WO2007058159A1 - Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method - Google Patents

Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method Download PDF

Info

Publication number
WO2007058159A1
WO2007058159A1 PCT/JP2006/322628 JP2006322628W WO2007058159A1 WO 2007058159 A1 WO2007058159 A1 WO 2007058159A1 JP 2006322628 W JP2006322628 W JP 2006322628W WO 2007058159 A1 WO2007058159 A1 WO 2007058159A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
particles
connection
adhesive composition
conductive
Prior art date
Application number
PCT/JP2006/322628
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Yokozumi
Masaki Fujii
Kenzou Takemura
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to KR1020117009581A priority Critical patent/KR20110048079A/en
Priority to KR1020087011623A priority patent/KR101049609B1/en
Priority to JP2007545234A priority patent/JP4877230B2/en
Priority to CN2006800430380A priority patent/CN101309993B/en
Publication of WO2007058159A1 publication Critical patent/WO2007058159A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution

Definitions

  • the present invention relates to an adhesive composition, a circuit connection material and a connection structure, and a circuit member connection method.
  • circuit electrodes formed on circuit members have been increased in density and definition.
  • fine pitches such as multiple electrodes and narrow pitches. Since connection between circuit members formed with fine circuits is difficult with conventional solder rubber connectors, an adhesive composition having anisotropic conductivity is used.
  • the above-mentioned adhesive composition is generally composed of an adhesive component and conductive particles dispersed and dispersed therein.
  • the adhesive composition is arranged between a pair of circuit members arranged opposite to each other, and the circuit electrodes facing each other are electrically connected to each other by pressurizing the whole in the direction of sandwiching the adhesive composition.
  • a pair of circuit members are bonded and fixed between the adjacent electrodes while ensuring electrical insulation.
  • various conductive fine particles are used as the conductive particles of the adhesive composition.
  • examples thereof include fine metal powder, or plastic fine particles whose surface is coated with a metal thin film.
  • the metal fine powder when metal fine powder is used as the conductive particles, the metal fine powder has a sufficiently high hardness, so that even if an oxide film is formed on the surface of the circuit electrode, This The circuit electrodes can be connected by breaking. However, it can be said that metal fine powders are generally not suitable for fine pitching in this case where the particle size distribution is wide.
  • the resistance value of the connection portion increases with time. This is considered to be due to the fact that the metal fine powder cannot sufficiently follow the increase in the distance between the circuit electrodes due to temperature fluctuations and relaxation of the connection state of the connection structure.
  • the linear thermal expansion coefficient of fine metal powder is smaller than that of the cured product of the adhesive component, and thus this phenomenon force S may occur after a thermal cycle test in which temperature rise and fall are repeated.
  • Patent Documents 1 and 2 describe conductive particles in which protrusions are provided on the surface of a conductive thin film.
  • Patent Document 3 describes a conductive particle in which metal particles are further adhered to the surface of a metal thin film.
  • Patent Documents 4 and 5 describe conductive particles obtained by metal plating on uneven plastic particles.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-195339
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-243132
  • Patent Document 3 Japanese Patent Laid-Open No. 63-301408
  • Patent Document 4 Japanese Patent Laid-Open No. 4 36902
  • Patent Document 5 Japanese Patent Laid-Open No. 11-73818
  • the conductive particles of Patent Documents 1 and 2 are manufactured by depositing protrusions in an electroless plating process for forming a metal thin film. In this case, it is difficult to sufficiently control the protrusion size and the number of protrusions. For this reason, it can be said that it is difficult to achieve sufficiently high connection reliability due to the unevenness of the protrusions.
  • the conductive particles of Patent Document 3 have insufficient adhesion between the metal thin film and the metal particles adhering to the surface, and the metal particles may fall off. If the metal particles fall off, the initial resistance value of the connection structure becomes high or the insulation with the adjacent circuit electrode becomes insufficient, making it difficult to achieve sufficiently high connection reliability.
  • the conductive particles of Patent Documents 4 and 5 have irregularities formed of plastic particles themselves. For this reason, when an oxide film is formed on the surface of the circuit electrode, it cannot be fully penetrated, and the initial resistance value of the connection structure may be increased.
  • the present invention has been made in view of such a situation, and even if the electrode to be connected is easily formed with an oxide film on the surface and has a metal material force, the initial resistance of the connection structure is provided. It is an object of the present invention to provide an adhesive composition capable of sufficiently reducing the value and a circuit connecting material using the same.
  • the adhesive composition of the present invention comprises an adhesive component and conductive particles dispersed in the adhesive component, and the conductive particles constitute a central portion of the conductive particles.
  • arranged on the surface of the substrate particles means that the metal fine particles are arranged in contact with the surface of the substrate particles. It is meant to include things that are placed in a state of being touched and touched. Multiple metal particles
  • the conductive particles disposed at the above positions can be produced by forming metal adhesion layers by plating after attaching metal fine particles to the substrate particles.
  • the conductive particles of the adhesive composition of the present invention include a metal plating layer that integrally covers the base particles and the metal fine particles. For this reason, the metal fine particles having high adhesion between the metal fine particles and the substrate particles are sufficiently suppressed from falling off the conductive particle force. As a result, the circuit electrodes can be more reliably electrically connected to each other and sufficiently insulated from the adjacent circuit electrodes.
  • the average particle size of the metal fine particles is preferably 200 to 1000 nm.
  • the average particle size of the base particles is preferably 1 to 10 / ⁇ ⁇ .
  • the “average particle diameter” in the present invention means a value measured as follows. That is, the arbitrarily selected metal fine particles are observed with a scanning electron microscope (S ⁇ ), and the maximum diameter and the minimum diameter are measured. The square root of the product of the maximum and minimum diameters is the particle size of the particles. The particle size is measured as described above for 50 arbitrarily selected particles, and the average value is taken as the average particle size.
  • the number of metal fine particles is preferably 10 to 40 per base particle. Further, when the number of metal fine particles is 10 to 40, there is an advantage that both suppression of an increase in connection resistance value and insulation with adjacent circuit electrodes are achieved at a high level.
  • the number of metal fine particles per base particle means a value measured as follows. In other words, arbitrarily selected conductive particles The number of protrusions on the surface of the conductive particles that can be imaged and observed by EM is counted as the number of metal fine particles. The number of metal particles of one conductive particle is calculated by doubling the obtained count. The number of metal fine particles is measured as described above for 50 arbitrarily selected conductive particles, and the average value is taken as the number of metal fine particles per substrate particle.
  • the base particles have a material strength with a compressive elastic modulus of 100 to 1000 kgf Zmm 2 at 20% compression deformation of the particle diameter.
  • the substrate particles have the hardness as described above, even if an oxide film is formed on the surface of the circuit electrode, the metal fine particles disposed on the inner side of the metal plating layer are formed on the oxide film. Can be broken through more reliably. In addition to this, even if the distance between the circuit electrodes becomes wider due to temperature fluctuations, the substrate particles can sufficiently follow the increase in the distance between the circuit electrodes. Therefore, the increase in connection resistance can be sufficiently suppressed.
  • the base particles preferably have a compression recovery rate force of 0% or more after being compressed at a maximum load of 5 mN. If the base particles have a compression recovery rate as described above, the base particles sufficiently follow the increase in the distance between the circuit electrodes even if the distance between the circuit electrodes becomes wide due to temperature fluctuations. be able to. Therefore, the increase in connection resistance can be sufficiently suppressed.
  • the circuit connection material of the present invention is the adhesive composition of the present invention, which bonds circuit members together and electrically connects circuit electrodes of each circuit member.
  • connection structure of the present invention includes a pair of circuit members arranged opposite to each other and a cured product of the circuit connection material of the present invention, and each circuit member is interposed between the pair of circuit members. A connecting portion that bonds the circuit members together so that the circuit electrodes are electrically connected to each other.
  • the present invention also includes the circuit connection material of the present invention interposed between a pair of circuit members arranged opposite to each other, and the whole is heated and pressurized to form a cured product of the circuit connection material.
  • the pair of circuit members and the connection portion are formed.
  • an oxide film is easily formed on the surface of the electrode to be connected! ⁇ Metal material Even if it is strong, it is possible to provide an adhesive composition that can sufficiently reduce the initial resistance value of the connection structure, and a circuit connection material using the same. Furthermore, according to the present invention, it is possible to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.
  • FIG. 1 is a cross-sectional view showing a state in which a circuit connecting material according to the present invention is used between circuit electrodes and the circuit electrodes are connected to each other.
  • FIG. 2 is a cross-sectional view showing an embodiment of a circuit connection material according to the present invention.
  • FIG. 3 is a cross-sectional view showing one embodiment of conductive particles contained in the circuit connection material according to the present invention.
  • FIG. 4 is a cross-sectional view showing a state in which the circuit connection material according to the present invention is provided on a support.
  • FIG. 5 is a cross-sectional view showing a state in which the circuit connecting material according to the present invention is supported by a support.
  • FIG. 6 is a schematic diagram showing an embodiment of a circuit member connecting method according to the present invention in a schematic sectional view.
  • (meta) attalate means “attalate” and the corresponding “metatalate”.
  • FIG. 1 is a schematic cross-sectional view showing a connection structure in which the adhesive composition according to the present invention is used as a circuit connection material and circuit electrode members are connected.
  • the connection structure 100 shown in FIG. 1 includes a first circuit member 30 and a second circuit member 40 that face each other, and is between the first circuit member 30 and the second circuit member 40. Is provided with a connecting portion 50a for connecting them.
  • the first circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31a of the circuit board 31.
  • the second circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41 a of the circuit board 41.
  • the surfaces of the circuit electrodes 32 and 42 are flat.
  • “the surface of the circuit electrode is flat” means that the unevenness of the surface of the circuit electrode is sufficiently small, and the unevenness of the surface is preferably 20 nm or less.
  • the connecting portion 50a includes a cured product 20a of an adhesive component contained in the circuit connecting material and conductive particles 10 dispersed therein.
  • the circuit electrode 32 and the circuit electrode 42 facing each other are electrically connected through the conductive particles 10.
  • the conductive particles are in direct contact with both the 10-force circuit electrodes 32 and 42.
  • connection resistance between the circuit electrodes 32 and 42 is sufficiently reduced, and a good electrical connection between the circuit electrodes 32 and 42 becomes possible.
  • the cured product 20a has electrical insulation, and insulation between adjacent circuit electrodes is ensured. Therefore, the current flow between the circuit electrodes 32 and 42 can be made smooth, and the functions of the circuit can be fully exhibited.
  • FIG. 2 is a schematic cross-sectional view showing a preferred embodiment when the adhesive composition according to the present invention is used as a circuit connecting material.
  • the shape of the circuit connecting material 50 shown in FIG. 2 is a film shape.
  • the circuit connecting material 50 is dispersed in the adhesive component 20 and the adhesive component 20.
  • the circuit connecting material 50 is produced by applying an adhesive composition containing an adhesive component and conductive particles on a film-like support using a coating apparatus, and drying with hot air for a predetermined time.
  • FIG. 3 is a cross-sectional view showing the form of conductive particles contained in the circuit connection material according to the present invention.
  • the conductive particle 10 shown in FIG. 3 covers the surface of the base particle 1 constituting the central portion, the plurality of metal fine particles 2 provided on the base particle 1, and the base particle 1 and the metal fine particle 2. And a metal plating layer 3 formed as described above. Metal fine particles 2 are located inside metal plating layer 3
  • Examples of the material of the base particle 1 include metals and organic polymer compounds.
  • Examples of the metal constituting the base particle 1 include nickel, copper, gold, silver, cobalt, and alloys thereof.
  • Examples of the organic polymer compound constituting the base particle 1 include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, and copolymers thereof. Even so.
  • connection portion may increase. From the viewpoint of efficiently preventing such an increase in resistance value, it is preferable to use particles having organic polymer compound power as the base particle 1.
  • the particles having the organic polymer compound force tend to recover to a spherical shape due to the flat shape force even if the particles are crushed into a flat shape between the circuit electrodes when the circuit electrodes are connected to each other. For this reason, the conductive particles 10 can sufficiently follow the expansion of the circuit electrode interval due to temperature fluctuations. From this viewpoint, it is preferable that the compression recovery rate after the base particle 1 is compressed at the maximum load of 5 mN is 40% or more.
  • the particles made of an organic compound having a compression recovery rate as described above include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or particles having a copolymer power thereof. Raising It is done. If the compression recovery rate is less than 40%, there is a tendency that the follow-up to the expansion of the distance between the circuit electrodes is insufficient.
  • the compression recovery rate can be measured with an H-100 micro hardness tester manufactured by Fischer Instrument Co., Ltd.
  • the material of the base particles 1, at 20% compression deformation of particle diameter, even for use preferably has a 100 ⁇ 1 OOOkgf Zmm 2, more preferably compressive modulus of 100 ⁇ 800kgf Zmm 2 Is done.
  • the particles made of an organic compound having the above hardness include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or particles having a copolymer power thereof. .
  • the compression elastic modulus at the time of 20% compression deformation is less than lOOkgfZmm 2
  • the oxide film on the surface is sufficiently penetrated. Cannot be achieved, and the resistance value of the connection portion tends to increase.
  • the compressive modulus exceeds 1 OOOkgfZmm 2
  • the substrate particles 1 tend not to be sufficiently deformed into a flat shape when the opposing circuit electrodes are pressurized. If the deformation of the base particle 1 is insufficient, the contact area with the circuit electrode becomes insufficient, and the resistance value of the connection portion becomes high.
  • the substrate particles 1 when the substrate particles 1 are pressed at a high pressure in order to sufficiently deform the substrate particles 1 into a flat shape, the particles may be crushed and connection may be insufficient.
  • the compression elastic modulus can be measured with an H-100 micro hardness tester manufactured by Fisher Instruments Co., Ltd.
  • the base particles 1 may be the same or different types of materials between the particles, and the same particles may be used alone or in combination of two or more types. ,.
  • the average particle diameter of the base particle 1 is a force 1 that can be appropriately designed depending on the application and the like: 1 to: L0 m is preferable 2 to 8 ⁇ m is more preferable 3 More preferably, it is ⁇ 5 ⁇ m.
  • L0 m is preferable 2 to 8 ⁇ m is more preferable 3 More preferably, it is ⁇ 5 ⁇ m.
  • the metal constituting the metal fine particles for example, Ni, Ag, Au, Cu, Co, Zn, Al, Sb, U, Ga, Ca, Sn, Se, Fe, Th, Be, Mg, Mn and These alloys are mentioned. Of these metals, Ni, Ag, Au, and Cu are preferred from the viewpoint of conductivity and corrosion resistance, and Ni is more preferred. These can be used alone or in combination of two or more.
  • the average particle size of the metal fine particles 2 is a force that can be appropriately designed according to the application and the like.
  • the force is 200-10 OOnm, preferably S.
  • the force is preferably 400 to 800 nm, more preferably S, more preferably 400 to 500 nm. More preferably.
  • the average particle size is less than 200 nm, when connecting a metal circuit electrode having an oxide film formed on the surface, the oxide film cannot be sufficiently penetrated, and the resistance value of the connection portion tends to increase. There is.
  • the average particle size exceeds lOOOnm, there is a tendency that the insulation with the adjacent circuit becomes insufficient.
  • the number of the metal fine particles 2 disposed on the surface of the base particle 1 inside the metal plating layer 3 is preferably 10 to 40 per base particle 10 to 30 More preferably, it is 10-20. If the number of metal fine particles 2 is less than 10, the increase in connection resistance tends to be insufficient. On the other hand, if the number of metal fine particles 2 exceeds 40, the insulation between adjacent circuits tends to be insufficient.
  • the metal plating layer 3 covers at least a part of the surface of the base particle 1 and the metal fine particle 2. However, from the viewpoint of more reliably preventing the metal fine particles 2 from falling off, it is preferable that the surfaces of the base particle 1 and the metal fine particles 2 are substantially covered.
  • the thickness of the metal plating layer 3 is preferably from 80 to 200 nm, more preferably from 100 to 150 nm, and even more preferably from 100 to: LOnm. If the thickness of the metal plating layer 3 is less than 80 nm, the resistance value of the connection portion tends to increase. On the other hand, when the thickness of the metal plating layer 3 exceeds 200 nm, the insulation with an adjacent circuit tends to be insufficient.
  • Examples of the method for producing the conductive particles 10 include a method in which the metal fine particles 2 are physically attached to the surface of the substrate particles 1 and then a plating process is performed to form the metal plating layer 3.
  • the number of the metal fine particles 2 attached to the surface of the base particle 1 can be controlled by adjusting the amount of the metal fine particles 2 to be added.
  • the electroconductive particle 10 is manufactured by performing an electroless plating process with respect to this.
  • the adhesive component 20 includes: (a) a composition comprising an adhesive comprising a thermosetting resin; and (b) a thermosetting resin curing agent; and (c) free radicals by heating or light. Generated curing agent and (d) A composition containing an adhesive that also has a dical polymerizable material strength is preferred. Alternatively, a mixed composition of (a), (b), (c) and (d) above is preferred.
  • thermosetting resin is not particularly limited as long as it is a thermosetting resin that can be cured in an arbitrary temperature range, but an epoxy resin is preferable.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A.
  • These epoxy resins may be halogenated or hydrogenated. These epoxy resins can be used alone or in combination of two or more.
  • Thermosetting resin curing agents include amine, phenol, acid anhydride, imidazole, hydrazide, dicyandiamide, boron trifluoride-amine complex, sulfo-um. Salt, iodonium salt, aminimide and the like. These may be used alone or in combination of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like. In addition, it is preferable to use these curing agents coated with a polyurethane-based or polyester-based polymer substance and then micro-pressed because the pot life is extended.
  • the blending amount of the thermosetting resin curing agent is preferably about 0.1 to 60.0% by mass based on the total mass of the adhesive component. 1.0 to 20 More preferably 0% by mass. If the blending amount of the thermosetting resin curing agent is less than 0.1% by mass, the progress of the curing reaction tends to be insufficient, and it tends to be difficult to obtain good adhesive strength and connection resistance. . On the other hand, when the blending amount exceeds 60% by mass, the fluidity of the adhesive component tends to decrease, the pot life tends to be shortened, and the connection resistance value of the connection portion tends to increase.
  • Curing agents that generate free radicals by heating or light include those that generate free radicals by decomposition by heating or light, such as peroxide compounds and azo compounds.
  • the curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life and the like. In terms of high reactivity and pot life, a half-life temperature of 10 hours is over 40 ° C and a half-life of 1 Organic peroxides with a minute temperature of 180 ° C or less are preferred.
  • the amount of curing agent which generates by Ri free radicals heating or light based on the total weight of the adhesive component, preferable to be 0.05 to 10 weight 0/0, 0. more preferably a 1 to 5 mass 0/0.
  • Curing agents that generate free radicals by heating or light are specifically diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hyde mouth A force such as peroxide can also be selected. In order to suppress corrosion of connection terminals of circuit members, it is preferable to select from peroxyesters, dialkyl peroxides, odorants, and peroxides that can provide high reactivity. Is more preferred.
  • disilver oxides include isobutyl peroxide, 2,4-dichlorobenzoic peroxide, 3, 5, 5-trimethylhexanoyl peroxide, octanoyl peroxide, and lauroyl peroxide.
  • examples thereof include oxide, stearoyl peroxide, succinic peroxide, benzoyl peroxide, and benzoyl peroxide.
  • peroxydicarbonates examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2- Examples include ethoxymethoxy baroxydicarbonate, di (2-ethylhexyloxy) dicarbonate, dimethoxybutyl dioxygen dicarbonate, di (3-methyl-3-methoxybutyl dioxy) dicarbonate, and the like.
  • peroxyesters include, for example, Tamil peroxyneodecanoate, 1, 1, 3, 3-tetramethylbutyl peroxyneodecanoate, 1-cyclohexylene 1-methyle Cilpoxyneodecanoate, t-hexyloxyneodecanoate, t-butylperoxybivalate, 1, 1, 3, 3—tetramethylbutylperoxy 2—ethylhexanoate, 2 , 5 Dimethyl-2,5 Bis (2-ethylhexylberoxy) hexane, 1-cyclohexyl lumine 1 Methylethylperoxy 2-ethyl hexanoate, t-hexyloxy 2-ethylhexanoate, t-butyl baroxy 2— Ethylhexanoate, t-butylperoxyisobutyrate, 1, 1 bis ( tert-butylperoxy) cyclohe
  • the peroxyketals include, for example, 1, 1 bis (t-hexyloxy) 3, 5, 5 trimethylcyclohexane, 1,1-bis (t-hexyloxy) cyclohexane, 1 , 1-bis (t-butylperoxy) 1,3,5,5 trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane, and the like.
  • dialkyl peroxides examples include ⁇ , ⁇ , bis (t butyl peroxide) diisopropylbenzene, dicumyl peroxide, 2,5 dimethyl-2,5 di (t butyl peroxide) hexane, t butyl tamperper.
  • examples include oxides.
  • hydride peroxides examples include diisopropylbenzene hydride peroxide, cumene hydride peroxide, and the like.
  • curing agents that generate free radicals by heating or light can be used alone or in admixture of two or more, and can be used by mixing decomposition accelerators, inhibitors and the like. May be used.
  • the (d) radical polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include (meth) acrylate and maleimide compounds.
  • Examples of (meth) acrylate include urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene Glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, 2-hydroxy 1,1,3 Di (meth) atalyloxypropane, 2,2 bis [4 — ((meth) atarioxymethoxy) phenol] propan, 2,2 bis [4 — (((meth)) talyloxypolyethoxy ) Fuel] propane, dicyclobe Ntu (meth) acrylate, tricyclode force-l (meth) acrylate
  • Such radically polymerizable substances can be used singly or in combination of two or more.
  • Adhesive component is particularly preferred to contain at least a radically polymerizable material that has a viscosity power of OOOOO to 1000000 mPa's at 25 ° C Radicals having a viscosity (25 ° C) of 100000 to 5000 OOmPa ⁇ s U, which preferably contains polymerizable substances.
  • the viscosity of the radically polymerizable substance can be measured using a commercially available E-type viscometer.
  • radical polymerizable substances it is preferable to use urethane acrylate or urethane meta acrylate from the viewpoint of adhesiveness. Further, it is particularly preferable to use a radically polymerizable substance having a Tg of 100 ° C. or more alone after crosslinking with an organic peroxide used for improving heat resistance.
  • a radically polymerizable substance a substance having a dicyclobenzyl group, a tricyclohexyl group and Z or a triazine ring in the molecule can be used.
  • a radically polymerizable substance having a tricyclodecanyl group or a triazine ring in the molecule is preferably used.
  • maleimide compounds include those containing at least two maleimide groups in the molecule, such as 1-methyl 2,4 bismaleimidobenzene, N, N, 1 m-phenylene bis.
  • a polymerization inhibitor such as hydroquinone or methyl ether neuroquinone may be used as appropriate.
  • the adhesive component 20 may contain a film-forming polymer. Based on the total mass of the adhesive component 20, the content of the film-forming polymer is preferably 2 to 80% by mass, more preferably 5 to 70% by mass. 10 to 60 More preferably, it is mass%.
  • Film-forming polymers include polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin. Fats, polyisocyanate resin, phenoxy resin, polyimide resin, polyester urethane resin, etc. are used.
  • a resin having a functional group such as a hydroxyl group is more preferable because it can improve adhesiveness.
  • those obtained by modifying these polymers with radically polymerizable functional groups can also be used.
  • the weight average molecular weight of the film-forming polymer is preferably 10,000 to 10000000!
  • the circuit connecting material 50 includes a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, and an isocyanine. It is also possible to contain gins.
  • the inclusion of a filler is preferable because improvement in connection reliability and the like can be obtained.
  • the filler can be used if its maximum diameter is smaller than the particle diameter of the conductive particles, and the range of 5 to 60% by volume is preferred. If it exceeds 60% by volume, the effect of improving reliability is saturated.
  • a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable in terms of improving adhesiveness.
  • the content of the conductive particles 10 is preferably 0.5 to 60 parts by volume when the total volume of the circuit connection material 50 is 100 parts by volume. Yo Use properly.
  • FIG. 4 is a cross-sectional view showing a state in which the circuit connecting material 50 according to the present invention is provided on the film-like support 60.
  • the support 60 include a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethylene isophthalate film, a polybutylene terephthalate film, a polyolefin-based film, a polyacetate film, a polycarbonate film, a polyphenylene sulfide film, a polyamide film, It is possible to use various films such as a styrene acetate butyl copolymer film, a polychlorinated bulle film, a poly (vinylidene chloride) film, a synthetic rubber film, and a liquid crystal polymer film.
  • a support having a corona discharge treatment, an anchor coating treatment, an antistatic treatment or the like may be used on the surface of the film as necessary.
  • the surface of the support 60 is coated with a release treatment agent as necessary so that the support 60 can be easily peeled from the circuit connection material 50. Also good.
  • a release treatment agent silicone resin, copolymer of silicone and organic resin, alkyd resin, aminoalkyd resin, resin having long alkyl group, resin having fluoroalkyl group, shellac resin Various release treatment agents such as can be used
  • the film thickness of the support 60 is not particularly limited, but should be 4 to 200 / ⁇ ⁇ in consideration of storage and convenience of use of the produced circuit connecting material 50. Is preferred. Further, the film thickness of the support 60 is more preferably 15 to 75 / ⁇ ⁇ in consideration of material cost and productivity.
  • the circuit connection material is not limited to a single layer structure like the circuit connection material 50, and may be a multilayer structure in which a plurality of layers are laminated.
  • a circuit connection material having a multilayer structure can be produced by laminating a plurality of layers having different types of adhesive components and conductive particles or different contents thereof.
  • the circuit connection material includes a conductive particle-containing layer containing conductive particles and a conductive particle-free layer that does not contain conductive particles and is provided on at least one surface of the conductive particle-containing layer. You can have it.
  • FIG. 5 is a cross-sectional view showing a state in which the circuit connecting material having a two-layer structure is supported by the support.
  • the circuit connecting material 70 shown in FIG. 5 includes a conductive particle-containing layer 70a containing conductive particles. And a conductive particle non-containing layer 70b which does not contain conductive particles.
  • Support members 60a and 60b are provided on both outermost surfaces of the circuit connecting material 70, respectively.
  • the circuit connection material 70 forms a conductive particle-containing layer 70a on the surface of the support 60a, while forming a conductive particle-free layer 70b on the surface of the support 60b.
  • These layers are used as a conventionally known laminator or the like. It can produce by bonding together using.
  • the support bodies 60a and 60b are appropriately peeled off.
  • the circuit connection material 70 it is possible to sufficiently suppress the decrease in the number of conductive particles on the circuit electrode due to the flow of the adhesive component when the circuit members are joined. For this reason, for example, when an IC chip is mounted on a substrate, the number of conductive particles on the metal bumps (connection terminals) of the IC chip can be sufficiently secured.
  • the circuit connecting material 70 is arranged so that the surface provided with the metal bumps of the IC chip and the conductive particle-free layer 70b are in contact with the substrate on which the IC chip is to be mounted and the conductive particle-containing layer 70a, respectively. Is preferably arranged.
  • FIG. 6 is a process diagram showing an embodiment of a circuit member connection method according to the present invention in a schematic cross-sectional view, and shows a series of processes until the connection structure is manufactured by thermosetting the circuit connection material 50.
  • the above-described first circuit member 30 and a film-like circuit connection material 50 are prepared.
  • the circuit connecting material 50 is made of an adhesive composition containing the conductive particles 10.
  • the thickness of the circuit connecting material 50 is preferably 5 to 50 ⁇ m. If the thickness of the circuit connecting material 50 is less than 5 m, the circuit connecting material 50 tends to be insufficiently filled between the first and second circuit electrodes 32 and 42. On the other hand, when the thickness exceeds 50 m, it tends to be difficult to ensure conduction between the first and second circuit electrodes 32 and 42.
  • circuit connection material 50 is placed on the surface of the first circuit member 30 on which the circuit electrodes 32 are formed. Then, the circuit connection material 50 is pressurized in the directions of arrows A and B in FIG. 6 (a), and the circuit connection material 50 is temporarily connected to the first circuit member 30 (FIG. 6 (b)).
  • the pressure at this time is not particularly limited as long as it does not damage the circuit member, but it is generally preferably 0.1 to 30. OMPa. You can also pressurize while heating
  • the heating temperature is a temperature at which the circuit connecting material 50 is not substantially cured. In general, the heating temperature is preferably 50 to 190 ° C. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds.
  • the second circuit member 40 is placed on the circuit connection material 50 so that the second circuit electrode 42 faces the first circuit member 30. Put it on. Then, while heating the film-like circuit connecting material 50, the whole is pressurized in the directions of arrows A and B in FIG. 6 (c).
  • the heating temperature at this time is a temperature at which the circuit connecting material 50 can be cured.
  • the heating temperature is preferably 60 to 180 ° C, and more preferably 80 to 160 ° C, more preferably 70 to 170 ° C. If the heating temperature is less than 60 ° C, the curing rate tends to be slow, and if it exceeds 180 ° C, unwanted side reactions tend to proceed.
  • the heating time is preferably 0.1 to 180 seconds, more preferably 0.5 to 180 seconds, and still more preferably 1 to 180 seconds.
  • the adhesive portion 50a is formed by curing the circuit connection material 50, and a connection body 100 as shown in FIG. 1 is obtained.
  • the connection conditions are appropriately selected depending on the intended use, adhesive composition, and circuit members.
  • the circuit connection material 50 may be appropriately irradiated with actinic rays or energy rays.
  • actinic rays or energy rays include ultraviolet light, visible light, and infrared light.
  • energy lines include electron beams, X-rays, ⁇ -rays, and microwaves.
  • FX-293 (trade name, manufactured by Toto Kasei Co., Ltd.) was used as a phenoxy resin.
  • NiZAu-plated polystyrene particles described above are electrolessly bonded after attaching Ni fine particles (metal fine particles) with an average particle size of 400 nm to the surface of polystyrene particles (base particles) with an average particle size of 3 ⁇ m.
  • the Ni layer was formed by the above, and the Au layer was finally formed.
  • the number of protrusions due to Ni fine particles was 32.
  • the compression modulus of polystyrene particles at 20% compression deformation was 750 kgfZmm 2 , and the compression recovery rate after compression at a maximum load of 5 mN was 70%.
  • the above-mentioned adhesive composition was applied on a support (film thickness 50 m) having PET (polyethylene terephthalate) force. Thereafter, this was dried at 70 ° C. for 10 minutes to obtain a conductive particle-containing layer (film thickness: 25 ⁇ m) provided on the support.
  • a 60 mass parts adhesive component solution was placed on a PET support (film thickness 50 m). Applied. Thereafter, this was dried at 70 ° C. for 10 minutes to obtain a conductive particle-free layer (film thickness: 25 ⁇ m) provided on the support.
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles were formed by depositing Ni fine particles with an average particle size of 200 nm on the surface of the same polystyrene particles used in Example 1, forming an Ni layer by electroless plating, and finally Au A layer was formed. Me As a result of observing the conductive particles after the adhesion treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 20.
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles were formed by depositing Ni fine particles with an average particle size of 800 nm on the same polystyrene particles used in Example 1, forming an Ni layer by electroless plating, and finally Au A layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 15.
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles are formed by depositing Ni fine particles with an average particle size of 400 nm on the surface of polystyrene particles with a compression modulus of 300 kgfZmm 2 at 20% compression deformation, and then forming a Ni layer by electroless plating. Finally, an Au layer was formed. As a result of observing the conductive particles after plating at a magnification of 6000 by SEM, the number of protrusions attributed to Ni fine particles was 30.
  • NiZAu-plated polystyrene particles were prepared as follows.
  • NiZAu-plated polystyrene particles have an average particle size on the surface of polystyrene particles that has a compression modulus of 600 kgfZmm 2 at 20% compression deformation and a compression recovery rate force s of 40% after compression at a maximum load of 5 mN.
  • After depositing 400nm Ni fine particles a Ni layer was formed by electroless plating, and finally an Au layer was formed.
  • the number of protrusions attributed to Ni fine particles was 30.
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 4 m and a compression modulus of 700 kgfZmm 2 at 20% compression deformation. After attaching Ni fine particles having an average particle diameter of 400 nm to the surface of the particles, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions attributed to Ni fine particles was 32 o
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 3 m, and after attaching Ni fine particles with an average particle size of 160 nm to the surface of polystyrene particles with a compression modulus of 450 kgfZmm 2 at 20% compression deformation, A Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions attributed to Ni fine particles was 8 o
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 3 m, and after attaching Ni fine particles with an average particle size of 230 nm to the surface of polystyrene particles with a compression modulus of 500 kgfZmm 2 at 20% compression deformation, A Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions due to Ni fine particles was 47 o
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 3 m, and after Ni particles with an average particle size of 200 nm are attached to the surface of polystyrene particles with a compression modulus of 90 kgfZmm 2 at 20% compression deformation, A Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions attributed to Ni fine particles was 23. [0103] (Example 10)
  • NiZAu-plated polystyrene particles were prepared as follows.
  • NiZAu-plated polystyrene particles have a compression recovery rate of 25% after compression at a maximum load of 5 mN, and a compression elastic modulus force of 20% compression deformation on the surface of polystyrene particles with an S400 kgfZmm 2 average particle size of 400 nm.
  • a Ni layer was formed by electroless plating, and finally an Au layer was formed.
  • the number of protrusions attributed to the Ni fine particles was 30.
  • a circuit connecting material was obtained in the same manner as in Example 1 except that instead of the Ni / Au plated polystyrene particles, Au plated polystyrene particles prepared as described below were used. On the surface of the same polystyrene particles used in Example 1, an Au layer was formed by electroless plating to produce Au-plated polystyrene particles.
  • NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles are formed by applying electroless nickel plating to the same polystyrene particle surface used in Example 1 to form a Ni layer and depositing Ni lumps, and then attaching the Au layer. Produced. As a result of observing the conductive particles after plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni mass was 35.
  • the support on the conductive particle-containing layer side is peeled off so that the conductive particle-containing layer is free of glass.
  • the circuit connection material was placed on the glass substrate so as to abut on the glass substrate, and pre-compression was performed.
  • the IC chip was placed so that the gold bumps were in contact with the conductive particle-free layer.
  • the IC chip was placed, it was connected by pressing in the direction to sandwich the circuit connection material while heating.
  • the pre-bonding conditions were a temperature of 70 ° C, a pressure of 0.5 MPa (in terms of bump area), and a holding time of 1 second.
  • the connection conditions were a temperature of 210 ° C, a pressure of 70 MPa (in terms of bump area), and a holding time of 5 seconds.
  • the price was based on the following criteria.
  • A: R is less than 1 ⁇
  • Tables 1 and 2 show the evaluation results of the initial connection resistance when the circuit connection materials of Examples 1 to 9 and Comparative Example 1 are used as the circuit connection material, respectively.
  • connection structure after thermal cycle test After the initial connection resistance was evaluated, a thermal cycle test in which the temperature was raised and lowered was performed on the connection structure, and the connection resistance after the thermal cycle test was evaluated.
  • the thermal cycle test was performed by repeating the process of raising the connection structure from room temperature to 100 ° C, then lowering to 40 ° C and then raising the temperature to room temperature 20 times. Resistance value of connection structure after thermal cycle test
  • connection resistance after the thermal cycle test was evaluated based on the following criteria.
  • A: R is less than 3 ⁇
  • Tables 1 and 2 show the evaluation results of the connection resistance after the thermal cycle test when the circuit connection materials of Examples 1 to 9 and Comparative Example 1 are used as the circuit connection material, respectively.
  • the ITO substrate is an ITO electrode (surface resistance ⁇ 20 Q / U) formed by vapor-depositing indium stannate (ITO) on a glass substrate (thickness 0.7 mm).
  • the support on the conductive particle-containing layer side was peeled off, and a circuit connecting material was placed on the ITO substrate so that the conductive particle-containing layer was in contact with the ITO substrate, and pre-compression was performed.
  • the IC chip was placed so that the gold bumps were in contact with the conductive particle-free layer.
  • the pre-bonding conditions were a temperature of 70 ° C, a pressure of 0.5 MPa (in terms of bump area), and a holding time of 1 second.
  • the connection conditions were a temperature of 210 ° C, a pressure of 70 MPa (in terms of bump area), and a holding time of 5 seconds.
  • R is 1 ⁇ 10 1 () ⁇ or more
  • R is 1 ⁇ 10 9 to 1 ⁇ 10 10 ⁇
  • R is less than 1 ⁇ 10 9 ⁇ .
  • Tables 1 and 2 show the evaluation results of the insulating properties when the circuit connection materials of Examples 1 to 9 and Comparative Example 1 are used as the circuit connection materials, respectively.
  • the circuit connection material of Example 16 was evaluated as A for all evaluation items.
  • the circuit connecting material according to Example 16 it was shown that both low initial connection resistance and good insulation with the adjacent circuit electrode can be achieved at a high level.
  • the evaluation of the connection resistance after the thermal cycle test is A, it was shown that the increase in connection resistance can be sufficiently suppressed.
  • the circuit connection material of Comparative Example 1 in which no protrusion due to Ni fine particles was provided had an initial connection resistance evaluation of B, and a connection resistance evaluation after the thermal cycle test of C.
  • the circuit electrodes are made of a metal material on which an oxide film is easily formed. Even in such a case, it has been shown that a circuit connection material capable of sufficiently reducing the initial resistance value of the connection structure can be provided.
  • an adhesive capable of sufficiently reducing the initial resistance value of the connection structure even when the electrode to be connected is made of a metal material capable of easily forming an oxide film on the surface.
  • a composition and a circuit connecting material using the composition can be provided. Furthermore, according to the present invention, it is possible to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.

Abstract

An adhesive composition is provided with an adhesive component and conductive particles (10) dispersed in the adhesive component. The conductive particle (10) is provided with a base material particle (1) constituting the center portion, a metal plating layer (3) covering at least a part of the surface of the base material particle (1), and a plurality of metal fine particles (2) arranged inside the metal plating layer (3) and on the surface of the base material particle (1).

Description

明 細 書  Specification
接着剤組成物、回路接続材料、接続構造及び回路部材の接続方法 技術分野  Adhesive composition, circuit connection material, connection structure, and connection method of circuit member
[0001] 本発明は、接着剤組成物、回路接続材料及び接続構造、並びに、回路部材の接 続方法に関する。  The present invention relates to an adhesive composition, a circuit connection material and a connection structure, and a circuit member connection method.
背景技術  Background art
[0002] 電子機器の小型化、薄型化に伴い、回路部材に形成される回路電極の高密度化 及び高精細化が進展している。また、回路電極の更なる微細化、すなわち、多電極 化や狭ピッチ化等のファインピッチ化への要求が高まっている。微細回路が形成され た回路部材同士の接続は、従来のハンダゃゴムコネクタでは対応が困難であること から、異方導電性を有する接着剤組成物が使用されている。  [0002] As electronic devices become smaller and thinner, circuit electrodes formed on circuit members have been increased in density and definition. In addition, there is an increasing demand for further miniaturization of circuit electrodes, that is, fine pitches such as multiple electrodes and narrow pitches. Since connection between circuit members formed with fine circuits is difficult with conventional solder rubber connectors, an adhesive composition having anisotropic conductivity is used.
[0003] 上記の接着剤組成物は、一般に、接着剤成分とこれに分散して!/ヽる導電粒子とか らなる。対向配置された一対の回路部材の間に当該接着剤組成物を配置し、接着剤 組成物を挟む方向に全体を加圧することで相対向する回路電極同士が電気的に接 続される。これと同時に隣接する電極同士は、電気絶縁性が確保された状態で一対 の回路部材が接着固定される。  [0003] The above-mentioned adhesive composition is generally composed of an adhesive component and conductive particles dispersed and dispersed therein. The adhesive composition is arranged between a pair of circuit members arranged opposite to each other, and the circuit electrodes facing each other are electrically connected to each other by pressurizing the whole in the direction of sandwiching the adhesive composition. At the same time, a pair of circuit members are bonded and fixed between the adjacent electrodes while ensuring electrical insulation.
[0004] 従来、接着剤組成物が有する導電粒子として、導電性を有する種々の微粒子が用 いられている。例えば、金属微粉末、あるいは金属薄膜で表面が被覆されたプラスチ ック微粒子などが挙げられる。  [0004] Conventionally, various conductive fine particles are used as the conductive particles of the adhesive composition. Examples thereof include fine metal powder, or plastic fine particles whose surface is coated with a metal thin film.
[0005] ところで、液晶ディスプレイなどの製造工程にお 、ては、高度なファインピッチ化及 び高 ヽ接続信頼性が要求されて ヽる一方で、表面に酸化膜が形成されやす 、金属 材料からなる回路電極が使用される場合がある。上記の金属微粉末及び金属薄膜 で表面が被覆されたプラスチック微粒子は、それぞれ一長一短がある。そのため、従 来の接着剤組成物を用いたのでは、必ずしもファインピッチ化及び接続信頼性の両 方を同時に高水準に達成することができな力つた。  [0005] By the way, in the manufacturing process of liquid crystal displays and the like, while high fine pitch and high connection reliability are required, an oxide film is easily formed on the surface. Circuit electrodes may be used. The fine plastic particles whose surfaces are coated with the above metal fine powder and metal thin film have advantages and disadvantages, respectively. For this reason, the use of the conventional adhesive composition is not necessarily able to achieve both a fine pitch and a high connection reliability at the same time.
[0006] 具体的には、導電粒子として金属微粉末を用いた場合、金属微粉末は十分に高い 硬度を有して ヽるため、回路電極の表面に酸化膜が形成されて 、たとしてもこれを突 き破って回路電極同士を接続することができる。し力しながら、金属微粉末は一般に 粒度分布が広ぐこの場合、ファインピッチ化に適していないといえる。また、回路電 極同士を接続後、時間の経過に伴って接続部分の抵抗値が上昇するという現象が 生じる場合がある。これは、温度の変動や接続構造の接続状態の緩和などに伴う回 路電極間の間隔の拡大に、金属微粉末が十分に追従することができないことに起因 すると考えられる。また、一般に、金属微粉末の線熱膨張係数は接着剤成分の硬化 物のそれよりも小さいため、昇温降温を繰り返す熱サイクル試験後にこのような現象 力 S生じることがある。 [0006] Specifically, when metal fine powder is used as the conductive particles, the metal fine powder has a sufficiently high hardness, so that even if an oxide film is formed on the surface of the circuit electrode, This The circuit electrodes can be connected by breaking. However, it can be said that metal fine powders are generally not suitable for fine pitching in this case where the particle size distribution is wide. In addition, after connecting circuit electrodes, there may be a phenomenon that the resistance value of the connection portion increases with time. This is considered to be due to the fact that the metal fine powder cannot sufficiently follow the increase in the distance between the circuit electrodes due to temperature fluctuations and relaxation of the connection state of the connection structure. In general, the linear thermal expansion coefficient of fine metal powder is smaller than that of the cured product of the adhesive component, and thus this phenomenon force S may occur after a thermal cycle test in which temperature rise and fall are repeated.
[0007] これに対し、導電粒子として金属薄膜で表面が被覆されたプラスチック微粒子を用 いた場合、狭い粒度分布の導電粒子を得ることが比較的容易である。この点におい ては、プラスチック微粒子を用いた導電粒子はファインピッチ化に適して 、ると!/、える 。また、プラスチック微粒子の線熱膨張率は接着剤成分の硬化物のそれと近い値で ある。このため、温度の変動などに伴う回路電極間の間隔の拡大にプラスチック微粒 子は十分に追従することができ、接続当初の抵抗値を維持できるといった利点がある 。し力しながら、プラスチック微粒子は一般に金属微粉末と比較すると硬度が低い。 そのため、回路電極の表面に酸ィ匕膜が形成されている場合にはこれを十分に突き破 ることができず、接続部分の初期抵抗値が比較的高くなるという問題が生じる。  [0007] On the other hand, when plastic fine particles whose surfaces are coated with a metal thin film are used as the conductive particles, it is relatively easy to obtain conductive particles having a narrow particle size distribution. In this respect, conductive particles using fine plastic particles are suitable for fine pitch! The linear thermal expansion coefficient of the plastic fine particles is close to that of the cured product of the adhesive component. For this reason, the plastic particles can sufficiently follow the expansion of the distance between the circuit electrodes due to temperature fluctuations, etc., and there is an advantage that the initial resistance value can be maintained. However, the plastic fine particles generally have a lower hardness than the metal fine powder. Therefore, when an oxide film is formed on the surface of the circuit electrode, it cannot be sufficiently penetrated, and there arises a problem that the initial resistance value of the connection portion becomes relatively high.
[0008] そこで、金属微粉末及び金属薄膜で表面が被覆されたプラスチック微粒子のそれ ぞれの特長を具備させるための検討がなされた。具体的には、金属薄膜で被覆され たプラスチック粒子の表面に突起などを備える導電粒子が検討されてきた。例えば、 特許文献 1及び 2には導電性薄膜の表面に突起が設けられた導電粒子が記載され ている。また、特許文献 3には金属薄膜の表面に金属粒子を更に付着させた導電粒 子が記載されている。更に、特許文献 4及び 5には凹凸のあるプラスチック粒子に金 属めっきを施して得られる導電粒子が記載されて 、る。  [0008] In view of this, studies have been made to provide the respective characteristics of the fine plastic particles whose surfaces are coated with a fine metal powder and a thin metal film. Specifically, conductive particles having protrusions on the surface of plastic particles coated with a metal thin film have been studied. For example, Patent Documents 1 and 2 describe conductive particles in which protrusions are provided on the surface of a conductive thin film. Patent Document 3 describes a conductive particle in which metal particles are further adhered to the surface of a metal thin film. Further, Patent Documents 4 and 5 describe conductive particles obtained by metal plating on uneven plastic particles.
特許文献 1 :特開 2000— 195339号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-195339
特許文献 2:特開 2000 - 243132号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-243132
特許文献 3:特開昭 63 - 301408号公報  Patent Document 3: Japanese Patent Laid-Open No. 63-301408
特許文献 4:特開平 4 36902号公報 特許文献 5:特開平 11― 73818号公報 Patent Document 4: Japanese Patent Laid-Open No. 4 36902 Patent Document 5: Japanese Patent Laid-Open No. 11-73818
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 特許文献 1及び 2の導電粒子は、金属薄膜を形成する無電解めつき工程にお!ヽて 突起を析出させることにより製造される。この場合、突起サイズや突起数の制御を十 分に行うことが困難である。このため、突起の不均一性に起因して十分に高い接続信 頼性を達成することが困難であるといえる。また、特許文献 3の導電粒子は、金属薄 膜とその表面に付着した金属粒子との密着性が不十分であり、当該金属粒子が脱落 する可能性がある。金属粒子が脱落すると、接続構造の初期抵抗値が高くなつたり 隣接する回路電極との絶縁性が不十分となったりして、十分に高い接続信頼性を達 成することが困難となる。  [0009] The conductive particles of Patent Documents 1 and 2 are manufactured by depositing protrusions in an electroless plating process for forming a metal thin film. In this case, it is difficult to sufficiently control the protrusion size and the number of protrusions. For this reason, it can be said that it is difficult to achieve sufficiently high connection reliability due to the unevenness of the protrusions. In addition, the conductive particles of Patent Document 3 have insufficient adhesion between the metal thin film and the metal particles adhering to the surface, and the metal particles may fall off. If the metal particles fall off, the initial resistance value of the connection structure becomes high or the insulation with the adjacent circuit electrode becomes insufficient, making it difficult to achieve sufficiently high connection reliability.
[0010] また、特許文献 4及び 5の導電粒子は、凹凸がプラスチック粒子そのもので形成さ れている。このため、回路電極の表面に酸化膜が形成されている場合にはこれを十 分に突き破ることができず、接続構造の初期抵抗値が高くなるおそれがある。  [0010] Further, the conductive particles of Patent Documents 4 and 5 have irregularities formed of plastic particles themselves. For this reason, when an oxide film is formed on the surface of the circuit electrode, it cannot be fully penetrated, and the initial resistance value of the connection structure may be increased.
[0011] 本発明は、このような実情に鑑みてなされたものであり、接続すべき電極が、表面に 酸化膜が形成されやす 、金属材料力もなるものであっても、接続構造の初期抵抗値 を十分に低くすることが可能な接着剤組成物及びこれを用いた回路接続材料を提供 することを目的とする。  [0011] The present invention has been made in view of such a situation, and even if the electrode to be connected is easily formed with an oxide film on the surface and has a metal material force, the initial resistance of the connection structure is provided. It is an object of the present invention to provide an adhesive composition capable of sufficiently reducing the value and a circuit connecting material using the same.
[0012] また、本発明は、低 ヽ接続抵抗で回路部材が接続された接続構造及びこれを得る ための回路部材の接続方法を提供することを目的とする。  [0012] It is another object of the present invention to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.
課題を解決するための手段  Means for solving the problem
[0013] 本発明の接着剤組成物は、接着剤成分と、接着剤成分中に分散して ヽる導電粒 子とを備えるものであって、導電粒子は、当該導電粒子の中心部分を構成する基材 粒子と、基材粒子の表面の少なくとも一部を覆う金属めつき層と、金属めつき層の内 側であり基材粒子の表面上に配置された複数の金属微粒子とを有している。  [0013] The adhesive composition of the present invention comprises an adhesive component and conductive particles dispersed in the adhesive component, and the conductive particles constitute a central portion of the conductive particles. Substrate particles, a metal plating layer covering at least a part of the surface of the substrate particles, and a plurality of metal fine particles disposed on the surface of the substrate particles inside the metal plating layer ing.
[0014] なお、複数の金属微粒子と基材粒子の位置関係につき、「基材粒子の表面上に配 置」とは、金属微粒子が基材粒子の表面に接した状態で配置されているものにカロえ、 接して 、な 、状態で配置されて 、るものをも含む意味である。複数の金属微粒子が 上記位置に配置されて!ヽる導電粒子は、基材粒子に金属微粒子を付着させた後、 めっき処理によって金属めつき層を形成することにより製造可能である。 [0014] Regarding the positional relationship between the plurality of metal fine particles and the substrate particles, "arranged on the surface of the substrate particles" means that the metal fine particles are arranged in contact with the surface of the substrate particles. It is meant to include things that are placed in a state of being touched and touched. Multiple metal particles The conductive particles disposed at the above positions can be produced by forming metal adhesion layers by plating after attaching metal fine particles to the substrate particles.
[0015] 基材粒子に対して付着させる金属微粒子の個数及びその粒子径を制御することで 導電粒子の表面に所望の数及び大きさの突起を設けることができる。したがって、め つき工程の条件などを調整して突起が設けられた導電粒子と比較すると、本発明に おいては、金属微粒子の付着数及び粒子径の均一性が十分に高くなつている。均 一性の高い金属微粒子を備える導電粒子によって、回路電極が酸化膜で覆われて いる金属電極であっても、電極同士をより確実に電気的に接続することができる。そ の結果、接続構造の初期抵抗値を十分に低くすることができる。  [0015] By controlling the number of metal fine particles to be adhered to the substrate particles and the particle diameter, protrusions having a desired number and size can be provided on the surface of the conductive particles. Therefore, in comparison with the conductive particles provided with protrusions by adjusting the conditions of the soldering process, the number of deposited metal fine particles and the uniformity of the particle diameter are sufficiently high in the present invention. Even when the circuit electrode is a metal electrode covered with an oxide film, the electrodes can be more reliably electrically connected to each other by the conductive particles including highly uniform metal particles. As a result, the initial resistance value of the connection structure can be made sufficiently low.
[0016] また、本発明の接着剤組成物が有する導電粒子は、基材粒子及び金属微粒子を 一体的に被覆する金属めつき層を備えている。このため、金属微粒子と基材粒子と の密着性が高ぐ金属微粒子が導電粒子力 脱落することが十分に抑制される。そ の結果、回路電極同士をより確実に電気的に接続することができるとともに隣接する 回路電極との絶縁性を十分に確保することができる。  [0016] The conductive particles of the adhesive composition of the present invention include a metal plating layer that integrally covers the base particles and the metal fine particles. For this reason, the metal fine particles having high adhesion between the metal fine particles and the substrate particles are sufficiently suppressed from falling off the conductive particle force. As a result, the circuit electrodes can be more reliably electrically connected to each other and sufficiently insulated from the adjacent circuit electrodes.
[0017] 金属微粒子の平均粒径は、 200〜1000nmであること力 S好ましい。また、基材粒子 の平均粒径は、 1〜10 /ζ πιであることが好ましい。これら粒子の平均粒径力 それぞ れ上記の範囲内であると、低い初期接続抵抗値をより確実に達成可能である。これ に加え、接続抵抗値の上昇の抑制及び隣接する回路電極との絶縁性の両方を高水 準に達成可能である。本発明でいう「平均粒径」は以下のようにして測定される値を 意味するものである。すなわち、任意に選択した金属微粒子を走査型電子顕微鏡 (S ΕΜ)で観察し、その最大径及び最小径を測定する。この最大径及び最小径の積の 平方根をその粒子の粒径とする。任意に選択した粒子 50個について上記のようにし て粒径を測定し、その平均値を平均粒径とする。  [0017] The average particle size of the metal fine particles is preferably 200 to 1000 nm. The average particle size of the base particles is preferably 1 to 10 / ζ πι. When the average particle size force of these particles is within the above range, a low initial connection resistance value can be achieved more reliably. In addition to this, it is possible to achieve both high levels of suppression of increase in connection resistance and insulation from adjacent circuit electrodes. The “average particle diameter” in the present invention means a value measured as follows. That is, the arbitrarily selected metal fine particles are observed with a scanning electron microscope (S ΕΜ), and the maximum diameter and the minimum diameter are measured. The square root of the product of the maximum and minimum diameters is the particle size of the particles. The particle size is measured as described above for 50 arbitrarily selected particles, and the average value is taken as the average particle size.
[0018] 本発明の効果を効率的且つ確実に得る観点から、金属微粒子の数は、基材粒子 1 個あたり 10〜40個であることが好ましい。また、金属微粒子の数が 10〜40個である と、接続抵抗値の上昇の抑制及び隣接する回路電極との絶縁性の両方が高水準に 達成されるという利点がある。基材粒子 1個あたりの金属微粒子の数は、以下のよう にして測定される値を意味するものである。すなわち、任意に選択した導電粒子を S EMで撮像し、観察し得る導電粒子表面の突起の数を金属微粒子の数としてカウント する。これにより得られたカウント数を 2倍にすることで 1個の導電粒子の金属微粒子 の数を算出する。任意に選択した導電粒子 50個について上記のようにして金属微粒 子の数を測定し、その平均値を基材粒子 1個あたりの金属微粒子の数とする。 [0018] From the viewpoint of efficiently and reliably obtaining the effects of the present invention, the number of metal fine particles is preferably 10 to 40 per base particle. Further, when the number of metal fine particles is 10 to 40, there is an advantage that both suppression of an increase in connection resistance value and insulation with adjacent circuit electrodes are achieved at a high level. The number of metal fine particles per base particle means a value measured as follows. In other words, arbitrarily selected conductive particles The number of protrusions on the surface of the conductive particles that can be imaged and observed by EM is counted as the number of metal fine particles. The number of metal particles of one conductive particle is calculated by doubling the obtained count. The number of metal fine particles is measured as described above for 50 arbitrarily selected conductive particles, and the average value is taken as the number of metal fine particles per substrate particle.
[0019] また、基材粒子は、粒子直径の 20%圧縮変形時の圧縮弾性率が 100〜1000kgf Zmm2である材質力もなるものであることが好ま 、。基材粒子が上記のような硬度 を有していると、回路電極の表面に酸化膜が形成されていても、金属めつき層の内側 に配置されて 、る金属微粒子がこの酸ィ匕膜をより確実に突き破ることができる。これ に加え、温度の変動などに伴い回路電極間の間隔が広くなつたとしても基材粒子が 回路電極間隔の拡大に十分追従することができる。そのため、接続抵抗値の上昇を 十分に抑制することができる。 [0019] Further, it is preferable that the base particles have a material strength with a compressive elastic modulus of 100 to 1000 kgf Zmm 2 at 20% compression deformation of the particle diameter. When the substrate particles have the hardness as described above, even if an oxide film is formed on the surface of the circuit electrode, the metal fine particles disposed on the inner side of the metal plating layer are formed on the oxide film. Can be broken through more reliably. In addition to this, even if the distance between the circuit electrodes becomes wider due to temperature fluctuations, the substrate particles can sufficiently follow the increase in the distance between the circuit electrodes. Therefore, the increase in connection resistance can be sufficiently suppressed.
[0020] また、基材粒子は、最大荷重 5mNで圧縮させた後の圧縮回復率力 0%以上であ ることが好ましい。基材粒子が上記のような圧縮回復率を有していると、温度の変動 などに伴い回路電極間の間隔が広くなつたとしても、基材粒子が回路電極間隔の拡 大に十分追従することができる。そのため、接続抵抗値の上昇を十分に抑制すること ができる。  [0020] The base particles preferably have a compression recovery rate force of 0% or more after being compressed at a maximum load of 5 mN. If the base particles have a compression recovery rate as described above, the base particles sufficiently follow the increase in the distance between the circuit electrodes even if the distance between the circuit electrodes becomes wide due to temperature fluctuations. be able to. Therefore, the increase in connection resistance can be sufficiently suppressed.
[0021] 本発明の回路接続材料は、上記本発明の接着剤組成物カゝらなり、回路部材同士 を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続する ものである。  [0021] The circuit connection material of the present invention is the adhesive composition of the present invention, which bonds circuit members together and electrically connects circuit electrodes of each circuit member.
[0022] 本発明の接続構造は、対向配置された一対の回路部材と、上記本発明の回路接 続材料の硬化物からなり、上記一対の回路部材の間に介在しそれぞれの回路部材 が有する回路電極同士が電気的に接続されるように当該回路部材同士を接着する 接続部とを備える。  [0022] The connection structure of the present invention includes a pair of circuit members arranged opposite to each other and a cured product of the circuit connection material of the present invention, and each circuit member is interposed between the pair of circuit members. A connecting portion that bonds the circuit members together so that the circuit electrodes are electrically connected to each other.
[0023] 本発明はまた、対向配置された一対の回路部材の間に本発明の回路接続材料を 介在させ、全体を加熱及び加圧して、上記回路接続材料の硬化物カゝらなり、上記一 対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的 に接続されるように回路部材同士を接着する接続部を形成することにより、上記一対 の回路部材及び接続部を備える接続構造を得る、回路部材の接続方法である。 発明の効果 [0023] The present invention also includes the circuit connection material of the present invention interposed between a pair of circuit members arranged opposite to each other, and the whole is heated and pressurized to form a cured product of the circuit connection material. By forming a connection portion that is interposed between the pair of circuit members and bonds the circuit members such that the circuit electrodes of the respective circuit members are electrically connected to each other, the pair of circuit members and the connection portion are formed. The connection method of a circuit member which obtains a connection structure provided with this. The invention's effect
[0024] 本発明によれば、接続すべき電極が、表面に酸化膜が形成されやす!ヽ金属材料 力 なるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な接着 剤組成物及びこれを用いた回路接続材料を提供することができる。また、本発明によ れば、低い接続抵抗で回路部材が接続された接続構造、並びにこれを得るための回 路部材の接続方法を提供することができる。  [0024] According to the present invention, an oxide film is easily formed on the surface of the electrode to be connected!ヽ Metal material Even if it is strong, it is possible to provide an adhesive composition that can sufficiently reduce the initial resistance value of the connection structure, and a circuit connection material using the same. Furthermore, according to the present invention, it is possible to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明に係る回路接続材料が回路電極間で使用され、回路電極同士が接続さ れた状態を示す断面図である。  FIG. 1 is a cross-sectional view showing a state in which a circuit connecting material according to the present invention is used between circuit electrodes and the circuit electrodes are connected to each other.
[図 2]本発明に係る回路接続材料の一実施形態を示す断面図である。  FIG. 2 is a cross-sectional view showing an embodiment of a circuit connection material according to the present invention.
[図 3]本発明に係る回路接続材料に含まれる導電粒子の一形態を示す断面図である  FIG. 3 is a cross-sectional view showing one embodiment of conductive particles contained in the circuit connection material according to the present invention.
[図 4]本発明に係る回路接続材料が支持体上に設けられている状態を示す断面図で ある。 FIG. 4 is a cross-sectional view showing a state in which the circuit connection material according to the present invention is provided on a support.
[図 5]本発明に係る回路接続材料が支持体に支持されている状態を示す断面図であ る。  FIG. 5 is a cross-sectional view showing a state in which the circuit connecting material according to the present invention is supported by a support.
[図 6]本発明に係る回路部材の接続方法の一実施形態を概略断面図により示すェ 程図である。  FIG. 6 is a schematic diagram showing an embodiment of a circuit member connecting method according to the present invention in a schematic sectional view.
符号の説明  Explanation of symbols
[0026] 1…基材粒子、 2…金属微粒子、 3…金属めつき層、 10· ··導電粒子、 20· ··接着剤成 分、 30…第 1の回路部材、 31…回路基板 (第 1の回路基板)、 32…回路電極 (第 1の 回路電極)、 40· ··第 2の回路部材、 41…回路基板 (第 2の回路基板)、 42· ··回路電 極(第 2の回路電極)、 50, 70· ··回路接続材料、 60, 60a, 60b…支持体、 100· ··接 続構造。  [0026] 1 ... Base particle, 2 ... Metal fine particle, 3 ... Metal plating layer, 10 ... Conductive particle, 20 ... Adhesive component, 30 ... First circuit member, 31 ... Circuit board ( First circuit board), 32 ... Circuit electrode (first circuit electrode), 40 ... Second circuit member, 41 ... Circuit board (second circuit board), 42 ... Circuit electrode (first circuit board) 2 circuit electrodes), 50, 70 ... circuit connection material, 60, 60a, 60b ... support, 100 ... connection structure.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、添付図面を参照しながら本発明の好適な実施形態を詳細に説明する。図面 の説明において同一の要素には同一の符号を付し、重複する説明は省略する。また 、図面の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. Also For the convenience of the drawings, the dimensional ratios in the drawings do not necessarily match those described.
[0028] なお、本明細書における「(メタ)アタリレート」とは「アタリレート」及びそれに対応す る「メタタリレート」を意味する。  [0028] In this specification, "(meta) attalate" means "attalate" and the corresponding "metatalate".
[0029] 図 1は、本発明に係る接着剤組成物が回路接続材料として使用され、回路電極同 士が接続された接続構造を示す概略断面図である。図 1に示す接続構造 100は、相 互に対向する第 1の回路部材 30及び第 2の回路部材 40を備えており、第 1の回路部 材 30と第 2の回路部材 40との間には、これらを接続する接続部 50aが設けられてい る。  [0029] FIG. 1 is a schematic cross-sectional view showing a connection structure in which the adhesive composition according to the present invention is used as a circuit connection material and circuit electrode members are connected. The connection structure 100 shown in FIG. 1 includes a first circuit member 30 and a second circuit member 40 that face each other, and is between the first circuit member 30 and the second circuit member 40. Is provided with a connecting portion 50a for connecting them.
[0030] 第 1の回路部材 30は、回路基板 (第 1の回路基板) 31と、回路基板 31の主面 31a 上に形成される回路電極 (第 1の回路電極) 32とを備えている。第 2の回路部材 40は 、回路基板 (第 2の回路基板) 41と、回路基板 41の主面 41a上に形成される回路電 極 (第 2の回路電極) 42とを備えている。回路基板 31、 41において、回路電極 32、 4 2の表面は平坦になっている。なお、ここでいう「回路電極の表面が平坦」とは、回路 電極の表面の凹凸が十分に小さ 、ことを 、 、、表面の凹凸は 20nm以下であること が好ましい。  [0030] The first circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31a of the circuit board 31. . The second circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41 a of the circuit board 41. In the circuit boards 31 and 41, the surfaces of the circuit electrodes 32 and 42 are flat. Here, “the surface of the circuit electrode is flat” means that the unevenness of the surface of the circuit electrode is sufficiently small, and the unevenness of the surface is preferably 20 nm or less.
[0031] 接続部 50aは回路接続材料に含まれる接着剤成分の硬化物 20aと、これに分散し ている導電粒子 10とを備えている。そして、接続構造 100においては、対向する回 路電極 32と回路電極 42とが、導電粒子 10を介して電気的に接続されている。すな わち、導電粒子 10力 回路電極 32, 42の双方に直接接触している。  [0031] The connecting portion 50a includes a cured product 20a of an adhesive component contained in the circuit connecting material and conductive particles 10 dispersed therein. In the connection structure 100, the circuit electrode 32 and the circuit electrode 42 facing each other are electrically connected through the conductive particles 10. In other words, the conductive particles are in direct contact with both the 10-force circuit electrodes 32 and 42.
[0032] このため、回路電極 32, 42間の接続抵抗が十分に低減され、回路電極 32, 42間 の良好な電気的接続が可能となる。他方、硬化物 20aは電気絶縁性を有するもので あり、隣接する回路電極同士は絶縁性が確保される。従って、回路電極 32, 42間の 電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる  [0032] Therefore, the connection resistance between the circuit electrodes 32 and 42 is sufficiently reduced, and a good electrical connection between the circuit electrodes 32 and 42 becomes possible. On the other hand, the cured product 20a has electrical insulation, and insulation between adjacent circuit electrodes is ensured. Therefore, the current flow between the circuit electrodes 32 and 42 can be made smooth, and the functions of the circuit can be fully exhibited.
[0033] 次に、接着剤成分が硬化する以前の状態の接着剤組成物について詳細に説明す る。図 2は、本発明に係る接着剤組成物を回路接続材料として使用する際の好適な 実施形態を示す概略断面図である。図 2に示す回路接続材料 50の形状はフィルム 状である。回路接続材料 50は、接着剤成分 20と、接着剤成分 20中に分散している 導電粒子 10とを備える。 [0033] Next, the adhesive composition in a state before the adhesive component is cured will be described in detail. FIG. 2 is a schematic cross-sectional view showing a preferred embodiment when the adhesive composition according to the present invention is used as a circuit connecting material. The shape of the circuit connecting material 50 shown in FIG. 2 is a film shape. The circuit connecting material 50 is dispersed in the adhesive component 20 and the adhesive component 20. And conductive particles 10.
[0034] 回路接続材料 50は、フィルム状の支持体上に塗工装置を用いて接着剤成分及び 導電粒子を含有する接着剤組成物を塗布し、所定時間熱風乾燥することにより作製 される。 [0034] The circuit connecting material 50 is produced by applying an adhesive composition containing an adhesive component and conductive particles on a film-like support using a coating apparatus, and drying with hot air for a predetermined time.
[0035] 導電粒子 10の構成について図 3を参照しながら説明する。図 3は、本発明に係る 回路接続材料に含まれる導電粒子の形態を示す断面図である。図 3に示す導電粒 子 10は、中心部分を構成する基材粒子 1と、この基材粒子 1上に設けられた複数の 金属微粒子 2と、基材粒子 1及び金属微粒子 2の表面を覆うように形成された金属め つき層 3とから構成されている。金属微粒子 2は金属めつき層 3の内側に位置している  The configuration of the conductive particles 10 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the form of conductive particles contained in the circuit connection material according to the present invention. The conductive particle 10 shown in FIG. 3 covers the surface of the base particle 1 constituting the central portion, the plurality of metal fine particles 2 provided on the base particle 1, and the base particle 1 and the metal fine particle 2. And a metal plating layer 3 formed as described above. Metal fine particles 2 are located inside metal plating layer 3
[0036] 基材粒子 1の材質としては、金属及び有機高分子化合物が挙げられる。基材粒子 1を構成する金属として、例えば、ニッケル、銅、金、銀、コバルト及びこれらの合金が 挙げられる。基材粒子 1を構成する有機高分子化合物として、例えば、アクリル榭脂、 スチレン榭脂、ベンゾグアナミン榭脂、シリコーン榭脂、ポリブタジエン榭脂又はこれ らの共重合体が挙げられ、これらを架橋したものであってもよ 、。 [0036] Examples of the material of the base particle 1 include metals and organic polymer compounds. Examples of the metal constituting the base particle 1 include nickel, copper, gold, silver, cobalt, and alloys thereof. Examples of the organic polymer compound constituting the base particle 1 include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, and copolymers thereof. Even so.
[0037] 基材粒子 1の材質としては、高 ヽ接続信頼性を達成する観点から、回路電極同士 の接続後における回路電極間隔の拡大に十分追従できる材質を用いることが好まし い。温度の変動などに伴う回路電極間隔の拡大に、基材粒子 1が十分に追従できな いと、接続部分の抵抗値が上昇する場合がある。このような抵抗値の上昇を効率的 に防止する観点から、基材粒子 1としては、有機高分子化合物力もなる粒子を用いる ことが好ましい。  [0037] From the viewpoint of achieving high connection reliability, it is preferable to use a material that can sufficiently follow the expansion of the distance between the circuit electrodes after the connection between the circuit electrodes. If the base particle 1 cannot sufficiently follow the expansion of the circuit electrode interval due to temperature fluctuations, the resistance value of the connection portion may increase. From the viewpoint of efficiently preventing such an increase in resistance value, it is preferable to use particles having organic polymer compound power as the base particle 1.
[0038] 有機高分子化合物力 なる粒子は、回路電極同士を接続する際に回路電極間で 扁平形状に押しつぶされたとしても、扁平形状力 元の球状に回復する傾向がある。 このため、温度の変動などに伴う回路電極間隔の拡大に導電粒子 10が十分追従す ることができる。かかる観点から、基材粒子 1の最大荷重 5mNで圧縮させた後の圧縮 回復率は 40%以上であることが好ま 、。上記のような圧縮回復率を有する有機化 合物からなる粒子としては、例えば、アクリル榭脂、スチレン榭脂、ベンゾグアナミン榭 脂、シリコーン榭脂、ポリブタジエン榭脂又はこれらの共重合体力もなる粒子が挙げ られる。当該圧縮回復率が 40%未満であると、回路電極間の間隔の拡大に対する 追従が不十分となる傾向がある。当該圧縮回復率は、株式会社フィッシャーインスト ルメンッ製 H— 100微小硬度計により測定することができる。 [0038] The particles having the organic polymer compound force tend to recover to a spherical shape due to the flat shape force even if the particles are crushed into a flat shape between the circuit electrodes when the circuit electrodes are connected to each other. For this reason, the conductive particles 10 can sufficiently follow the expansion of the circuit electrode interval due to temperature fluctuations. From this viewpoint, it is preferable that the compression recovery rate after the base particle 1 is compressed at the maximum load of 5 mN is 40% or more. Examples of the particles made of an organic compound having a compression recovery rate as described above include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or particles having a copolymer power thereof. Raising It is done. If the compression recovery rate is less than 40%, there is a tendency that the follow-up to the expansion of the distance between the circuit electrodes is insufficient. The compression recovery rate can be measured with an H-100 micro hardness tester manufactured by Fischer Instrument Co., Ltd.
[0039] また、基材粒子 1の材質としては、粒子直径の 20%圧縮変形時に、好ましくは 100 〜 1 OOOkgf Zmm2、より好ましくは 100〜800kgf Zmm2の圧縮弾性率を有するも のが使用される。上記のような硬度を有する有機化合物からなる粒子としては、例え ば、アクリル榭脂、スチレン榭脂、ベンゾグアナミン榭脂、シリコーン榭脂、ポリブタジ ェン榭脂又はこれらの共重合体力 なる粒子が挙げられる。 [0039] The material of the base particles 1, at 20% compression deformation of particle diameter, even for use preferably has a 100 ~ 1 OOOkgf Zmm 2, more preferably compressive modulus of 100~800kgf Zmm 2 Is done. Examples of the particles made of an organic compound having the above hardness include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or particles having a copolymer power thereof. .
[0040] 上記 20%圧縮変形時の圧縮弾性率が lOOkgfZmm2未満であると、表面に酸ィ匕 膜が形成されている金属の回路電極を接続する場合、表面の酸化膜を十分に突き 破ることができず、接続部分の抵抗値が高くなる傾向がある。他方、圧縮弾性率が 1 OOOkgfZmm2を超えると、相対向する回路電極を加圧するに際し、基材粒子 1が扁 平形状に十分に変形されなくなる傾向がある。基材粒子 1の変形が不十分であると、 回路電極との接触面積が不十分となり、接続部分の抵抗値が高くなる。また、基材粒 子 1を扁平形状に十分に変形させるために高い圧力で加圧した際には、粒子が粉砕 し、接続が不十分となるおそれがある。当該圧縮弾性率は、株式会社フィッシャーィ ンストルメンッ製 H— 100微小硬度計により測定することができる。 [0040] When the compression elastic modulus at the time of 20% compression deformation is less than lOOkgfZmm 2 , when connecting a metal circuit electrode having an oxide film formed on the surface, the oxide film on the surface is sufficiently penetrated. Cannot be achieved, and the resistance value of the connection portion tends to increase. On the other hand, if the compressive modulus exceeds 1 OOOkgfZmm 2 , the substrate particles 1 tend not to be sufficiently deformed into a flat shape when the opposing circuit electrodes are pressurized. If the deformation of the base particle 1 is insufficient, the contact area with the circuit electrode becomes insufficient, and the resistance value of the connection portion becomes high. Further, when the substrate particles 1 are pressed at a high pressure in order to sufficiently deform the substrate particles 1 into a flat shape, the particles may be crushed and connection may be insufficient. The compression elastic modulus can be measured with an H-100 micro hardness tester manufactured by Fisher Instruments Co., Ltd.
[0041] なお、基材粒子 1は粒子間で同一又は異なる種類の材質であってもよぐ同一粒子 に 1種の材質を単独で、又は 2種以上の材質を混合して用いてもょ 、。  [0041] The base particles 1 may be the same or different types of materials between the particles, and the same particles may be used alone or in combination of two or more types. ,.
[0042] 基材粒子 1の平均粒径は、用途などに応じて適宜設計可能である力 1〜: L0 m であることが好ましぐ 2〜8 μ mであることがより好ましぐ 3〜5 μ mであることが更に 好ましい。平均粒径が: m未満であると粒子の二次凝集が生じ、隣接する回路との 絶縁性が不十分となる傾向がある。他方、平均粒径が 10 mを越えると、その大きさ に起因して隣接する回路との絶縁性が不十分となる傾向がある。  [0042] The average particle diameter of the base particle 1 is a force 1 that can be appropriately designed depending on the application and the like: 1 to: L0 m is preferable 2 to 8 μm is more preferable 3 More preferably, it is ˜5 μm. When the average particle size is less than m, secondary aggregation of the particles occurs, and the insulation between adjacent circuits tends to be insufficient. On the other hand, if the average particle size exceeds 10 m, the insulation from adjacent circuits tends to be insufficient due to the size.
[0043] 金属微粒子 2を構成する金属として、例えば、 Ni、 Ag、 Au、 Cu、 Co、 Zn、 Al、 Sb 、 U、 Ga、 Ca、 Sn、 Se、 Fe、 Th、 Be、 Mg、 Mn及びこれらの合金が挙げられる。これ らの金属のうち、導電性及び耐腐食性の観点から Ni、 Ag、 Au、 Cuが好ましぐ Niが より好ましい。これらは 1種を単独で、又は 2種以上を組み合わせて用いることができ る。 [0043] As the metal constituting the metal fine particles 2, for example, Ni, Ag, Au, Cu, Co, Zn, Al, Sb, U, Ga, Ca, Sn, Se, Fe, Th, Be, Mg, Mn and These alloys are mentioned. Of these metals, Ni, Ag, Au, and Cu are preferred from the viewpoint of conductivity and corrosion resistance, and Ni is more preferred. These can be used alone or in combination of two or more. The
[0044] 金属微粒子 2の平均粒径は、用途などに応じて適宜設計可能である力 200-10 OOnmであること力 S好ましく、 400〜800nmであること力 Sより好ましく、 400〜500nm であることが更に好ましい。平均粒径が 200nm未満であると、表面に酸化膜が形成 されている金属の回路電極を接続する場合、酸ィ匕膜を十分に突き破ることができず、 接続部分の抵抗値が高くなる傾向がある。他方、平均粒径が lOOOnmを越えると、 隣接する回路との絶縁性が不十分となる傾向がある。  [0044] The average particle size of the metal fine particles 2 is a force that can be appropriately designed according to the application and the like. The force is 200-10 OOnm, preferably S. The force is preferably 400 to 800 nm, more preferably S, more preferably 400 to 500 nm. More preferably. When the average particle size is less than 200 nm, when connecting a metal circuit electrode having an oxide film formed on the surface, the oxide film cannot be sufficiently penetrated, and the resistance value of the connection portion tends to increase. There is. On the other hand, when the average particle size exceeds lOOOnm, there is a tendency that the insulation with the adjacent circuit becomes insufficient.
[0045] 金属めつき層 3の内側であり基材粒子 1の表面上に配置する金属微粒子 2の数は、 基材粒子 1個当たり 10〜40個であることが好ましぐ 10〜30個であることがより好ま しぐ 10〜20個であることが更に好ましい。金属微粒子 2の数が 10個未満であると、 接続抵抗値の上昇の抑制が不十分となる傾向がある。他方、金属微粒子 2の数が 40 個を越えると、隣接する回路との絶縁性が不十分となる傾向がある。  [0045] The number of the metal fine particles 2 disposed on the surface of the base particle 1 inside the metal plating layer 3 is preferably 10 to 40 per base particle 10 to 30 More preferably, it is 10-20. If the number of metal fine particles 2 is less than 10, the increase in connection resistance tends to be insufficient. On the other hand, if the number of metal fine particles 2 exceeds 40, the insulation between adjacent circuits tends to be insufficient.
[0046] 金属めつき層 3は基材粒子 1及び金属微粒子 2の表面の少なくとも一部を覆うもの である。ただし、金属微粒子 2の脱落をより確実に防止する観点から、実質的に基材 粒子 1及び金属微粒子 2の表面をすベて覆うものであることが好ましい。  The metal plating layer 3 covers at least a part of the surface of the base particle 1 and the metal fine particle 2. However, from the viewpoint of more reliably preventing the metal fine particles 2 from falling off, it is preferable that the surfaces of the base particle 1 and the metal fine particles 2 are substantially covered.
[0047] 金属めつき層 3の膜厚は、 80〜200nmであることが好ましぐ 100〜150nmである ことがより好ましぐ 100〜: L lOnmであることが更に好ましい。金属めつき層 3の膜厚 が 80nm未満であると、接続部分の抵抗値が高くなる傾向がある。他方、金属めつき 層 3の膜厚が 200nmを超えると、隣接する回路との絶縁性が不十分となる傾向があ る。  [0047] The thickness of the metal plating layer 3 is preferably from 80 to 200 nm, more preferably from 100 to 150 nm, and even more preferably from 100 to: LOnm. If the thickness of the metal plating layer 3 is less than 80 nm, the resistance value of the connection portion tends to increase. On the other hand, when the thickness of the metal plating layer 3 exceeds 200 nm, the insulation with an adjacent circuit tends to be insufficient.
[0048] 導電粒子 10を製造する方法としては、基材粒子 1の表面に金属微粒子 2を物理的 に付着させた後、金属めつき層 3を形成させるめっき処理を行う方法が挙げられる。こ の場合、添加する金属微粒子 2の量を調整することによって基材粒子 1の表面に付 着する金属微粒子 2の数を制御することができる。そして、これに対して無電解めつき 処理を施すことで導電粒子 10が製造される。  [0048] Examples of the method for producing the conductive particles 10 include a method in which the metal fine particles 2 are physically attached to the surface of the substrate particles 1 and then a plating process is performed to form the metal plating layer 3. In this case, the number of the metal fine particles 2 attached to the surface of the base particle 1 can be controlled by adjusting the amount of the metal fine particles 2 to be added. And the electroconductive particle 10 is manufactured by performing an electroless plating process with respect to this.
[0049] 次に、導電粒子 1を分散させる接着剤成分について説明する。接着剤成分 20とし ては、 (a)熱硬化性榭脂及び (b)熱硬化性榭脂用硬化剤からなる接着剤を含有する 組成物、並びに、(c)加熱又は光によって遊離ラジカルを発生する硬化剤及び (d)ラ ジカル重合性物質力もなる接着剤を含有する組成物が好ましい。あるいは、上記の( a)、 (b)、 (c)及び (d)の混合組成物が好ま U、。 Next, the adhesive component for dispersing the conductive particles 1 will be described. The adhesive component 20 includes: (a) a composition comprising an adhesive comprising a thermosetting resin; and (b) a thermosetting resin curing agent; and (c) free radicals by heating or light. Generated curing agent and (d) A composition containing an adhesive that also has a dical polymerizable material strength is preferred. Alternatively, a mixed composition of (a), (b), (c) and (d) above is preferred.
[0050] (a)熱硬化性榭脂としては、任意の温度範囲における硬化処理が可能な熱硬化性 榭脂であれば特に限定されないが、エポキシ榭脂であることが好ましい。エポキシ榭 脂としては、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビス フエノール S型エポキシ榭脂、フエノールノボラック型エポキシ榭脂、クレゾールノボラ ック型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、ビスフエノール ノ ポラック型エポキシ榭脂、脂環式エポキシ榭脂、グリシジルエステル型エポキシ榭脂 、グリシジルァミン型エポキシ榭脂、ヒダントイン型エポキシ榭脂、イソシァヌレート型 エポキシ榭脂、脂肪族鎖状エポキシ榭脂等が挙げられる。これらのエポキシ榭脂は、 ハロゲンィ匕されていてもよぐ水素添加されていてもよい。これらのエポキシ榭脂は、 1 種を単独で、又は 2種以上を組み合わせて使用することができる。  [0050] (a) The thermosetting resin is not particularly limited as long as it is a thermosetting resin that can be cured in an arbitrary temperature range, but an epoxy resin is preferable. Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A. Novolac epoxy resin, bisphenol nopolac epoxy resin, cycloaliphatic epoxy resin, glycidyl ester epoxy resin, glycidylamine epoxy resin, hydantoin epoxy resin, isocyanurate epoxy resin, fat Group chain epoxy resin and the like. These epoxy resins may be halogenated or hydrogenated. These epoxy resins can be used alone or in combination of two or more.
[0051] (b)熱硬化性榭脂用硬化剤としては、アミン系、フ ノール系、酸無水物系、イミダ ゾール系、ヒドラジド系、ジシアンジアミド、三フッ化ホウ素—アミン錯体、スルホ -ゥム 塩、ョードニゥム塩、ァミンイミド等が挙げられる。これらは、単独または 2種以上を混 合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、こ れらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロ力 プセルイ匕したものは、可使時間が延長されるために好ましい。  [0051] (b) Thermosetting resin curing agents include amine, phenol, acid anhydride, imidazole, hydrazide, dicyandiamide, boron trifluoride-amine complex, sulfo-um. Salt, iodonium salt, aminimide and the like. These may be used alone or in combination of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like. In addition, it is preferable to use these curing agents coated with a polyurethane-based or polyester-based polymer substance and then micro-pressed because the pot life is extended.
[0052] (b)熱硬化性榭脂用硬化剤の配合量は、接着剤成分の総質量を基準として、 0. 1 〜60. 0質量%程度であると好ましぐ 1. 0〜20. 0質量%であるとより好ましい。熱 硬化性榭脂用硬化剤の配合量が 0. 1質量%未満であると、硬化反応の進行が不十 分となり、良好な接着強度や接続抵抗値を得ることが困難となる傾向がある。他方、 配合量が 60質量%を越えると、接着剤成分の流動性が低下したり、ポットライフが短 くなつたりする傾向があるとともに、接続部分の接続抵抗値が高くなる傾向がある。  [0052] (b) The blending amount of the thermosetting resin curing agent is preferably about 0.1 to 60.0% by mass based on the total mass of the adhesive component. 1.0 to 20 More preferably 0% by mass. If the blending amount of the thermosetting resin curing agent is less than 0.1% by mass, the progress of the curing reaction tends to be insufficient, and it tends to be difficult to obtain good adhesive strength and connection resistance. . On the other hand, when the blending amount exceeds 60% by mass, the fluidity of the adhesive component tends to decrease, the pot life tends to be shortened, and the connection resistance value of the connection portion tends to increase.
[0053] (c)加熱又は光により遊離ラジカルを発生する硬化剤としては、過酸化化合物、ァ ゾ系化合物などの、加熱又は光により分解して遊離ラジカルを発生するものが挙げら れる。硬化剤は目的とする接続温度、接続時間、ポットライフ等により適宜選定される 。高反応性とポットライフの点から、半減期 10時間の温度が 40°C以上かつ、半減期 1 分の温度が 180°C以下の有機過酸ィ匕物が好ましい。この場合、(c)加熱又は光によ り遊離ラジカルを発生する硬化剤の配合量は、接着剤成分の総質量を基準として、 0 . 05〜10質量0 /0であると好ましく、 0. 1〜5質量0 /0であるとより好ましい。 [0053] (c) Curing agents that generate free radicals by heating or light include those that generate free radicals by decomposition by heating or light, such as peroxide compounds and azo compounds. The curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life and the like. In terms of high reactivity and pot life, a half-life temperature of 10 hours is over 40 ° C and a half-life of 1 Organic peroxides with a minute temperature of 180 ° C or less are preferred. In this case, (c) The amount of curing agent which generates by Ri free radicals heating or light, based on the total weight of the adhesive component, preferable to be 0.05 to 10 weight 0/0, 0. more preferably a 1 to 5 mass 0/0.
[0054] (c)加熱又は光により遊離ラジカルを発生する硬化剤は、具体的には、ジァシルパ 一オキサイド、パーォキシジカーボネート、パーォキシエステル、パーォキシケタール 、ジアルキルパーオキサイド、ハイド口パーオキサイドなど力も選定できる。回路部材 の接続端子の腐食を抑えるために、パーォキシエステル、ジアルキルパーオキサイド 、ノ、イド口パーオキサイドから選定されることが好ましぐ高反応性が得られるバーオ キシエステル力 選定されることがより好まし 、。 [0054] (c) Curing agents that generate free radicals by heating or light are specifically diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hyde mouth A force such as peroxide can also be selected. In order to suppress corrosion of connection terminals of circuit members, it is preferable to select from peroxyesters, dialkyl peroxides, odorants, and peroxides that can provide high reactivity. Is more preferred.
[0055] ジァシルバーオキサイド類としては、例えば、イソブチルパーオキサイド、 2, 4ージ クロ口ベンゾィルパーオキサイド、 3, 5, 5—トリメチルへキサノィルパーオキサイド、ォ クタノィルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、ス クシニックパーオキサイド、ベンゾィルパーォキシトルエン、ベンゾィルパーオキサイド 等が挙げられる。  [0055] Examples of disilver oxides include isobutyl peroxide, 2,4-dichlorobenzoic peroxide, 3, 5, 5-trimethylhexanoyl peroxide, octanoyl peroxide, and lauroyl peroxide. Examples thereof include oxide, stearoyl peroxide, succinic peroxide, benzoyl peroxide, and benzoyl peroxide.
[0056] パーォキシジカーボネート類としては、例えば、ジー n プロピルパーォキシジカー ボネート、ジイソプロピルパーォキシジカーボネート、ビス(4—tーブチルシクロへキ シル)パーォキシジカーボネート、ジー 2—エトキシメトキシバーオキシジカーボネート 、ジ(2—ェチルへキシルバーォキシ)ジカーボネート、ジメトキシブチルバ一才キシジ カーボネート、ジ(3—メチルー 3—メトキシブチルバ一才キシ)ジカーボネート等が挙 げられる。  [0056] Examples of peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2- Examples include ethoxymethoxy baroxydicarbonate, di (2-ethylhexyloxy) dicarbonate, dimethoxybutyl dioxygen dicarbonate, di (3-methyl-3-methoxybutyl dioxy) dicarbonate, and the like.
[0057] パーォキシエステル類としては、例えば、タミルパーォキシネオデカノエート、 1, 1, 3, 3—テトラメチルブチルパーォキシネオデカノエート、 1ーシクロへキシルー 1ーメ チルェチルパーォキシネオデカノエート、 t一へキシルバーォキシネオデカノエート、 t ブチルパーォキシビバレート、 1, 1, 3, 3—テトラメチルブチルパーォキシ 2— ェチルへキサノエート、 2, 5 ジメチルー 2, 5 ビス(2 ェチルへキサノィルバーオ キシ)へキサン、 1ーシクロへキシルー 1 メチルェチルパーォキシ 2—ェチルへキ サノエート、 t一へキシルバーォキシ 2—ェチルへキサノエート、 t ブチルバーオ キシ 2—ェチルへキサノエート、 t—ブチルパーォキシイソブチレート、 1, 1 ビス( t ブチルパーォキシ)シクロへキサン、 t一へキシルバーォキシイソプロピルモノカー ボネート、 t—ブチルパーォキシ 3, 5, 5—トリメチルへキサノエ一ト、 tーブチルバ 一ォキシラウレート、 2, 5 ジメチルー 2, 5 ビス(m—トルオイルパーォキシ)へキ サン、 t ブチルパーォキシイソプロピルモノカーボネート、 t ブチルパーォキシ 2 ェチルへキシルモノカーボネート、 t一へキシルパーォキシベンゾエート、 tーブチ ルパーォキシアセテート等が挙げられる。 [0057] Examples of peroxyesters include, for example, Tamil peroxyneodecanoate, 1, 1, 3, 3-tetramethylbutyl peroxyneodecanoate, 1-cyclohexylene 1-methyle Cilpoxyneodecanoate, t-hexyloxyneodecanoate, t-butylperoxybivalate, 1, 1, 3, 3—tetramethylbutylperoxy 2—ethylhexanoate, 2 , 5 Dimethyl-2,5 Bis (2-ethylhexylberoxy) hexane, 1-cyclohexyl lumine 1 Methylethylperoxy 2-ethyl hexanoate, t-hexyloxy 2-ethylhexanoate, t-butyl baroxy 2— Ethylhexanoate, t-butylperoxyisobutyrate, 1, 1 bis ( tert-butylperoxy) cyclohexane, tert-hexyloxyisopropyl monocarbonate, tert-butylperoxy 3, 5, 5-trimethylhexanoate, tert-butyl carboxylaurate, 2, 5 dimethyl-2,5 bis (m— (Toluoyl peroxide) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, tert-butylperoxyacetate and the like.
[0058] パーォキシケタール類としては、例えば、 1, 1 ビス(t一へキシルバーォキシ) 3 , 5, 5 トリメチルシクロへキサン、 1, 1—ビス(t—へキシルバーォキシ)シクロへキサ ン、 1, 1—ビス(t—ブチルパーォキシ)一3, 5, 5 トリメチルシクロへキサン、 1, 1— (t ブチルパーォキシ)シクロドデカン、 2, 2—ビス(t ブチルパーォキシ)デカン等 が挙げられる。 [0058] The peroxyketals include, for example, 1, 1 bis (t-hexyloxy) 3, 5, 5 trimethylcyclohexane, 1,1-bis (t-hexyloxy) cyclohexane, 1 , 1-bis (t-butylperoxy) 1,3,5,5 trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane, and the like.
[0059] ジアルキルパーオキサイド類としては、例えば、 α , α , 一ビス(t ブチルパーォキ シ)ジイソプロピルベンゼン、ジクミルパーオキサイド、 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へキサン、 t ブチルタミルパーオキサイド等が挙げられる。  [0059] Examples of the dialkyl peroxides include α, α, bis (t butyl peroxide) diisopropylbenzene, dicumyl peroxide, 2,5 dimethyl-2,5 di (t butyl peroxide) hexane, t butyl tamperper. Examples include oxides.
[0060] ハイド口パーオキサイド類としては、例えば、ジイソプロピルベンゼンハイド口バーオ キサイド、クメンハイド口パーオキサイド等が挙げられる。  [0060] Examples of the hydride peroxides include diisopropylbenzene hydride peroxide, cumene hydride peroxide, and the like.
[0061] これらの(c)加熱又は光により遊離ラジカルを発生する硬化剤は 1種を単独で又は 2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いても よい。  [0061] These (c) curing agents that generate free radicals by heating or light can be used alone or in admixture of two or more, and can be used by mixing decomposition accelerators, inhibitors and the like. May be used.
[0062] (d)ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質であり、例 えば、(メタ)アタリレート、マレイミドィ匕合物等が挙げられる。  [0062] The (d) radical polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include (meth) acrylate and maleimide compounds.
[0063] (メタ)アタリレートとしては、例えば、ウレタン (メタ)アタリレート、メチル (メタ)アタリレ ート、ェチル (メタ)アタリレート、イソプロピル (メタ)アタリレート、イソブチル (メタ)アタリ レート、エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレ ート、トリエチレングリコールジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)ァク リレート、テトラメチロールメタンテトラ(メタ)アタリレート、 2 ヒドロキシ一 1, 3 ジ (メ タ)アタリロキシプロパン、 2, 2 ビス〔4— ( (メタ)アタリ口キシメトキシ)フエ-ル〕プロ パン、 2, 2 ビス〔4— ( (メタ)アタリロキシポリエトキシ)フエ-ル〕プロパン、ジシクロべ ンテュル (メタ)アタリレート、トリシクロデ力-ル (メタ)アタリレート、ビス((メタ)アタリ口 キシェチル)イソシァヌレート、 ε —力プロラタトン変性トリス((メタ)アタリロキシェチル )イソシァヌレート、トリス( (メタ)アタリ口キシェチル)イソシァヌレート等が挙げられる。 [0063] Examples of (meth) acrylate include urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene Glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, 2-hydroxy 1,1,3 Di (meth) atalyloxypropane, 2,2 bis [4 — ((meth) atarioxymethoxy) phenol] propan, 2,2 bis [4 — (((meth)) talyloxypolyethoxy ) Fuel] propane, dicyclobe Ntu (meth) acrylate, tricyclode force-l (meth) acrylate, bis ((meth) attaly cychetyl) isocyanurate, ε — force prolatataton modified tris ((meth) ateryloxetyl) isocyanurate, tris ((meth) Atari mouth kichetil) isocyanurate and the like.
[0064] このようなラジカル重合性物質は 1種を単独で、又は 2種以上を組み合わせて用い ることができる。接着剤成分は、 25°Cでの粘度力 OOOOO〜1000000mPa' sである ラジカル重合性物質を少なくとも含有することが特に好ましぐ特に 100000〜5000 OOmPa · sの粘度(25°C)を有するラジカル重合性物質を含有することが好ま U、。ラ ジカル重合性物質の粘度の測定は、市販の E型粘度計を用いて測定できる。  [0064] Such radically polymerizable substances can be used singly or in combination of two or more. Adhesive component is particularly preferred to contain at least a radically polymerizable material that has a viscosity power of OOOOO to 1000000 mPa's at 25 ° C Radicals having a viscosity (25 ° C) of 100000 to 5000 OOmPa · s U, which preferably contains polymerizable substances. The viscosity of the radically polymerizable substance can be measured using a commercially available E-type viscometer.
[0065] ラジカル重合性物質の中でも、接着性の観点からウレタンアタリレート又はウレタン メタアタリレートを使用することが好ましい。また、耐熱性を向上させるために用いる有 機過酸ィ匕物との橋かけ後、単独で 100°C以上の Tgを示すラジカル重合性物質を併 用して用いることが特に好ましい。このようなラジカル重合性物質としては、ジシクロべ ンテニル基、トリシクロデ力-ル基及び Z又はトリアジン環を分子内に有するものを用 いることができる。特に、トリシクロデカニル基ゃトリアジン環を分子内に有するラジカ ル重合性物質が好適に用いられる。  [0065] Among the radical polymerizable substances, it is preferable to use urethane acrylate or urethane meta acrylate from the viewpoint of adhesiveness. Further, it is particularly preferable to use a radically polymerizable substance having a Tg of 100 ° C. or more alone after crosslinking with an organic peroxide used for improving heat resistance. As such a radically polymerizable substance, a substance having a dicyclobenzyl group, a tricyclohexyl group and Z or a triazine ring in the molecule can be used. In particular, a radically polymerizable substance having a tricyclodecanyl group or a triazine ring in the molecule is preferably used.
[0066] マレイミドィ匕合物としては、分子中にマレイミド基を少なくとも 2個以上含有するもの が好ましぐ例えば、 1—メチル 2, 4 ビスマレイミドベンゼン、 N, N,一 m—フエ- レンビスマレイミド、 N, N,一p フエ-レンビスマレイミド、 N, N,一m トルイレンビ スマレイミド、 N, N,一4, 4—ビフエ-レンビスマレイミド、 N, N,一4, 4— (3, 3,一ジ メチル一ビフエ-レン)ビスマレイミド、 N, N,一4, 4— (3, 3,一ジメチルジフエ-ルメ タン)ビスマレイミド、 N, N,一4, 4— (3, 3,一ジェチルジフエ-ルメタン)ビスマレイミ ド、 N, N,一 4, 4—ジフエ-ルメタンビスマレイミド、 N, N,一 4, 4—ジフエ-ルプロパ ンビスマレイミド、 N, N, -4, 4ージフエニノレエーテノレビスマレイミド、 N, N, - 3, 3, —ジフエ-ルスルホンビスマレイミド、 2, 2 ビス [4— (4 マレイミドフエノキシ)フエ -ル]プロパン、 2, 2 ビス [3 s ブチル 4, 8— (4 マレイミドフエノキシ)フエ- ル]プロパン、 1, 1—ビス [4— (4 マレイミドフエノキシ)フエ-ル]デカン、 4, 4,一シ クロへキシリデンービス [1一(4 マレイミドフエノキシ) 2 シクロへキシル]ベンゼ ン、 2, 2 ビス [4— (4 マレイミドフエノキシ)フエ-ル]へキサフルォロプロパンなど が挙げられる。これらは、 1種を単独で又は 2種以上を併用して用いてもよぐァリルフ ェノール、ァリルフエ-ルエーテル、安息香酸ァリルなどのァリル化合物と併用して用 いてもよい。 [0066] Preferred examples of maleimide compounds include those containing at least two maleimide groups in the molecule, such as 1-methyl 2,4 bismaleimidobenzene, N, N, 1 m-phenylene bis. Maleimide, N, N, 1-p-phenylene balemaleimide, N, N, 1 m Toluylene bis-maleimide, N, N, 1, 4, 4-biphenylene-balemaleimide, N, N, 1, 4, 4— (3, 3,1-Dimethyl-1-biphenylene) bismaleimide, N, N, 1,4— (3,3, Dimethyldiphenylmethane) bismaleimide, N, N, 1,4,4-— (3,3, 1-jetyldiphenylmethane) bismaleimide, N, N, 1,4-4-dimethanemethane bismaleimide, N, N, 1,4-4-diphenylpropane bismaleimide, N, N, -4, 4-di Phenenoleetenore bismaleimide, N, N,-3, 3, — Diphenylsulfone bismaleimide, 2, 2 bis [4— (4 Reimidophenoxy) phenol] propane, 2, 2 bis [3 s butyl 4,8— (4 maleimide phenoxy) phenol] propane, 1,1—bis [4— (4 maleimide phenoxy ) Fuel] decane, 4, 4, 1 cyclohexylidene bis [1 1 (4 maleimide phenoxy) 2 cyclohexyl] benzene, 2, 2 bis [4— (4 maleimide phenoxy) Le] Hexafluoropropane Is mentioned. These may be used alone or in combination with two or more aryl compounds such as arylphenol, arylphenol ether and benzoyl benzoate.
[0067] また、必要に応じて、ハイドロキノン、メチルエーテルノヽイドロキノン類などの重合禁 止剤を適宜用いてもよい。  [0067] If necessary, a polymerization inhibitor such as hydroquinone or methyl ether neuroquinone may be used as appropriate.
[0068] 接着剤成分 20はフィルム形成性高分子を含有してもよ ヽ。接着剤成分 20の全質 量を基準として、フィルム形成性高分子の含有量は、 2〜80質量%であることが好ま しぐ 5〜70質量%であることがより好ましぐ 10〜60質量%であることが更に好まし い。フィルム形成性高分子としては、ポリスチレン、ポリエチレン、ポリビニルブチラ一 ル、ポリビニルホルマール、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリ フエ-レンオキサイド、尿素樹脂、メラミン榭脂、フエノール榭脂、キシレン榭脂、ポリイ ソシァネート榭脂、フエノキシ榭脂、ポリイミド榭脂、ポリエステルウレタン榭脂などが用 いられる。  [0068] The adhesive component 20 may contain a film-forming polymer. Based on the total mass of the adhesive component 20, the content of the film-forming polymer is preferably 2 to 80% by mass, more preferably 5 to 70% by mass. 10 to 60 More preferably, it is mass%. Film-forming polymers include polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin. Fats, polyisocyanate resin, phenoxy resin, polyimide resin, polyester urethane resin, etc. are used.
[0069] 上記のフィルム形成性高分子の中でも水酸基等の官能基を有する榭脂は接着性 を向上させることができるので、より好ましい。また、これらの高分子をラジカル重合性 の官能基で変性したものも用いることができる。フィルム形成性高分子の重量平均分 子量は 10000〜 10000000であると好まし!/、。  [0069] Among the above film-forming polymers, a resin having a functional group such as a hydroxyl group is more preferable because it can improve adhesiveness. In addition, those obtained by modifying these polymers with radically polymerizable functional groups can also be used. The weight average molecular weight of the film-forming polymer is preferably 10,000 to 10000000!
[0070] 更に、回路接続材料 50は、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃 ィ匕剤、チキソトロピック剤、カップリング剤、フエノール榭脂、メラミン榭脂、イソシァネ 一ト類等を含有することもできる。  [0070] Further, the circuit connecting material 50 includes a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, and an isocyanine. It is also possible to contain gins.
[0071] 充填材を含有した場合、接続信頼性等の向上が得られるので好ましい。充填材は 、その最大径が導電粒子の粒径未満であれば使用でき、 5〜60体積%の範囲が好 ましい。 60体積%を越えると、信頼性向上の効果が飽和する。  [0071] The inclusion of a filler is preferable because improvement in connection reliability and the like can be obtained. The filler can be used if its maximum diameter is smaller than the particle diameter of the conductive particles, and the range of 5 to 60% by volume is preferred. If it exceeds 60% by volume, the effect of improving reliability is saturated.
[0072] カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシァネ ート基力 なる群より選ばれる 1種以上の基を含有する化合物が、接着性の向上の点 力 好ましい。  [0072] As the coupling agent, a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable in terms of improving adhesiveness. .
[0073] 回路接続材料 50において導電粒子 10の含有量は、回路接続材料 50の全体積を 100体積部とすると、 0. 5〜60体積部であることが好ましぐその含有量は用途によ り使い分ける。 [0073] In the circuit connection material 50, the content of the conductive particles 10 is preferably 0.5 to 60 parts by volume when the total volume of the circuit connection material 50 is 100 parts by volume. Yo Use properly.
[0074] 図 4は本発明に係る回路接続材料 50がフィルム状の支持体 60上に設けられて ヽ る状態を示す断面図である。支持体 60としては、例えば、ポリエチレンテレフタレート フィルム、ポリエチレンナフタレートフィルム、ポリエチレンイソフタレートフィルム、ポリ ブチレンテレフタレートフィルム、ポリオレフイン系フィルム、ポリアセテートフィルム、ポ リカーボネートフィルム、ポリフエ-レンサルファイドフィルム、ポリアミドフィルム、ェチ レン 酢酸ビュル共重合体フィルム、ポリ塩化ビュルフィルム、ポリ塩化ビ-リデンフ イルム、合成ゴム系フィルム、液晶ポリマーフィルム等の各種フィルムを使用すること が可能である。上記のフィルムの表面に対し、必要に応じてコロナ放電処理、アンカ 一コート処理、帯電防止処理などが施された支持体を使用してもよい。  FIG. 4 is a cross-sectional view showing a state in which the circuit connecting material 50 according to the present invention is provided on the film-like support 60. Examples of the support 60 include a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethylene isophthalate film, a polybutylene terephthalate film, a polyolefin-based film, a polyacetate film, a polycarbonate film, a polyphenylene sulfide film, a polyamide film, It is possible to use various films such as a styrene acetate butyl copolymer film, a polychlorinated bulle film, a poly (vinylidene chloride) film, a synthetic rubber film, and a liquid crystal polymer film. A support having a corona discharge treatment, an anchor coating treatment, an antistatic treatment or the like may be used on the surface of the film as necessary.
[0075] 回路接続材料 50を使用する際に、回路接続材料 50から支持体 60を容易に剥離 できるように、必要に応じて支持体 60の表面には剥離処理剤をコーティングして使用 してもよい。剥離処理剤として、シリコーン榭脂、シリコーンと有機系榭脂との共重合 体、アルキッド榭脂、アミノアルキッド榭脂、長鎖アルキル基を有する榭脂、フルォロ アルキル基を有する榭脂、セラック榭脂などの各種剥離処理剤を用いることができる  [0075] When the circuit connection material 50 is used, the surface of the support 60 is coated with a release treatment agent as necessary so that the support 60 can be easily peeled from the circuit connection material 50. Also good. As a release treatment agent, silicone resin, copolymer of silicone and organic resin, alkyd resin, aminoalkyd resin, resin having long alkyl group, resin having fluoroalkyl group, shellac resin Various release treatment agents such as can be used
[0076] 支持体 60の膜厚は、特に制限されるものではないが、作製された回路接続材料 50 の保管、使用時の利便性等を考慮して、 4〜200 /ζ πιとすることが好ましい。さらに、 支持体 60の膜厚は、材料コストや生産性を考慮して、 15〜75 /ζ πιとすることがより好 ましい。 [0076] The film thickness of the support 60 is not particularly limited, but should be 4 to 200 / ζ πι in consideration of storage and convenience of use of the produced circuit connecting material 50. Is preferred. Further, the film thickness of the support 60 is more preferably 15 to 75 / ζ πι in consideration of material cost and productivity.
[0077] 回路接続材料は、回路接続材料 50のような単層構造に限定されず、複数の層が 積層された多層構造であってもよい。多層構造の回路接続材料は、接着剤成分及 び導電粒子の種類あるいはこれらの含有量が異なる層を複数積層することによって 製造することができる。例えば、回路接続材料は、導電粒子を含有する導電粒子含 有層と、この導電粒子含有層の少なくとも一方の面上に設けられた、導電粒子を含 有しな 、導電粒子非含有層とを備えるものであってもよ 、。  [0077] The circuit connection material is not limited to a single layer structure like the circuit connection material 50, and may be a multilayer structure in which a plurality of layers are laminated. A circuit connection material having a multilayer structure can be produced by laminating a plurality of layers having different types of adhesive components and conductive particles or different contents thereof. For example, the circuit connection material includes a conductive particle-containing layer containing conductive particles and a conductive particle-free layer that does not contain conductive particles and is provided on at least one surface of the conductive particle-containing layer. You can have it.
[0078] 図 5は、二層構造の回路接続材料が支持体に支持されている状態を示す断面図で ある。図 5に示す回路接続材料 70は、導電粒子を含有する導電粒子含有層 70a及 び導電粒子を含有しない導電粒子非含有層 70bから構成されている。回路接続材 料 70の両最外面には、それぞれ支持体 60a, 60bが設けられている。回路接続材料 70は、支持体 60aの表面上に導電粒子含有層 70aを形成し、他方、支持体 60bの 表面上に導電粒子非含有層 70bを形成し、これらの層を従来公知のラミネータなど を使用して貼り合わせることで作製することができる。回路接続材料 70を使用するに 際には、適宜支持体 60a, 60bを剥離して使用する。 FIG. 5 is a cross-sectional view showing a state in which the circuit connecting material having a two-layer structure is supported by the support. The circuit connecting material 70 shown in FIG. 5 includes a conductive particle-containing layer 70a containing conductive particles. And a conductive particle non-containing layer 70b which does not contain conductive particles. Support members 60a and 60b are provided on both outermost surfaces of the circuit connecting material 70, respectively. The circuit connection material 70 forms a conductive particle-containing layer 70a on the surface of the support 60a, while forming a conductive particle-free layer 70b on the surface of the support 60b. These layers are used as a conventionally known laminator or the like. It can produce by bonding together using. When using the circuit connecting material 70, the support bodies 60a and 60b are appropriately peeled off.
[0079] 回路接続材料 70によれば、回路部材同士の接合時に、接着剤成分の流動に起因 する回路電極上における導電粒子の個数の減少を十分に抑制することができる。こ のため、例えば、 ICチップを基板上に実装する場合、 ICチップの金属バンプ (接続 端子)上の導電粒子の個数を十分に確保することができる。この場合、 ICチップの金 属バンプを備える面と導電粒子非含有層 70bとが、他方、 ICチップを実装すべき基 板と導電粒子含有層 70aとが、それぞれ当接するように回路接続材料 70を配置する ことが好ましい。  [0079] According to the circuit connection material 70, it is possible to sufficiently suppress the decrease in the number of conductive particles on the circuit electrode due to the flow of the adhesive component when the circuit members are joined. For this reason, for example, when an IC chip is mounted on a substrate, the number of conductive particles on the metal bumps (connection terminals) of the IC chip can be sufficiently secured. In this case, the circuit connecting material 70 is arranged so that the surface provided with the metal bumps of the IC chip and the conductive particle-free layer 70b are in contact with the substrate on which the IC chip is to be mounted and the conductive particle-containing layer 70a, respectively. Is preferably arranged.
[0080] (接続方法)  [0080] (Connection method)
図 6は、本発明に係る回路部材の接続方法の一実施形態を概略断面図により示す 工程図であり、回路接続材料 50を熱硬化させて接続構造を製造するまでの一連の 工程を示す。  FIG. 6 is a process diagram showing an embodiment of a circuit member connection method according to the present invention in a schematic cross-sectional view, and shows a series of processes until the connection structure is manufactured by thermosetting the circuit connection material 50.
[0081] 先ず、上述した第 1の回路部材 30と、フィルム状の回路接続材料 50を用意する。  First, the above-described first circuit member 30 and a film-like circuit connection material 50 are prepared.
回路接続材料 50は、導電粒子 10を含有する接着剤組成物からなる。  The circuit connecting material 50 is made of an adhesive composition containing the conductive particles 10.
[0082] 回路接続材料 50の厚さは、 5〜50 μ mであることが好まし ヽ。回路接続材料 50の 厚さが 5 m未満であると、第 1及び第 2の回路電極 32, 42間に回路接続材料 50が 充填不足となる傾向がある。他方、厚さが 50 mを超えると、第 1及び第 2の回路電 極 32, 42間の導通の確保が困難となる傾向がある。 [0082] The thickness of the circuit connecting material 50 is preferably 5 to 50 μm. If the thickness of the circuit connecting material 50 is less than 5 m, the circuit connecting material 50 tends to be insufficiently filled between the first and second circuit electrodes 32 and 42. On the other hand, when the thickness exceeds 50 m, it tends to be difficult to ensure conduction between the first and second circuit electrodes 32 and 42.
[0083] 次に、回路接続材料 50を第 1の回路部材 30の回路電極 32が形成されている面上 に載せる。そして、回路接続材料 50を、図 6 (a)の矢印 A及び B方向に加圧し、回路 接続材料 50を第 1の回路部材 30に仮接続する(図 6 (b) )。 Next, the circuit connection material 50 is placed on the surface of the first circuit member 30 on which the circuit electrodes 32 are formed. Then, the circuit connection material 50 is pressurized in the directions of arrows A and B in FIG. 6 (a), and the circuit connection material 50 is temporarily connected to the first circuit member 30 (FIG. 6 (b)).
[0084] このときの圧力は回路部材に損傷を与えない範囲であれば特に制限されないが、 一般的には 0. 1〜30. OMPaとすることが好ましい。また、加熱しながら加圧してもよ ぐ加熱温度は回路接続材料 50が実質的に硬化しない温度とする。加熱温度は一 般的には 50〜190°Cにするのが好ましい。これらの加熱及び加圧は 0. 5〜120秒 間の範囲で行うことが好まし 、。 [0084] The pressure at this time is not particularly limited as long as it does not damage the circuit member, but it is generally preferably 0.1 to 30. OMPa. You can also pressurize while heating The heating temperature is a temperature at which the circuit connecting material 50 is not substantially cured. In general, the heating temperature is preferably 50 to 190 ° C. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds.
[0085] 次いで、図 6 (c)に示すように、第 2の回路部材 40を、第 2の回路電極 42を第 1の回 路部材 30の側に向けるようにして回路接続材料 50上に載せる。そして、フィルム状 回路接続材料 50を加熱しながら、図 6 (c)の矢印 A及び B方向に全体を加圧する。  Next, as shown in FIG. 6 (c), the second circuit member 40 is placed on the circuit connection material 50 so that the second circuit electrode 42 faces the first circuit member 30. Put it on. Then, while heating the film-like circuit connecting material 50, the whole is pressurized in the directions of arrows A and B in FIG. 6 (c).
[0086] このときの加熱温度は、回路接続材料 50が硬化可能な温度とする。加熱温度は、 6 0〜180°C力 S好ましく、 70〜170°Cがより好ましぐ 80〜160°Cが更に好ましい。加熱 温度が 60°C未満であると硬化速度が遅くなる傾向があり、 180°Cを超えると望まない 副反応が進行し易い傾向がある。加熱時間は、 0. 1〜180秒が好ましぐ 0. 5〜18 0秒がより好ましぐ 1〜180秒が更に好ましい。  The heating temperature at this time is a temperature at which the circuit connecting material 50 can be cured. The heating temperature is preferably 60 to 180 ° C, and more preferably 80 to 160 ° C, more preferably 70 to 170 ° C. If the heating temperature is less than 60 ° C, the curing rate tends to be slow, and if it exceeds 180 ° C, unwanted side reactions tend to proceed. The heating time is preferably 0.1 to 180 seconds, more preferably 0.5 to 180 seconds, and still more preferably 1 to 180 seconds.
[0087] 回路接続材料 50の硬化により接着部 50aが形成されて、図 1に示すような接続体 1 00が得られる。接続の条件は、使用する用途、接着剤組成物、回路部材によって適 宜選択される。なお、回路接続材料 50の接着剤成分として、光によって硬化するも のを使用した場合には、回路接続材料 50に対して活性光線やエネルギー線を適宜 照射すればよい。活性光線としては、紫外線、可視光、赤外線等が挙げられる。エネ ルギ一線としては、電子線、エックス線、 γ線、マイクロ波等が挙げられる。  [0087] The adhesive portion 50a is formed by curing the circuit connection material 50, and a connection body 100 as shown in FIG. 1 is obtained. The connection conditions are appropriately selected depending on the intended use, adhesive composition, and circuit members. When an adhesive component of the circuit connection material 50 is used that is cured by light, the circuit connection material 50 may be appropriately irradiated with actinic rays or energy rays. Examples of the active light include ultraviolet light, visible light, and infrared light. Examples of energy lines include electron beams, X-rays, γ-rays, and microwaves.
[0088] 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に 限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可 能である。  [0088] The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.
実施例  Example
[0089] 以下、実施例により本発明の内容を更に具体的に説明する力 本発明はこれらの 実施例に制限されるものではな 、。  [0089] Hereinafter, the ability to more specifically explain the contents of the present invention by way of examples. The present invention is not limited to these examples.
[0090] (実施例 1) [0090] (Example 1)
フィルム形成性高分子として、フエノキシ榭脂溶液 (フエノキシ榭脂 Ζトルエン Ζ酢 酸ェチル =40Ζ30Ζ30質量部) 100質量部、エポキシ榭脂と潜在性硬化剤の混合 物としてマイクロカプセル型潜在性硬化剤を含有する液状エポキシ (旭化成株式会 社製、商品名:ノバキユア 3941) 60質量部、導電粒子として NiZAuめっきポリスチ レン粒子 10質量部、及びシランカップリング剤 (東レ 'ダウコーユング 'シリコーン株式 会社製、商品名: SZ6030) 10質量部を混合し、回路接続用の接着剤組成物を調製 した。なお、フヱノキシ榭脂として、 FX— 293 (商品名、東都化成株式会社製)を用い た。 As a film-forming polymer, a phenoxy resin solution (phenoxy resin / toluene / ethyl acetate = 40 to 30/30 parts by mass) 100 parts by mass, and a microcapsule type latent curing agent as a mixture of epoxy resin and latent curing agent Contained liquid epoxy (Asahi Kasei Co., Ltd., trade name: Novaki Yua 3941) 60 parts by mass, NiZAu plating polystyrene as conductive particles 10 parts by mass of len particles and 10 parts by mass of a silane coupling agent (manufactured by Toray 'Dowcoung' Silicone Co., Ltd., trade name: SZ6030) were mixed to prepare an adhesive composition for circuit connection. In addition, FX-293 (trade name, manufactured by Toto Kasei Co., Ltd.) was used as a phenoxy resin.
[0091] 上記の NiZAuめっきポリスチレン粒子は、平均粒径 3 μ mのポリスチレン粒子(基 材粒子)の表面に、平均粒径 400nmの Ni微粒子 (金属微粒子)を付着させた後、無 電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。めっき処理後 の導電粒子を SEMにより倍率 6000倍にて観察した結果、 Ni微粒子に起因する突 起の数 (金属めつき層の内側に配置されている金属微粒子の数)は 32個であった。 ポリスチレン粒子の 20%圧縮変形時の圧縮弾性率は 750kgfZmm2であり、最大荷 重 5mNで圧縮させた後の圧縮回復率は 70%であった。 [0091] The NiZAu-plated polystyrene particles described above are electrolessly bonded after attaching Ni fine particles (metal fine particles) with an average particle size of 400 nm to the surface of polystyrene particles (base particles) with an average particle size of 3 μm. The Ni layer was formed by the above, and the Au layer was finally formed. As a result of observing the conductive particles after plating at a magnification of 6000 with SEM, the number of protrusions due to Ni fine particles (the number of metal fine particles arranged inside the metal plating layer) was 32. . The compression modulus of polystyrene particles at 20% compression deformation was 750 kgfZmm 2 , and the compression recovery rate after compression at a maximum load of 5 mN was 70%.
[0092] PET (ポリエチレンテレフタレート)力もなる支持体 (膜厚 50 m)上に上記の接着 剤組成物を塗布した。その後、これを 70°Cで 10分間乾燥させて、支持体上に設けら れた導電粒子含有層 (膜厚 25 μ m)を得た。  [0092] The above-mentioned adhesive composition was applied on a support (film thickness 50 m) having PET (polyethylene terephthalate) force. Thereafter, this was dried at 70 ° C. for 10 minutes to obtain a conductive particle-containing layer (film thickness: 25 μm) provided on the support.
[0093] 他方、接着剤組成物の溶液の代わりに、フエノキシ榭脂溶液 (フエノキシ榭脂 Zトル ェン Z酢酸ェチル =40Z30Z30質量部) 100質量部及びエポキシ榭脂と潜在性 硬化剤の混合物としてマイクロカプセル型潜在性硬化剤を含有する液状エポキシ( 旭化成株式会社製、商品名:ノバキユア 3941) 60質量部からなる接着剤成分の溶 液を、 PETからなる支持体 (膜厚 50 m)上に塗布した。その後、これを 70°Cで 10 分間乾燥させて、支持体上に設けられた導電粒子非含有層 (膜厚 25 μ m)を得た。  [0093] On the other hand, instead of the adhesive composition solution, a phenoxy resin solution (phenoxy resin Z-toluene Z ethyl acetate = 40Z30Z30 parts by mass) and a mixture of epoxy resin and latent curing agent Liquid epoxy containing microcapsule type latent curing agent (Asahi Kasei Co., Ltd., trade name: Novakia 3941) A 60 mass parts adhesive component solution was placed on a PET support (film thickness 50 m). Applied. Thereafter, this was dried at 70 ° C. for 10 minutes to obtain a conductive particle-free layer (film thickness: 25 μm) provided on the support.
[0094] 上記の導電粒子含有層と導電粒子非含有層とを、従来公知のラミネータを用いて 貼り合わせた。これ〖こより、図 5に示す状態の二層構成の回路接続材料を得た。これ を帯状に切断し、回路接続材料を作製した。  [0094] The conductive particle-containing layer and the non-conductive particle-containing layer were bonded together using a conventionally known laminator. Thus, a circuit connecting material having a two-layer structure as shown in FIG. 5 was obtained. This was cut into strips to produce a circuit connection material.
[0095] (実施例 2)  [Example 2]
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、実施例 1で使用 したものと同一のポリスチレン粒子の表面に、平均粒径 200nmの Ni微粒子を付着さ せた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。め つき処理後の導電粒子を SEMにより倍率 6000倍にて観察した結果、 Ni微粒子に 起因する突起の数は 20個であった。 A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles were formed by depositing Ni fine particles with an average particle size of 200 nm on the surface of the same polystyrene particles used in Example 1, forming an Ni layer by electroless plating, and finally Au A layer was formed. Me As a result of observing the conductive particles after the adhesion treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 20.
[0096] (実施例 3) [0096] (Example 3)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、実施例 1で使用 したものと同一のポリスチレン粒子の表面に、平均粒径 800nmの Ni微粒子を付着さ せた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。め つき処理後の導電粒子を SEMにより倍率 6000倍にて観察した結果、 Ni微粒子に 起因する突起の数は 15個であった。  A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles were formed by depositing Ni fine particles with an average particle size of 800 nm on the same polystyrene particles used in Example 1, forming an Ni layer by electroless plating, and finally Au A layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 15.
[0097] (実施例 4) [Example 4]
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、 20%圧縮変形 時の圧縮弾性率が 300kgfZmm2であるポリスチレン粒子の表面に、平均粒径 400 nmの Ni微粒子を付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を 形成させて作製した。めっき処理後の導電粒子を SEMにより倍率 6000倍にて観察 した結果、 Ni微粒子に起因する突起の数は 30個であった。 A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles are formed by depositing Ni fine particles with an average particle size of 400 nm on the surface of polystyrene particles with a compression modulus of 300 kgfZmm 2 at 20% compression deformation, and then forming a Ni layer by electroless plating. Finally, an Au layer was formed. As a result of observing the conductive particles after plating at a magnification of 6000 by SEM, the number of protrusions attributed to Ni fine particles was 30.
[0098] (実施例 5) [Example 5]
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、 20%圧縮変形 時の圧縮弾性率が 600kgfZmm2であり、且つ、最大荷重 5mNで圧縮させた後の 圧縮回復率力 s40%であるポリスチレン粒子の表面に、平均粒径 400nmの Ni微粒子 を付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製 した。めっき処理後の導電粒子を SEMにより倍率 6000倍にて観察した結果、 Ni微 粒子に起因する突起の数は 30個であった。 A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size on the surface of polystyrene particles that has a compression modulus of 600 kgfZmm 2 at 20% compression deformation and a compression recovery rate force s of 40% after compression at a maximum load of 5 mN. After depositing 400nm Ni fine particles, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating at a magnification of 6000 with SEM, the number of protrusions attributed to Ni fine particles was 30.
[0099] (実施例 6) [0099] (Example 6)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、平均粒径が 4 mであり、且つ、 20%圧縮変形時の圧縮弾性率が 700kgfZmm2であるポリスチレン 粒子の表面に、平均粒径 400nmの Ni微粒子を付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。めっき処理後の導電粒子を SE Mにより倍率 6000倍にて観察した結果、 Ni微粒子に起因する突起の数は 32個であ つた o A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 4 m and a compression modulus of 700 kgfZmm 2 at 20% compression deformation. After attaching Ni fine particles having an average particle diameter of 400 nm to the surface of the particles, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions attributed to Ni fine particles was 32 o
[0100] (実施例 7)  [0100] (Example 7)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、平均粒径が 3 mであり、且つ、 20%圧縮変形時の圧縮弾性率が 450kgfZmm2であるポリスチレン 粒子の表面に、平均粒径 160nmの Ni微粒子を付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。めっき処理後の導電粒子を SE Mにより倍率 6000倍にて観察した結果、 Ni微粒子に起因する突起の数は 8個であ つた o A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 3 m, and after attaching Ni fine particles with an average particle size of 160 nm to the surface of polystyrene particles with a compression modulus of 450 kgfZmm 2 at 20% compression deformation, A Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions attributed to Ni fine particles was 8 o
[0101] (実施例 8)  [0101] (Example 8)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、平均粒径が 3 mであり、且つ、 20%圧縮変形時の圧縮弾性率が 500kgfZmm2であるポリスチレン 粒子の表面に、平均粒径 230nmの Ni微粒子を付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。めっき処理後の導電粒子を SE Mにより倍率 6000倍にて観察した結果、 Ni微粒子に起因する突起の数は 47個であ つた o A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 3 m, and after attaching Ni fine particles with an average particle size of 230 nm to the surface of polystyrene particles with a compression modulus of 500 kgfZmm 2 at 20% compression deformation, A Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions due to Ni fine particles was 47 o
[0102] (実施例 9)  [0102] (Example 9)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、平均粒径が 3 mであり、且つ、 20%圧縮変形時の圧縮弾性率が 90kgfZmm2であるポリスチレン 粒子の表面に、平均粒径 200nmの Ni微粒子を付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製した。めっき処理後の導電粒子を SE Mにより倍率 6000倍にて観察した結果、 Ni微粒子に起因する突起の数は 23個であ [0103] (実施例 10) A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have an average particle size of 3 m, and after Ni particles with an average particle size of 200 nm are attached to the surface of polystyrene particles with a compression modulus of 90 kgfZmm 2 at 20% compression deformation, A Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after plating treatment with SEM at a magnification of 6000, the number of protrusions attributed to Ni fine particles was 23. [0103] (Example 10)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、最大荷重 5mN で圧縮させた後の圧縮回復率が 25%であり、且つ、 20%圧縮変形時の圧縮弾性率 力 S700kgfZmm2であるポリスチレン粒子の表面に、平均粒径 400nmの Ni微粒子を 付着させた後、無電解めつきにより Ni層を形成し、最後に Au層を形成させて作製し た。めっき処理後の導電粒子を SEMにより倍率 6000倍にて観察した結果、 Ni微粒 子に起因する突起の数は 30個であった。 A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles have a compression recovery rate of 25% after compression at a maximum load of 5 mN, and a compression elastic modulus force of 20% compression deformation on the surface of polystyrene particles with an S400 kgfZmm 2 average particle size of 400 nm. After depositing the Ni fine particles, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 30.
[0104] (比較例 1)  [0104] (Comparative Example 1)
Ni/Auめっきポリスチレン粒子の代わりに、下記のようにして作製した Auめっきポ リスチレン粒子を使用したことの以外は、実施例 1と同様にして回路接続材料を得た 。実施例 1で使用したものと同一のポリスチレン粒子の表面上に、無電解めつきにより Au層を形成し、 Auめっきポリスチレン粒子を作製した。  A circuit connecting material was obtained in the same manner as in Example 1 except that instead of the Ni / Au plated polystyrene particles, Au plated polystyrene particles prepared as described below were used. On the surface of the same polystyrene particles used in Example 1, an Au layer was formed by electroless plating to produce Au-plated polystyrene particles.
[0105] (比較例 2) [0105] (Comparative Example 2)
NiZAuめっきポリスチレン粒子を下記のようにして作製した以外は、実施例 1と同 様にして回路接続材料を得た。 NiZAuめっきポリスチレン粒子は、実施例 1で使用 したものと同一のポリスチレン粒子の表面に、無電解ニッケルめっきを施して Ni層を 形成するとともに Ni塊を析出させ、その後、 Au層をめつきして作製した。めっき処理 後の導電粒子を SEMにより倍率 6000倍にて観察した結果、 Ni塊に起因する突起 の数は 35個であった。  A circuit connection material was obtained in the same manner as in Example 1 except that NiZAu-plated polystyrene particles were prepared as follows. NiZAu-plated polystyrene particles are formed by applying electroless nickel plating to the same polystyrene particle surface used in Example 1 to form a Ni layer and depositing Ni lumps, and then attaching the Au layer. Produced. As a result of observing the conductive particles after plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni mass was 35.
[0106] 次に、上記実施例及び比較例で作製した回路接続材料につ!ヽて、各種評価を行 つた o  [0106] Next, various evaluations were performed on the circuit connection materials prepared in the above-described Examples and Comparative Examples.
[0107] (初期接続抵抗の評価)  [0107] (Evaluation of initial connection resistance)
バンプ寸法 50 mX 50 m、ピッチ 100 μ m、高さ 20 μ mの金バンプを備える IC チップと表面上にアルミニウム電極が形成されたガラス基板 (厚さ 0. 7mm)を準備し た。アルミニウム電極と金バンプとを回路接続材料で電気的に接続して接続構造を 作製し、この抵抗値を測定することで接続部分の初期接続抵抗値の評価を行った。  We prepared an IC chip with gold bumps with a bump size of 50 mX 50 m, a pitch of 100 μm, and a height of 20 μm, and a glass substrate (thickness 0.7 mm) with an aluminum electrode formed on the surface. An aluminum electrode and a gold bump were electrically connected with a circuit connection material to produce a connection structure, and the initial connection resistance value of the connection portion was evaluated by measuring this resistance value.
[0108] 具体的には、まず、導電粒子含有層側の支持体を剥離し、導電粒子含有層がガラ ス基板と当接するように回路接続材料をガラス基板上に配置し、予備圧着を行った。 そして、導電粒子非含有層側の支持体を剥離した後、金バンプが導電粒子非含有 層と当接するように ICチップを載置した。 ICチップの配置後、加熱しながら回路接続 材料を挟む方向に加圧して接続した。予備圧着の条件は、温度 70°C、圧力 0. 5MP a (バンプ面積換算)、保持時間 1秒間とした。一方、接続の条件は、温度 210°C、圧 力 70MPa (バンプ面積換算)、保持時間 5秒間とした。 [0108] Specifically, first, the support on the conductive particle-containing layer side is peeled off so that the conductive particle-containing layer is free of glass. The circuit connection material was placed on the glass substrate so as to abut on the glass substrate, and pre-compression was performed. Then, after peeling off the support on the conductive particle-free layer side, the IC chip was placed so that the gold bumps were in contact with the conductive particle-free layer. After the IC chip was placed, it was connected by pressing in the direction to sandwich the circuit connection material while heating. The pre-bonding conditions were a temperature of 70 ° C, a pressure of 0.5 MPa (in terms of bump area), and a holding time of 1 second. On the other hand, the connection conditions were a temperature of 210 ° C, a pressure of 70 MPa (in terms of bump area), and a holding time of 5 seconds.
[0109] このようにして接続された接続構造の抵抗値 (R )を測定した。初期接続抵抗の評 [0109] The resistance value (R) of the connection structure thus connected was measured. Evaluation of initial connection resistance
0  0
価は以下の基準に基づいて行った。  The price was based on the following criteria.
A:Rが 1 Ω未満、  A: R is less than 1 Ω,
0  0
B :Rが 1〜2 Ωゝ  B: R is 1-2 Ω
0  0
C :Rが 2 Ωを超える。  C: R exceeds 2 Ω.
0  0
回路接続材料として実施例 1〜 9及び比較例 1の回路接続材料を、それぞれ使用し た場合の初期接続抵抗の評価結果を表 1及び表 2に示す。  Tables 1 and 2 show the evaluation results of the initial connection resistance when the circuit connection materials of Examples 1 to 9 and Comparative Example 1 are used as the circuit connection material, respectively.
[0110] (熱サイクル試験後の接続抵抗の評価) [0110] (Evaluation of connection resistance after thermal cycle test)
上記の初期接続抵抗の評価を行った後、接続構造に対して昇温降温を繰り返す 熱サイクル試験を行い、熱サイクル試験後の接続抵抗の評価を行った。熱サイクル 試験は接続構造を室温から 100°Cに昇温、次に 40°Cまで降温した後に室温まで 昇温する工程を 20回繰り返すことで行った。熱サイクル試験後の接続構造の抵抗値 After the initial connection resistance was evaluated, a thermal cycle test in which the temperature was raised and lowered was performed on the connection structure, and the connection resistance after the thermal cycle test was evaluated. The thermal cycle test was performed by repeating the process of raising the connection structure from room temperature to 100 ° C, then lowering to 40 ° C and then raising the temperature to room temperature 20 times. Resistance value of connection structure after thermal cycle test
(R )を用いて測定した。 Measured using (R).
[0111] 熱サイクル試験後の接続抵抗の評価は以下の基準に基づいて行った。 [0111] The connection resistance after the thermal cycle test was evaluated based on the following criteria.
A:Rが 3 Ω未満、  A: R is less than 3 Ω,
B :Rが 3〜4 Ωゝ  B: R is 3-4 Ω ゝ
C :Rが 4 Ωを超える。  C: R exceeds 4 Ω.
回路接続材料として実施例 1〜 9及び比較例 1の回路接続材料をそれぞれ使用した 場合の熱サイクル試験後の接続抵抗の評価結果を表 1及び表 2に示す。  Tables 1 and 2 show the evaluation results of the connection resistance after the thermal cycle test when the circuit connection materials of Examples 1 to 9 and Comparative Example 1 are used as the circuit connection material, respectively.
[0112] (絶縁性の評価) [0112] (Evaluation of insulation)
バンプ寸法 50 m X 100 m、ピッチ 15 μ m、高さ 20 μ mの金バンプを備える IC チップと ITO基板とを準備した。 ITO基板と複数の金バンプとを回路接続材料で電 気的に接続して接続構造を作製し、隣接する金バンプ間の抵抗値を測定することで 接続部分の隣接する金バンプ間の電気絶縁性の評価を行った。なお、 ITO基板は、 ガラス基板 (厚さ 0. 7mm)上に、インジユウムー錫酸ィ匕物 (ITO)を蒸着させ、 ITO電 極 (表面抵抗≤ 20 Q/U)を形成したものである。 An IC chip and an ITO substrate having gold bumps with bump dimensions of 50 m × 100 m, a pitch of 15 μm, and a height of 20 μm were prepared. Electric connection between the ITO substrate and multiple gold bumps using circuit connection material Electrical connection was made to produce a connection structure, and the electrical insulation between adjacent gold bumps in the connection portion was evaluated by measuring the resistance value between adjacent gold bumps. The ITO substrate is an ITO electrode (surface resistance ≤ 20 Q / U) formed by vapor-depositing indium stannate (ITO) on a glass substrate (thickness 0.7 mm).
[0113] まず、導電粒子含有層側の支持体を剥離し、導電粒子含有層が ITO基板と当接す るように回路接続材料を ITO基板上に配置し、予備圧着を行った。そして、導電粒子 非含有層側の支持体を剥離した後、金バンプが導電粒子非含有層と当接するように ICチップを載置した。 ICチップの配置後、加熱しながら回路接続材料を挟む方向に 加圧して接続した。予備圧着の条件は、温度 70°C、圧力 0. 5MPa (バンプ面積換算 )、保持時間 1秒間とした。一方、接続の条件は、温度 210°C、圧力 70MPa (バンプ 面積換算)、保持時間 5秒間とした。  [0113] First, the support on the conductive particle-containing layer side was peeled off, and a circuit connecting material was placed on the ITO substrate so that the conductive particle-containing layer was in contact with the ITO substrate, and pre-compression was performed. Then, after peeling off the support on the conductive particle-free layer side, the IC chip was placed so that the gold bumps were in contact with the conductive particle-free layer. After placing the IC chip, it was connected by pressing in the direction to sandwich the circuit connection material while heating. The pre-bonding conditions were a temperature of 70 ° C, a pressure of 0.5 MPa (in terms of bump area), and a holding time of 1 second. On the other hand, the connection conditions were a temperature of 210 ° C, a pressure of 70 MPa (in terms of bump area), and a holding time of 5 seconds.
[0114] このようにして接続された接続構造の隣接する金バンプ間に、 50Vの電圧を 1分間 印力!]した後、当該金バンプ間の絶縁抵抗値 (R )を測定した。絶縁性の評価は以下  [0114] Between adjacent gold bumps of the connection structure thus connected, a voltage of 50V is applied for 1 minute! After that, the insulation resistance value (R) between the gold bumps was measured. Insulation evaluation is as follows
2  2
の基準に基づいて行った。  Based on the criteria of.
A:Rが 1Χ101()Ω以上、 A: R is 1Χ10 1 () Ω or more,
2  2
B:Rが 1Χ109〜1Χ1010Ω、 B: R is 1Χ10 9 to 1Χ10 10 Ω,
2  2
C:Rが 1Χ109Ω未満。 C: R is less than 1Χ10 9 Ω.
2  2
回路接続材料として実施例 1〜 9及び比較例 1の回路接続材料をそれぞれ使用した 場合の絶縁性の評価結果を表 1及び表 2に示す。  Tables 1 and 2 show the evaluation results of the insulating properties when the circuit connection materials of Examples 1 to 9 and Comparative Example 1 are used as the circuit connection materials, respectively.
[0115] [表 1] [0115] [Table 1]
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0002
Figure imgf000028_0001
表 1に示すように、実施例 1 6の回路接続材料は、評価項目すべてについて評価 が Aであった。これにより、実施例 1 6に係る回路接続材料によれば、低い初期接 続抵抗及び隣接する回路電極との良好な絶縁性の両方を高水準に達成可能である ことが示された。これに加え、熱サイクル試験後の接続抵抗の評価が Aとなっているこ とから、接続抵抗値の上昇を十分に抑制可能であることが示された。 [0118] また、 Ni微粒子に起因する突起が設けられていない比較例 1の回路接続材料は、 初期接続抵抗の評価が Bであり、熱サイクル試験後の接続抵抗の評価が Cであった
Figure imgf000028_0001
As shown in Table 1, the circuit connection material of Example 16 was evaluated as A for all evaluation items. Thus, according to the circuit connecting material according to Example 16, it was shown that both low initial connection resistance and good insulation with the adjacent circuit electrode can be achieved at a high level. In addition, since the evaluation of the connection resistance after the thermal cycle test is A, it was shown that the increase in connection resistance can be sufficiently suppressed. [0118] In addition, the circuit connection material of Comparative Example 1 in which no protrusion due to Ni fine particles was provided had an initial connection resistance evaluation of B, and a connection resistance evaluation after the thermal cycle test of C.
[0119] 上記の結果から、本発明によれば、高いファインピッチ化が要求されている回路電 極同士を接続するに際し、回路電極が表面に酸化膜が形成されやすい金属材料か らなるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な回路接 続材料を提供できることが示された。 [0119] From the above results, according to the present invention, when connecting circuit electrodes that require a high fine pitch, the circuit electrodes are made of a metal material on which an oxide film is easily formed. Even in such a case, it has been shown that a circuit connection material capable of sufficiently reducing the initial resistance value of the connection structure can be provided.
産業上の利用可能性  Industrial applicability
[0120] 本発明によれば、接続すべき電極が、表面に酸化膜が形成されやすい金属材料 力 なるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な接着 剤組成物及びこれを用いた回路接続材料を提供することができる。また、本発明によ れば、低い接続抵抗で回路部材が接続された接続構造、並びにこれを得るための回 路部材の接続方法を提供することができる。  [0120] According to the present invention, an adhesive capable of sufficiently reducing the initial resistance value of the connection structure even when the electrode to be connected is made of a metal material capable of easily forming an oxide film on the surface. A composition and a circuit connecting material using the composition can be provided. Furthermore, according to the present invention, it is possible to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.

Claims

請求の範囲 The scope of the claims
[1] 接着剤成分と、前記接着剤成分中に分散して ヽる導電粒子とを備える接着剤組成 物であって、  [1] An adhesive composition comprising an adhesive component and conductive particles dispersed in the adhesive component,
前記導電粒子は、当該導電粒子の中心部分を構成する基材粒子と、前記基材粒 子の表面の少なくとも一部を覆う金属めつき層と、前記金属めつき層の内側であり前 記基材粒子の表面上に配置された複数の金属微粒子とを有する、接着剤組成物。  The conductive particles are a base particle constituting a central portion of the conductive particle, a metal plating layer covering at least a part of the surface of the base particle, and an inner side of the metal plating layer. An adhesive composition having a plurality of metal fine particles disposed on the surface of the material particles.
[2] 前記金属微粒子の平均粒径が 200〜: LOOOnmである、請求項 1記載の接着剤組 成物。  [2] The adhesive composition according to claim 1, wherein the metal fine particles have an average particle size of 200 to LOOOnm.
[3] 前記金属微粒子の数が、基材粒子 1個当たり 10〜40個である、請求項 1又は 2記 載の接着剤組成物。  [3] The adhesive composition according to claim 1 or 2, wherein the number of the metal fine particles is 10 to 40 per base particle.
[4] 前記基材粒子は、粒子直径の 20%圧縮変形時の圧縮弾性率が 100〜: LOOOkgf Zmm2である材質力もなるものである、請求項 1〜3のいずれか一項に記載の接着 剤組成物。 [4] The substrate particles 100 20% compressive deformation during the compression modulus of the grain diameter: LOOOkgf Zmm 2 a is a material force but also made, according to any one of claims 1 to 3 Adhesive composition.
[5] 前記基材粒子は、最大荷重 5mNで圧縮させた後の圧縮回復率が 40%以上であ る、請求項 1〜4のいずれか一項に記載の接着剤組成物。  [5] The adhesive composition according to any one of claims 1 to 4, wherein the base material particles have a compression recovery rate of 40% or more after being compressed at a maximum load of 5 mN.
[6] 前記基材粒子の平均粒径が、 1〜10 μ mである、請求項 1〜5のいずれか一項に 記載の接着剤組成物。 [6] The adhesive composition according to any one of claims 1 to 5, wherein the base particles have an average particle size of 1 to 10 µm.
[7] 請求項 1〜6のいずれか一項に記載の接着剤組成物からなり、回路部材同士を接 着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するため に用いられる、回路接続材料。  [7] The adhesive composition according to any one of claims 1 to 6, which is used to connect circuit members to each other and to electrically connect circuit electrodes included in each circuit member. , Circuit connection material.
[8] 対向配置された一対の回路部材と、  [8] a pair of circuit members disposed opposite to each other;
請求項 7に記載の回路接続材料の硬化物力 なり、前記一対の回路部材の間に介 在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該 回路部材同士を接着する接続部と、を備える接続構造。  The circuit connection material according to claim 7, wherein the circuit members are bonded to each other so that circuit electrodes interposed between the pair of circuit members and electrically connected to each other are electrically connected. And a connection part.
[9] 対向配置された一対の回路部材の間に請求項 7に記載の回路接続材料を介在さ せ、全体を加熱及び加圧して、前記回路接続材料の硬化物からなり、前記一対の回 路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続さ れるように前記回路部材同士を接着する接続部を形成することにより、前記一対の回 路部材及び前記接続部を備える接続構造を得る、回路部材の接続方法。 [9] The circuit connection material according to claim 7 is interposed between a pair of circuit members arranged opposite to each other, and the whole is heated and pressurized to be made of a cured product of the circuit connection material. By forming a connection portion that bonds the circuit members so that the circuit electrodes of each circuit member that are interposed between the road members are electrically connected to each other, A circuit member connection method for obtaining a connection structure including a road member and the connection portion.
PCT/JP2006/322628 2005-11-18 2006-11-14 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method WO2007058159A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117009581A KR20110048079A (en) 2005-11-18 2006-11-14 Adhesive composition
KR1020087011623A KR101049609B1 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
JP2007545234A JP4877230B2 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
CN2006800430380A CN101309993B (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-334235 2005-11-18
JP2005334235 2005-11-18
JP2006-178346 2006-06-28
JP2006178346 2006-06-28

Publications (1)

Publication Number Publication Date
WO2007058159A1 true WO2007058159A1 (en) 2007-05-24

Family

ID=38048545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322628 WO2007058159A1 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Country Status (5)

Country Link
JP (2) JP4877230B2 (en)
KR (2) KR101049609B1 (en)
CN (1) CN101309993B (en)
TW (2) TW201202375A (en)
WO (1) WO2007058159A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004593A (en) * 2007-06-22 2009-01-08 Panasonic Corp Semiconductor laminate structure, semiconductor device using it and their manufacturing method
WO2009017200A1 (en) * 2007-08-02 2009-02-05 Hitachi Chemical Company, Ltd. Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
JP2010034045A (en) * 2008-07-01 2010-02-12 Hitachi Chem Co Ltd Circuit connection material, and circuit connection structure
WO2011002084A1 (en) * 2009-07-02 2011-01-06 日立化成工業株式会社 Conductive particle
JP2011012180A (en) * 2009-07-02 2011-01-20 Hitachi Chem Co Ltd Circuit connecting material and circuit connection structure
JP2011029179A (en) * 2009-07-02 2011-02-10 Hitachi Chem Co Ltd Conductive particle
JP2011029180A (en) * 2009-07-02 2011-02-10 Hitachi Chem Co Ltd Coated conductive particle
JP2011108446A (en) * 2009-11-16 2011-06-02 Hitachi Chem Co Ltd Conductive particle, and method of manufacturing the same
JP2011233530A (en) * 2008-06-26 2011-11-17 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP4930598B2 (en) * 2007-10-18 2012-05-16 日立化成工業株式会社 Circuit connection material, circuit connection body and circuit member connection method
JP2012142137A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
WO2013129438A1 (en) * 2012-03-02 2013-09-06 デクセリアルズ株式会社 Circuit connection material and method for producing mounted unit using same
JP2014510192A (en) * 2011-11-24 2014-04-24 ハンワ ケミカル コーポレイション Conductive particles and method for producing the same
WO2014088095A1 (en) * 2012-12-06 2014-06-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure
JP2015057757A (en) * 2013-08-09 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material
US20160240505A1 (en) * 2013-11-11 2016-08-18 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
JP2018046010A (en) * 2016-09-09 2018-03-22 積水化学工業株式会社 Metal atom-containing grain, connection material, connection structure, and method for producing connection structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596086B2 (en) * 2009-02-27 2010-12-08 日立化成工業株式会社 Adhesive reel
JP6333552B2 (en) * 2012-01-19 2018-05-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR20160106004A (en) * 2014-01-08 2016-09-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
WO2015107996A1 (en) * 2014-01-14 2015-07-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
JP2015195178A (en) * 2014-03-26 2015-11-05 デクセリアルズ株式会社 Conductive particle, conductive adhesive, method for producing connection body, method for connecting electronic component, and connection body

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301408A (en) * 1987-06-02 1988-12-08 Hitachi Chem Co Ltd Conductive particle
JPH0436902A (en) * 1990-06-01 1992-02-06 Sekisui Fine Chem Kk Conductive fine grain and conductive adhesive
JPH0845337A (en) * 1994-07-29 1996-02-16 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
JPH0855514A (en) * 1993-12-16 1996-02-27 Shin Etsu Polymer Co Ltd Conductive particle and anisotropic conductive adhesive using it
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2005166438A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Circuit connecting material, and connection structure of circuit member using it
WO2005073985A1 (en) * 2004-01-30 2005-08-11 Sekisui Chemical Co., Ltd. Conductive particle and anisotropic conductive material
WO2006019154A1 (en) * 2004-08-20 2006-02-23 Sekisui Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material
JP2006216388A (en) * 2005-02-03 2006-08-17 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2006228475A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2006228474A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP2006302716A (en) * 2005-04-21 2006-11-02 Sekisui Chem Co Ltd Conductive particle and anisotropic conductive material
JP2006331714A (en) * 2005-05-24 2006-12-07 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2006344416A (en) * 2005-06-07 2006-12-21 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2007035575A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and joint structural body
JP2007035573A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
JP2007035572A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766123B2 (en) * 1995-10-03 2006-04-12 積水化学工業株式会社 Conductive connection method between electrodes and conductive fine particles
JP3379456B2 (en) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP4663158B2 (en) * 2000-06-14 2011-03-30 積水化学工業株式会社 Fine particle arrangement film, conductive connection film, conductive connection structure, and fine particle arrangement method
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005108870A (en) * 2003-09-26 2005-04-21 Sekisui Chem Co Ltd Ic chip, its manufacturing method, semiconductor package, and liquid crystal display device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301408A (en) * 1987-06-02 1988-12-08 Hitachi Chem Co Ltd Conductive particle
JPH0436902A (en) * 1990-06-01 1992-02-06 Sekisui Fine Chem Kk Conductive fine grain and conductive adhesive
JPH0855514A (en) * 1993-12-16 1996-02-27 Shin Etsu Polymer Co Ltd Conductive particle and anisotropic conductive adhesive using it
JPH0845337A (en) * 1994-07-29 1996-02-16 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2005166438A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Circuit connecting material, and connection structure of circuit member using it
WO2005073985A1 (en) * 2004-01-30 2005-08-11 Sekisui Chemical Co., Ltd. Conductive particle and anisotropic conductive material
WO2006019154A1 (en) * 2004-08-20 2006-02-23 Sekisui Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material
JP2006216388A (en) * 2005-02-03 2006-08-17 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2006228475A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2006228474A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP2006302716A (en) * 2005-04-21 2006-11-02 Sekisui Chem Co Ltd Conductive particle and anisotropic conductive material
JP2006331714A (en) * 2005-05-24 2006-12-07 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2006344416A (en) * 2005-06-07 2006-12-21 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2007035575A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and joint structural body
JP2007035573A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
JP2007035572A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004593A (en) * 2007-06-22 2009-01-08 Panasonic Corp Semiconductor laminate structure, semiconductor device using it and their manufacturing method
WO2009017200A1 (en) * 2007-08-02 2009-02-05 Hitachi Chemical Company, Ltd. Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
JPWO2009017200A1 (en) * 2007-08-02 2010-10-21 日立化成工業株式会社 Circuit connection material, circuit member connection structure using the same, and circuit member connection method
JP5316410B2 (en) * 2007-08-02 2013-10-16 日立化成株式会社 Circuit member connection structure
CN101689410B (en) * 2007-08-02 2013-10-16 日立化成株式会社 Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
JP4930598B2 (en) * 2007-10-18 2012-05-16 日立化成工業株式会社 Circuit connection material, circuit connection body and circuit member connection method
JP2011233530A (en) * 2008-06-26 2011-11-17 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2010034045A (en) * 2008-07-01 2010-02-12 Hitachi Chem Co Ltd Circuit connection material, and circuit connection structure
JP2011029180A (en) * 2009-07-02 2011-02-10 Hitachi Chem Co Ltd Coated conductive particle
WO2011002084A1 (en) * 2009-07-02 2011-01-06 日立化成工業株式会社 Conductive particle
JP2011029179A (en) * 2009-07-02 2011-02-10 Hitachi Chem Co Ltd Conductive particle
KR101271814B1 (en) 2009-07-02 2013-06-07 히타치가세이가부시끼가이샤 Conductive particle
JP2011012180A (en) * 2009-07-02 2011-01-20 Hitachi Chem Co Ltd Circuit connecting material and circuit connection structure
JP2011108446A (en) * 2009-11-16 2011-06-02 Hitachi Chem Co Ltd Conductive particle, and method of manufacturing the same
JP2012142137A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
US9301392B2 (en) 2011-11-24 2016-03-29 Hanwha Chemical Corporation Conductive particle and method of manufacturing the same
JP2014510192A (en) * 2011-11-24 2014-04-24 ハンワ ケミカル コーポレイション Conductive particles and method for producing the same
WO2013129438A1 (en) * 2012-03-02 2013-09-06 デクセリアルズ株式会社 Circuit connection material and method for producing mounted unit using same
WO2014088095A1 (en) * 2012-12-06 2014-06-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure
JPWO2014088095A1 (en) * 2012-12-06 2017-01-05 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
JP2015057757A (en) * 2013-08-09 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
US20160240505A1 (en) * 2013-11-11 2016-08-18 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
US9960140B2 (en) * 2013-11-11 2018-05-01 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
US20170310020A1 (en) * 2014-10-29 2017-10-26 Dexerials Corporation Electrically conductive material
US10177465B2 (en) 2014-10-29 2019-01-08 Dexerials Corporation Electrically conductive material
JP2020170706A (en) * 2014-10-29 2020-10-15 デクセリアルズ株式会社 Conductive material
JP7100088B2 (en) 2014-10-29 2022-07-12 デクセリアルズ株式会社 Conductive material
JP2018046010A (en) * 2016-09-09 2018-03-22 積水化学工業株式会社 Metal atom-containing grain, connection material, connection structure, and method for producing connection structure
JP7007138B2 (en) 2016-09-09 2022-02-10 積水化学工業株式会社 Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures

Also Published As

Publication number Publication date
JPWO2007058159A1 (en) 2009-04-30
TW201202375A (en) 2012-01-16
CN101309993A (en) 2008-11-19
JP4877230B2 (en) 2012-02-15
JP2011231326A (en) 2011-11-17
TWI367246B (en) 2012-07-01
KR101049609B1 (en) 2011-07-14
KR20080072658A (en) 2008-08-06
KR20110048079A (en) 2011-05-09
CN101309993B (en) 2012-06-27
TW200730599A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
WO2007058159A1 (en) Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
TWI396487B (en) Circuit connecting material, film-form circuit connecting material using the same, circuit member connecting structure and method of manufacturing the same
US7776438B2 (en) Adhesive film for circuit connection, and circuit connection structure
KR101140067B1 (en) Circuit connecting adhesive film and circuit connecting structure
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
JP4862944B2 (en) Circuit connection material
KR101410108B1 (en) Circuit-connecting material, and connection structure for circuit member
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP5518747B2 (en) Circuit connection material and circuit member connection structure using the same
KR20020034179A (en) Wiring-connecting material and process for producing circuit board with the same
KR20090075749A (en) Circuit connection structure
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP2022109272A (en) adhesive film
JP2017073386A (en) Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
WO2008004367A1 (en) Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP2022173198A (en) Conductive particle sorting method, circuit connection material, connection structure and manufacturing method therefor, and conductive particle
JP7020029B2 (en) Conductive adhesive film
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2011119154A (en) Connection method and connection structure
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP2009182365A (en) Manufacturing method of circuit board, and circuit connection material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043038.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007545234

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087011623

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020117009581

Country of ref document: KR