JP2014127467A - Conductive particle and conductive material containing conductive particle - Google Patents

Conductive particle and conductive material containing conductive particle Download PDF

Info

Publication number
JP2014127467A
JP2014127467A JP2013214890A JP2013214890A JP2014127467A JP 2014127467 A JP2014127467 A JP 2014127467A JP 2013214890 A JP2013214890 A JP 2013214890A JP 2013214890 A JP2013214890 A JP 2013214890A JP 2014127467 A JP2014127467 A JP 2014127467A
Authority
JP
Japan
Prior art keywords
conductive
conductive particles
particles
particle
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013214890A
Other languages
Japanese (ja)
Inventor
Yong Cheol Chu
龍▲チョル▼ 秋
Kyung Heum Kim
敬欽 金
Soon Ho Jeong
舜浩 鄭
Kung Yong Park
京用 朴
Hyun Jong Son
玄宗 孫
Jin Ho Lee
珍鎬 李
Jong Tae Kim
鍾兌 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOKUSAN HIGH METAL CO Ltd
Original Assignee
DOKUSAN HIGH METAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49220881&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014127467(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DOKUSAN HIGH METAL CO Ltd filed Critical DOKUSAN HIGH METAL CO Ltd
Publication of JP2014127467A publication Critical patent/JP2014127467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive particle with a projection and an anisotropic conductive material having low connection resistance, little variation of conductive performance of the particle and excellent in electrical conduction reliability.SOLUTION: There is provided a conductive particle containing a resin fine particle and a coating layer arranged on an outside surface of the resin fine particle and having a projection on its surface, and manufactured complying with a deformation volume (μm) when force with which destruction of the conductive particle is started (F2, mN) is added and the deformation volume (μm) when force with same value as a diameter of the conductive particle (F1, mN) is added. There is also provided an anisotropic conductive material containing such conductive particle.

Description

本発明は、導電粒子および導電粒子を含む導電材料に関し、より詳細には、微細ピッチの回路に用いられる突起付き導電粒子および導電粒子を含む導電材料に関する。   The present invention relates to conductive particles and conductive materials including conductive particles, and more particularly to conductive particles with protrusions and conductive materials including conductive particles used in a fine pitch circuit.

導電粒子は、硬化剤、接着剤、樹脂バインダーなどと混合して分散した形で使用されるもので、異方性導電材料、例えば異方性導電フィルム(Anisotropic Conductive Film)、異方性導電ペースト(Anisotropic Conductive Paste)、異方性導電インク(Anisotropic Conductive Ink)、異方性導電シート(Anisotropic Conductive Sheet)などとして幅広く用いられている。   The conductive particles are used by being mixed and dispersed with a curing agent, an adhesive, a resin binder, and the like. An anisotropic conductive material such as an anisotropic conductive film, an anisotropic conductive paste is used. (Anisotropic Conductive Paste), anisotropic conductive ink (Anisotropic Conductive Ink), anisotropic conductive sheet (Anisotropic Conductive Sheet) and the like are widely used.

例えば、異方性導電材料は、LCD(Liquid Crystal Display)、AMOLED(Active Matrix Organic Light Emitting Diode)、PDP(Plasma Display Panel)などの平板ディスプレイパネルの組立に際して、基板上のTFT(Thin Film Transistor)とかかるTFTを駆動するためのドライバーIC(Integrated Circuit)との電気的接続などに用いられる。   For example, an anisotropic conductive material may be a TFT (Thin) on a substrate when assembling a flat panel display panel such as an LCD (Liquid Crystal Display), an AMOLED (Active Matrix Organic Emitting Diode), or a PDP (Plasma Display Panel). And an electrical connection with a driver IC (Integrated Circuit) for driving the TFT.

一般に、このような異方性導電材料として用いられる導電粒子は、ニッケル、銅、銀、金などの金属系や、カーボン粉末、カーボン繊維、カーボンフレーク(flake)などのカーボン系や、樹脂粒子に金属物質をコートまたはメッキして使用する複合系の粒子などが例示される。   In general, conductive particles used as such an anisotropic conductive material include metal particles such as nickel, copper, silver, and gold, carbon particles such as carbon powder, carbon fiber, and carbon flakes, and resin particles. Examples thereof include composite particles used by coating or plating a metal substance.

金属系粒子は、粒子全体が導電性を有し、かつ、粒度の分布が広いため、回路の微細ピッチや高精密が要求される分野よりは、回路のピッチが大きく高電流が要求されるPDPに対して主に用いられている。   Metal-based particles are conductive and have a wide particle size distribution. Therefore, PDPs that require a large circuit pitch and a high current are required rather than fields that require fine circuit pitch and high precision. Is mainly used for.

カーボン系粒子は、金属系粒子より電気伝導度が低いため、高い電気伝導度が要求される分野には使用が制限される。   Since carbon-based particles have a lower electrical conductivity than metal-based particles, their use is limited in fields where high electrical conductivity is required.

一方、複合系粒子は、電気伝導度が前記金属系粒子とカーボン系粒子との中間程度であって、微粒子の分布を非常に狭くすることができるため、現在最も多く使われている導電粒子である。   On the other hand, composite particles are the most commonly used conductive particles because the electrical conductivity is about the middle between the metal particles and the carbon particles and the distribution of fine particles can be made very narrow. is there.

複合系導電粒子は、球状の樹脂上に無電解メッキ法でニッケル−リンまたはニッケル−ホウ素またはニッケル−リン−タングステンまたはニッケル−ホウ素−タングステンなどの合金メッキ層を形成してそのまま使用し、或いは腐食防止および電気伝導度向上の目的で金または銀などの貴金属を最外殻に構成して使用する。   Composite conductive particles can be used as they are by forming an alloy plating layer such as nickel-phosphorus, nickel-boron, nickel-phosphorus-tungsten or nickel-boron-tungsten on a spherical resin by electroless plating. A precious metal such as gold or silver is used in the outermost shell for the purpose of prevention and improvement of electrical conductivity.

複合導電粒子は、球状の平らな表面を有する樹脂を用いるため、表面は殆ど滑らかな形状を保っており、例えばアルミニウム配線パターンの表面に形成される3〜9nmの酸化皮膜のように、酸化皮膜が存在する。そのため、かかる酸化皮膜を壊すことができず、かつ、異方性導電材料に用いられる樹脂も効果的に突き抜くことができないために、接触抵抗が増加し或いは信頼性が低下するという問題点があった。   Since the composite conductive particles use a resin having a spherical flat surface, the surface is almost smooth. For example, an oxide film such as a 3-9 nm oxide film formed on the surface of an aluminum wiring pattern. Exists. Therefore, such an oxide film cannot be broken, and the resin used for the anisotropic conductive material cannot be effectively punched out, so that there is a problem that contact resistance increases or reliability decreases. there were.

かかる問題点を解決するための方法として、導電性粒子に突起を突設する方法が考案されている(例えば、下記の特許文献1〜特許文献6を参照。)。   As a method for solving such a problem, a method of projecting protrusions on conductive particles has been devised (see, for example, Patent Documents 1 to 6 below).

特開2006−228474号公報JP 2006-228474 A 特開2006−216388号公報JP 2006-216388 A 特開2006−228475号公報JP 2006-228475 A 特開2006−302716号公報JP 2006-302716 A 特開2006−344416号公報JP 2006-344416 A 特開2007− 35573号公報JP 2007-35573 A

しかしながら、上述の突起付き導電粒子の場合、回路基板への圧縮接合過程で導電粒子のコアである樹脂が圧縮力に耐えられないため、過度な変形が生じ、かかる変形により突起が効果的に酸化皮膜を壊すことができないという結果をもたらし、十分な抵抗減少を示さない現象が発生するという別の問題点があった。   However, in the case of the conductive particles with protrusions described above, the resin that is the core of the conductive particles cannot withstand the compressive force in the process of compressing and bonding to the circuit board, resulting in excessive deformation, which effectively oxidizes the protrusions. There was another problem that a phenomenon in which the film could not be broken and a phenomenon in which the resistance was not sufficiently reduced occurred.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、接続抵抗が低く、粒子の導電性能の変動が少なく、かつ、導電信頼性に優れる突起付きの導電粒子と、かかる導電粒子を用いた異方性導電材料を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to provide a projection having a low connection resistance, a small variation in the conductive performance of particles, and excellent conductivity reliability. An object of the present invention is to provide conductive particles and an anisotropic conductive material using the conductive particles.

上記課題を解決するために、本発明のある観点によれば、樹脂微粒子と、前記樹脂微粒子の外面に設けられ、表面に突起を有する被覆層と、を含み、下記式1によるP値が20≦P≦50である、導電粒子が提供される。   In order to solve the above-described problem, according to one aspect of the present invention, a resin particle and a coating layer provided on the outer surface of the resin particle and having a protrusion on the surface, the P value according to the following formula 1 is 20 Conductive particles are provided, wherein ≦ P ≦ 50.

P(μm−1)=[(Sf/Sc)/D]×100・・・(式1) P (μm −1 ) = [(Sf / Sc) / D] × 100 (Formula 1)

ここで、上記式1において、
Sf:導電粒子の破壊が始まる力(F2、mN)を加えたときの変性量(μm)
Sc:導電粒子の直径と同じ数値の力(F1、mN)を加えたときの変形量(μm)
D:導電粒子の平均直径(μm)
を示す。
Here, in Equation 1 above,
Sf: Denaturation amount (μm) when a force (F2, mN) at which the conductive particles start to break is applied
Sc: Deformation amount (μm) when force (F1, mN) having the same numerical value as the diameter of the conductive particles is applied
D: Average diameter of conductive particles (μm)
Indicates.

前記被覆層は、30〜300nmの厚さを有することが好ましい。   The coating layer preferably has a thickness of 30 to 300 nm.

前記突起は、50nm〜500nmの高さを有することが好ましい。   The protrusions preferably have a height of 50 nm to 500 nm.

前記突起は、前記被覆層と同一の物質からなることが好ましい。   The protrusion is preferably made of the same material as the coating layer.

前記被覆層は、Ni、Sn、Ag、Cu、Pd、Zn、W、P、BおよびAuからなる群から選択される1種または2種以上の合金からなることが好ましい。   The coating layer is preferably made of one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au.

前記被覆層の外面には、Au、Pt、AgおよびPdからなる群から選択される1種または2種以上の合金からなる追加の被覆層をさらに含むことが好ましい。   Preferably, the outer surface of the coating layer further includes an additional coating layer made of one or more alloys selected from the group consisting of Au, Pt, Ag, and Pd.

前記導電粒子は、COG(Chip on Glass)用異方性導電フィルム(ACF)に含まれてもよい。   The conductive particles may be included in an anisotropic conductive film (ACF) for COG (Chip on Glass).

また、上記課題を解決するために、本発明の別の観点によれば、上記の導電粒子を含む異方性導電材料が提供される。   Moreover, in order to solve the said subject, according to another viewpoint of this invention, the anisotropic electrically-conductive material containing said electrically-conductive particle is provided.

また、上記課題を解決するために、本発明の更に別の観点によれば、上記の導電粒子または上記の異方性導電材料を含む電子装置が提供される。   In order to solve the above problems, according to still another aspect of the present invention, an electronic device including the above conductive particles or the above anisotropic conductive material is provided.

本発明に係る導電粒子は、外力が加えられたときに圧縮変形と破壊変形の比率が調節されるため、回路の接続不良または抵抗の急激な増加による回路の誤作動を起こさない。   In the conductive particles according to the present invention, the ratio of compression deformation to fracture deformation is adjusted when an external force is applied, so that the circuit does not malfunction due to poor connection or rapid increase in resistance.

また、本発明に係る異方性導電材料は、電気抵抗が低くかつ導電信頼性に優れる導電粒子を用いることにより、優れた電気抵抗及び導電信頼性を有する。   In addition, the anisotropic conductive material according to the present invention has excellent electrical resistance and conductive reliability by using conductive particles having low electrical resistance and excellent conductive reliability.

本発明の実施例に係る導電粒子の力による圧縮変形状態を示すグラフである。It is a graph which shows the compression deformation state by the force of the electrically-conductive particle which concerns on the Example of this invention. 本発明の実施例における変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount in the Example of this invention. 本発明の実施例に係る作用メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism based on the Example of this invention. 本発明の実施例に係る作用メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism based on the Example of this invention. 本発明の実施例に係る作用メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism based on the Example of this invention. 本発明の実施例に係る作用メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism based on the Example of this invention. 本発明の実施例に係る作用メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism based on the Example of this invention. 本発明の実施例に係る作用メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the action mechanism based on the Example of this invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明をさらに具体的に説明する前に、本明細書に使用された用語は、特定の実施形態や実施例を記述するためのものに過ぎず、特許請求の範囲によって定められる本発明の範囲を限定するものではないことを理解すべきである。本明細書に使用されるすべての技術用語および科学用語は、特に言及がない限りは、当該技術分野における通常の技術を有する者に一般に理解されることと同一の意味を有する。   Before describing the present invention more specifically, the terminology used herein is for the purpose of describing particular embodiments and examples only, and is defined by the scope of the present invention as defined by the claims. It should be understood that this is not a limitation. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise specified.

本明細書および請求の範囲の全般にわたって、特に言及がない限り、「含む」という用語は、言及された物、段階または一群の物、および段階を含むことを意味し、任意のある他の物、段階または一群の物または一群の段階を排除する意味で使用されたものではない。   Throughout this specification and claims, unless otherwise noted, the term “comprising” is meant to include the stated article, step or group of things, and step, and any other thing. It is not intended to exclude a stage or a group of things or a group of stages.

一方、本発明の様々な実施形態や実施例は、明確な反対の指摘がない限り、いかなる他の実施形態や実施例と組み合わせてもよい。特に、好適または有利であることを示すいかなる特徴も、好適または有利であることを示す他のいかなる特徴と組み合わせてもよい。   On the other hand, the various embodiments and examples of the present invention may be combined with any other embodiments and examples unless clearly indicated to the contrary. In particular, any feature that indicates suitability or advantage may be combined with any other feature that indicates suitability or advantage.

本発明の一実施形態に係る導電粒子は、樹脂微粒子と、かかる樹脂微粒子の外面に設けられた被覆層と、を含む。   The conductive particles according to one embodiment of the present invention include resin fine particles and a coating layer provided on the outer surface of the resin fine particles.

樹脂微粒子は、公知の単量体の重合体からなる。かかる材料は、非制限的に、例えば、スチレン系、アクリル系、ジビニルベンゼン系などの単量体またはそれらの変形した単量体または前記単量体の混合された単量体を用いて、重合して得られる重合体を使用することが好ましい。   The resin fine particles are made of a known monomer polymer. Such materials include, but are not limited to, for example, polymerization using monomers such as styrene-based, acrylic-based, divinylbenzene-based or the like, or modified monomers thereof, or monomers mixed with the monomers. It is preferable to use a polymer obtained in this manner.

かかる樹脂微粒子として、例えば、平均粒径1.70〜7.5μmのものを使用することが好ましい。   As such resin fine particles, for example, those having an average particle diameter of 1.70 to 7.5 μm are preferably used.

被覆層は、金属により形成されていてもよい。かかる金属は、例えば、金(Au)、銀(Ag)、ニッケル(Ni)、銅(Cu)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、鉛(Pb)、タングステン(W)などの単一金属からなっていてもよく、スズ−鉛、スズ−銅、スズ−亜鉛、ニッケル−リン、ニッケル−ホウ素、ニッケル−タングステンなどの合金からなっていてもよい。   The coating layer may be formed of a metal. Such metals include, for example, gold (Au), silver (Ag), nickel (Ni), copper (Cu), tin (Sn), zinc (Zn), titanium (Ti), lead (Pb), tungsten (W). Or a single metal such as tin-lead, tin-copper, tin-zinc, nickel-phosphorus, nickel-boron, or nickel-tungsten.

被覆層の厚さは、例えば、30nm〜300nm程度であることが好ましい。被覆層の厚さが30nm未満の場合は、抵抗値が増加し、被覆層の厚さが300nmを超える場合は、被覆層の剥離が起こるため、製品の信頼性が低下する。被覆層の特に好ましい厚さは、80nm〜200nmである。   The thickness of the coating layer is preferably about 30 nm to 300 nm, for example. When the thickness of the coating layer is less than 30 nm, the resistance value increases. When the thickness of the coating layer exceeds 300 nm, peeling of the coating layer occurs, so that the reliability of the product is lowered. A particularly preferable thickness of the coating layer is 80 nm to 200 nm.

かかる被覆層の表面には、突起が突設される。突起の高さは、特に限定されないが、好ましくは50nm〜500nmである。これは、突起の高さが前述の範囲を外れると、金属酸化層とバインダー樹脂を壊すことが可能な効果が弱くなるためである。一方、さらに好ましい突起の高さは、100nm〜300nmである。   Projections are provided on the surface of the covering layer. The height of the protrusion is not particularly limited, but is preferably 50 nm to 500 nm. This is because if the height of the protrusion is out of the above range, the effect of breaking the metal oxide layer and the binder resin is weakened. On the other hand, the height of the more preferable protrusion is 100 nm to 300 nm.

突起の形状は、特に限定されないが、凸形状であることが好ましい。特に、突起は、異方性導電材料に使用する場合、圧着接合工程で樹脂バインダーと金属酸化層とを壊すことが可能な程度の硬度を有することが好ましい。   The shape of the protrusion is not particularly limited, but is preferably a convex shape. In particular, when the protrusion is used as an anisotropic conductive material, it is preferable that the protrusion has a hardness that can break the resin binder and the metal oxide layer in the pressure bonding process.

このような硬度を持たせることが可能な材料は、主に金属であって、例えば金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、チタン(Ti)、ビスマス(Bi)、アンチモン(Sb)などの単一金属からなってもよく、または、銅−亜鉛、銅−スズ、ニッケル−リン、ニッケル−タングステン、ニッケル−ホウ素などの合金からなってもよい。突起を形成するのに特に好ましい金属は、ニッケル、金、銀、パラジウム、タングステンなどである。   The material capable of giving such hardness is mainly metal, for example, gold (Au), silver (Ag), copper (Cu), nickel (Ni), titanium (Ti), bismuth (Bi). ), Antimony (Sb) or the like, or an alloy such as copper-zinc, copper-tin, nickel-phosphorus, nickel-tungsten, nickel-boron, or the like. Particularly preferred metals for forming the protrusions are nickel, gold, silver, palladium, tungsten and the like.

前述した導電粒子の表層に、金、銀、白金(Pt)、パラジウム(Pd)などの貴金属を含む追加の被覆層を更に設けてもよい。これは、導電粒子の伝導度を高め、酸化防止の効果も得ることができるためである。   An additional coating layer containing a noble metal such as gold, silver, platinum (Pt), palladium (Pd) may be further provided on the surface layer of the conductive particles. This is because the conductivity of the conductive particles can be increased and an antioxidant effect can be obtained.

上記の層の形成方法は、特に限定されるものではなく、一般な従来の公知の技術、例えばスパッタリング、メッキ、蒸着などを用いることができる。   The formation method of said layer is not specifically limited, A general well-known technique, for example, sputtering, plating, vapor deposition etc., can be used.

前述したような樹脂微粒子と、突起を有する被覆層とを含んでなる、本発明の実施形態に係る導電粒子は、圧力が加えられると、圧力が益々強くなることにより、初期には変形が生じ、一定の圧力以上になると、導電粒子の破壊が発生する。この際、破壊が発生しても、表面に沿って流れる電気の特性のため、導電性被覆層を介して電気を伝達することができる。   The conductive particles according to the embodiment of the present invention including the resin fine particles as described above and the coating layer having protrusions are deformed at an early stage due to an increase in pressure when pressure is applied. When the pressure exceeds a certain level, the conductive particles are destroyed. At this time, even if breakdown occurs, electricity can be transmitted through the conductive coating layer because of the property of electricity flowing along the surface.

この際、前述した特性を反映する本発明に係る導電粒子は、下記式1によるP値が20≦P≦50であることを満足する。Pが20未満の場合は、圧縮ボンディング接合の際に導電粒子の変性が起こり易く、圧縮力の一部或いは大部分が変形エネルギーとして使用され、突起が酸化層を突き抜くための十分な力を受けないため、抵抗が十分に減少しないという問題点がある。また、Pが50を超える場合は、圧縮ボンディング接合の際に治具(Jig)が除去され、異方性も前材料の樹脂がまだ硬化していないときに導電粒子の回復率が発生するため、電極と導電粒子の短絡が発生して抵抗が増加するという問題点がある。   At this time, the conductive particles according to the present invention reflecting the above-described characteristics satisfy that the P value according to the following formula 1 is 20 ≦ P ≦ 50. When P is less than 20, the conductive particles are likely to be denatured during compression bonding, a part or most of the compression force is used as deformation energy, and the projection has a sufficient force to penetrate the oxide layer. There is a problem in that the resistance is not sufficiently reduced because it is not received. If P exceeds 50, the jig (Jig) is removed during compression bonding, and the recovery rate of the conductive particles occurs when the anisotropy resin is not yet cured. There is a problem that a short circuit between the electrode and the conductive particles occurs and the resistance increases.

P(μm−1)=[(Sf/Sc)/D]×100 ・・・(式1) P (μm −1 ) = [(Sf / Sc) / D] × 100 (Formula 1)

ここで、上記式1において、
Sf:導電粒子の破壊が始まる力(F2)を加えたときの変性量(μm)
Sc:導電粒子の直径と同じ数値の力(F1)を加えたときの変形量(μm)、
D:導電粒子の平均直径(μm)
を示す。
Here, in Equation 1 above,
Sf: Denaturation amount (μm) when a force (F2) at which the destruction of the conductive particles starts is applied
Sc: deformation amount (μm) when a force (F1) having the same numerical value as the diameter of the conductive particles is applied,
D: Average diameter of conductive particles (μm)
Indicates.

P値を算出する際に必要なデータは、微小圧縮試験機(MCT:Micro Compress Tester)を用いて得ることができる。これを、図1および図2を参照して説明する。   Data necessary for calculating the P value can be obtained by using a micro compression tester (MCT). This will be described with reference to FIG. 1 and FIG.

図1は、微小圧縮試験機によって0.33mN/secの速度で力を増加させて、最大100mNまで力を加えたときの変形量を示すグラフであり、図2は、図1の変形量を説明するための説明図である。この際、変形量(S)とは、力(F)を加えるときに力の印加方向に導電粒子の高さの減少した分のことをいう。   FIG. 1 is a graph showing the amount of deformation when a force is increased to a maximum of 100 mN by increasing the force at a speed of 0.33 mN / sec by a micro compression tester. FIG. 2 shows the amount of deformation of FIG. It is explanatory drawing for demonstrating. In this case, the deformation amount (S) refers to the amount by which the height of the conductive particles is reduced in the direction in which the force is applied when the force (F) is applied.

このことから、導電粒子に対して100mNの力で圧縮/破壊試験を行う場合、導電粒子の直径と同じ数値の力(F1)に該当する圧縮変形量(Sc)を求めることができ、破壊が始まるときの力(F2)に該当する破壊変形量(Sf)を求めることができる。   From this, when the compression / destruction test is performed on the conductive particles with a force of 100 mN, the amount of compressive deformation (Sc) corresponding to the force (F1) having the same numerical value as the diameter of the conductive particles can be obtained. The fracture deformation amount (Sf) corresponding to the starting force (F2) can be obtained.

例えば、導電粒子の平均直径(D)が5μmの場合、最大100mNの荷重で圧縮/破壊試験を行い、この際、導電粒子の平均直径(D、μm)の数値である5を用いて、これと同一の力(F1、mN)である5mNに対応する変形量(Sc)を求めることができる。この際、平均直径(D)に数値的に対応した力(F1)を使用することは、サイズによる変形量を反映するために経験的に有用に導出した要素である。   For example, when the average diameter (D) of the conductive particles is 5 μm, a compression / destructive test is performed with a load of 100 mN at the maximum. At this time, the average diameter (D, μm) of the conductive particles is used as 5, The deformation amount (Sc) corresponding to 5 mN which is the same force (F1, mN) can be obtained. At this time, the use of the force (F1) numerically corresponding to the average diameter (D) is an element derived usefully empirically in order to reflect the amount of deformation due to size.

また、グラフ上において同一の力で変形量が急激に増加し、導電粒子が破壊し始めるときの力(F2)を求め、その力に対応する破壊変形量(Sf)を求めることができる。   In addition, the amount of deformation rapidly increases with the same force on the graph, and the force (F2) when the conductive particles start to break can be obtained, and the amount of breakage deformation (Sf) corresponding to the force can be obtained.

一方、突起の長さを含む導電粒子のサイズは非制限的であるが、導電粒子は、例えば、2μm〜8μmの平均直径を有するように製造されることが好ましい。導電粒子のサイズが2μm未満の場合は、電極の表面粗さと導電粒子のサイズが類似になるため、P値と抵抗の効果が一致しない。また、導電粒子のサイズが10μmを超える場合は、実質的に使用されない導電粒子であるため意味がない。   On the other hand, the size of the conductive particles including the length of the protrusions is not limited, but the conductive particles are preferably manufactured to have an average diameter of 2 μm to 8 μm, for example. When the size of the conductive particles is less than 2 μm, the surface roughness of the electrode and the size of the conductive particles are similar, so the effect of the P value and resistance do not match. Further, when the size of the conductive particles exceeds 10 μm, it is meaningless because the conductive particles are not substantially used.

前述した導電粒子の平均直径は、例えば粒子サイズ分析器(Particle Size Analyzer)(BECKMAN MULTISIZER TM3)を用いて測定されたモード値である。この際、測定された導電粒子(Particle Size Analyzer)(BECKMAN MULTISIZER TM3)の数は150,000個であることが好ましい。   The above-mentioned average diameter of the conductive particles is a mode value measured using, for example, a particle size analyzer (BECKMAN MULTISIZER TM3). At this time, it is preferable that the number of measured conductive particles (Particle Size Analyzer) (BECKMAN MULTISIZER TM3) is 150,000.

以下に、図3〜図8を参照しながら、本発明に係る導電粒子が作用する段階別メカニズムについて説明する。各図面は、第1電極と第2電極との間にACFが位置した状態を示すものであって、例えば、導電粒子はCOG(Chip on Glass)用ACFに含まれる導電粒子であり、第1電極はFPCB(フレキシブルプリント基板)に位置し、第2電極はガラス基板上に位置する。   Below, the mechanism according to the stage which the electrically-conductive particle which concerns on this invention acts is demonstrated, referring FIGS. Each drawing shows a state in which the ACF is located between the first electrode and the second electrode. For example, the conductive particles are conductive particles included in an ACF for COG (Chip on Glass), The electrode is located on the FPCB (flexible printed circuit board), and the second electrode is located on the glass substrate.

図3は、電極の間における電極間の接合のための予備接合段階であって、この段階は、作業の便利性と電極の正確な位置決めを図るためのものである。この際、第1電極と第2電極との間に力が加えられず、微かに触れている状態である。導電粒子と電極とは未だ接触していない。   FIG. 3 is a pre-joining step for joining the electrodes between the electrodes, and this step is intended for convenience of operation and accurate positioning of the electrodes. At this time, no force is applied between the first electrode and the second electrode, and a slight touch is made. The conductive particles and the electrode are not yet in contact.

図4は、電極の間に力が加わり始める段階であって、第1電極に力を加えることにより、第1電極と第2電極との間にある導電粒子が各電極に接触する状態である。電極の間への力の印加は、治具(Jig)などを介して行われる。   FIG. 4 is a stage in which a force starts to be applied between the electrodes, and a state where the conductive particles between the first electrode and the second electrode come into contact with each electrode by applying a force to the first electrode. . Application of force between the electrodes is performed via a jig (Jig) or the like.

図5は、電極の間に力がさらに加わる段階であって、第1電極に力がさらに加わることにより導電粒子の変形が発生し、突起は電極の酸化皮膜を突き抜いて浸透する。この際、導電粒子は、破れないながらも変形率が小さいため、突起が容易に酸化皮膜を突き抜いて入り込むことができる。この時期に変形が多くなり或いは破壊が進むと、突起粒子が電極を突き抜ける力の伝達を受けることができないため、Scが重要な意味を持つ。   FIG. 5 is a stage in which a force is further applied between the electrodes. When a force is further applied to the first electrode, deformation of the conductive particles occurs, and the protrusion penetrates through the oxide film of the electrode. At this time, since the conductive particles have a small deformation rate although they are not torn, the protrusions can easily penetrate the oxide film and enter. When deformation increases or destruction progresses at this time, Sc has an important meaning because it cannot receive the force of the protruding particles penetrating the electrode.

図6は、電極の間に強い力が加わって導電粒子が破壊または塑性変形の範囲を超えた段階であって、導電粒子は60%以上変形する。但し、導電粒子が破れても、表面の導電性被覆層に沿って電気伝達は可能である。   FIG. 6 is a stage where a strong force is applied between the electrodes and the conductive particles exceed the range of fracture or plastic deformation, and the conductive particles are deformed by 60% or more. However, even if the conductive particles are torn, electric transmission is possible along the conductive coating layer on the surface.

図7は、電極の間に加わる力が除去される段階であって、異方性導電フィルム用樹脂は硬化が進む。ACF用樹脂がまだ完全に硬化していない状態であるから、前述した導電粒子の破壊が起こらないので、導電粒子の回復率が大きく発生すると、電極と電極を押して維持する力がないため、電極間の間隔が広がり、短絡または抵抗上昇の原因になる。ところが、本実施形態では、導電粒子が破壊されたので回復がなされないため、短絡または抵抗の可能性が非常に低くなる。よって、Sfが重要な意味を持つ。   FIG. 7 is a stage where the force applied between the electrodes is removed, and the resin for anisotropic conductive film is cured. Since the ACF resin is not yet completely cured, the conductive particles described above do not break down. Therefore, if the recovery rate of the conductive particles is large, there is no force to push and maintain the electrodes. The distance between them increases, causing a short circuit or increased resistance. However, in the present embodiment, since the conductive particles are destroyed and no recovery is performed, the possibility of a short circuit or resistance becomes very low. Therefore, Sf has an important meaning.

図8は、ACF用樹脂が完全に硬化した段階であって、安全に接着された状態を示す。   FIG. 8 shows a state where the ACF resin is completely cured and is safely bonded.

以下では、実施例および比較例を示しながら、本発明の実施形態に係る導電粒子および異方性導電材料について、詳細に説明する。なお、以下で示す実施例は、本発明の実施形態に係る導電粒子および異方性導電材料のあくまでも一例であって、本発明の実施形態に係る導電粒子および異方性導電材料が、以下に示す実施例に限定されるものではない。   Hereinafter, the conductive particles and the anisotropic conductive material according to the embodiment of the present invention will be described in detail with reference to Examples and Comparative Examples. In addition, the Example shown below is an example of the electrically-conductive particle and anisotropic conductive material which concern on embodiment of this invention, Comprising: The electrically-conductive particle and anisotropic conductive material which concern on embodiment of this invention are the following. It is not limited to the embodiment shown.

[実施例1]
1600gの脱イオン水に、15gの分散安定剤「PVP−30K」15gを溶解させた。かかる溶液に、ヘキサンジオールジアクリレートモノマー85gとジビニルベンゼンモノマー85gとを入れて、攪拌しながら懸濁液を製造した。この懸濁液に、重合剤としての過酸化ベンゾイル1.5gを添加し、攪拌してよく混合させた。前記懸濁液を85℃で加熱して重合反応を行い、反応が完結するまで12時間を維持した。合成が完了した後、懸濁液中の微粒子に対して濾過、洗浄、分級および乾燥工程を行って、コア樹脂微粒子を得た。
[Example 1]
15 g of dispersion stabilizer “PVP-30K” 15 g was dissolved in 1600 g of deionized water. To this solution, 85 g of hexanediol diacrylate monomer and 85 g of divinylbenzene monomer were added, and a suspension was prepared while stirring. To this suspension, 1.5 g of benzoyl peroxide as a polymerization agent was added and mixed well by stirring. The suspension was heated at 85 ° C. to conduct a polymerization reaction, and maintained for 12 hours until the reaction was completed. After the synthesis was completed, the fine particles in the suspension were filtered, washed, classified, and dried to obtain core resin fine particles.

一方、樹脂粒子に突起があるように無電解メッキを施す場合は、メッキの際に還元された金属粒子がくっ付く活性化核が必要である。例えば、アルカリ溶液または酸溶液でエッチングを施した樹脂コア粒子に対して、脱イオン水に塩酸(HCl)と塩化スズ(SnCl)を溶かした溶液でセンシタイジング(sensitizing)を行い、脱イオン水に塩酸と塩化パラジウム(PdCl)を溶かした溶液でアクセレレイション(acceleration)を行う。前記センシタイジングは絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクセレレイションはSn2++Pd2+→Sn4++Pdで表示される反応によって無電解メッキの触媒核を形成するための触媒処理工程である。 On the other hand, when electroless plating is performed so that the resin particles have protrusions, activated nuclei to which the reduced metal particles adhere at the time of plating are necessary. For example, resin core particles etched with an alkali solution or an acid solution are sensitized with a solution of hydrochloric acid (HCl) and tin chloride (SnCl 2 ) dissolved in deionized water, and deionized. Acceleration is performed with a solution of hydrochloric acid and palladium chloride (PdCl 2 ) in water. The sensitizing is a step of adsorbing Sn 2+ ions on the surface of the insulating material, and the acceleration is for forming a catalyst nucleus for electroless plating by a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 . It is a catalyst treatment process.

次に、3Lの反応器に2200mLの脱イオン水を投入し、Ni塩として240gの硫酸ニッケル、錯化剤として5gの酢酸ナトリウム、安定剤として0.002gのPb−酢酸塩、および、界面活性剤として3gのPEG−400を順次脱イオン水に溶解させて、メッキ液(a)を製造した。前述したPd触媒処理工程を済ませた、平均直径2.79μmの微粒子30gをメッキ液(a)に入れ、ホモジナイザー(homogenizer)を用いて5分間分散処理を行った。分散処理の後、アンモニア水を用いてpHを6.5にした。   Next, 2200 mL of deionized water was charged into a 3 L reactor, 240 g of nickel sulfate as a Ni salt, 5 g of sodium acetate as a complexing agent, 0.002 g of Pb-acetate as a stabilizer, and surface activity 3 g of PEG-400 as an agent was sequentially dissolved in deionized water to prepare a plating solution (a). 30 g of fine particles having an average diameter of 2.79 μm, which had been subjected to the Pd catalyst treatment step described above, were placed in the plating solution (a) and subjected to a dispersion treatment for 5 minutes using a homogenizer. After the dispersion treatment, the pH was adjusted to 6.5 using aqueous ammonia.

1Lのビーカーに脱イオン水300mL、還元剤として次亜リン酸ナトリウム260g、安定剤としてPb−酢酸塩0.001gを順次溶解させて、溶液(b)を得た。   300 mL of deionized water, 260 g of sodium hypophosphite as a reducing agent, and 0.001 g of Pb-acetate as a stabilizer were sequentially dissolved in a 1 L beaker to obtain a solution (b).

前記3Lの反応器の温度を65℃に維持し、250rpmで攪拌しながら前記溶液(b)を定量ポンプで初期5分間20mL/minの速度で添加した後、残りは8mL/minで投入した。(b)溶液が全て投入されると、20分間反応を維持させて平均直径3.01μm、Sc 1.45μm、Sf 2.56μm、P 39.4μm−1、メッキ層の厚さ110nmおよび突起の高さ125nmの導電粒子を製造した。 The temperature of the 3 L reactor was maintained at 65 ° C., and the solution (b) was added at a rate of 20 mL / min for 5 minutes with a metering pump while stirring at 250 rpm, and the rest was charged at 8 mL / min. (B) When all of the solutions were added, the reaction was maintained for 20 minutes to obtain an average diameter of 3.01 μm, Sc 1.45 μm, Sf 2.56 μm, P 39.4 μm −1 , plating layer thickness 110 nm, and protrusions Conductive particles having a height of 125 nm were produced.

この際、導電粒子の平均直径は、Particle Size Analyzer(BECKMAN MULTISIZER TM3)を用いて測定されたモード値を用いた。測定された導電粒子の数は、150,000個であった。   At this time, a mode value measured using a Particle Size Analyzer (BECKMAN MULTISIZER TM3) was used as the average diameter of the conductive particles. The number of conductive particles measured was 150,000.

また、メッキ層の厚さは、上記のParticle Size Analyzer(BECKMAN MULTISIZER TM3)を用いて、メッキ前の微粒子のサイズモード値とメッキ後の導電粒子のサイズモード値との差を1/2にして測定した。この際、測定された粒子の数は、150000個であった。   Further, the thickness of the plating layer is halved by using the above-mentioned Particle Size Analyzer (BECKMAN MULTISIZER TM3) to halve the difference between the size mode value of the fine particles before plating and the size mode value of the conductive particles after plating. It was measured. At this time, the number of particles measured was 150,000.

また、突起の高さは、走査電子顕微鏡(FESEM、Field Emission Scanning Electron Microscope)を用いて、導電粒子の球状の仮想地平線から突起の高さを10個測定し、平均値として示した。   In addition, the height of the protrusion was measured by using a scanning electron microscope (FESEM, Field Emission Scanning Electron Microscope), and the height of the protrusion was measured from the spherical virtual horizon of the conductive particles, and indicated as an average value.

また、変形率は、1辺の長さが50μmの平面圧子(Indenter)を用いて、微小圧縮試験機(FISHERSCOPE
HM2000)で測定した。変形率は、5個の導電粒子を測定し、その平均値とした。具体的に、25℃でホットプレートを加熱し、その上に導電粒子をのせ、圧子(Indenter)の下降速度を0.33mN/secにして最大100mNの力で測定することで、導電粒子の変形した変形率(S)を測定した。
In addition, the deformation rate was measured using a micro compression tester (FISHERSCOPE) using a plane indenter (Indenter) having a side length of 50 μm.
HM2000). The deformation rate was determined by measuring five conductive particles and averaging them. Specifically, the hot plate is heated at 25 ° C., the conductive particles are placed thereon, the indenter descending speed is set to 0.33 mN / sec, and the measurement is performed with a maximum force of 100 mN, thereby deforming the conductive particles. The deformation rate (S) was measured.

[実施例2]
トリメチロールプロパントリアクリレートモノマー85gとジビニルベンゼンモノマー85gとを用いた以外は実施例1と同様にして、平均直径3.15μmの微粒子を合成した。前記微粒子20gを用いて実施例1と同様のメッキ前処理工程を経た後、溶液(b)を初期5分間20mL/minの速度で投入し、しかる後に、残りは6mL/minで投入して、平均直径3.47μm、Sc 1.04μm、Sf 1.72μm、P 47.7μm−1、メッキ層の厚さ160nmおよび突起の高さ230nmの導電粒子を製造した。
[Example 2]
Fine particles having an average diameter of 3.15 μm were synthesized in the same manner as in Example 1 except that 85 g of trimethylolpropane triacrylate monomer and 85 g of divinylbenzene monomer were used. After passing through the same pre-plating treatment process as in Example 1 using 20 g of the fine particles, the solution (b) was initially charged at a rate of 20 mL / min for 5 minutes, and then the rest was charged at 6 mL / min. Conductive particles having an average diameter of 3.47 μm, Sc of 1.04 μm, Sf of 1.72 μm, P of 47.7 μm −1 , a plating layer thickness of 160 nm and a protrusion height of 230 nm were produced.

[実施例3]
エチレングリコールジメタククリレートモノマー85gとジビニルベンゼン85gとを用いた以外は実施例1と同様にして、平均直径3.85μmの微粒子を合成した。前記微粒子50gを用いて実施例1と同様のメッキ工程を行い、平均直径4.02μm、Sc 1.48μm、Sf 1.78μm、P 29.79μm−1、メッキ層の厚さ85nmおよび突起の高さ151nmの導電粒子を製造した。
[Example 3]
Fine particles having an average diameter of 3.85 μm were synthesized in the same manner as in Example 1 except that 85 g of ethylene glycol dimethacrylate monomer and 85 g of divinylbenzene were used. A plating process similar to that in Example 1 was performed using 50 g of the fine particles, and the average diameter was 4.02 μm, Sc 1.48 μm, Sf 1.78 μm, P 29.79 μm −1 , the thickness of the plating layer was 85 nm, and the height of the protrusions A conductive particle having a thickness of 151 nm was produced.

[実施例4]
エチレングリコールジメタクリレートモノマー51gとジビニルベンゼン119gとを用いた以外は実施例1と同様にして、平均直径4.9μmの微粒子を合成した。前記微粒子75gを用いて実施例1と同様のメッキ前処理工程を経た後、溶液(b)を初期5分間20mL/minの速度で投入し、しかる後に、残りは15mL/minで投入して、平均直径5.05μm、Sc 1.67μm、Sf 2.56μm、P 30.4μm−1、メッキ層の厚さ78nmおよび突起の高さ65nmの導電粒子を製造した。
[Example 4]
Fine particles having an average diameter of 4.9 μm were synthesized in the same manner as in Example 1 except that 51 g of ethylene glycol dimethacrylate monomer and 119 g of divinylbenzene were used. After passing through the same plating pretreatment step as in Example 1 using 75 g of the fine particles, the solution (b) was charged at a rate of 20 mL / min for the initial 5 minutes, and then the rest was charged at 15 mL / min. Conductive particles having an average diameter of 5.05 μm, Sc of 1.67 μm, Sf of 2.56 μm, P of 30.4 μm −1 , a plating layer thickness of 78 nm and a protrusion height of 65 nm were produced.

[実施例5]
エチレングリコールジメタクリレートモノマー85gとメチルメタクリレート85gとを用いた以外は実施例1と同様にして、平均直径7.6μmの微粒子を合成した。前記微粒子50gを用いて実施例2と同様のメッキ工程を行い、平均直径7.96μm、Sc 1.85μm、Sf 3.95μm、P 26.8μm−1、メッキ層の厚さ180nmおよび突起の高さ246nmの導電粒子を製造した。
[Example 5]
Fine particles having an average diameter of 7.6 μm were synthesized in the same manner as in Example 1 except that 85 g of ethylene glycol dimethacrylate monomer and 85 g of methyl methacrylate were used. A plating process similar to that of Example 2 was performed using 50 g of the fine particles, and the average diameter was 7.96 μm, Sc 1.85 μm, Sf 3.95 μm, P 26.8 μm −1 , plating layer thickness 180 nm, and protrusion height Conductive particles having a thickness of 246 nm were produced.

[実施例6]
実施例3で合成された微粒子15gを用いて実施例1と同様の前処理工程を経た後、溶液(b)を初期5分間20mL/minの速度で投入し、しかる後に、残りは5mL/minの速度で投入して、平均直径4.4μm、Sc 1.35μm、Sf 1.87μm、P 31.5μm−1、メッキ層の厚さ275nmおよび突起の高さ425nmの導電粒子を製造した。
[Example 6]
After 15 g of the fine particles synthesized in Example 3, the same pretreatment process as in Example 1 was performed, and then the solution (b) was charged at a rate of 20 mL / min for the initial 5 minutes, and then the rest was 5 mL / min. The conductive particles having an average diameter of 4.4 μm, Sc 1.35 μm, Sf 1.87 μm, P 31.5 μm −1 , plating layer thickness 275 nm and protrusion height 425 nm were produced.

[実施例7]
実施例3で合成された微粒子80gを用いて実施例1と同様の前処理工程を経た後、溶液(b)を初期5分間20mL/minの速度で投入した。しかる後に、残りは15mL/minの速度で投入して、Ni−Pメッキ層を形成し、置換反応を用いたAuメッキを施すことにより、平均直径3.96μm、Sc 1.35μm、Sf 1.74μm、P 31.8μm−1、メッキ層の厚さ55nmおよび突起の高さ52nmの導電粒子を製造した。
[Example 7]
80 g of fine particles synthesized in Example 3 were used for the same pretreatment step as in Example 1, and then solution (b) was charged at an initial rate of 20 mL / min for 5 minutes. Thereafter, the remainder is charged at a rate of 15 mL / min to form a Ni-P plating layer, and Au plating using a substitution reaction is performed to obtain an average diameter of 3.96 μm, Sc 1.35 μm, Sf 1. Conductive particles having a thickness of 74 μm, P 31.8 μm −1 , a plating layer thickness of 55 nm, and a protrusion height of 52 nm were produced.

[実施例8]
実施例3で合成された微粒子40gを用いて実施例1と同様の方法でNi−Pメッキを施し、メッキされた導電粒子にCuメッキを施した。CuメッキにはMSCで製造されたMS−KAPA製品を用いた。これにより、平均直径4.11μm、Sc 1.52μm、Sf 1.76μm、P 28.2μm−1、メッキ層の厚さ130nmおよび突起の高さ133nmの導電粒子を製造した。
[Example 8]
Ni-P plating was performed in the same manner as in Example 1 using 40 g of the fine particles synthesized in Example 3, and the plated conductive particles were subjected to Cu plating. An MS-KAPA product manufactured by MSC was used for Cu plating. As a result, conductive particles having an average diameter of 4.11 μm, Sc 1.52 μm, Sf 1.76 μm, P 28.2 μm −1 , a plating layer thickness of 130 nm, and a protrusion height of 133 nm were produced.

[比較例1]
スチレンモノマー170gを用いた以外は実施例1と同様にして、平均直径2.83μmの微粒子を合成した。前記微粒子30gを用いて実施例1と同様のメッキ工程を行い、平均直径3.04μm、Sc 1.98μm、Sf 1.12μm、P 18.6μm−1、メッキ層の厚さ105nmおよび突起の高さ135nmの導電粒子を製造した。
[Comparative Example 1]
Fine particles having an average diameter of 2.83 μm were synthesized in the same manner as in Example 1 except that 170 g of styrene monomer was used. The same plating step as in Example 1 was performed using 30 g of the fine particles, and the average diameter was 3.04 μm, Sc 1.98 μm, Sf 1.12 μm, P 18.6 μm −1 , plating layer thickness 105 nm, and protrusion height Conductive particles having a thickness of 135 nm were produced.

[比較例2]
比較例1の工程と同様に行い、最終Cuメッキを施した。これにより、平均直径3.08μm、Sc 1.98μm、Sf 1.12μm、P 18.6μm−1、メッキ層の厚さ125nmおよび突起の高さ124nmの導電粒子を製造した。
[Comparative Example 2]
It carried out similarly to the process of the comparative example 1, and gave final Cu plating. Thus, conductive particles having an average diameter of 3.08 μm, Sc 1.98 μm, Sf 1.12 μm, P 18.6 μm −1 , a plating layer thickness of 125 nm, and a protrusion height of 124 nm were manufactured.

(実験例)
<実験例1:接続抵抗の測定>
接続抵抗を測定するためにエポキシ樹脂と前記導電粒子を混合し、フィルム状に作って電極と接合させた後、抵抗を測定した。
(Experimental example)
<Experimental example 1: measurement of connection resistance>
In order to measure the connection resistance, the epoxy resin and the conductive particles were mixed, formed into a film, joined to the electrode, and then the resistance was measured.

接合初期の抵抗と85℃/85%での100hr後の抵抗変化をそれぞれ測定し、その結果を以下の表1に示した。   The initial resistance and the change in resistance after 100 hours at 85 ° C./85% were measured, and the results are shown in Table 1 below.

Figure 2014127467
Figure 2014127467

上記表1から明らかなように、本発明の実施例に係る、Pの範囲が20≦P≦50であるものの抵抗が低く、接続信頼度が高いことが分かる。   As is apparent from Table 1 above, it can be seen that the resistance of the P range of 20 ≦ P ≦ 50 according to the embodiment of the present invention is low and the connection reliability is high.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

Claims (9)

樹脂微粒子と、
前記樹脂微粒子の外面に設けられ、表面に突起を有する被覆層と、
を含み、
下記式1によるP値が20≦P≦50である、導電粒子。

P(μm−1)=[(Sf/Sc)/D]×100・・・(式1)

ここで、上記式1において、
Sf:導電粒子の破壊が始まる力(F2、mN)を加えたときの変性量(μm)
Sc:導電粒子の直径と同じ数値の力(F1、mN)を加えたときの変形量(μm)
D:導電粒子の平均直径(μm)
を示す。
Resin fine particles,
A coating layer provided on the outer surface of the resin fine particles and having protrusions on the surface;
Including
The electroconductive particle whose P value by following formula 1 is 20 <= P <= 50.

P (μm −1 ) = [(Sf / Sc) / D] × 100 (Formula 1)

Here, in Equation 1 above,
Sf: Denaturation amount (μm) when a force (F2, mN) at which the conductive particles start to break is applied
Sc: Deformation amount (μm) when force (F1, mN) having the same numerical value as the diameter of the conductive particles is applied
D: Average diameter of conductive particles (μm)
Indicates.
前記被覆層は、30〜300nmの厚さを有する、請求項1に記載の導電粒子。   The conductive particle according to claim 1, wherein the coating layer has a thickness of 30 to 300 nm. 前記突起は、50nm〜500nmの高さを有する、請求項1または2に記載の導電粒子。   The conductive particle according to claim 1, wherein the protrusion has a height of 50 nm to 500 nm. 前記突起は、前記被覆層と同一の物質からなる、請求項1〜3のいずれか1項に記載の導電粒子。   The conductive particle according to claim 1, wherein the protrusion is made of the same material as the coating layer. 前記被覆層は、Ni、Sn、Ag、Cu、Pd、Zn、W、P、BおよびAuからなる群から選択される1種または2種以上の合金からなる、請求項1〜4のいずれか1項に記載の導電粒子。   The said coating layer consists of 1 type, or 2 or more types of alloys selected from the group which consists of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au. 2. Conductive particles according to item 1. 前記被覆層の外面には、Au、Pt、AgおよびPdからなる群から選択される1種または2種以上の合金からなる追加の被覆層をさらに含む、請求項1〜5のいずれか1項に記載の導電粒子。   The outer surface of the said coating layer further contains the additional coating layer which consists of 1 type, or 2 or more types of alloys selected from the group which consists of Au, Pt, Ag, and Pd. Conductive particles according to 1. 前記導電粒子は、COG(Chip on Glass)用異方性導電フィルム(ACF)に含まれる、請求項1〜6のいずれか1項に記載の導電粒子。   The conductive particles according to claim 1, wherein the conductive particles are included in an anisotropic conductive film (ACF) for COG (Chip on Glass). 請求項1〜7のいずれか1項に記載の導電粒子を含む、異方性導電材料。   An anisotropic conductive material comprising the conductive particles according to claim 1. 請求項1〜7のいずれか1項に記載の導電粒子、または、請求項8の異方性導電材料を含む、電子装置。   An electronic device comprising the conductive particles according to claim 1 or the anisotropic conductive material according to claim 8.
JP2013214890A 2012-12-26 2013-10-15 Conductive particle and conductive material containing conductive particle Pending JP2014127467A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0153166 2012-12-26
KR1020120153166A KR101298101B1 (en) 2012-12-26 2012-12-26 Conductive particles, manufacturing method of the same, and conductive materials including the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015026029A Division JP5973015B2 (en) 2012-12-26 2015-02-13 Conductive particles and conductive materials containing conductive particles

Publications (1)

Publication Number Publication Date
JP2014127467A true JP2014127467A (en) 2014-07-07

Family

ID=49220881

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013214890A Pending JP2014127467A (en) 2012-12-26 2013-10-15 Conductive particle and conductive material containing conductive particle
JP2015026029A Ceased JP5973015B2 (en) 2012-12-26 2015-02-13 Conductive particles and conductive materials containing conductive particles

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015026029A Ceased JP5973015B2 (en) 2012-12-26 2015-02-13 Conductive particles and conductive materials containing conductive particles

Country Status (2)

Country Link
JP (2) JP2014127467A (en)
KR (1) KR101298101B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410163B1 (en) * 2017-06-22 2018-10-24 日立金属株式会社 Electric wire with terminal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713015B1 (en) * 2014-09-05 2017-03-07 덕산하이메탈(주) Graphene Coated Conductive particles, and conductive materials including the same
KR102546837B1 (en) * 2020-12-17 2023-06-29 덕산네오룩스 주식회사 High-strength Bid, Conductive Particles using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313304A (en) * 2002-04-22 2003-11-06 Sekisui Chem Co Ltd Conductive fine particle, its manufacturing method and bonding material for electronic component
JP2005327510A (en) * 2004-05-12 2005-11-24 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
WO2010010768A1 (en) * 2008-07-24 2010-01-28 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particle, anisotropic conductive film, joined body, and connecting method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379456B2 (en) 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP2004296322A (en) 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP4860163B2 (en) * 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles
JP4936678B2 (en) * 2005-04-21 2012-05-23 積水化学工業株式会社 Conductive particles and anisotropic conductive materials
KR100722152B1 (en) 2005-07-20 2007-05-28 제일모직주식회사 Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
JP4962706B2 (en) * 2006-09-29 2012-06-27 日本化学工業株式会社 Conductive particles and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313304A (en) * 2002-04-22 2003-11-06 Sekisui Chem Co Ltd Conductive fine particle, its manufacturing method and bonding material for electronic component
JP2005327510A (en) * 2004-05-12 2005-11-24 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
WO2010010768A1 (en) * 2008-07-24 2010-01-28 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particle, anisotropic conductive film, joined body, and connecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410163B1 (en) * 2017-06-22 2018-10-24 日立金属株式会社 Electric wire with terminal
JP2019009101A (en) * 2017-06-22 2019-01-17 日立金属株式会社 Terminal-equipped wire

Also Published As

Publication number Publication date
JP2015122330A (en) 2015-07-02
KR101298101B1 (en) 2013-08-20
JP5973015B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
CN102089832B (en) Conductive particle, anisotropic conductive film, joined body, and connecting method
JP4860163B2 (en) Method for producing conductive fine particles
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
KR100719802B1 (en) Highly reliable conductive particles for anisotropic conductive interconnection
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
TW201125661A (en) Conductive fine particles and anisotropic conductive material
JP5973015B2 (en) Conductive particles and conductive materials containing conductive particles
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
JP2021027027A (en) Electroconductive particle, electroconductive material, and connection structure
JP2019207889A (en) Conductive particles and use thereof
JP2006216388A (en) Conductive fine particle and anisotropic conductive material
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP5010417B2 (en) Conductive particles and anisotropic conductive material using the same
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP2009032397A (en) Conductive fine particle
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP2013055047A (en) Conductive particle, anisotropic conductive material and connection structure
JP6935465B2 (en) Conductive particles, conductive materials and connecting structures using them
KR101284027B1 (en) Conductive particles for touch screen panel, and conductive materials including the same
JP4714719B2 (en) Method for producing conductive fine particles
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125