JP2006331714A - Conductive fine particle and anisotropic conductive material - Google Patents

Conductive fine particle and anisotropic conductive material Download PDF

Info

Publication number
JP2006331714A
JP2006331714A JP2005150536A JP2005150536A JP2006331714A JP 2006331714 A JP2006331714 A JP 2006331714A JP 2005150536 A JP2005150536 A JP 2005150536A JP 2005150536 A JP2005150536 A JP 2005150536A JP 2006331714 A JP2006331714 A JP 2006331714A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
conductive fine
aluminum
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005150536A
Other languages
Japanese (ja)
Other versions
JP2006331714A5 (en
Inventor
Hiroya Ishida
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005150536A priority Critical patent/JP2006331714A/en
Publication of JP2006331714A publication Critical patent/JP2006331714A/en
Publication of JP2006331714A5 publication Critical patent/JP2006331714A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fine particle and an anisotropic conductive material capable of preventing defective conduction and lowering of resistance, on a view point that further reduction of the resistance of the conductive fine particle used as a material for the anisotropic conductive material is required according to recent rapid progress and development of electronic device. <P>SOLUTION: The conductive fine particle is composed of fine particle base material and conductive layer composed of nickel formed on the surface of the conductive fine particle. The conductive layer has protrusions on its surface, and at least the protrusion contains aluminum and/or lead. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子、及び、異方性導電材料に関する。 The present invention relates to conductive fine particles capable of preventing conduction failure and reducing resistance, and an anisotropic conductive material.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、回路基板同士を電気的に接続したり、半導体素子等の小型部品を回路基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are used to electrically connect circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the circuit board. For this reason, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性微粒子としては、従来、粒子径が均一で、適度な強度を有する樹脂粒子等の非導電性微粒子の表面に、導電層として金属メッキ層を形成させた導電性微粒子が用いられている。しかしながら、このような異方性導電材料を用いて回路基板同士を電気的に接続すると、導電性微粒子表面の導電層と回路基板等との間にバインダー樹脂等がはさまり、導電性微粒子と回路基板等との間の接続抵抗が高くなることがあった。特に近年の電子機器の急激な進歩や発展に伴って、導電性微粒子と回路基板等との間の接続抵抗の更なる低減が求められてきている。 As the conductive fine particles used for such anisotropic conductive materials, conventionally, a metal plating layer is formed as a conductive layer on the surface of non-conductive fine particles such as resin particles having a uniform particle size and appropriate strength. Conductive fine particles are used. However, when the circuit boards are electrically connected using such an anisotropic conductive material, a binder resin or the like is sandwiched between the conductive layer on the surface of the conductive fine particles and the circuit board. In some cases, the connection resistance between them and the like increases. In particular, with the rapid progress and development of electronic devices in recent years, there has been a demand for further reduction in connection resistance between conductive fine particles and circuit boards.

特許文献1には、接続抵抗を低減する目的で、表面に突起を有する導電性微粒子が開示されている。この導電性微粒子は、導電性微粒子表面の導電層と回路基板等との間に存在するバインダー樹脂等を突起が突き破ることで(樹脂排除性)、突起と回路基板等とを確実に接続させることで、導電性微粒子と回路基板等との間の接続抵抗の低減を図っている。 Patent Document 1 discloses conductive fine particles having protrusions on the surface for the purpose of reducing connection resistance. This conductive fine particle ensures that the protrusion and the circuit board are connected by the protrusion breaking through the binder resin or the like existing between the conductive layer on the surface of the conductive fine particle and the circuit board. Thus, the connection resistance between the conductive fine particles and the circuit board or the like is reduced.

しかしながら、特許文献1に記載された導電性微粒子では、突起が導電性微粒子表面のニッケルの異常析出により形成されたものであるため、ニッケルの抵抗値の高さから、充分な接続抵抗の低減が図られているとは言えなかった。
特開平7−118866号公報
However, in the conductive fine particles described in Patent Document 1, since the protrusions are formed by abnormal precipitation of nickel on the surface of the conductive fine particles, the connection resistance can be sufficiently reduced due to the high resistance value of nickel. It could not be said that it was planned.
Japanese Patent Laid-Open No. 7-118866

本発明は、上記現状に鑑み、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子、及び、異方性導電材料を提供することを目的とする。 An object of the present invention is to provide conductive fine particles and an anisotropic conductive material capable of preventing conduction failure and reducing a resistance value in view of the above-described present situation.

本発明は、基材微粒子と、前記基材微粒子の表面に形成されたニッケルからなる導電層とからなる導電性微粒子であって、前記導電層は、表面に突起を有するものであり、かつ、少なくとも前記突起はアルミニウム及び/又は亜鉛を含有する導電性微粒子である。
以下に本発明を詳述する。
The present invention is a conductive fine particle comprising a substrate fine particle and a conductive layer made of nickel formed on the surface of the substrate fine particle, the conductive layer has a protrusion on the surface, and At least the protrusions are conductive fine particles containing aluminum and / or zinc.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、回路基板等の電気的接続の際に用いる導電性微粒子の導電層にニッケルとニッケルよりも低抵抗であるアルミニウム及び/又は亜鉛とを含有させ、かつ、ニッケル層の形成時にアルミニウム及び/又は亜鉛を、分散又は析出させることにより突起部分にまでニッケルとアルミニウム及び/又は亜鉛とを含有させることで、突起をも含む導電層の抵抗値を低減させることができ、接続不良等を起こすことなく、高い信頼性で回路基板等を接続することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have included a conductive layer of conductive fine particles used for electrical connection of a circuit board or the like with nickel and aluminum and / or zinc, which has a lower resistance than nickel, and It is possible to reduce the resistance value of the conductive layer including the protrusion by adding nickel and aluminum and / or zinc to the protrusion portion by dispersing or precipitating aluminum and / or zinc when forming the nickel layer. It has been found that the circuit board and the like can be connected with high reliability without causing poor connection and the like, and the present invention has been completed.

本発明の導電性微粒子は、基材微粒子と、上記基材微粒子の表面に形成されたニッケルからなる導電層とからなる。 The conductive fine particles of the present invention are composed of substrate fine particles and a conductive layer made of nickel formed on the surface of the substrate fine particles.

上記基材微粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば、有機系材料であっても無機系材料であってもよいが、弾性変形性及び復元性に優れていることから、樹脂を用いてなる樹脂微粒子であることが好ましい。 The substrate fine particles are not particularly limited, and may be an organic material or an inorganic material as long as it has an appropriate elastic modulus, elastic deformability, and restoration property. Since it is excellent in resilience, it is preferably a resin fine particle made of a resin.

上記樹脂微粒子としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;アクリレートとジビニルベンゼンとの共重合樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等からなるものが挙げられる。これらの樹脂微粒子は、単独で用いられてもよく、2種以上が併用されてもよい。 The resin fine particles are not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate A copolymer resin of acrylate and divinylbenzene, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, and the like. These resin fine particles may be used independently and 2 or more types may be used together.

上記基材微粒子の平均粒子直径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、導電層を形成する際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。より好ましい上限は10μmである。 The average particle diameter of the substrate fine particles is not particularly limited, but a preferable lower limit is 1 μm and a preferable upper limit is 20 μm. If it is less than 1 μm, it tends to agglomerate when forming a conductive layer, making it difficult to form single particles, and if it exceeds 20 μm, it may exceed the range used between substrate electrodes as an anisotropic conductive material. There is. A more preferable upper limit is 10 μm.

上記導電層の平均膜厚としては特に限定されないが、導電接続材料として必要な導電性を発揮させることを考慮すると、好ましい下限は10nm、好ましい上限は1μmである。10nm未満であると、基材微粒子上に導電層が形成されていない部分が生じたり、また、抵抗が大きくなったりすることがある。1μmを超えると、導電層が硬くなり基材微粒子の変形に追従できず破壊が進みやすくなったり、基材微粒子の変形を妨げるため接続電極を破壊したり、接触面積が大きくならなかったりして、接続抵抗値が高くなったり接続不良が発生しやすくなったりすることがある。より好ましい上限は500nmである。
ここで、平均膜厚は、無作為に選んだ10個の粒子について測定し、それを算術平均した膜厚である。なお、個々の導電性微粒子の膜厚にむらがある場合には、その最大膜厚と最小膜厚を測定し、算術平均した値を膜厚とする。
Although the average film thickness of the conductive layer is not particularly limited, the preferable lower limit is 10 nm and the preferable upper limit is 1 μm in consideration of exerting the necessary conductivity as the conductive connection material. If the thickness is less than 10 nm, a portion where the conductive layer is not formed may be formed on the substrate fine particles, or the resistance may be increased. If the thickness exceeds 1 μm, the conductive layer becomes hard and cannot follow the deformation of the substrate fine particles, so that the breakage easily proceeds, the connection electrode is destroyed to prevent the deformation of the substrate fine particles, and the contact area does not increase. In some cases, the connection resistance value is increased or connection failure is likely to occur. A more preferable upper limit is 500 nm.
Here, the average film thickness is a film thickness obtained by measuring 10 randomly selected particles and arithmetically averaging them. In addition, when the film thickness of each conductive fine particle is uneven, the maximum film thickness and the minimum film thickness are measured, and the arithmetic average value is taken as the film thickness.

上記ニッケルからなる導電層は、表面に突起を有するものであり、かつ、少なくとも上記突起はアルミニウム及び/又は亜鉛を含有する。
アルミニウム及び亜鉛は、ニッケルに比べて抵抗値が低いため、導電層中にアルミニウム及び/又は亜鉛を存在させることにより、より導電層の抵抗値を低減化させることができ、基材微粒子の表面にニッケル層を形成する際にアルミニウム及び/又は亜鉛を、メッキ液中に金属等の微粒子として分散、又は、金属や金属水酸化物等として析出させることにより突起を形成させることができ、突起部分にまでニッケルとアルミニウム及び/又は亜鉛とを含有させることができる。また、ニッケルとアルミニウム及び亜鉛とはマイグレーションを起こさないため、導電層中に安定に存在させることができる。
また、本発明の導電性微粒子は、突起を有することにより、本発明の導電性微粒子を用いてなる異方性導電材料を回路基板等に挟んで導電接続時に圧着する際に、回路基板等と本発明の導電性微粒子との間に存在する異方性導電材料中のバインダー樹脂等を突き破るとともに(樹脂排除性)、回路基板等の面で突起がつぶれ、先端が平坦化するため、本発明の導電性微粒子と回路基板等とが面接触となり、また、突起もニッケルとアルミニウム及び/又は亜鉛とを含有しているため、ニッケルによる従来の突起を有する導電性微粒子よりも効果的に導通不良防止とともに、抵抗値の低減化が可能となる。
The conductive layer made of nickel has protrusions on the surface, and at least the protrusions contain aluminum and / or zinc.
Since the resistance value of aluminum and zinc is lower than that of nickel, the presence of aluminum and / or zinc in the conductive layer can further reduce the resistance value of the conductive layer. When forming the nickel layer, protrusions can be formed by dispersing aluminum and / or zinc as fine particles such as metal in the plating solution or by depositing them as metal or metal hydroxide. Nickel and aluminum and / or zinc can be contained. Moreover, since nickel, aluminum, and zinc do not cause migration, they can be stably present in the conductive layer.
Further, since the conductive fine particles of the present invention have protrusions, when the anisotropic conductive material formed using the conductive fine particles of the present invention is sandwiched between the circuit boards and the like and is crimped at the time of conductive connection, The present invention breaks through a binder resin or the like in the anisotropic conductive material existing between the conductive fine particles of the present invention (resin eliminability), and the projections are crushed and the tip is flattened on the surface of the circuit board. The conductive fine particles and the circuit board are in surface contact, and the protrusions also contain nickel and aluminum and / or zinc. In addition to prevention, the resistance value can be reduced.

また、本発明の導電性微粒子の導電層においては、ニッケルを海成分、アルミニウム及び/又は亜鉛を島成分とする海島構造を形成していることが好ましい。海島構造を形成していることにより、ニッケルに比べて抵抗値が低いアルミニウム及び/又は亜鉛の存在によりニッケル層の抵抗値の低減化が図れるとともに、突起部分にアルミニウム及び/又は亜鉛が局在化しやすいので、均一な合金等と比べてより突起部分の抵抗値の低減化が図れる等の効果が得られる。
ここで、海島構造とは、海成分と島成分が相分離した状態で存在し、海成分の中に島成分が分散状態にあるものをいう。
In the conductive layer of the conductive fine particles of the present invention, it is preferable to form a sea-island structure in which nickel is a sea component and aluminum and / or zinc is an island component. By forming the sea-island structure, the resistance value of the nickel layer can be reduced due to the presence of aluminum and / or zinc, which have a lower resistance value than nickel, and the aluminum and / or zinc is localized in the protrusions. Therefore, it is possible to obtain an effect that the resistance value of the protruding portion can be further reduced as compared with a uniform alloy or the like.
Here, the sea-island structure means that the sea component and the island component exist in a phase-separated state, and the island component is dispersed in the sea component.

上記アルミニウム及び/又は亜鉛の分散状態の分散粒径としては特に限定されないが、好ましい下限は0.1nmである。0.1nm未満であると、アルミニウム及び/又は亜鉛の存在による抵抗値の低減化の効果が得られにくくなったり、導電層中に分散させることが困難となったりすることがある。より好ましい下限は1nmである。また、上記アルミニウム及び/又は亜鉛の分散粒子は、2個以上の分散粒子が凝集した凝集体となっていてもよい。
ここで、分散粒径は、無作為に選んだ50個の島成分であるアルミニウム及び/又は亜鉛の分散粒径を測定し、それを算術平均して分散粒径とする。このとき、アルミニウム及び/又は亜鉛の分散粒子が球状と見なせない場合には、その長径と短径を測定し、算術平均した値を分散粒径とする。
Although it does not specifically limit as a dispersed particle diameter of the dispersion state of the said aluminum and / or zinc, A preferable minimum is 0.1 nm. If it is less than 0.1 nm, it may be difficult to obtain the effect of reducing the resistance value due to the presence of aluminum and / or zinc, or it may be difficult to disperse in the conductive layer. A more preferred lower limit is 1 nm. The aluminum and / or zinc dispersed particles may be an aggregate in which two or more dispersed particles are aggregated.
Here, the dispersed particle diameter is determined by measuring the dispersed particle diameters of 50 randomly selected island components such as aluminum and / or zinc, and arithmetically averaging them. At this time, when the dispersed particles of aluminum and / or zinc cannot be regarded as spherical, the major axis and minor axis are measured, and the arithmetic average value is taken as the dispersed particle size.

上記突起の平均高さとしては特に限定されないが、好ましい下限は基材微粒子の粒子直径の0.5%、好ましい上限は基材微粒子の粒子直径の25%である。0.5%未満であると、充分な樹脂排除性が得られないことがあり、25%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。
なお、突起の平均高さは、無作為に選んだ50個の導電層上にある凸部の高さを測定し、それを算術平均して突起の平均高さとする。このとき、突起を付与した効果が得られるものとして、導電層上の10nm以上の凸部のものを突起として選ぶものとした。
The average height of the protrusions is not particularly limited, but a preferred lower limit is 0.5% of the particle diameter of the substrate fine particles, and a preferred upper limit is 25% of the particle diameter of the substrate fine particles. If it is less than 0.5%, sufficient resin exclusion may not be obtained, and if it exceeds 25%, the protrusions may be deeply embedded in the circuit board and the like, possibly damaging the circuit board.
Note that the average height of the protrusions is obtained by measuring the heights of the protrusions on 50 conductive layers selected at random, and calculating the average height of the protrusions to obtain the average height of the protrusions. At this time, a projection having a projection of 10 nm or more on the conductive layer was selected as the projection as an effect of providing the projection.

本発明の導電性微粒子は、更に、導電層の表面に金層が形成されていることが好ましい。導電層の表面に金層を施すことにより、導電層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 The conductive fine particles of the present invention preferably further have a gold layer formed on the surface of the conductive layer. By applying a gold layer to the surface of the conductive layer, it is possible to prevent oxidation of the conductive layer, reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、導電層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層が導電層を侵食し、基材微粒子と導電層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. If it is less than 1 nm, it may be difficult to prevent oxidation of the conductive layer, and the connection resistance value may be high. If it exceeds 100 nm, the gold layer erodes the conductive layer, Adhesion with the conductive layer may be deteriorated.

本発明の導電性微粒子の製造方法としては特に限定されず、例えば、次のような方法が挙げられる。
まず、基材微粒子を水酸化ナトリウム水溶液等のアルカリ溶液でエッチングすることにより表面を粗にし、上記基材微粒子の表面に触媒付与を行う。
次いで、メッキ安定剤、次亜リン酸ナトリウム(還元剤)を含有する無電解ニッケルメッキ液中にアルミニウム(イオン)及び/又は亜鉛(イオン)を添加し、アルミニウム及び/又は亜鉛をpH4.5〜5.0で金属や金属水酸化物等として析出させ、この析出物を核として突起を形成させる方法である。
この方法によれば、突起部分にアルミニウム及び/又は亜鉛が取り込まれやすいため、本発明の導電性微粒子の抵抗値の低減化を効果的に実現することができる。
ここで、上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材微粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
It does not specifically limit as a manufacturing method of the electroconductive fine particles of this invention, For example, the following methods are mentioned.
First, the surface of the substrate fine particles is roughened by etching the substrate fine particles with an alkaline solution such as an aqueous sodium hydroxide solution, and a catalyst is applied to the surface of the substrate fine particles.
Subsequently, aluminum (ion) and / or zinc (ion) is added to an electroless nickel plating solution containing a plating stabilizer and sodium hypophosphite (reducing agent), and aluminum and / or zinc is added at pH 4.5 to This is a method of depositing as a metal or metal hydroxide in 5.0 and forming a projection using this precipitate as a nucleus.
According to this method, since the aluminum and / or zinc is easily taken into the protruding portion, the resistance value of the conductive fine particles of the present invention can be effectively reduced.
Here, as a method for applying the catalyst, for example, acid neutralization and sensitization in a tin dichloride (SnCl 2 ) solution are performed on the substrate fine particles etched with an alkaline solution, and palladium dichloride (PdCl 2 ) A method of performing an electroless plating pretreatment step for activating in solution.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

またその他にも、例えば、次のような方法が挙げられる。
基材微粒子を水酸化ナトリウム水溶液等のアルカリ溶液でエッチングすることにより表面を粗にし、上記基材微粒子の表面に触媒付与を行った後、メッキ安定剤、次亜リン酸ナトリウム(還元剤)を含有する無電解ニッケルメッキ液中にアルミニウム(金属)及び/又は亜鉛(金属)を分散添加し、アルミニウム及び/又は亜鉛が懸濁状態で含有している無電解ニッケルメッキ浴に、触媒付与された基材微粒子を浸漬して無電解メッキを行う方法である。これにより、アルミニウム及び/又は亜鉛は、ニッケルと同時に導電層に取り込まれ、共析状態となり突起を有した導電層を有する導電性微粒子を得ることができる。
In addition, for example, the following method can be cited.
The surface of the substrate fine particles is roughened by etching the substrate fine particles with an alkaline solution such as an aqueous sodium hydroxide solution, and after the catalyst is applied to the surface of the substrate fine particles, a plating stabilizer and sodium hypophosphite (reducing agent) Aluminum (metal) and / or zinc (metal) was dispersed and added to the contained electroless nickel plating solution, and the catalyst was applied to the electroless nickel plating bath containing aluminum and / or zinc in a suspended state. This is a method of performing electroless plating by immersing the substrate fine particles. As a result, aluminum and / or zinc is taken into the conductive layer simultaneously with nickel, so that conductive fine particles having a conductive layer in a eutectoid state and having protrusions can be obtained.

本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子及び異方性導電材料を提供することができる。 According to the present invention, it is possible to provide conductive fine particles and anisotropic conductive material capable of preventing conduction failure and reducing the resistance value.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(無電解メッキ前処理工程)
平均粒子径3μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂からなる基材微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
Example 1
(Electroless plating pretreatment process)
10 g of substrate fine particles made of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene having an average particle diameter of 3 μm were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.

(無電解ニッケルメッキ工程)
得られた基材微粒子を更に水1200mLで希釈し、メッキ安定剤4mLを添加後、この水溶液に、硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLのメッキ混合溶液120mLを81mL/分の添加速度で定量ポンプを通して添加し、同時に、pHを3.5に調整した硫酸アルミニウム450g/L水溶液120mLを81mL/分の添加速度で定量ポンプを通して添加した。その際、メッキ系内のpHは4.5〜5.0に保った。その後、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
(Electroless nickel plating process)
The obtained substrate fine particles were further diluted with 1200 mL of water, and after adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, plating stability 120 mL of 6 mL of the plating mixture solution was added through a metering pump at an addition rate of 81 mL / min. At the same time, 120 mL of 450 g / L aqueous solution of aluminum sulfate adjusted to pH 3.5 was added through the metering pump at an addition rate of 81 mL / min. did. At that time, the pH in the plating system was kept at 4.5 to 5.0. Thereafter, it was confirmed that hydrogen foaming stopped, and the first electroless plating step was performed.

次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLのメッキ混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その際、メッキ系内のpHは7.5〜8.0に保った。その後、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。 Subsequently, 650 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 35 mL of a plating stabilizer was added through a metering pump at an addition rate of 27 mL / min. At that time, the pH in the plating system was maintained at 7.5 to 8.0. Thereafter, it was confirmed that hydrogen foaming stopped, and an electroless plating late step was performed.

次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥して導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
Next, the plating solution was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. to obtain conductive fine particles.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

得られた導電性微粒子について、日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、ニッケルとアルミニウムとを含有した突起を有していた。また、断面は、ニッケルを海成分、アルミニウムを島成分とする海島構造となっており、アルミニウムが凝集して形成された突起となっていた。 The obtained conductive fine particles were observed with a transmission electron microscope (TEM) manufactured by JEOL Datum Co., Ltd., and had protrusions containing nickel and aluminum. The cross section had a sea-island structure with nickel as a sea component and aluminum as an island component, and was a protrusion formed by agglomeration of aluminum.

(実施例2)
実施例1と同様にして無電解メッキ前処理工程を行った。
得られた基材微粒子を更に水1200mLで希釈し、メッキ安定剤4mLを添加後、この水溶液に、硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mL、及び粒径40nmのアルミニウム微粉末を添加したメッキ混合溶液120mLを81mL/分の添加速度で定量ポンプを通して添加した。その際、メッキ系内のpHは7.5〜8.0に保った。その後、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
(Example 2)
The electroless plating pretreatment step was performed in the same manner as in Example 1.
The obtained substrate fine particles were further diluted with 1200 mL of water, and after adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, plating stability 6 mL of the agent and 120 mL of the plating mixed solution added with aluminum fine powder having a particle diameter of 40 nm were added through a metering pump at an addition rate of 81 mL / min. At that time, the pH in the plating system was maintained at 7.5 to 8.0. Thereafter, it was confirmed that hydrogen foaming stopped, and the first electroless plating step was performed.

次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLのメッキ混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その際、メッキ系内のpHは7.5〜8.0に保った。その後、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。 Subsequently, 650 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 35 mL of a plating stabilizer was added through a metering pump at an addition rate of 27 mL / min. At that time, the pH in the plating system was maintained at 7.5 to 8.0. Thereafter, it was confirmed that hydrogen foaming stopped, and an electroless plating late step was performed.

次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥して導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
Next, the plating solution was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. to obtain conductive fine particles.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

得られた導電性微粒子について、日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、ニッケルとアルミニウムとを含有した突起を有していた。また、断面は、ニッケルを海成分、アルミニウムを島成分とする海島構造となっており、アルミニウムが凝集して形成された突起となっていた。 The obtained conductive fine particles were observed with a transmission electron microscope (TEM) manufactured by JEOL Datum Co., Ltd., and had protrusions containing nickel and aluminum. The cross section had a sea-island structure with nickel as a sea component and aluminum as an island component, and was a protrusion formed by agglomeration of aluminum.

(比較例1)
無電解ニッケルメッキ工程において、硫酸アルミニウム水溶液を添加しなかったこと、及び、メッキ系内のpHは4.5〜5.0に保つ代わりに、pHは7.5〜8.0に保ったこと以外は実施例1と同様にして、導電性微粒子を得た。
(Comparative Example 1)
In the electroless nickel plating process, the aluminum sulfate aqueous solution was not added, and the pH in the plating system was maintained at 7.5 to 8.0 instead of 4.5 to 5.0. Except that, conductive fine particles were obtained in the same manner as in Example 1.

得られた導電性微粒子について、日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、平滑なニッケル層を有していた。 The obtained conductive fine particles were observed with a transmission electron microscope (TEM) manufactured by JEOL Datum, and had a smooth nickel layer.

(比較例2)
無電解ニッケルメッキ工程において、硫酸アルミニウム水溶液を添加しなかったこと、メッキ系内のpHは4.5〜5.0に保つ代わりに、pHは7.5〜8.0に保ったこと、及び、最初に添加するメッキ安定剤4mLの代わりにメッキ安定剤1mLとし、その後はメッキ安定剤を添加しなかったこと以外は実施例1と同様にして、導電性微粒子を得た。無電解ニッケルメッキ工程では、メッキ液の自己分解が起こっていた。
(Comparative Example 2)
In the electroless nickel plating step, the aluminum sulfate aqueous solution was not added, the pH in the plating system was kept at 4.5 to 5.0 instead of 4.5 to 5.0, and Conductive fine particles were obtained in the same manner as in Example 1 except that 1 mL of plating stabilizer was used instead of 4 mL of plating stabilizer added first, and thereafter no plating stabilizer was added. In the electroless nickel plating process, the plating solution self-decomposed.

得られた導電性微粒子について、日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、ニッケル層にニッケルの異常析出による突起を有していた。 When the obtained electroconductive fine particles were subjected to cross-sectional observation using a transmission electron microscope (TEM) manufactured by JEOL Datum, the nickel layer had protrusions due to abnormal precipitation of nickel.

<評価>
実施例1〜2及び比較例1〜2で得られた導電性微粒子について、以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive fine particles obtained in Examples 1-2 and Comparative Examples 1-2. The results are shown in Table 1.

(1)接続抵抗値の測定
得られた導電性微粒子を用いて以下の方法により異方性導電材料を作製し、電極間の接続抵抗値の測定を行った。
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、得られたそれぞれの導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、ITO電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、10N、100℃の圧着条件で熱圧着した後、電極間の接続抵抗値を測定した。
また、作製した試験片に対して信頼性試験(80℃、95%RHの高温高湿環境下で1000時間保持)を行った後、電極間の接続抵抗値を測定した。
(1) Measurement of connection resistance value An anisotropic conductive material was produced by the following method using the obtained conductive fine particles, and the connection resistance value between the electrodes was measured.
100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin are sufficiently mixed using a planetary stirrer. Then, it was applied on the release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Subsequently, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin were obtained. After adding fine particles and mixing well using a planetary stirrer, it is coated on a release film so that the thickness after drying is 7 μm, and toluene is evaporated to form an adhesive film containing conductive fine particles Got. In addition, the compounding quantity of electroconductive fine particles was made for the content in a film to be 50,000 piece / cm < 2 >.
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. After affixing this to approximately the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for resistance measurement, a glass substrate having an ITO electrode is obtained. After aligning the electrodes so that they overlap each other, they were bonded together.
The bonded portion of this glass substrate was thermocompression bonded under pressure bonding conditions of 10N and 100 ° C., and then the connection resistance value between the electrodes was measured.
In addition, a reliability test (held at 80 ° C. in a high-temperature and high-humidity environment of 95% RH for 1000 hours) was performed on the prepared test piece, and then the connection resistance value between the electrodes was measured.

(2)突起の平均高さ
得られた導電性微粒子について、日立ハイテクノロジーズ社製走査電子顕微鏡(SEM)により、倍率1万倍で粒子観察を行い、突起の高さを調べた。
上記突起の高さは、導電性微粒子において最表面を形成する導電層の基準表面から突起として現れている高さを測定した。
突起の平均高さは、確認された20個の突起について高さを測定し、それを算術平均して突起の平均高さとした。
(2) Average height of protrusions The obtained conductive fine particles were observed with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation at a magnification of 10,000 to examine the height of the protrusions.
The height of the protrusion was measured by measuring the height appearing as a protrusion from the reference surface of the conductive layer forming the outermost surface of the conductive fine particles.
The average height of the protrusions was measured for 20 confirmed protrusions, and the average of the protrusions was calculated as the average height of the protrusions.

Figure 2006331714
Figure 2006331714

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子、及び、異方性導電材料を提供することができる。 According to the present invention, it is possible to provide conductive fine particles and anisotropic conductive material capable of preventing conduction failure and reducing the resistance value.

Claims (5)

基材微粒子と、前記基材微粒子の表面に形成されたニッケルからなる導電層とからなる導電性微粒子であって、前記導電層は、表面に突起を有するものであり、かつ、少なくとも前記突起はアルミニウム及び/又は亜鉛を含有することを特徴とする導電性微粒子。 Conductive fine particles comprising substrate fine particles and a conductive layer made of nickel formed on the surface of the substrate fine particles, wherein the conductive layer has protrusions on the surface, and at least the protrusions Conductive fine particles characterized by containing aluminum and / or zinc. 導電層は、ニッケルを海成分、アルミニウム及び/又は亜鉛を島成分とする海島構造を形成していることを特徴とする請求項1記載の導電性微粒子。 2. The conductive fine particles according to claim 1, wherein the conductive layer has a sea-island structure in which nickel is a sea component and aluminum and / or zinc is an island component. 突起の平均高さが、基材微粒子の平均粒子径の0.5〜25%であることを特徴とする請求項1又は2記載の導電性微粒子。 The conductive fine particles according to claim 1 or 2, wherein the average height of the protrusions is 0.5 to 25% of the average particle diameter of the substrate fine particles. 更に、導電層の表面に金層が形成されていることを特徴とする請求項1、2又は3記載の導電性微粒子。 4. The conductive fine particles according to claim 1, wherein a gold layer is formed on the surface of the conductive layer. 請求項1、2、3又は4記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。
An anisotropic conductive material, wherein the conductive fine particles according to claim 1, 2, 3 or 4 are dispersed in a resin binder.
JP2005150536A 2005-05-24 2005-05-24 Conductive fine particle and anisotropic conductive material Pending JP2006331714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150536A JP2006331714A (en) 2005-05-24 2005-05-24 Conductive fine particle and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150536A JP2006331714A (en) 2005-05-24 2005-05-24 Conductive fine particle and anisotropic conductive material

Publications (2)

Publication Number Publication Date
JP2006331714A true JP2006331714A (en) 2006-12-07
JP2006331714A5 JP2006331714A5 (en) 2008-03-06

Family

ID=37553203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150536A Pending JP2006331714A (en) 2005-05-24 2005-05-24 Conductive fine particle and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP2006331714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
JP2010073681A (en) * 2009-07-16 2010-04-02 Sony Chemical & Information Device Corp Conductive particles, anisotropic conductive film, assembly, and connection method
CN102474024A (en) * 2009-07-02 2012-05-23 日立化成工业株式会社 Conductive particle
JP2015118927A (en) * 2013-11-12 2015-06-25 積水化学工業株式会社 Conductive particle, conductive material and connection structure
KR20150081425A (en) * 2012-11-08 2015-07-14 엠. 테크닉 가부시키가이샤 Fine metal particles provided with projections

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128752A (en) * 1992-10-14 1994-05-10 Nippon Chem Ind Co Ltd Nickel alloy plated powder and production thereof
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device
JP2003253465A (en) * 2002-03-01 2003-09-10 Sekisui Chem Co Ltd Conductive fine particle and conductive connecting structure
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128752A (en) * 1992-10-14 1994-05-10 Nippon Chem Ind Co Ltd Nickel alloy plated powder and production thereof
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device
JP2003253465A (en) * 2002-03-01 2003-09-10 Sekisui Chem Co Ltd Conductive fine particle and conductive connecting structure
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877230B2 (en) * 2005-11-18 2012-02-15 日立化成工業株式会社 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
CN102474024B (en) * 2009-07-02 2014-09-17 日立化成株式会社 Conductive particle
CN102474024A (en) * 2009-07-02 2012-05-23 日立化成工业株式会社 Conductive particle
WO2011007763A1 (en) * 2009-07-16 2011-01-20 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particles, anisotropic conductive film, assembly, and connection method
CN102473479A (en) * 2009-07-16 2012-05-23 索尼化学&信息部件株式会社 Conductive particles, anisotropic conductive film, assembly, and connection method
JP2010073681A (en) * 2009-07-16 2010-04-02 Sony Chemical & Information Device Corp Conductive particles, anisotropic conductive film, assembly, and connection method
US8932716B2 (en) 2009-07-16 2015-01-13 Dexerials Corporation Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
CN106270496A (en) * 2009-07-16 2017-01-04 迪睿合电子材料有限公司 Electroconductive particle, anisotropic conductive film, conjugant and method of attachment
KR101748454B1 (en) * 2009-07-16 2017-06-16 데쿠세리아루즈 가부시키가이샤 Conductive particles, anisotropic conductive film, assembly, and connection method
KR20150081425A (en) * 2012-11-08 2015-07-14 엠. 테크닉 가부시키가이샤 Fine metal particles provided with projections
KR102103710B1 (en) 2012-11-08 2020-04-23 엠. 테크닉 가부시키가이샤 Fine metal particles provided with projections
JP2015118927A (en) * 2013-11-12 2015-06-25 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Similar Documents

Publication Publication Date Title
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
WO2006019154A1 (en) Conductive fine particles and anisotropic conductive material
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP2009032397A (en) Conductive fine particle
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP2009205842A (en) Conductive fine particle, anisotropic conductive material, and connection structure
WO2007072912A1 (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118