119B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP3869785B2 (en) Insulating coating conductive fine particles and conductive connection structure
JP2005325383A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material
JPH087658A (en) Anisotropic conductive adhesive film