JP2009004593A - Semiconductor laminate structure, semiconductor device using it and their manufacturing method - Google Patents

Semiconductor laminate structure, semiconductor device using it and their manufacturing method Download PDF

Info

Publication number
JP2009004593A
JP2009004593A JP2007164605A JP2007164605A JP2009004593A JP 2009004593 A JP2009004593 A JP 2009004593A JP 2007164605 A JP2007164605 A JP 2007164605A JP 2007164605 A JP2007164605 A JP 2007164605A JP 2009004593 A JP2009004593 A JP 2009004593A
Authority
JP
Japan
Prior art keywords
conductive
semiconductor chip
semiconductor
conductive via
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007164605A
Other languages
Japanese (ja)
Other versions
JP5018270B2 (en
JP2009004593A5 (en
Inventor
Yoshiko Matsuda
佳子 松田
Kazuki Fukada
和岐 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007164605A priority Critical patent/JP5018270B2/en
Publication of JP2009004593A publication Critical patent/JP2009004593A/en
Publication of JP2009004593A5 publication Critical patent/JP2009004593A5/ja
Application granted granted Critical
Publication of JP5018270B2 publication Critical patent/JP5018270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13009Bump connector integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9202Forming additional connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor laminate structure which is excellent in connection reliability, has high productivity and can achieve thinning by using a conductive resin, a semiconductor device using it and their manufacturing method. <P>SOLUTION: The semiconductor laminate structure 1 for which at least a first semiconductor chip 10 having a first wiring electrode and a second semiconductor chip 11 having a second wiring electrode are laminated includes at least the first semiconductor chip 10 connected with the second semiconductor chip 11 in a lamination direction and provided with a first conductive via 10d connected with a prescribed first wiring electrode and filled with a conductive resin and the second semiconductor chip 11 connected with the first semiconductor chip 10 in the lamination direction and provided with a second conductive via 11d connected with a prescribed second wiring electrode and filled with the conductive resin. The first conductive via 10d and the second conductive via 11d facing each other are electrically connected through a conductive connector 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導電ビアを有する半導体チップを複数枚積層する半導体積層構造体とそれを用いた半導体装置およびそれらの製造方法に関するものである。   The present invention relates to a semiconductor laminated structure in which a plurality of semiconductor chips having conductive vias are laminated, a semiconductor device using the same, and a method for manufacturing the same.

近年、電子機器の高性能化、小型化に伴って1つのパッケージ内に複数の半導体チップを配置してマルチチップパッケージ(Multi Chip Package:MCP)とすることにより、半導体装置の高機能化と小型化とが図られている。そして、マルチチップパッケージには、複数の半導体チップを平面的に並べたものと、複数の半導体チップを厚み方向に積層したものがある。半導体チップを平面的に並べたマルチチップパッケージは、広い実装面積を必要とするため、電子機器の小型化への寄与が小さい。このため、半導体チップを積層したスタックドMCPの開発が盛んに行われている。   2. Description of the Related Art In recent years, with increasing performance and miniaturization of electronic devices, a plurality of semiconductor chips are arranged in one package to form a multi-chip package (Multi Chip Package: MCP). It is planned. The multichip package includes a plurality of semiconductor chips arranged in a plane and a plurality of semiconductor chips stacked in the thickness direction. A multi-chip package in which semiconductor chips are arranged in a plane requires a large mounting area, and therefore contributes little to downsizing of electronic devices. For this reason, development of stacked MCPs in which semiconductor chips are stacked has been actively conducted.

例えば、電極パッドを形成した半導体チップを上下に貫通したスルーホールに、電極パッドと接合する頭部とスルーホールに挿通し先端を半導体チップ裏面から突出させたシャフト部とからなる導通ピンを介して、複数の半導体チップを積層した半導体装置の例が開示されている(例えば、特許文献1参照)。これにより、積層した半導体チップ間をスルーホールに挿入した導通ピンで電気的に接続できるとしている。さらに、導通ピンで接続するため、効率よくマルチチップ化できるとしている。   For example, through a through-hole penetrating a semiconductor chip on which an electrode pad is formed, through a conduction pin comprising a head portion joined to the electrode pad and a shaft portion with the tip protruding from the back surface of the semiconductor chip. An example of a semiconductor device in which a plurality of semiconductor chips are stacked is disclosed (for example, see Patent Document 1). As a result, the stacked semiconductor chips can be electrically connected by the conduction pins inserted into the through holes. Furthermore, since it is connected with a conductive pin, it is said that the multichip can be efficiently made.

また、スルーホール上に形成した電極パッドに溶着接合した座部とこれから立設するチップ厚さより長く突出したピン部を有する突起型形状バンプを介して、複数の半導体チップを積層した半導体装置の例が開示されている(例えば、特許文献2参照)。これにより、積層した半導体チップ間をスルーホールに挿入した突起型形状バンプで電気的に接続できるとしている。   In addition, an example of a semiconductor device in which a plurality of semiconductor chips are stacked via a projecting bump having a seat part welded and bonded to an electrode pad formed on a through hole and a pin part protruding longer than the chip thickness standing from now on. Is disclosed (for example, see Patent Document 2). As a result, the stacked semiconductor chips can be electrically connected by the protruding bumps inserted into the through holes.

しかし、特許文献1や特許文献2の半導体装置では、導電ピンの頭部や突起型形状バンプの座部を介して、半導体チップを積層するため、MCPの薄型化が困難で、実装密度を向上できないという問題があった。また、導電ピンの頭部や突起型形状バンプの座部と半導体チップの電極パッドとを圧接して接続するため、半導体チップの割れや損傷などを生じやすく信頼性にも課題があった。   However, in the semiconductor devices of Patent Document 1 and Patent Document 2, since the semiconductor chips are stacked via the heads of the conductive pins and the seats of the protruding bumps, it is difficult to reduce the thickness of the MCP and improve the mounting density. There was a problem that I could not. Further, since the head portion of the conductive pin or the seat portion of the protruding bump and the electrode pad of the semiconductor chip are connected by pressure contact, the semiconductor chip is liable to be cracked or damaged, and there is a problem in reliability.

さらに、特許文献1や特許文献2においては、狭ピッチ化に対応して導電ピンや突起型形状バンプを小型化し、微小な径のスルーホールに挿入することは、生産性向上の阻害要因となっていた。   Further, in Patent Document 1 and Patent Document 2, it is an impediment to productivity improvement to reduce the size of the conductive pins and the protrusion-shaped bumps corresponding to the narrowing of the pitch and insert them into through holes having a small diameter. It was.

そこで、上記課題を回避するために、絶縁性の樹脂を介して電極取り出しパッドを備えたLSIを積層し、電極取り出しパッドの位置に設けた開孔に導電性の樹脂を充填して接続したモジュールの例が開示されている(例えば、特許文献3参照)。これにより、一般的なLSIの使用と、必要最小限の実装領域でモジュール化できるとしている。
特開2001−77296号公報 特開2001−135785号公報 特開平10−163411号公報
Therefore, in order to avoid the above problem, a module in which LSIs having electrode take-out pads are stacked via an insulating resin, and a conductive resin is filled in and connected to the opening provided at the position of the electrode take-out pad. Are disclosed (for example, see Patent Document 3). As a result, it can be modularized with the use of general LSI and the minimum required mounting area.
JP 2001-77296 A JP 2001-135785 A JP-A-10-163411

しかし、特許文献3のモジュールでは、積層した後にLSI間を導電性の樹脂で接続するため、積層したLSIに不具合がある場合、リペアが困難であるため歩留まりの低下により生産性が低いという課題がある。また、内部に積層したLSI間のみに開孔を形成できず、少なくとも最外層のLSIから開孔しなければならない。さらに、狭ピッチ化に対応するために、複数の半導体チップと一体に設けられた微細な径を有する開孔に導電性の樹脂を充填することは困難となる。そこで、例えば粘度を下げて導電性の樹脂を開孔に充填し、導電性の樹脂を加熱して硬化する場合、硬化収縮量が大きくポーラス化しやすいため、高抵抗での接続や断線などの接続不良を生じるという課題がある。   However, in the module of Patent Document 3, since the LSIs are connected with a conductive resin after being stacked, if there is a problem with the stacked LSIs, the repair is difficult and the productivity is low due to a decrease in yield. is there. In addition, an opening cannot be formed only between LSIs stacked inside, and the opening must be made from at least the outermost LSI. Further, in order to cope with the narrow pitch, it is difficult to fill the openings having a fine diameter provided integrally with the plurality of semiconductor chips with the conductive resin. Therefore, for example, when the conductive resin is cured by heating the conductive resin by lowering the viscosity and the conductive resin is heated, the amount of cure shrinkage is large and it is easy to become porous. There is a problem of causing defects.

これを回避するために、個別にLSIに貫通するスルーホールを形成し、その中に導電性の樹脂を充填した後、複数のLSIを積層する方法が考えられる。しかし、上述したように、一般に導電性の樹脂を充填して硬化した場合、導電性の樹脂は硬化収縮により、LSIのスルーホールの上下部面において、へこみを生じる。そのため、積層したLSI間を電気的に確実に接続することができないという問題がある。   In order to avoid this, a method is conceivable in which a plurality of LSIs are stacked after through holes are individually formed through LSIs and filled with a conductive resin. However, as described above, in general, when a conductive resin is filled and cured, the conductive resin is dented on the upper and lower surfaces of the LSI through hole due to curing shrinkage. Therefore, there is a problem that the stacked LSIs cannot be electrically connected reliably.

本発明は、上記課題を解決するためになされたもので、導電性樹脂を用いて、接続の信頼性に優れ、生産性が高く、薄型化を実現できる半導体積層構造体とそれを用いた半導体装置およびそれらの製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. A semiconductor multilayer structure using a conductive resin, excellent in connection reliability, high in productivity, and capable of realizing thinning, and a semiconductor using the same It is an object of the present invention to provide an apparatus and a manufacturing method thereof.

上述したような目的を達成するために、本発明の半導体積層構造体は、少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体であって、第2半導体チップと積層方向に接続するとともに所定の第1配線電極と接続する導電性樹脂を充填した第1導電ビアを有する第1半導体チップと、第1半導体チップと積層方向に接続するとともに所定の第2配線電極と接続する導電性樹脂を充填した第2導電ビアを有する第2半導体チップとを、少なくとも備え、相対する第1導電ビアと第2導電ビアとが導電性接続体を介して電気的に接続した構成を有する。   In order to achieve the above-described object, a semiconductor multilayer structure according to the present invention includes a semiconductor multilayer structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked. A first semiconductor chip having a first conductive via that is connected to the second semiconductor chip in the stacking direction and filled with a conductive resin that is connected to a predetermined first wiring electrode, and the first semiconductor chip in the stacking direction. And at least a second semiconductor chip having a second conductive via filled with a conductive resin to be connected to a predetermined second wiring electrode, and the first conductive via and the second conductive via facing each other are conductively connected. It has a configuration that is electrically connected through the body.

さらに、導電性接続体が、複数の突起部を有する個別部材からなる。さらに、個別部材は、導電性樹脂硬化物あるいは絶縁性樹脂硬化物に外周を金属めっきして構成されていてもよい。さらに、個別部材は、光造形法により形成された光硬化性導電性樹脂硬化物あるいは光硬化性絶縁性樹脂硬化物に外周を金属めっきして構成されていてもよい。さらに、導電性接続体の体積が、第1導電ビアおよび第2導電ビアの導電性樹脂の硬化収縮した空間体積よりも大きい。   Further, the conductive connection body is made of an individual member having a plurality of protrusions. Furthermore, the individual member may be configured by metal plating the outer periphery of a cured conductive resin or a cured insulating resin. Furthermore, the individual member may be configured by metal-plating the outer periphery of a photocurable conductive resin cured product or a photocurable insulating resin cured product formed by an optical modeling method. Further, the volume of the conductive connection body is larger than the space volume of the first conductive via and the second conductive via, which are hardened and contracted by the conductive resin.

これらの構成により、導電性樹脂の硬化収縮による導電ビアのへこみを導電性接続体で補い、確実な接続により接続信頼性に優れた半導体積層構造体を実現できる。   With these configurations, it is possible to compensate the dent of the conductive via due to the curing shrinkage of the conductive resin with the conductive connection body, and it is possible to realize a semiconductor laminated structure excellent in connection reliability by reliable connection.

さらに、導電性接続体が、少なくとも1つの凸部を有する光造形法により形成された光硬化性導電性樹脂硬化物からなっていてもよい。さらに、導電性接続体の少なくとも凸部の体積が、第1導電ビアおよび第2導電ビアの導電性樹脂の硬化収縮した空間体積よりも大きくてもよい。   Furthermore, the conductive connection body may be made of a photocurable conductive resin cured product formed by an optical modeling method having at least one convex portion. Furthermore, the volume of at least the convex portion of the conductive connection body may be larger than the space volume of the first conductive via and the conductive resin of the second conductive via that is cured and contracted.

これらにより、導電性樹脂の硬化収縮による導電ビアのへこみを光硬化性導電性樹脂硬化物からなる凸部で補い、確実な接続により接続信頼性に優れた半導体積層構造体を実現できる。   Accordingly, the recesses of the conductive via due to the curing shrinkage of the conductive resin can be compensated by the convex portion made of the photocurable conductive resin cured product, and a semiconductor laminated structure excellent in connection reliability can be realized by reliable connection.

さらに、導電性樹脂と導電性接続体が、光造形法により一体的に形成された光硬化性導電性樹脂からなっていてもよい。   Furthermore, the conductive resin and the conductive connector may be made of a photocurable conductive resin integrally formed by an optical modeling method.

これにより、導電性樹脂と導電性接続体が一体的に形成できるので、生産性に優れ、接続信頼性の高い半導体積層構造体を実現できる。   Thereby, since a conductive resin and a conductive connection body can be formed integrally, it is possible to realize a semiconductor laminated structure having excellent productivity and high connection reliability.

また、本発明の半導体装置は、上記の半導体積層構造体を配線基板に実装し、配線基板の接続電極と第1導電ビアを介して電気的に接続された構成を有する。この構成により、薄型で、かつ接続信頼性に優れた半導体装置を実現できる。   In addition, a semiconductor device of the present invention has a configuration in which the above-described semiconductor multilayer structure is mounted on a wiring board and electrically connected to a connection electrode of the wiring board through a first conductive via. With this configuration, a thin semiconductor device having excellent connection reliability can be realized.

また、本発明の半導体積層構造体の製造方法は、少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体の製造方法であって、第1半導体チップに第2半導体チップと積層方向に接続するとともに所定の第1配線電極と接続する第1貫通孔を形成する工程と、第2半導体チップに第1半導体チップと積層方向に接続するとともに所定の第2配線電極と接続する第2貫通孔を形成する工程と、第1貫通孔および第2貫通孔に導電性樹脂ペーストを充填し第1半導体チップに第1導電ビアおよび第2半導体チップに第2導電ビアを形成する導電ビア形成工程と、導電性接続体を形成する導電性接続体形成工程と、少なくとも第1半導体チップまたは第2半導体チップの一方の面上に導電性接続体を第1導電ビアまたは第2導電ビアに配置する導電性接続体配置工程と、所定の第1半導体チップの第1導電ビアと第2半導体チップの第2導電ビアとを位置合わせし、付着させた導電性接続体を介して第1導電ビアと第2導電ビアを電気的に接続させる半導体チップ積層工程と、を含む。   The method for manufacturing a semiconductor multilayer structure according to the present invention is a method for manufacturing a semiconductor multilayer structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked. Connecting the first semiconductor chip to the second semiconductor chip in the stacking direction and forming a first through hole connecting to a predetermined first wiring electrode; and connecting the first semiconductor chip to the first semiconductor chip in the stacking direction. And forming a second through-hole connected to a predetermined second wiring electrode, filling the first through-hole and the second through-hole with conductive resin paste, and filling the first semiconductor chip with the first conductive via and the second through-hole. A conductive via forming step of forming a second conductive via in the semiconductor chip; a conductive connector forming step of forming a conductive connector; and at least one surface of the first semiconductor chip or the second semiconductor chip A conductive connection body disposing step of disposing the conductive connection body in the first conductive via or the second conductive via; and a first conductive via of the predetermined first semiconductor chip and a second conductive via of the second semiconductor chip. And a semiconductor chip stacking step of electrically connecting the first conductive via and the second conductive via via the conductive connection bodies that are combined and adhered.

この方法により、導電性樹脂の硬化収縮による導電ビアのへこみを導電性接続体で補い、確実な接続を実現し接続信頼性に優れた半導体積層構造体を生産性よく作製できる。   By this method, the conductive via dent due to the curing shrinkage of the conductive resin can be compensated with the conductive connecting body, and a reliable semiconductor connection structure with excellent connection reliability can be produced with high productivity.

さらに、導電性接続体形成工程が、液晶マスクあるいはレーザー光線を用いた光造形法により、光硬化性導電性樹脂液あるいは光硬化性絶縁性樹脂液を所定の形状に露光現像して、非露光部分を除去し、光硬化性導電性樹脂硬化物の導電性接続体あるいは形成した光硬化性絶縁性樹脂硬化物の外周を金属めっきした導電性接続体を形成する工程を含んでいてもよい。   Further, in the conductive connector forming step, a photocurable conductive resin liquid or a photocurable insulating resin liquid is exposed and developed into a predetermined shape by an optical modeling method using a liquid crystal mask or a laser beam, and a non-exposed portion is formed. May be included, and a conductive connection body of the photocurable conductive resin cured product or a conductive connection body in which the outer periphery of the formed photocurable insulating resin cured product is metal-plated may be included.

これにより、任意の形状を有する導電性接続体を生産性よく、安価に作製できる。   Thereby, the electroconductive connection body which has arbitrary shapes can be produced cheaply with high productivity.

さらに、導電ビア形成工程以後の工程が、第1半導体チップの第1導電ビアと接続し、第2半導体チップの第2導電ビアと対向する位置に、少なくとも1つの凸部を有する導電性接続体を光造形法により形成する導電性接続体形成工程と、所定の導電性接続体の凸部と第2半導体チップの第2導電ビアとを位置合わせし、導電性接続体を介して第1導電ビアと第2導電ビアを電気的に接続させる半導体チップ積層工程と、を含んでいてもよい。   Further, the conductive connector having at least one convex portion at a position that is connected to the first conductive via of the first semiconductor chip and that faces the second conductive via of the second semiconductor chip in the steps after the conductive via forming step. The conductive connecting body forming step for forming the first conductive conductor by aligning the convex portion of the predetermined conductive connecting body with the second conductive via of the second semiconductor chip, and the first conductive through the conductive connecting body. A semiconductor chip stacking step of electrically connecting the via and the second conductive via.

これにより、導電性樹脂の硬化収縮による導電ビアのへこみを光硬化性導電性樹脂硬化物からなる凸部で補い、確実な接続を実現し接続信頼性に優れた半導体積層構造体を生産性よく作製できる。   This makes it possible to compensate the dents in the conductive via due to the curing shrinkage of the conductive resin with the convex portion made of the photo-curing conductive resin cured product, realize a reliable connection, and achieve a highly reliable semiconductor laminated structure with high productivity. Can be made.

また、本発明の半導体積層構造体の製造方法は、少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体の製造方法であって、第1半導体チップに第2半導体チップと積層方向に接続するとともに所定の第1配線電極と接続する第1貫通孔を形成する工程と、第2半導体チップに第1半導体チップと積層方向に接続するとともに所定の第2配線電極と接続する第2貫通孔を形成する工程と、第1半導体チップを光硬化性導電性樹脂液中に浸漬し、第1貫通孔内の光硬化性導電性樹脂を光硬化させて第1導電ビアを形成するとともに、第1導電ビアと接続される導電性接続体を形成する工程と、さらに第2半導体チップを光硬化性導電性樹脂液中に浸漬し、導電性接続体に対応する第2貫通孔と位置合わせして、第2貫通孔内の光硬化性導電性樹脂を光硬化させて第2導電ビアを形成し、導電性接続体を介して第1導電ビアと第2導電ビアを電気的に接続させる半導体チップ積層工程と、を含むものである。   The method for manufacturing a semiconductor multilayer structure according to the present invention is a method for manufacturing a semiconductor multilayer structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked. Connecting the first semiconductor chip to the second semiconductor chip in the stacking direction and forming a first through hole connecting to a predetermined first wiring electrode; and connecting the first semiconductor chip to the first semiconductor chip in the stacking direction. And a step of forming a second through hole connected to a predetermined second wiring electrode, and a step of immersing the first semiconductor chip in a photo-curable conductive resin liquid, and the photo-curable conductive resin in the first through-hole Forming a first conductive via by photocuring, and a step of forming a conductive connector connected to the first conductive via, and further immersing the second semiconductor chip in the photocurable conductive resin liquid, Pair with conductive connector Aligning with the second through hole to be formed, photo-curing the photocurable conductive resin in the second through hole to form a second conductive via, and the first conductive via and the second through the conductive connector And a semiconductor chip stacking step for electrically connecting the conductive vias.

これにより、光硬化性導電性樹脂で導電ビアと導電性接続体を連続して一体的に形成して半導体積層構造体を作製できる。さらに、導電ビアと導電性接続体との接続界面がないので、接続強度に優れるとともに、低抵抗での接続が得られる。   As a result, the semiconductor via structure can be formed by continuously and integrally forming the conductive via and the conductive connection body with the photocurable conductive resin. Furthermore, since there is no connection interface between the conductive via and the conductive connector, the connection strength is excellent and a connection with low resistance is obtained.

また、本発明の半導体積層構造体の製造方法は、少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体の製造方法であって、第1半導体チップに第2半導体チップと積層方向に接続するとともに所定の第1配線電極と接続する第1貫通孔に導電性樹脂ペーストを充填して第1半導体チップに第1導電ビアを形成し、第1導電ビアと接続する少なくとも1つの凸部を有する導電性接続体を光造形法により形成する第1半導体チップ形成工程と、第2半導体チップに第1半導体チップと積層方向に接続するとともに所定の第2配線電極と接続する第2貫通孔に導電性樹脂ペーストを充填して第2半導体チップに第2導電ビアを形成する第2半導体チップ形成工程と、第1半導体チップの導電性接続体の凸部と第2半導体チップの第2導電ビアとを位置合わせし、導電性接続体を介して第1導電ビアと第2導電ビアを電気的に接続させる半導体チップ積層工程と、を含む。   The method for manufacturing a semiconductor multilayer structure according to the present invention is a method for manufacturing a semiconductor multilayer structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked. A first conductive via is formed in the first semiconductor chip by filling the first semiconductor chip with a conductive resin paste in a first through-hole connected to the first semiconductor chip in the stacking direction with the second semiconductor chip. And a first semiconductor chip forming step of forming a conductive connection body having at least one convex portion connected to the first conductive via by an optical modeling method, and connecting the first semiconductor chip to the second semiconductor chip in the stacking direction. And a second semiconductor chip forming step of forming a second conductive via in the second semiconductor chip by filling a second through hole connected to a predetermined second wiring electrode with a conductive resin paste, and a first semiconductor Semiconductor chip lamination in which the convex portion of the conductive connection body of the chip and the second conductive via of the second semiconductor chip are aligned, and the first conductive via and the second conductive via are electrically connected via the conductive connection body And a process.

この方法により、導電性接続体を備えた第1半導体チップや第2半導体チップを、個別に作製し、任意に組み合わせて半導体積層構造体を一括して作製できる。そのため、設計自由度の高い半導体積層構造体を容易に作製できる。   By this method, the first semiconductor chip and the second semiconductor chip provided with the conductive connection body can be individually manufactured and arbitrarily combined to manufacture the semiconductor multilayer structure. Therefore, a semiconductor multilayer structure with a high degree of design freedom can be easily manufactured.

また、本発明の半導体装置の製造方法は、上記製造方法により形成された半導体積層構造体を、配線基板の接続電極と接続して実装してもよい。   Moreover, the semiconductor device manufacturing method of the present invention may be mounted by connecting the semiconductor multilayer structure formed by the above manufacturing method to the connection electrode of the wiring board.

この方法により、薄型で、かつ接続信頼性に優れた半導体装置を生産性よく作製できる。   By this method, a thin semiconductor device having excellent connection reliability can be manufactured with high productivity.

本発明の半導体積層構造体とそれを用いた半導体装置およびそれらの製造方法によれば、導電性樹脂を用いて、接続の信頼性に優れ、生産性が高く、薄型化の半導体積層構造体や半導体装置の実現に大きな効果を奏する。   According to the semiconductor multilayer structure of the present invention, the semiconductor device using the semiconductor multilayer structure, and the manufacturing method thereof, the conductive resin is used, the connection reliability is excellent, the productivity is high, and the thinned semiconductor multilayer structure or It has a great effect on the realization of a semiconductor device.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素には同じ符号を付し、説明を省略する場合がある。また、以下では、半導体積層構造体を実装した半導体装置を例に説明するが、基本的には半導体積層構造体だけでもよいことはいうまでもない。さらに、以下では、2つの半導体チップを積層した構成で説明するが、これに限られないことはいうまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and description may be abbreviate | omitted. In the following, a semiconductor device mounted with a semiconductor multilayer structure will be described as an example, but it goes without saying that only the semiconductor multilayer structure may be basically used. Furthermore, in the following description, a configuration in which two semiconductor chips are stacked will be described, but it is needless to say that the present invention is not limited to this.

(第1の実施の形態)
図1(a)は本発明の第1の実施の形態における半導体積層構造体1の構成を示す平面図、図1(b)は図1(a)のA−A線断面図である。また、図1(c)は、本発明の第1の実施の形態における半導体積層構造体1を実装した半導体装置100の構成を示す断面図である。
(First embodiment)
FIG. 1A is a plan view showing the configuration of the semiconductor multilayer structure 1 according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA of FIG. FIG. 1C is a cross-sectional view showing a configuration of the semiconductor device 100 on which the semiconductor multilayer structure 1 according to the first embodiment of the present invention is mounted.

図1(a)、(b)に示すように、半導体積層構造体1は、少なくとも第1配線電極(図示せず)を有する第1半導体チップ10と第2配線電極(図示せず)を有する第2半導体チップ11とを積層した構成からなる。そして、第1半導体チップ10は、第2半導体チップ11と積層方向に接続するとともに所定の第1配線電極と接続する導電性樹脂10cを充填した第1導電ビア10dを備えている。同様に、第2半導体チップ11は、第1半導体チップ10と積層方向に接続するとともに所定の第2配線電極と接続する導電性樹脂11cを充填した第2導電ビア11dを備えている。さらに、少なくとも所定の第1導電ビア10dと第2導電ビア11dとは、例えば複数の突起部12bを有する個別部材12aからなる導電性接続体12を介して電気的に接続され、半導体積層構造体1が構成される。   As shown in FIGS. 1A and 1B, the semiconductor multilayer structure 1 includes a first semiconductor chip 10 having at least a first wiring electrode (not shown) and a second wiring electrode (not shown). The second semiconductor chip 11 is stacked. The first semiconductor chip 10 includes a first conductive via 10d filled with a conductive resin 10c connected to the second semiconductor chip 11 in the stacking direction and connected to a predetermined first wiring electrode. Similarly, the second semiconductor chip 11 includes a second conductive via 11d filled with a conductive resin 11c connected to the first semiconductor chip 10 in the stacking direction and connected to a predetermined second wiring electrode. Further, at least the predetermined first conductive via 10d and the second conductive via 11d are electrically connected via, for example, a conductive connection body 12 including an individual member 12a having a plurality of protrusions 12b, and the semiconductor laminated structure 1 is configured.

このとき、導電性樹脂10c、11cは、例えば銀、銅やニッケルなどの導電性粒子と熱硬化型樹脂あるいは光硬化性熱硬化型樹脂などを混合したペーストを含む導電性樹脂硬化物から構成されている。そのため、図1(b)に示すように、第1導電ビア10dと第2導電ビア11dは、一般に、導電性樹脂10c、11cの硬化収縮により上下端においてへこみ(以下、「凹部」と記す)13を生じる。その結果、第1半導体チップと第2半導体チップとを積層して接続する場合、凹部の発生が接続抵抗の増加やばらつき、さらには接続不良の原因となっていた。そこで、凹部13間に導電性接続体12の突起部12bを、例えば押し込むことにより第1半導体チップ10の第1導電ビア10dと第2半導体チップ11の第2導電ビア11dとを導電性接続体12を介して電気的に接続するものである。   At this time, the conductive resins 10c and 11c are made of, for example, a cured conductive resin including a paste in which conductive particles such as silver, copper, and nickel are mixed with a thermosetting resin or a photocurable thermosetting resin. ing. Therefore, as shown in FIG. 1B, the first conductive via 10d and the second conductive via 11d are generally dented at the upper and lower ends due to the curing shrinkage of the conductive resins 10c and 11c (hereinafter referred to as “concave portions”). 13 is produced. As a result, when the first semiconductor chip and the second semiconductor chip are stacked and connected, the generation of the concave portion causes an increase or variation in connection resistance, and further causes connection failure. Therefore, the first conductive via 10d of the first semiconductor chip 10 and the second conductive via 11d of the second semiconductor chip 11 are connected to each other by, for example, pressing the protrusion 12b of the conductive connection body 12 between the recesses 13. 12 for electrical connection.

なお、導電性接続体12の個別部材12aは、以下で詳細に説明するように、光造形法により所定の形状に形成された光硬化性導電性樹脂硬化物または光硬化性絶縁性樹脂硬化物の外周を金属めっきにより形成される。   In addition, as will be described in detail below, the individual member 12a of the conductive connection body 12 is a photocurable conductive resin cured product or photocurable insulating resin cured product formed into a predetermined shape by an optical modeling method. The outer periphery of is formed by metal plating.

本実施の形態によれば、導電性接続体により、導電性樹脂を充填した導電ビアの硬化収縮による凹部間が接続されるため、第1半導体チップと第2半導体チップとの安定した接続を実現できる。   According to this embodiment, the conductive connection body connects the recesses due to the curing shrinkage of the conductive via filled with the conductive resin, thereby realizing a stable connection between the first semiconductor chip and the second semiconductor chip. it can.

また、金属に比べて抵抗率の大きな導電性樹脂を用いて半導体チップを接続しても、抵抗率の小さい導電性接続体を介して接続することにより、接続抵抗のばらつきを低減し、高速動作が可能な半導体積層構造体を実現できる。   Even if a semiconductor chip is connected using a conductive resin having a higher resistivity than metal, the connection resistance variation is reduced by connecting through a conductive connector having a low resistivity, resulting in high-speed operation. It is possible to realize a semiconductor laminated structure that can be used.

また、導電ビアを充填する導電性樹脂と導電性接続体の光硬化性導電性樹脂との組成がほぼ等しい材料で構成できるので、熱履歴による剥離などを生じにくい安定した接続を実現できる。さらに、加熱により導電性樹脂と導電性接続体を一体化させ、強固に接続することもできる。   Moreover, since the composition of the conductive resin filling the conductive via and the photocurable conductive resin of the conductive connection body can be made of substantially the same material, a stable connection that hardly causes peeling due to thermal history can be realized. Furthermore, the conductive resin and the conductive connector can be integrated by heating to be firmly connected.

また、図1(c)に示すように、上記構成の半導体積層構造体1を、例えば配線パターン110aを備えた、例えばガラスエポキシ基板やセラミック基板などの配線基板110に実装して半導体装置100が構成される。そして、配線基板110の配線パターン110aの一部に形成された、例えば導電性樹脂からなる接続電極113と半導体積層構造体1の、例えば第1半導体チップ10の第1導電ビア10dとが電気的に接続される。このとき、接続電極113の体積は第1導電ビア10dの凹部の空間体積より大きく形成することが好ましい。また、第1導電ビア10dと接続電極113間に、導電性接続体12を設け、それを介して接続してもよい。   Further, as shown in FIG. 1C, the semiconductor multilayer structure 1 having the above-described configuration is mounted on a wiring substrate 110 such as a glass epoxy substrate or a ceramic substrate having a wiring pattern 110a, for example. Composed. Then, the connection electrode 113 made of, for example, a conductive resin and the first conductive via 10d of the first semiconductor chip 10 of the semiconductor multilayer structure 1 formed in part of the wiring pattern 110a of the wiring substrate 110 are electrically connected. Connected to. At this time, it is preferable that the volume of the connection electrode 113 is larger than the space volume of the recess of the first conductive via 10d. Further, the conductive connection body 12 may be provided between the first conductive via 10d and the connection electrode 113, and the connection may be made therebetween.

これにより、半導体積層構造体1を高密度に実装した薄型で接続信頼性に優れた半導体装置100を実現できる。   Thereby, the thin semiconductor device 100 with excellent connection reliability can be realized in which the semiconductor multilayer structure 1 is mounted with high density.

なお、本実施の形態では、導電性接続体は、突起部の少なくとも一部を相対する導電性樹脂内に押し込んで接続する例で説明したが、これに限られない。例えば、凹部の空間体積以上の大きさを有する導電性接続体の埋設により凹部の空間を導電性樹脂で埋め合わせ、導電性接続体で接続するとともに、導電性樹脂で対向する導電ビア間を接続してもよい。これにより、接続抵抗をさらに低減した半導体積層構造体や半導体装置を実現できる。さらに、導電性接続体を埋設することで、半導体チップ間の積層する間隙がさらに狭くなるため、より薄型の半導体積層構造体や半導体装置を実現できる。   In the present embodiment, the conductive connecting body has been described as an example in which at least a part of the protrusion is pushed into the opposing conductive resin and connected, but the present invention is not limited thereto. For example, by embedding a conductive connection body having a size equal to or larger than the space volume of the recess, the space of the recess is filled with the conductive resin and connected with the conductive connection body, and the conductive vias facing each other are connected with the conductive resin. May be. As a result, it is possible to realize a semiconductor multilayer structure and a semiconductor device with further reduced connection resistance. Furthermore, since the gap between the semiconductor chips is further narrowed by embedding the conductive connection body, a thinner semiconductor multilayer structure and semiconductor device can be realized.

また、本実施の形態では、導電性接続体として、光硬化性導電性樹脂硬化物や金属めっきした光硬化性絶縁性樹脂硬化物を用いた例で説明したが、これに限られない。例えば、導電性の突起部を有する、例えば四角錐針状結晶導電体などの導電性ウイスカや銀粒子やニッケル粒子を核としてその表面に複数の樹状晶を成長させた樹状晶の導電体粒子、導電性高分子を用いた導電体粒子などを用いてもよい。これにより、低コストで生産性よく半導体積層構造体や半導体装置が得られる。   Moreover, although this Embodiment demonstrated in the example using the photocurable conductive resin hardened | cured material or the metal-plated photocurable insulating resin hardened | cured material as an electroconductive connection body, it is not restricted to this. For example, a conductive dendritic conductor having a conductive protrusion, for example, a conductive whisker such as a quadrangular pyramidal needle-shaped crystalline conductor, or a plurality of dendritic crystals grown on the surface of silver particles or nickel particles. Particles, conductive particles using a conductive polymer, or the like may be used. Thereby, a semiconductor multilayer structure and a semiconductor device can be obtained at low cost and high productivity.

また、本実施の形態では、半導体チップ間を導電性接続体でのみ接続した例で説明したがこれに限られず、接続部分を除く半導体チップ間に絶縁性接着剤を注入し接着する構成としてもよい。これにより、半導体積層構造体や半導体装置の機械的強度や接続部の耐湿性などの信頼性を向上できる。   Further, in the present embodiment, the example in which the semiconductor chips are connected only by the conductive connection member has been described, but the present invention is not limited to this, and an insulating adhesive may be injected and bonded between the semiconductor chips excluding the connection part. Good. Thereby, reliability, such as the mechanical strength of a semiconductor laminated structure and a semiconductor device, and the moisture resistance of a connection part, can be improved.

また、本実施の形態では、導電性接続体として、尖鋭状の突起部を有する個別部材を例に説明したが、これに限られない。例えば、図2(a)の断面概念図で示すように、上下縦横の6方向に飛び出た矩形凸形状の導電性の複数の突起部121bを有する個別部材121aからなる導電性接続体121でもよい。さらに、図2(b)の断面概念図で示すように、例えば星形形状の複数の突起部122bを有する個別部材122aからなる導電性接続体122でもよく、図2(c)の断面概念図で示すように、例えば樹状形状の複数の突起部123bを有する個別部材123aからなる導電性接続体123で構成してもよい。なお、導電性接続体が突起部を有する形状であれば、特に制限されるものではない。これらを用いることにより、同様の効果が得られる。   Moreover, although this Embodiment demonstrated the individual member which has a sharp projection part as an example as an electroconductive connection body, it is not restricted to this. For example, as shown in the conceptual cross-sectional view of FIG. 2A, the conductive connector 121 may be formed of an individual member 121a having a plurality of conductive protrusions 121b having a rectangular convex shape protruding in six directions of vertical and horizontal directions. . Further, as shown in the conceptual cross-sectional view of FIG. 2B, for example, the conductive connecting body 122 formed of the individual member 122a having a plurality of star-shaped protrusions 122b may be used, and the conceptual cross-sectional view of FIG. As shown by, for example, the conductive connecting member 123 may be formed of an individual member 123a having a plurality of dendritic protrusions 123b. In addition, if a conductive connection body is a shape which has a projection part, it will not restrict | limit in particular. By using these, the same effect can be obtained.

以下に、本発明の第1の実施の形態の半導体積層構造体および半導体装置の製造方法について、図3と図4を用いて説明する。   Hereinafter, a method for manufacturing the semiconductor multilayer structure and the semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS.

図3と図4は、本発明の第1の実施の形態の半導体積層構造体1および半導体装置100の製造方法を説明する断面図である。   3 and 4 are cross-sectional views illustrating a method for manufacturing the semiconductor multilayer structure 1 and the semiconductor device 100 according to the first embodiment of the present invention.

まず、図3(a)に示すように、以下の方法により、第1半導体チップ10となるシリコン基板10aに第2半導体チップと積層方向に接続するとともに所定の第1配線電極と接続する、例えば100μm〜200μm径の第1貫通孔10bを形成する。   First, as shown in FIG. 3A, by the following method, the silicon substrate 10a to be the first semiconductor chip 10 is connected to the second semiconductor chip in the stacking direction and to a predetermined first wiring electrode. A first through hole 10b having a diameter of 100 μm to 200 μm is formed.

すなわち、はじめに、第1半導体チップ10の少なくとも一方の面100aに、例えばCVD法などを用いて酸化シリコン膜を形成する。そして、酸化シリコン膜にフォトリソ技術を用いて所定形状の開口部102を形成しエッチングパターンマスク101とする。さらに、開口部102から、エッチング法を用いて、シリコン基板10aを所定の深さまでエッチングして複数の第1貫通孔10bを形成する。このとき、第1貫通孔10bは、シリコン基板10aの機能部(図示せず)の形成されていない、例えば外周部で、機能部と接続された第1配線電極の電極パッド(図示せず)の位置や上下に積層される半導体チップの配線電極とだけ接続する位置に形成される。なお、第1貫通孔10bは、シリコン基板10aを貫通させて形成してもよいが、シリコン基板10aが等方的にエッチングされる場合には、所定の深さ(100μm程度)までで止めるほうが好ましい。さらに、図示しないが、エッチングパターンマスク101を除去し、少なくとも電極パッドは露出させた絶縁膜(図示せず)を、必要に応じて形成する。   That is, first, a silicon oxide film is formed on at least one surface 100a of the first semiconductor chip 10 by using, for example, a CVD method. Then, an opening 102 having a predetermined shape is formed in the silicon oxide film by using a photolithography technique to form an etching pattern mask 101. Furthermore, the silicon substrate 10a is etched to a predetermined depth from the opening 102 by using an etching method to form a plurality of first through holes 10b. At this time, the first through hole 10b is not formed with a functional part (not shown) of the silicon substrate 10a, for example, an outer peripheral part of the electrode pad of the first wiring electrode (not shown) connected to the functional part. It is formed at a position where it is connected only to the wiring electrodes of the semiconductor chips stacked above and below. The first through hole 10b may be formed through the silicon substrate 10a. However, when the silicon substrate 10a is isotropically etched, the first through hole 10b should be stopped to a predetermined depth (about 100 μm). preferable. Further, although not shown, the etching pattern mask 101 is removed, and an insulating film (not shown) with at least the electrode pad exposed is formed as necessary.

つぎに、図3(b)に示すように、シリコン基板10aの第1貫通孔10bに、例えばスキージ104などにより導電性樹脂ペースト103を充填する。このとき、導電性樹脂ペースト103として、導電性粒子と熱硬化型樹脂などを混練した導電性ペースト材料を用いる。ここで、導電性粒子としては銀、銅やニッケルなどを用い、熱硬化型樹脂としてはエポキシ系樹脂やアクリル系樹脂などが用いることができる。そして、シリコン基板10aを他方の面100bから、例えば研磨法などを用いて、所定の厚み、例えば50μmまで研磨し第1半導体チップを作製する。このとき、研磨は導電性樹脂ペースト103を充填した後でも、する前でもよい。   Next, as shown in FIG. 3B, the conductive resin paste 103 is filled into the first through hole 10b of the silicon substrate 10a with, for example, a squeegee 104 or the like. At this time, a conductive paste material in which conductive particles and a thermosetting resin are kneaded is used as the conductive resin paste 103. Here, silver, copper, nickel, or the like can be used as the conductive particles, and an epoxy resin or an acrylic resin can be used as the thermosetting resin. Then, the silicon substrate 10a is polished from the other surface 100b to a predetermined thickness, for example, 50 μm, using, for example, a polishing method to produce a first semiconductor chip. At this time, polishing may be performed after the conductive resin paste 103 is filled or before.

つぎに、図3(c)に示すように、作製した第1半導体チップ10において、例えば導電性樹脂ペースト103を低い温度で熱硬化させ半硬化状態の導電性樹脂10cにより、第1半導体チップ10に第1導電ビア10dを形成する。このとき、導電性樹脂10cは半硬化状態であるため、柔らかく粘着性を有している。しかし、熱硬化した導電性樹脂10cは、硬化時に体積収縮するため、第1導電ビア10dは第1貫通孔10bにおいて、第1半導体チップ10の一方の面100aや他方の面100bから落ち込みへこんだ凹部13が形成される。   Next, as shown in FIG. 3C, in the manufactured first semiconductor chip 10, for example, the conductive resin paste 103 is thermally cured at a low temperature and the semiconductive resin 10 c is used to form the first semiconductor chip 10. A first conductive via 10d is formed. At this time, since the conductive resin 10c is in a semi-cured state, it is soft and sticky. However, since the thermally cured conductive resin 10c shrinks in volume at the time of curing, the first conductive via 10d is depressed from the one surface 100a or the other surface 100b of the first semiconductor chip 10 in the first through hole 10b. A recess 13 is formed.

つぎに、図3(d)に示すように、後述する方法により形成された、例えば複数の上下縦横の6方向に尖鋭形状の突起部12bを有する個別部材12aからなる導電性接続体12を準備する。このとき、導電性接続体12の体積が第1導電ビア10dの導電性樹脂10cの硬化収縮した空間体積よりも大きく形成することが好ましい。また、突起部12bは少なくとも導電性樹脂10cの凹部13の深さより長い長さで形成することが好ましい。   Next, as shown in FIG. 3 (d), a conductive connection body 12 is prepared, which is formed by a method described later, for example, and includes a plurality of individual members 12a having sharp-shaped protrusions 12b in six vertical and horizontal directions. To do. At this time, it is preferable to form the volume of the conductive connection body 12 larger than the space volume of the first conductive via 10d that is hardened and contracted by the conductive resin 10c. Moreover, it is preferable to form the protrusion part 12b with the length longer than the depth of the recessed part 13 of the conductive resin 10c at least.

つぎに、図3(e)に示すように、第1半導体チップ10の一方の面100a上に導電性接続体12を、例えば散布などの方法により、第1導電ビア10dの導電性樹脂10cの凹部13表面に導電性接続体12を付着させる。その後、非付着の導電性接続体12を、例えば窒素ガスなどの不活性ガスを吹き付けて第1半導体チップ10から取り除く。このとき、導電性樹脂10cは半硬化状態であるため、その粘着性により散布された導電性接続体12は導電性樹脂10c表面に少なくとも1つあるいは複数個付着する。   Next, as shown in FIG. 3 (e), the conductive connection body 12 is formed on the one surface 100a of the first semiconductor chip 10 by a method such as spraying, and the conductive resin 10c of the first conductive via 10d. The conductive connector 12 is attached to the surface of the recess 13. Thereafter, the non-adhesive conductive connection body 12 is removed from the first semiconductor chip 10 by spraying an inert gas such as nitrogen gas. At this time, since the conductive resin 10c is in a semi-cured state, at least one or a plurality of the conductive connectors 12 dispersed by the adhesiveness adhere to the surface of the conductive resin 10c.

つぎに、図4(a)に示すように、図3(a)〜図3(e)の工程で作製された第1半導体チップ10と、図3(a)〜図3(c)と同様の工程で作製された第2半導体チップ11を準備する。このとき、第2半導体チップ11は、第1半導体チップ10とその積層方向で接続するとともに第2配線電極(図示せず)と接続する導電性樹脂11cが充填された第2導電ビア11dを有している。   Next, as shown in FIG. 4A, the first semiconductor chip 10 manufactured in the steps of FIGS. 3A to 3E and the same as in FIGS. 3A to 3C. The second semiconductor chip 11 produced in the process is prepared. At this time, the second semiconductor chip 11 has the second conductive via 11d filled with the conductive resin 11c connected to the first semiconductor chip 10 in the stacking direction and connected to the second wiring electrode (not shown). is doing.

そして、所定の第1半導体チップ10の第1導電ビア10dと第2半導体チップ11の第2導電ビア11dとを位置合わせし、例えば図面中の矢印方向から加圧する。   Then, the first conductive via 10d of the predetermined first semiconductor chip 10 and the second conductive via 11d of the second semiconductor chip 11 are aligned and pressed, for example, in the direction of the arrow in the drawing.

さらに、第1半導体チップ10と第2半導体チップ11とを加圧しながら導電性樹脂10c、11cを半硬化時の温度より高い温度(例えば150℃)で熱硬化して積層し固定する。   Further, while pressurizing the first semiconductor chip 10 and the second semiconductor chip 11, the conductive resins 10 c and 11 c are thermally cured at a temperature (for example, 150 ° C.) higher than the temperature at the time of semi-curing to be stacked and fixed.

これにより、導電性樹脂10c表面に付着させた導電性接続体12の突起部12bの少なくとも一部が相対する導電性樹脂10c、11c間に押し込まれ、第1導電ビア10dと第2導電ビア11dが、少なくとも導電性接続体12を介して電気的に接続される。このとき、導電性接続体12で押しのけられた導電性樹脂10c、11cも凹部13空間を埋めるため、導電性樹脂間でも接続される。さらに、導電性接続体12の体積を第1導電ビア10dや第2導電ビア11dの凹部13空間の体積よりも大きくすれば、導電性樹脂10c、11cで確実に凹部13を埋め合わせられるので、より確実な接続を実現できる。   As a result, at least a part of the protrusion 12b of the conductive connecting body 12 attached to the surface of the conductive resin 10c is pushed between the conductive resins 10c and 11c facing each other, and the first conductive via 10d and the second conductive via 11d. Are electrically connected through at least the conductive connecting body 12. At this time, since the conductive resins 10c and 11c pushed away by the conductive connecting body 12 also fill the recess 13 space, they are also connected between the conductive resins. Furthermore, if the volume of the conductive connection body 12 is larger than the volume of the recess 13 space of the first conductive via 10d and the second conductive via 11d, the recess 13 can be reliably filled with the conductive resins 10c and 11c. A reliable connection can be realized.

上記工程により、図4(b)に示すような、少なくとも第1半導体チップ10と第2半導体チップ11が導電性接続体12を介して積層されたMCP構成の半導体積層構造体1が作製される。   Through the above-described process, the semiconductor multilayer structure 1 having the MCP structure in which at least the first semiconductor chip 10 and the second semiconductor chip 11 are laminated via the conductive connection body 12 as shown in FIG. .

なお、上記加熱工程は、半導体積層構造体を完成品とする場合に行われるもので、例えば配線基板に実装する場合には、導電性樹脂は半硬化の状態で以下の工程に進む。   The heating step is performed when the semiconductor multilayer structure is a finished product. For example, when mounting on a wiring board, the conductive resin proceeds to the following step in a semi-cured state.

つぎに、図4(c)に示すように、上記半導体積層構造体1の第1導電ビア10dと、配線基板110の配線パターン110aの所定の位置に形成した接続電極113とを位置合わせして加圧する。このとき、接続電極113は、例えば半田、金や導電性樹脂などで形成したバンプなどである。   Next, as shown in FIG. 4C, the first conductive via 10d of the semiconductor multilayer structure 1 and the connection electrode 113 formed at a predetermined position of the wiring pattern 110a of the wiring substrate 110 are aligned. Pressurize. At this time, the connection electrode 113 is, for example, a bump formed of solder, gold, conductive resin, or the like.

そして、図4(d)に示すように、加圧し接続した状態で、導電性樹脂10c、11cを硬化させることにより、半導体装置100が作製される。   Then, as illustrated in FIG. 4D, the semiconductor device 100 is manufactured by curing the conductive resins 10 c and 11 c while being pressed and connected.

以下に、本発明の第1の実施の形態に用いられる導電性接続体の製造方法について、図5を用いて説明する。   Below, the manufacturing method of the electroconductive connection body used for the 1st Embodiment of this invention is demonstrated using FIG.

図5は、本発明の第1の実施の形態に用いられる導電性接続体12の製造方法を説明する断面図である。   FIG. 5 is a cross-sectional view illustrating a method for manufacturing the conductive connector 12 used in the first embodiment of the present invention.

まず、図5(a)に示すように、光硬化性導電性樹脂液42を満たした容器43中に少なくとも上下に移動できるステージ44を光硬化性導電性樹脂液42の液面の位置に配置する。そして、液晶マスク41の開口部41aから、例えば紫外光や可視光を照射して、ステージ44を沈めながら光硬化性導電性樹脂液42を光硬化する。なお、光硬化性導電性樹脂液42として、例えば銀などの導電性粒子と、例えばアクリル系の光硬化性樹脂液などを混合したものを用いることができる。   First, as shown in FIG. 5A, a stage 44 that can move at least up and down in a container 43 filled with a photocurable conductive resin liquid 42 is disposed at the level of the liquid level of the photocurable conductive resin liquid 42. To do. Then, for example, ultraviolet light or visible light is irradiated from the opening 41 a of the liquid crystal mask 41, and the photocurable conductive resin liquid 42 is photocured while the stage 44 is submerged. In addition, as the photocurable conductive resin liquid 42, for example, a mixture of conductive particles such as silver and an acrylic photocurable resin liquid can be used.

つぎに、図5(b)に示すように、ステージ44を、段階的または連続的に沈めるとともに、それと同期させて液晶マスク41の開口部41aの形状を制御し、光硬化性導電性樹脂液42を所定の形状に露光し光硬化する。   Next, as shown in FIG. 5B, the stage 44 is sunk stepwise or continuously, and the shape of the opening 41a of the liquid crystal mask 41 is controlled in synchronism therewith, so that a photocurable conductive resin liquid is obtained. 42 is exposed to a predetermined shape and photocured.

つぎに、図5(c)に示すように、ステージ44を容器43から取り出し、周囲の未硬化の光硬化性導電性樹脂液42を除去することにより、導電性接続体12が作製される。   Next, as shown in FIG.5 (c), the stage 44 is taken out from the container 43, the surrounding uncured photocurable conductive resin liquid 42 is removed, and the electroconductive connection body 12 is produced.

そして、上記工程により、図5(d)に示すような、複数の突起部12bを有する個別部材12aからなる導電性接続体12が得られる。   And the conductive connection body 12 which consists of the individual member 12a which has the some projection part 12b as shown in FIG.5 (d) by the said process is obtained.

これにより、所定の形状の突起部を有する個別部材からなる導電性接続体を自在に大量でかつ簡潔な方法で形成できる。   Thereby, the conductive connection body which consists of an individual member which has the projection part of a predetermined shape can be freely formed in a large quantity and a simple method.

なお、本実施の形態では、液晶マスクを用いて一括して導電性接続体を形成する例で説明したが、これに限られない。例えば、レーザー光線を光硬化性導電性樹脂液42の表面で走査しながら、ステージの移動と同期させて露光し、導電性接続体を形成してもよい。   In this embodiment, the example in which the conductive connection body is collectively formed using the liquid crystal mask has been described, but the present invention is not limited thereto. For example, the conductive connection body may be formed by performing exposure in synchronization with the movement of the stage while scanning a laser beam on the surface of the photocurable conductive resin liquid 42.

また、本実施の形態では、導電性接続体を光硬化性導電性樹脂で形成した例で説明したが、これに限られない。例えば、アクリル系などの光硬化性絶縁性樹脂を用いて光硬化性絶縁性樹脂硬化物を形成し、その外周を例えば、金などの金属めっきすることにより、導電性接続体を形成してもよい。これにより、固有比抵抗の小さい金属めっきされた導電性接続体により、接続抵抗をさらに低減できる。   Moreover, although this Embodiment demonstrated the example which formed the electroconductive connection body with the photocurable conductive resin, it is not restricted to this. For example, even if a conductive connection body is formed by forming a photocurable insulating resin cured product using a photocurable insulating resin such as an acrylic resin and plating the outer periphery thereof with a metal such as gold, for example. Good. Accordingly, the connection resistance can be further reduced by the metal-plated conductive connector having a small specific resistivity.

(第2の実施の形態)
以下に、本発明の第2の実施の形態における半導体積層構造体と半導体装置について、図6を用いて説明する。
(Second Embodiment)
A semiconductor stacked structure and a semiconductor device according to the second embodiment of the present invention will be described below with reference to FIG.

図6(a)は本発明の第2の実施の形態における半導体積層構造体2の構成を示す平面図、図6(b)は図6(a)のA−A線断面図である。また、図6(c)は、本発明の第2の実施の形態における半導体積層構造体2を実装した半導体装置200の構成を示す断面図である。   FIG. 6A is a plan view showing the configuration of the semiconductor multilayer structure 2 according to the second embodiment of the present invention, and FIG. 6B is a cross-sectional view taken along line AA of FIG. FIG. 6C is a cross-sectional view showing a configuration of the semiconductor device 200 on which the semiconductor multilayer structure 2 according to the second embodiment of the present invention is mounted.

図6に示す半導体積層構造体2は、導電性接続体52が、第1導電ビアに形成された、少なくとも1つの凸部52bを有する光硬化性導電性樹脂硬化物で構成されている点で、個別部材からなる第1の実施の形態とは異なる。そして、導電性接続体52は、第1導電ビア10d上に直接、光造形法により形成される。このとき、必要に応じて、導電性接続体52の少なくとも凸部52bの体積を、第1導電ビア10dと第2導電ビア11dの導電性樹脂10c、11cの硬化収縮により生じる凹部13の空間体積よりも大きく設けられる。   The semiconductor multilayer structure 2 shown in FIG. 6 is configured such that the conductive connection body 52 is formed of a photocurable conductive resin cured product having at least one convex portion 52b formed in the first conductive via. This is different from the first embodiment made up of individual members. Then, the conductive connection body 52 is formed directly on the first conductive via 10d by an optical modeling method. At this time, if necessary, the volume of at least the convex portion 52b of the conductive connecting body 52 is set to the spatial volume of the concave portion 13 generated by the curing shrinkage of the conductive resins 10c and 11c of the first conductive via 10d and the second conductive via 11d. Larger than that.

そして、図6(b)に示すように、相対する第1導電ビア10dと第2導電ビア11dとを導電性接続体52を介して電気的に接続することにより、半導体積層構造体2が構成される。   Then, as shown in FIG. 6B, the semiconductor laminated structure 2 is configured by electrically connecting the opposing first conductive via 10d and second conductive via 11d via the conductive connection body 52. Is done.

本実施の形態によれば、導電性接続体により、導電性樹脂を充填した導電ビアの硬化収縮による凹部間を埋め合わせて接続できるため、第1半導体チップと第2半導体チップとの接続抵抗ばらつきが小さく安定した接続の半導体積層構造体を実現できる。   According to the present embodiment, the conductive connection body can be connected by filling the concave portions due to the curing shrinkage of the conductive via filled with the conductive resin, so that there is a variation in the connection resistance between the first semiconductor chip and the second semiconductor chip. A semiconductor stacked structure having a small and stable connection can be realized.

また、第1半導体チップ10の電極パッド(図示せず)との接続が、導電性接続体の形成とともに形成できるので、確実で信頼性に優れた半導体積層構造体を実現できる。なお、一般に、電極パッドは、半導体チップの導電ビアの径よりも若干大きな径で、その表面に設けられている。   Moreover, since the connection with the electrode pad (not shown) of the first semiconductor chip 10 can be formed together with the formation of the conductive connection body, a reliable and reliable semiconductor multilayer structure can be realized. In general, the electrode pad has a diameter slightly larger than the diameter of the conductive via of the semiconductor chip and is provided on the surface thereof.

また、図6(c)に示すように、上記構成の半導体積層構造体2を、例えば配線パターン110aを備えた、例えばガラスエポキシ基板やセラミック基板などの配線基板110に実装して半導体装置200が構成される。そして、配線基板110の配線パターン110aの一部に形成された、例えば導電性樹脂からなる接続電極113と半導体積層構造体2の、例えば第1半導体チップ10の第1導電ビア10dとが電気的に接続される。このとき、接続電極113の体積は第1導電ビア10dの凹部の空間体積より大きく形成することが好ましい。   Further, as shown in FIG. 6C, the semiconductor laminated structure 2 having the above configuration is mounted on a wiring substrate 110 such as a glass epoxy substrate or a ceramic substrate having a wiring pattern 110a, for example. Composed. Then, the connection electrode 113 made of, for example, a conductive resin and the first conductive via 10d of the first semiconductor chip 10, for example, formed on a part of the wiring pattern 110a of the wiring substrate 110 are electrically connected. Connected to. At this time, it is preferable that the volume of the connection electrode 113 is larger than the space volume of the recess of the first conductive via 10d.

これにより、半導体積層構造体2を高密度に実装した薄型で接続信頼性に優れた半導体装置200を実現できる。   Thereby, it is possible to realize a thin semiconductor device 200 having the semiconductor laminated structure 2 mounted with high density and excellent in connection reliability.

なお、導電性接続体52は、第1の実施の形態の導電性接続体12と、同様の材料を用いて作製できるため、説明は省略する。   In addition, since the conductive connection body 52 can be manufactured using the same material as the conductive connection body 12 of the first embodiment, description thereof is omitted.

以下に、本発明の第2の実施の形態の半導体積層構造体および半導体装置の製造方法について、図7と図8を用いて説明する。   Hereinafter, a method for manufacturing a semiconductor multilayer structure and a semiconductor device according to the second embodiment of the present invention will be described with reference to FIGS.

図7と図8は、本発明の第2の実施の形態の半導体積層構造体2および半導体装置200の製造方法を説明する断面図である。   7 and 8 are cross-sectional views illustrating a method for manufacturing the semiconductor multilayer structure 2 and the semiconductor device 200 according to the second embodiment of the present invention.

なお、第2の実施の形態は、導電ビア形成工程以後の工程が、第1の実施の形態とは異なるもので、他の工程は同様であるので、適宜図3と図4を参照しながら説明する。つまり、導電ビアを形成した以後の工程が、第1半導体チップの第1導電ビアに上に、少なくとも1つの凸部を有する導電性接続体を光造形法により形成する工程と、所定の導電性接続体の凸部を介して第1導電ビアと第2導電ビアを電気的に接続させる半導体チップ積層工程からなるものである。   In the second embodiment, the steps after the conductive via formation step are different from those in the first embodiment, and the other steps are the same. Therefore, referring to FIGS. 3 and 4 as appropriate. explain. That is, the process after the formation of the conductive via includes a process of forming a conductive connection body having at least one convex portion on the first conductive via of the first semiconductor chip by an optical modeling method, and a predetermined conductivity. This includes a semiconductor chip stacking step in which the first conductive via and the second conductive via are electrically connected via the convex portion of the connection body.

まず、図7(a)に示すように、図3(a)〜図3(c)と同様の方法で作製した第1導電ビア10dが形成された第1半導体チップ10を準備する。   First, as shown in FIG. 7A, a first semiconductor chip 10 having a first conductive via 10d formed by a method similar to that shown in FIGS. 3A to 3C is prepared.

つぎに、図7(b)に示すように、光硬化性導電性樹脂液62で満たされた容器60中に、少なくとも上下に移動できるステージ64に設置した第1半導体チップ10を、光硬化性導電性樹脂液62の液面の位置に浸漬する。そして、液晶マスク61の開口部61aから、例えば紫外光や可視光を照射して、ステージ64を沈めながら光硬化性導電性樹脂液62を光硬化する。   Next, as shown in FIG. 7B, the first semiconductor chip 10 placed on the stage 64 that can move at least up and down in the container 60 filled with the photocurable conductive resin liquid 62 is photocurable. It is immersed in the liquid level position of the conductive resin liquid 62. Then, for example, ultraviolet light or visible light is irradiated from the opening 61 a of the liquid crystal mask 61, and the photocurable conductive resin liquid 62 is photocured while the stage 64 is submerged.

さらに、ステージ64を、段階的または連続的に沈めるとともに、それと同期させて液晶マスク61の開口部61aの形状を制御し、光硬化性導電性樹脂液62を所定の形状に露光し光硬化する。なお、図7(b)においては、液晶マスク61の開口部61aを順次小さくして、例えば三角錐や円錐形状など尖鋭形状の凸部で硬化させる。   Furthermore, the stage 64 is submerged stepwise or continuously, and the shape of the opening 61a of the liquid crystal mask 61 is controlled in synchronization with the stage 64, and the photocurable conductive resin liquid 62 is exposed to a predetermined shape and photocured. . In FIG. 7B, the openings 61a of the liquid crystal mask 61 are sequentially reduced and hardened with sharp convex portions such as a triangular pyramid or a conical shape.

つぎに、図7(c)に示すように、第1半導体チップ10を容器60から取り出し、周囲の未硬化の光硬化性導電性樹脂液62を除去する。これにより、第1半導体チップ10の第1導電ビア10dの凹部13を埋め合わせた、尖鋭形状の凸部52bを有する導電性接続体52が形成された第1半導体チップ10が作製される。このとき、第1半導体チップ10の電極パッドを被覆するように導電性接続体52を形成することが好ましい。また、導電性接続体52は、少なくとも凸部52bの体積が、第1導電ビア10dと第2導電ビア11dの導電性樹脂10c、11cの硬化収縮した凹部13の空間体積よりも大きく形成することが好ましい。さらに、凸部52bの高さが導電性樹脂10c、11cの凹部13の深さより長い形状で形成することが好ましい。   Next, as shown in FIG. 7C, the first semiconductor chip 10 is taken out of the container 60, and the surrounding uncured photocurable conductive resin liquid 62 is removed. As a result, the first semiconductor chip 10 in which the conductive connection body 52 having the sharp convex portion 52b in which the concave portion 13 of the first conductive via 10d of the first semiconductor chip 10 is filled is formed. At this time, the conductive connection body 52 is preferably formed so as to cover the electrode pads of the first semiconductor chip 10. In addition, the conductive connection body 52 is formed such that at least the volume of the convex portion 52b is larger than the space volume of the concave portion 13 where the conductive resins 10c and 11c of the first conductive via 10d and the second conductive via 11d are cured and contracted. Is preferred. Furthermore, it is preferable that the height of the convex portion 52b is longer than the depth of the concave portion 13 of the conductive resins 10c and 11c.

つぎに、図7(d)に示すように、上記第1半導体チップ10の導電性接続体52と、図7(a)と同様の工程で作製された第2半導体チップ11の第2導電ビア11dが対向するように位置合わせし、例えば図面中の矢印方向から加圧する。   Next, as shown in FIG. 7 (d), the conductive connection body 52 of the first semiconductor chip 10 and the second conductive via of the second semiconductor chip 11 manufactured in the same process as in FIG. 7 (a). Positioning is performed so that 11d faces each other, and pressure is applied from the direction of the arrow in the drawing, for example.

つぎに、図7(e)に示すように、第1半導体チップ10と第2半導体チップ11とを加圧しながら導電性樹脂10c、11cを半硬化時の温度より高い温度(例えば150℃)で熱硬化して積層し固定する。これにより、少なくとも第1半導体チップ10と第2半導体チップ11が導電性接続体52を介して積層されたMCP構成の半導体積層構造体2が作製される。このとき、導電性樹脂10c表面に形成された導電性接続体52の凸部52bが相対する導電性樹脂11cに押し込まれ、第1導電ビア10dと第2導電ビア11dが、少なくとも導電性接続体52を介して電気的に接続される。   Next, as shown in FIG. 7E, the conductive resins 10c and 11c are heated at a temperature higher than the temperature at the time of semi-curing (for example, 150 ° C.) while pressurizing the first semiconductor chip 10 and the second semiconductor chip 11. Heat cured, laminated and fixed. As a result, the semiconductor multilayer structure 2 having an MCP structure in which at least the first semiconductor chip 10 and the second semiconductor chip 11 are laminated via the conductive connection body 52 is manufactured. At this time, the convex portion 52b of the conductive connecting body 52 formed on the surface of the conductive resin 10c is pushed into the opposing conductive resin 11c, and at least the first conductive via 10d and the second conductive via 11d are at least the conductive connecting body. Electrical connection is made via 52.

なお、上記加熱工程は、半導体積層構造体を完成品とする場合に行われるもので、例えば配線基板に実装する場合には、導電性樹脂は半硬化の状態で以下の工程に進む。   The heating step is performed when the semiconductor multilayer structure is a finished product. For example, when mounting on a wiring board, the conductive resin proceeds to the following step in a semi-cured state.

つぎに、図8(a)に示すように、配線パターン110aを所定の位置に接続電極113を形成した配線基板110を準備する。このとき、接続電極113は、例えば半田、金や導電性樹脂などで形成したバンプなどである。   Next, as shown in FIG. 8A, a wiring board 110 is prepared in which a connection electrode 113 is formed at a predetermined position of the wiring pattern 110a. At this time, the connection electrode 113 is, for example, a bump formed of solder, gold, conductive resin, or the like.

つぎに、図8(b)に示すように、半導体積層構造体2の第1導電ビア10dと、配線基板110の接続電極113とを位置合わせして加圧し、導電性接続体52の凸部52bを第1導電ビア10dに圧入する。   Next, as shown in FIG. 8B, the first conductive via 10 d of the semiconductor multilayer structure 2 and the connection electrode 113 of the wiring board 110 are aligned and pressed, and the convex portion of the conductive connection body 52. 52b is press-fitted into the first conductive via 10d.

そして、図8(c)に示すように、圧入し接続した状態で、導電性樹脂10c、11cを硬化させることにより、半導体装置200が作製される。   Then, as illustrated in FIG. 8C, the semiconductor device 200 is manufactured by curing the conductive resins 10 c and 11 c in a state of being press-fitted and connected.

本実施の形態によれば、光造形法により対向する位置に形成した導電性接続体の凸部を介して導電ビア間の導電性樹脂を接続するという簡易な方法により、効率的に半導体積層構造体および半導体装置を作製できる。   According to the present embodiment, the semiconductor laminated structure is efficiently obtained by a simple method of connecting the conductive resin between the conductive vias through the convex portions of the conductive connecting body formed at the positions facing each other by stereolithography. Bodies and semiconductor devices can be manufactured.

(第3の実施の形態)
以下に、本発明の第3の実施の形態における半導体積層構造体と半導体装置について、図9を用いて説明する。
(Third embodiment)
The semiconductor laminated structure and semiconductor device according to the third embodiment of the present invention will be described below with reference to FIG.

図9(a)は本発明の第3の実施の形態における半導体積層構造体3の構成を示す平面図、図9(b)は図9(a)のA−A線断面図である。また、図9(c)は、本発明の第3の実施の形態における半導体積層構造体3を実装した半導体装置300の構成を示す断面図である。   FIG. 9A is a plan view showing the configuration of the semiconductor multilayer structure 3 according to the third embodiment of the present invention, and FIG. 9B is a cross-sectional view taken along line AA of FIG. 9A. FIG. 9C is a cross-sectional view showing the configuration of the semiconductor device 300 on which the semiconductor multilayer structure 3 according to the third embodiment of the present invention is mounted.

図9に示す半導体積層構造体3は、第1半導体チップ10と第2半導体チップ11を接続する導電性樹脂と導電性接続体を、光造形法により一体的に形成した構成を有する点で、上記各実施の形態の半導体積層構造体とは異なる。   The semiconductor laminated structure 3 shown in FIG. 9 has a configuration in which a conductive resin and a conductive connection body for connecting the first semiconductor chip 10 and the second semiconductor chip 11 are integrally formed by an optical modeling method. This is different from the semiconductor multilayer structures of the above embodiments.

つまり、半導体積層構造体3は、第1半導体チップ10の第1導電ビア10dの導電性樹脂70c、第2半導体チップ11の第2導電ビア11dの導電性樹脂71cおよびこれらを接続する導電性接続体72が、光造形法により一体的に同じ光硬化性導電性樹脂により形成される。   That is, the semiconductor multilayer structure 3 includes the conductive resin 70c of the first conductive via 10d of the first semiconductor chip 10, the conductive resin 71c of the second conductive via 11d of the second semiconductor chip 11, and the conductive connection that connects them. The body 72 is integrally formed of the same photocurable conductive resin by an optical modeling method.

これにより、図9(b)に示すように、相対する第1導電ビア10dと第2導電ビア11dの導電性樹脂70c、71cとが導電性接続体72を介して電気的に接続された、半導体積層構造体3が得られる。   As a result, as shown in FIG. 9B, the conductive resins 70c and 71c of the first conductive via 10d and the second conductive via 11d facing each other are electrically connected via the conductive connector 72. The semiconductor laminated structure 3 is obtained.

本実施の形態によれば、光造形法により各導電ビアの導電性樹脂とその間に介在する導電性接続体が同じ材料により一体的に形成されるため、接続界面が存在しない構成にできる。その結果、接続抵抗値が低く、接続不良の発生しない半導体積層構造体および半導体装置を実現できる。   According to the present embodiment, since the conductive resin of each conductive via and the conductive connection body interposed therebetween are integrally formed of the same material by stereolithography, a configuration in which no connection interface exists can be achieved. As a result, it is possible to realize a semiconductor laminated structure and a semiconductor device that have a low connection resistance value and that do not cause poor connection.

また、図9(c)に示すように、上記構成の半導体積層構造体3を、例えば配線パターン110aを備えた、例えばガラスエポキシ基板やセラミック基板などの配線基板110に実装して半導体装置300が構成される。そして、配線基板110の配線パターン110aの一部に形成された、例えば導電性樹脂からなる接続電極113が押し込まれ、半導体積層構造体3の、例えば第1半導体チップ10の第1導電ビア10dとが電気的に接続される。   Further, as shown in FIG. 9C, the semiconductor multilayer structure 3 having the above-described configuration is mounted on a wiring substrate 110 such as a glass epoxy substrate or a ceramic substrate having a wiring pattern 110a, for example. Composed. Then, the connection electrode 113 made of, for example, a conductive resin formed in a part of the wiring pattern 110a of the wiring substrate 110 is pushed in, and the first conductive via 10d of the first semiconductor chip 10 of the semiconductor multilayer structure 3 is pressed. Are electrically connected.

これにより、半導体積層構造体3を高密度に実装した薄型で接続信頼性に優れた半導体装置300を実現できる。   Thereby, it is possible to realize a thin semiconductor device 300 excellent in connection reliability, in which the semiconductor multilayer structure 3 is mounted at a high density.

以下に、本発明の第3の実施の形態の半導体積層構造体および半導体装置の製造方法について、図10を用いて説明する。   Below, the manufacturing method of the semiconductor laminated structure and semiconductor device of the 3rd Embodiment of this invention is demonstrated using FIG.

図10は、本発明の第3の実施の形態の半導体積層構造体3および半導体装置300の製造方法を説明する断面図である。   FIG. 10 is a cross-sectional view illustrating a method for manufacturing the semiconductor multilayer structure 3 and the semiconductor device 300 according to the third embodiment of the present invention.

まず、図10(a)に示すように、図3(a)および図3(b)と同様の方法で作製された導電性樹脂が充填されていない第1貫通孔10bを設けた第1半導体チップ10を準備する。   First, as shown in FIG. 10A, the first semiconductor provided with the first through hole 10b not filled with the conductive resin manufactured by the same method as in FIGS. 3A and 3B. The chip 10 is prepared.

つぎに、図10(b)に示すように、光硬化性導電性樹脂液62で満たされた容器60中に、少なくとも上下に移動できるステージ64に設置した第1半導体チップ10を、光硬化性導電性樹脂液62の液面から所定の深さの位置に浸漬する。そして、液晶マスク61の開口部61aから、例えば紫外光や可視光を照射して、ステージ64間の光硬化性導電性樹脂液62を光硬化する。このとき、露光は、例えば焦点深度を変えながら行うことが好ましい。これにより、確実に第1半導体チップ10の第1貫通孔10bのステージ64近傍から、順次光硬化性導電性樹脂を硬化させて、第1導電ビア10dと導電性接続体72を形成できる。   Next, as shown in FIG. 10B, the first semiconductor chip 10 placed on the stage 64 that can move at least up and down in the container 60 filled with the photocurable conductive resin liquid 62 is photocurable. The conductive resin liquid 62 is immersed in a position at a predetermined depth from the liquid surface. Then, for example, ultraviolet light or visible light is irradiated from the opening 61 a of the liquid crystal mask 61 to photocur the photocurable conductive resin liquid 62 between the stages 64. At this time, the exposure is preferably performed while changing the depth of focus, for example. Thus, the first conductive via 10d and the conductive connector 72 can be formed by sequentially curing the photocurable conductive resin sequentially from the vicinity of the stage 64 of the first through hole 10b of the first semiconductor chip 10.

つぎに、図10(c)に示すように、第1貫通孔10bに導電性樹脂70cと導電性接続体72が一体的に形成された第1半導体チップ10を、ステージ64によりさらに沈め、導電性接続体72と位置合わせしながら第2半導体チップ11を光硬化性導電性樹脂液62中に浸漬する。そして、第2半導体チップ11の第2貫通孔11bに充填された光硬化性導電性樹脂液62を光硬化させて、導電性樹脂71cからなる第2導電ビア11dを形成する。これにより、導電性接続体72と導電性樹脂71cが接続される。   Next, as shown in FIG. 10C, the first semiconductor chip 10 in which the conductive resin 70 c and the conductive connection body 72 are integrally formed in the first through hole 10 b is further submerged by the stage 64, The second semiconductor chip 11 is immersed in the photocurable conductive resin liquid 62 while being aligned with the conductive connector 72. Then, the photocurable conductive resin liquid 62 filled in the second through hole 11b of the second semiconductor chip 11 is photocured to form the second conductive via 11d made of the conductive resin 71c. Thereby, the conductive connection body 72 and the conductive resin 71c are connected.

つぎに、図10(d)に示すように、第1半導体チップ10を容器60から取り出し、周囲の未硬化の光硬化性導電性樹脂液62を除去する。これにより、第1半導体チップ10の第1導電ビア10dと第2半導体チップ11の第2導電ビア11dの導電性樹脂70c、71cが、同じ材料により一体的に形成された導電性接続体72で接続され半導体積層構造体3が作製される。このとき、第1半導体チップ10の電極パッドを被覆するように導電性接続体72を形成することが好ましい。この場合、第1導電ビアや第2導電ビアの径よりも若干大きな径で導電性接続体を形成する。これらは、液晶マスク61の開口部61aの形状を制御することにより、容易に作製できる。   Next, as shown in FIG. 10D, the first semiconductor chip 10 is taken out of the container 60, and the surrounding uncured photocurable conductive resin liquid 62 is removed. As a result, the conductive connectors 70c and 71c of the first conductive via 10d of the first semiconductor chip 10 and the second conductive via 11d of the second semiconductor chip 11 are formed by the conductive connection body 72 integrally formed of the same material. The semiconductor laminated structure 3 is produced by connection. At this time, it is preferable to form the conductive connection body 72 so as to cover the electrode pads of the first semiconductor chip 10. In this case, the conductive connection body is formed with a diameter slightly larger than the diameter of the first conductive via or the second conductive via. These can be easily manufactured by controlling the shape of the opening 61 a of the liquid crystal mask 61.

つぎに、図10(e)に示すように、配線パターン110aを所定の位置に接続電極113を形成した配線基板110を準備する。このとき、接続電極113は、例えば半田、金や導電性樹脂などで形成したバンプなどである。そして、半導体積層構造体3の第1導電ビア10dと、配線基板110の接続電極113とを位置合わせして加圧し、接続電極113を第1導電ビア10dに圧入する。   Next, as shown in FIG. 10E, a wiring board 110 is prepared in which a connection electrode 113 is formed at a predetermined position of the wiring pattern 110a. At this time, the connection electrode 113 is, for example, a bump formed of solder, gold, conductive resin, or the like. Then, the first conductive via 10d of the semiconductor multilayer structure 3 and the connection electrode 113 of the wiring substrate 110 are aligned and pressed, and the connection electrode 113 is press-fitted into the first conductive via 10d.

そして、図10(f)に示すように、圧入し接続した状態で加熱し、導電性樹脂と接続電極を電気的に接続して、半導体装置300が作製される。   Then, as shown in FIG. 10F, the semiconductor device 300 is manufactured by heating while being press-fitted and connected to electrically connect the conductive resin and the connection electrode.

本実施の形態によれば、導電ビアの導電性樹脂と導電性接続体を同じ材料で一体的に形成することにより、接続界面が存在しない構成とできるので、接続抵抗値が低く、接続不良の発生しない半導体積層構造体および半導体装置を生産性よく作製できる。   According to the present embodiment, since the conductive resin of the conductive via and the conductive connection body are integrally formed of the same material, the connection interface does not exist. A semiconductor multilayer structure and a semiconductor device that do not occur can be manufactured with high productivity.

(第4の実施の形態)
以下に、本発明の第4の実施の形態における半導体装置について、図11を用いて説明する。
(Fourth embodiment)
The semiconductor device according to the fourth embodiment of the present invention will be described below with reference to FIG.

図11(a)は本発明の第4の実施の形態における半導体装置400の構成を示す平面図、図11(b)は図11(a)のA−A線断面図である。なお、図11(a)では、半導体装置400を構成する半導体積層構造体4の平面図で示し、他の構成要素は省略している。   FIG. 11A is a plan view showing a configuration of a semiconductor device 400 according to the fourth embodiment of the present invention, and FIG. 11B is a cross-sectional view taken along line AA of FIG. In FIG. 11A, a plan view of the semiconductor multilayer structure 4 constituting the semiconductor device 400 is shown, and other components are omitted.

すなわち、半導体積層構造体4は、第2半導体チップの第2導電ビアの一部を第1半導体チップの第1導電ビアと対向しない位置に設け、それらを導電性接続体で接続した点で、第3の実施の形態の半導体積層構造体3とは異なる。さらに、半導体積層構造体4が、直接配線基板810に実装して半導体装置400を形成した点でも、上記各実施の形態の半導体装置とは異なる。   That is, the semiconductor stacked structure 4 is provided in such a manner that a part of the second conductive via of the second semiconductor chip is provided at a position not facing the first conductive via of the first semiconductor chip and they are connected by the conductive connection body. It is different from the semiconductor laminated structure 3 of the third embodiment. Further, the semiconductor stacked structure 4 is directly mounted on the wiring substrate 810 to form the semiconductor device 400, which is different from the semiconductor devices of the above embodiments.

図11に示すように、半導体装置400は、半導体積層構造体4を配線基板810の配線パターン810aの接続部(図示せず)に直接、光造形法を用いて実装した構成を有する。このとき、半導体積層構造体4は、少なくとも第1配線電極(図示せず)を有する第1半導体チップ80と第2配線電極(図示せず)を有する第2半導体チップ81とを積層した構成からなる。そして、第2半導体チップ81には、少なくとも一部の第2導電ビア81dが第1半導体チップ80の第1導電ビア80dと対向しない位置に設けられている。このとき、第1半導体チップ80の第1導電ビア80d、801dの導電性樹脂80c、第2半導体チップ81の第2導電ビア81d、811dの導電性樹脂81cおよびこれらを接続する導電性接続体82、821が、光造形法により一体的に同じ光硬化性導電性樹脂により形成されている。   As shown in FIG. 11, the semiconductor device 400 has a configuration in which the semiconductor multilayer structure 4 is mounted directly on a connection portion (not shown) of the wiring pattern 810 a of the wiring substrate 810 using an optical modeling method. At this time, the semiconductor multilayer structure 4 has a configuration in which at least a first semiconductor chip 80 having a first wiring electrode (not shown) and a second semiconductor chip 81 having a second wiring electrode (not shown) are laminated. Become. In the second semiconductor chip 81, at least a portion of the second conductive via 81 d is provided at a position that does not face the first conductive via 80 d of the first semiconductor chip 80. At this time, the conductive resin 80c of the first conductive vias 80d and 801d of the first semiconductor chip 80, the conductive resin 81c of the second conductive vias 81d and 811d of the second semiconductor chip 81, and the conductive connector 82 connecting them. , 821 are integrally formed of the same photocurable conductive resin by an optical modeling method.

また、図11(b)に示すように、半導体装置400は、半導体積層構造体4を配線基板810の配線パターン810aの接続部と第1半導体チップ80の第1導電ビア80d、801dとを光硬化性導電性樹脂を介して電気的に接続した構成からなる。   Further, as shown in FIG. 11B, the semiconductor device 400 transmits the semiconductor laminated structure 4 through the connection portion of the wiring pattern 810a of the wiring substrate 810 and the first conductive vias 80d and 801d of the first semiconductor chip 80. It consists of the structure electrically connected through the curable conductive resin.

本実施の形態によれば、第3の実施の形態と同様な効果が得られるとともに、各半導体チップの導電ビアを任意の位置に配置できるため、設計自由度が向上する。   According to this embodiment, the same effects as those of the third embodiment can be obtained, and the conductive vias of the respective semiconductor chips can be arranged at arbitrary positions, so that the degree of freedom in design is improved.

また、本実施の形態によれば、配線基板と半導体積層構造体とが、光硬化性導電性樹脂で接続できるため、低荷重での実装を実現できる。その結果、半導体チップの損傷の少ない信頼性に優れた半導体装置が得られる。   Moreover, according to this Embodiment, since a wiring board and a semiconductor laminated structure can be connected with a photocurable conductive resin, mounting with a low load is realizable. As a result, a highly reliable semiconductor device with little damage to the semiconductor chip can be obtained.

以下に、本発明の第4の実施の形態の半導体装置の製造方法について、図12を用いて説明する。   A method for manufacturing a semiconductor device according to the fourth embodiment of the present invention will be described below with reference to FIG.

図12は、本発明の第4の実施の形態の半導体装置400の製造方法を説明する断面図である。なお、第1半導体チップ80に第1貫通孔、第2半導体チップ81に第2貫通孔を形成する方法は、第1の実施の形態と同様であるので、説明を省略する。   FIG. 12 is a cross-sectional view for explaining the method for manufacturing the semiconductor device 400 according to the fourth embodiment of the present invention. The method of forming the first through hole in the first semiconductor chip 80 and the second through hole in the second semiconductor chip 81 is the same as that in the first embodiment, and thus the description thereof is omitted.

まず、図12(a)に示すように、第1半導体チップ80の第1貫通孔80b、801bと、配線基板810の所定の位置に形成した配線パターン810aの接続部とを位置合わせして搭載する。ここで、配線パターン810aは、例えば導電性ペーストのスクリーン印刷や、銅箔のエッチングなどで形成される。   First, as shown in FIG. 12A, the first through holes 80b and 801b of the first semiconductor chip 80 and the connection portion of the wiring pattern 810a formed at a predetermined position of the wiring substrate 810 are aligned and mounted. To do. Here, the wiring pattern 810a is formed, for example, by screen printing of a conductive paste or etching of a copper foil.

つぎに、図12(b)に示すように、容器(図示せず)中に満たした光硬化性導電性樹脂液92中に、ステージ(図示せず)上に搭載した配線基板と第1半導体チップ80を浸漬する。このとき、光硬化性導電性樹脂液92の液面が第1半導体チップ80の一方の面800a程度となるように浸漬し、第1貫通孔80b、801bに光硬化性導電性樹脂液92を充填する。そして、液晶マスク91の開口部91aを第1貫通孔80b、801bと対向して配置する。   Next, as shown in FIG. 12B, a wiring board and a first semiconductor mounted on a stage (not shown) in a photocurable conductive resin liquid 92 filled in a container (not shown). The chip 80 is immersed. At this time, the photocurable conductive resin liquid 92 is immersed so that the liquid level of the first semiconductor chip 80 is about one surface 800a, and the photocurable conductive resin liquid 92 is placed in the first through holes 80b and 801b. Fill. Then, the opening 91a of the liquid crystal mask 91 is arranged to face the first through holes 80b and 801b.

つぎに、図12(c)に示すように、液晶マスク91の開口部91aを介して、例えば紫外光や可視光を照射して、第1貫通孔80b、801b内の光硬化性導電性樹脂液92を光硬化させ、導電性樹脂80c、801cを有する第1導電ビア80d、801dを形成する。これにより、第1半導体チップ80と配線基板810とが実装され、第1導電ビア80d、801dと配線パターン810aの接続部が電気的に接続される。   Next, as shown in FIG. 12C, the photocurable conductive resin in the first through holes 80b and 801b is irradiated with, for example, ultraviolet light or visible light through the opening 91a of the liquid crystal mask 91. The liquid 92 is photocured to form first conductive vias 80d and 801d having conductive resins 80c and 801c. As a result, the first semiconductor chip 80 and the wiring substrate 810 are mounted, and the connecting portions of the first conductive vias 80d and 801d and the wiring pattern 810a are electrically connected.

つぎに、図12(d)に示すように、ステージを下方に移動させ、第1半導体チップ80を光硬化性導電性樹脂液92の液面から所定の深さまでさらに浸漬する。ここで、所定の深さとは、導電性接続体の厚さ程度である。   Next, as shown in FIG. 12D, the stage is moved downward, and the first semiconductor chip 80 is further immersed from the liquid surface of the photocurable conductive resin liquid 92 to a predetermined depth. Here, the predetermined depth is about the thickness of the conductive connector.

つぎに、図12(e)に示すように、液晶マスク91の開口部91aの形状を制御して、光硬化性導電性樹脂液92を所定の形状および所定の領域で露光する。これにより、第1導電ビア80d、801dと一体的に接続して導電性接続体82、821がそれぞれ形成される。   Next, as shown in FIG. 12E, the shape of the opening 91a of the liquid crystal mask 91 is controlled to expose the photocurable conductive resin liquid 92 in a predetermined shape and a predetermined region. As a result, the conductive connection bodies 82 and 821 are formed integrally with the first conductive vias 80d and 801d, respectively.

つぎに、図12(f)に示すように、ステージをさらに下方に移動させ、第1半導体チップ80と位置合わせして搭載した第2半導体チップ81を光硬化性導電性樹脂液92中に浸漬する。このとき、導電性接続体82に相対して第2貫通孔81bと、導電性接続体821に相対して第2貫通孔811bとを位置合わせする。   Next, as shown in FIG. 12 (f), the stage is further moved downward, and the second semiconductor chip 81 mounted in alignment with the first semiconductor chip 80 is immersed in the photocurable conductive resin liquid 92. To do. At this time, the second through hole 81b is aligned with the conductive connecting body 82, and the second through hole 811b is aligned with the conductive connecting body 821.

そして、第2半導体チップ81の第2貫通孔81b、811bに対応して開口した液晶マスク91の開口部91aを介して、第2貫通孔81b、811b内に充填された光硬化性導電性樹脂液92を露光する。   Then, the photocurable conductive resin filled in the second through holes 81b and 811b through the openings 91a of the liquid crystal mask 91 opened corresponding to the second through holes 81b and 811b of the second semiconductor chip 81. The liquid 92 is exposed.

つぎに、図12(g)に示すように、光硬化性導電性樹脂液を光硬化させて第2導電ビア81d、811dを形成する。これにより、第1半導体チップ80上に形成した導電性接続体82、821と第2半導体チップ81の第2導電ビア81d、811dが電気的に接続され、半導体装置が作製される。   Next, as shown in FIG. 12G, the photocurable conductive resin liquid is photocured to form second conductive vias 81d and 811d. Thereby, the conductive connection bodies 82 and 821 formed on the first semiconductor chip 80 and the second conductive vias 81d and 811d of the second semiconductor chip 81 are electrically connected, and a semiconductor device is manufactured.

そして、作製した半導体装置を容器から取り出し、周囲の未硬化の光硬化性導電性樹脂を除去する。これにより、第1半導体チップ80と第2半導体チップ81が配線基板810上に形成された半導体装置400が作製される。   Then, the produced semiconductor device is taken out from the container, and the surrounding uncured photocurable conductive resin is removed. Thereby, the semiconductor device 400 in which the first semiconductor chip 80 and the second semiconductor chip 81 are formed on the wiring substrate 810 is manufactured.

本実施の形態によれば、配線基板と半導体積層構造体とが、光硬化性導電性樹脂で接続できるため、低荷重での実装により半導体チップなどの損傷の少ない信頼性に優れた半導体装置を容易に作製できる。   According to the present embodiment, since the wiring board and the semiconductor laminated structure can be connected with the photocurable conductive resin, a semiconductor device having excellent reliability with less damage to the semiconductor chip or the like by mounting under a low load. Easy to produce.

なお、上記実施の形態では、配線基板の配線パターンを導電ペーストのスクリーン印刷で形成した例で説明したが、これに限られない。例えば、ガラスエポキシ基板などに、光造形法を用いて形成してもよい。これにより、光造形法による一貫生産が可能となるため生産性を向上できる。また、配線パターンと導電ビアとが同じ材料により構成できるため、接続界面のない付着強度に優れた半導体装置を実現できる。   In the above-described embodiment, the example in which the wiring pattern of the wiring board is formed by screen printing of the conductive paste has been described. However, the present invention is not limited to this. For example, it may be formed on a glass epoxy substrate using an optical modeling method. Thereby, since integrated production by stereolithography is possible, productivity can be improved. In addition, since the wiring pattern and the conductive via can be made of the same material, a semiconductor device having no connection interface and excellent adhesion strength can be realized.

また、上記実施の形態では、配線パターンの接続部に直接導電ビアを形成する例で説明したが、これに限られず、バンプのような接続電極を形成してもよい。これにより、接続電極で導電ビアの接触面積を拡大して付着強度を向上できる。   In the above embodiment, the example in which the conductive via is directly formed in the connection portion of the wiring pattern has been described. However, the present invention is not limited to this, and a connection electrode such as a bump may be formed. Thereby, the contact area of the conductive via can be enlarged by the connection electrode, and the adhesion strength can be improved.

(第5の実施の形態)
以下に、本発明の第5の実施の形態における半導体積層構造体および半導体装置の製造方法について、図13を用いて説明する。
(Fifth embodiment)
Below, the manufacturing method of the semiconductor laminated structure and semiconductor device in the 5th Embodiment of this invention is demonstrated using FIG.

図13は、本発明の第5の実施の形態における半導体積層構造体950および半導体装置960の製造方法を説明する断面図である。   FIG. 13 is a cross-sectional view for explaining the method for manufacturing the semiconductor multilayer structure 950 and the semiconductor device 960 in the fifth embodiment of the present invention.

本実施の形態は、接続電極を有する配線基板、第1半導体チップ部材および第2半導体チップ部材を個別に作製し、一括して半導体積層構造体および半導体装置を形成する点で、上記各実施の形態とは異なる。   In the present embodiment, each of the above embodiments is provided in that the wiring substrate having the connection electrodes, the first semiconductor chip member, and the second semiconductor chip member are individually manufactured, and the semiconductor multilayer structure and the semiconductor device are collectively formed. Different from form.

はじめに、図13(a)に示すように、例えばガラスエポキシ基板などからなる基板900aの一方の面に、例えば銅箔などを貼り合わせてエッチングすることにより配線パターン900bを形成する。さらに、配線パターン900bの所定の位置に、例えば半田や導電性樹脂などで接続電極901を形成して配線基板900を作製する。なお、配線パターン900bや接続電極901は、導電性ペーストのスクリーン印刷で形成しても、上記各実施の形態で説明した光造形法を用いて形成してもよい。   First, as shown in FIG. 13A, a wiring pattern 900b is formed by bonding and etching, for example, a copper foil or the like on one surface of a substrate 900a made of, for example, a glass epoxy substrate. Further, the connection substrate 901 is formed at a predetermined position of the wiring pattern 900b by using, for example, solder or conductive resin, so that the wiring substrate 900 is manufactured. Note that the wiring pattern 900b and the connection electrode 901 may be formed by screen printing of a conductive paste or may be formed by using the optical modeling method described in each of the above embodiments.

そして、図13(b)に示すように、第1半導体チップ910の第1貫通孔912に導電性樹脂914を充填して第1導電ビア916を形成する。その後、導電性樹脂914を半硬化させた状態で、光造形法を用いて尖鋭形状の凸部918aを有する導電性接続体918を形成して、第1半導体チップ部材920を作製する。   Then, as shown in FIG. 13B, a first conductive via 916 is formed by filling the first through hole 912 of the first semiconductor chip 910 with a conductive resin 914. Thereafter, in a state where the conductive resin 914 is semi-cured, the conductive connecting body 918 having the sharp convex portion 918a is formed by using an optical modeling method, and the first semiconductor chip member 920 is manufactured.

さらに、図13(c)に示すように、第2半導体チップ930の第2貫通孔932に導電性樹脂934を充填して第2導電ビア936を形成する。その後、導電性樹脂914を半硬化させ、第2半導体チップ部材940を形成する。   Further, as shown in FIG. 13C, the second through hole 932 of the second semiconductor chip 930 is filled with the conductive resin 934 to form the second conductive via 936. Thereafter, the conductive resin 914 is semi-cured to form the second semiconductor chip member 940.

上記図13(a)〜図13(c)により、個別に配線基板900、第1半導体チップ部材920および第2半導体チップ部材940が準備される。   The wiring board 900, the first semiconductor chip member 920, and the second semiconductor chip member 940 are individually prepared according to FIGS.

つぎに、図13(d)に示すように、配線基板900の接続電極901と第1半導体チップ部材920の第1導電ビア916および第1半導体チップ部材920の導電性接続体918の凸部918aと第2半導体チップ部材940の第2導電ビア936を位置合わせして配置する。そして、図面中の矢印方向から加圧・加熱しながら積層する。   Next, as shown in FIG. 13 (d), the connection electrode 901 of the wiring substrate 900, the first conductive via 916 of the first semiconductor chip member 920, and the convex portion 918 a of the conductive connection body 918 of the first semiconductor chip member 920. And the second conductive via 936 of the second semiconductor chip member 940 are aligned and arranged. And it laminates, pressing and heating from the arrow direction in drawing.

上記により、図13(e)に示すような各半導体チップが積層された半導体装置960が作製される。なお、この場合、配線基板900がない状態で積層すれば、半導体積層構造体950が得られるものである。   As described above, a semiconductor device 960 in which each semiconductor chip as shown in FIG. In this case, a semiconductor multilayer structure 950 can be obtained by stacking without the wiring substrate 900.

本実施の形態によれば、個別に作製した部材を、最適に組み合わせて構成できるため、設計自由度の高い半導体積層構造体および半導体装置を生産性よく作製できる。   According to the present embodiment, since individually manufactured members can be configured in an optimal combination, a semiconductor multilayer structure and a semiconductor device with a high degree of design freedom can be manufactured with high productivity.

また、本実施の形態によれば、導電性樹脂の硬化収縮による凹部を導電性接続体の埋設や押し込みにより確実に接続できるため、接続抵抗が小さく、接続の信頼性に優れた半導体積層構造体および半導体装置が得られる。   In addition, according to the present embodiment, since the concave portion due to the curing shrinkage of the conductive resin can be reliably connected by embedding or pushing in the conductive connection body, the semiconductor laminated structure having low connection resistance and excellent connection reliability. And a semiconductor device is obtained.

なお、上記各実施の形態では、半導体積層構造体として2つの半導体チップを積層した例で説明したが、これに限られない。例えば、3つ以上の複数の半導体チップを積層して半導体積層構造体を作製してもよい。これにより、実装密度をさらに高めた半導体積層構造体および半導体装置を実現できる。   In each of the above embodiments, an example in which two semiconductor chips are stacked as the semiconductor stacked structure has been described. However, the present invention is not limited to this. For example, a semiconductor stacked structure may be manufactured by stacking three or more semiconductor chips. As a result, it is possible to realize a semiconductor stacked structure and a semiconductor device with a further increased mounting density.

また、上記各実施の形態では、積層した半導体チップ間や配線基板との隙間が空間であるような例で説明したが、これに限られず、絶縁性の接着剤で封止してもよい。これにより、半導体積層構造体および半導体装置の機械的な強度を高め、接続電極間の接続信頼性や変形などによる破壊などを未然に防止できる。   In each of the above-described embodiments, an example in which the gap between the stacked semiconductor chips and the wiring board is a space is described. However, the present invention is not limited to this, and sealing may be performed with an insulating adhesive. As a result, the mechanical strength of the semiconductor laminated structure and the semiconductor device can be increased, and the connection reliability between the connection electrodes and the breakage due to deformation can be prevented.

本発明の半導体積層構造体とそれを用いた半導体装置およびそれらの製造方法によれば、導電性樹脂を介して薄型で高密度実装が容易にできる。そのため、小型で高記憶容量化や高い信頼性が要望される携帯電話やデジタルカメラなどの携帯型デジタル機器、ノートパソコン、デジタル家電機器などの技術分野において有用である。   According to the semiconductor laminated structure of the present invention, the semiconductor device using the same, and the manufacturing method thereof, thin and high-density mounting can be easily performed through the conductive resin. Therefore, it is useful in technical fields such as portable digital devices such as mobile phones and digital cameras, notebook personal computers, and digital home appliances, which are small and require high storage capacity and high reliability.

(a)本発明の第1の実施の形態における半導体積層構造体の構成を示す平面図(b)図1(a)のA−A線断面図(c)本発明の第1の実施の形態における半導体積層構造体を実装した半導体装置の構成を示す断面図(A) Plan view showing the configuration of the semiconductor multilayer structure according to the first embodiment of the present invention (b) AA line sectional view of FIG. 1 (a) (c) First embodiment of the present invention Sectional drawing which shows the structure of the semiconductor device which mounted the semiconductor laminated structure in 本発明の第1の実施の形態における半導体積層構造体に用いる導電性接続体の別の例を示す断面概念図Sectional conceptual diagram which shows another example of the electroconductive connection body used for the semiconductor laminated structure in the 1st Embodiment of this invention 本発明の第1の実施の形態の半導体積層構造体および半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor laminated structure and semiconductor device of the 1st Embodiment of this invention 本発明の第1の実施の形態の半導体積層構造体および半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor laminated structure and semiconductor device of the 1st Embodiment of this invention 本発明の第1の実施の形態に用いられる導電性接続体の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the electroconductive connection body used for the 1st Embodiment of this invention (a)本発明の第2の実施の形態における半導体積層構造体の構成を示す平面図(b)図6(a)のA−A線断面図(c)本発明の第2の実施の形態における半導体積層構造体を実装した半導体装置の構成を示す断面図(A) Plan view showing the configuration of the semiconductor multilayer structure according to the second embodiment of the present invention (b) Cross-sectional view taken along the line AA in FIG. 6 (a) (c) Second embodiment of the present invention Sectional drawing which shows the structure of the semiconductor device which mounted the semiconductor laminated structure in 本発明の第2の実施の形態の半導体積層構造体および半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor laminated structure and semiconductor device of the 2nd Embodiment of this invention 本発明の第2の実施の形態の半導体積層構造体および半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor laminated structure and semiconductor device of the 2nd Embodiment of this invention (a)本発明の第3の実施の形態における半導体積層構造体の構成を示す平面図(b)図9(a)のA−A線断面図(c)本発明の第3の実施の形態における半導体積層構造体を実装した半導体装置の構成を示す断面図(A) Plan view showing a configuration of a semiconductor laminated structure according to the third embodiment of the present invention (b) AA line sectional view of FIG. 9 (a) (c) Third embodiment of the present invention Sectional drawing which shows the structure of the semiconductor device which mounted the semiconductor laminated structure in 本発明の第3の実施の形態の半導体積層構造体および半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor laminated structure and semiconductor device of the 3rd Embodiment of this invention (a)本発明の第4の実施の形態における半導体装置の構成を示す平面図(b)図11(a)のA−A線断面図(A) Plan view showing a configuration of a semiconductor device according to the fourth embodiment of the present invention (b) AA line sectional view of FIG. 11 (a) 本発明の第4の実施の形態の半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor device of the 4th Embodiment of this invention 本発明の第5の実施の形態における半導体積層構造体および半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor laminated structure and semiconductor device in the 5th Embodiment of this invention

符号の説明Explanation of symbols

1,2,3,4,950 半導体積層構造体
10,80,910 第1半導体チップ
10a シリコン基板
10b,80b,801b,912 第1貫通孔
10c,11c,70c,71c,80c,81c,801c,914,934 導電性樹脂
10d,80d,801d,916 第1導電ビア
11,81,930 第2半導体チップ
11b,81b,811b,932 第2貫通孔
11d,81d,811d,936 第2導電ビア
12,52,72,82,121,122,123,821,918 導電性接続体
12a,121a,122a,123a 個別部材
12b,121b,122b,123b 突起部
13 凹部
41,61,91 液晶マスク
41a,61a,91a,102 開口部
42,62,92 光硬化性導電性樹脂液
43,60 容器
44,64 ステージ
52b,918a 凸部
100,200,300,400,960 半導体装置
100a,800a 一方の面
100b 他方の面
101 エッチングパターンマスク
103 導電性樹脂ペースト
104 スキージ
110,810,900 配線基板
110a,810a,900b 配線パターン
113,901 接続電極
900a 基板
920 第1半導体チップ部材
940 第2半導体チップ部材
1, 2, 3, 4, 950 Semiconductor multilayer structure 10, 80, 910 First semiconductor chip 10a Silicon substrate 10b, 80b, 801b, 912 First through hole 10c, 11c, 70c, 71c, 80c, 81c, 801c, 914, 934 Conductive resin 10d, 80d, 801d, 916 First conductive via 11, 81, 930 Second semiconductor chip 11b, 81b, 811b, 932 Second through hole 11d, 81d, 811d, 936 Second conductive via 12, 52, 72, 82, 121, 122, 123, 821, 918 Conductive connector 12a, 121a, 122a, 123a Individual member 12b, 121b, 122b, 123b Protrusion 13 Recess 41, 61, 91 Liquid crystal mask 41a, 61a, 91a, 102 opening 42,62,92 photocurable conductive resin liquid 3, 60 Container 44, 64 Stage 52b, 918a Protrusion 100, 200, 300, 400, 960 Semiconductor device 100a, 800a One surface 100b The other surface 101 Etching pattern mask 103 Conductive resin paste 104 Squeegee 110, 810, 900 Wiring substrate 110a, 810a, 900b Wiring pattern 113,901 Connection electrode 900a Substrate 920 First semiconductor chip member 940 Second semiconductor chip member

Claims (15)

少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体であって、
前記第2半導体チップと積層方向に接続するとともに所定の前記第1配線電極と接続する導電性樹脂を充填した第1導電ビアを有する第1半導体チップと、
前記第1半導体チップと積層方向に接続するとともに所定の前記第2配線電極と接続する導電性樹脂を充填した第2導電ビアを有する第2半導体チップとを、少なくとも備え、
相対する前記第1導電ビアと前記第2導電ビアとが導電性接続体を介して電気的に接続されていることを特徴とする半導体積層構造体。
A semiconductor laminated structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are laminated,
A first semiconductor chip having a first conductive via which is connected to the second semiconductor chip in a stacking direction and filled with a conductive resin connected to the predetermined first wiring electrode;
A second semiconductor chip having a second conductive via connected to the first semiconductor chip in the stacking direction and filled with a conductive resin connected to the predetermined second wiring electrode;
The semiconductor laminated structure, wherein the opposing first conductive via and the second conductive via are electrically connected via a conductive connector.
前記導電性接続体が、複数の突起部を有する個別部材からなることを特徴とする請求項1に記載の半導体積層構造体。 The semiconductor laminated structure according to claim 1, wherein the conductive connection body is made of an individual member having a plurality of protrusions. 前記個別部材は、導電性樹脂硬化物あるいは絶縁性樹脂硬化物に外周を金属めっきして構成されていることを特徴とする請求項2に記載の半導体積層構造体。 3. The semiconductor multilayer structure according to claim 2, wherein the individual member is configured by metal plating the outer periphery of a cured conductive resin or a cured insulating resin. 前記個別部材は、光造形法により形成された光硬化性導電性樹脂硬化物あるいは光硬化性絶縁性樹脂硬化物に外周を金属めっきして構成されていることを特徴とする請求項2に記載の半導体積層構造体。 The said individual member is comprised by metal-plating the outer periphery to the photocurable conductive resin hardened | cured material or photocurable insulating resin hardened | cured material formed by the stereolithography. The semiconductor laminated structure. 前記導電性接続体の体積が、前記第1導電ビアおよび前記第2導電ビアの前記導電性樹脂の硬化収縮した空間体積よりも大きいことを特徴とする請求項1または請求項2に記載の半導体積層構造体。 3. The semiconductor according to claim 1, wherein a volume of the conductive connection body is larger than a space volume of the first conductive via and the second conductive via that is hardened and contracted by the conductive resin. Laminated structure. 前記導電性接続体が、少なくとも1つの凸部を有する光造形法により形成された光硬化性導電性樹脂硬化物からなることを特徴とする請求項1に記載の半導体積層構造体。 The semiconductor laminated structure according to claim 1, wherein the conductive connection body is made of a photocurable conductive resin cured product formed by an optical modeling method having at least one convex portion. 前記導電性接続体の少なくとも凸部の体積が、前記第1導電ビアおよび前記第2導電ビアの前記導電性樹脂の硬化収縮した空間体積よりも大きいことを特徴とする請求項6に記載の半導体積層構造体。 7. The semiconductor according to claim 6, wherein the volume of at least the convex portion of the conductive connection body is larger than a space volume of the first conductive via and the second conductive via that is cured and contracted by the conductive resin. Laminated structure. 前記導電性樹脂と前記導電性接続体が、光造形法により一体的に形成された光硬化性導電性樹脂からなることを特徴とする請求項1に記載の半導体積層構造体。 The semiconductor laminated structure according to claim 1, wherein the conductive resin and the conductive connector are made of a photocurable conductive resin integrally formed by an optical modeling method. 請求項1から請求項8のいずれか1項に記載の半導体積層構造体を配線基板に実装し、前記配線基板の接続電極と前記第1導電ビアを介して電気的に接続されていることを特徴とする半導体装置。 The semiconductor multilayer structure according to claim 1 is mounted on a wiring board, and is electrically connected to a connection electrode of the wiring board via the first conductive via. A featured semiconductor device. 少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体の製造方法であって、
前記第1半導体チップに前記第2半導体チップと積層方向に接続するとともに所定の前記第1配線電極と接続する第1貫通孔を形成する工程と、
前記第2半導体チップに前記第1半導体チップと積層方向に接続するとともに所定の前記第2配線電極と接続する第2貫通孔を形成する工程と、
前記第1貫通孔および前記第2貫通孔に導電性樹脂ペーストを充填し前記第1半導体チップに第1導電ビアおよび前記第2半導体チップに第2導電ビアを形成する導電ビア形成工程と、
導電性接続体を形成する導電性接続体形成工程と、
少なくとも前記第1半導体チップまたは前記第2半導体チップの一方の面上に前記導電性接続体を前記第1導電ビアまたは前記第2導電ビアに配置する導電性接続体配置工程と、
所定の前記第1半導体チップの前記第1導電ビアと前記第2半導体チップの前記第2導電ビアとを位置合わせし、付着させた前記導電性接続体を介して前記第1導電ビアと前記第2導電ビアを電気的に接続させる半導体チップ積層工程と、
を含むことを特徴とする半導体積層構造体の製造方法。
A method for manufacturing a semiconductor stacked structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked,
Forming a first through-hole in the first semiconductor chip connected to the second semiconductor chip in the stacking direction and connected to the predetermined first wiring electrode;
Forming a second through hole connected to the second semiconductor chip in a stacking direction with the first semiconductor chip and connected to the predetermined second wiring electrode;
A conductive via forming step of filling the first through hole and the second through hole with a conductive resin paste to form a first conductive via in the first semiconductor chip and a second conductive via in the second semiconductor chip;
A conductive connector forming step for forming a conductive connector;
A conductive connector arrangement step of arranging the conductive connector in the first conductive via or the second conductive via on at least one surface of the first semiconductor chip or the second semiconductor chip;
The first conductive vias of the predetermined first semiconductor chip and the second conductive vias of the second semiconductor chip are aligned, and the first conductive vias and the second conductive vias are attached to each other. A semiconductor chip stacking step for electrically connecting two conductive vias;
The manufacturing method of the semiconductor laminated structure characterized by the above-mentioned.
前記導電性接続体形成工程が、液晶マスクあるいはレーザー光線を用いた光造形法により、光硬化性導電性樹脂液あるいは光硬化性絶縁性樹脂液を所定の形状に露光現像して、非露光部分を除去し、光硬化性導電性樹脂硬化物の導電性接続体あるいは形成した光硬化性絶縁性樹脂硬化物の外周を金属めっきした導電性接続体を形成する工程を含むことを特徴とする請求項10に記載の半導体積層構造体の製造方法。 In the conductive connector forming step, a photocurable conductive resin liquid or a photocurable insulating resin liquid is exposed and developed into a predetermined shape by an optical modeling method using a liquid crystal mask or a laser beam, and an unexposed portion is formed. The method includes a step of removing and forming a conductive connection body of a cured photocurable conductive resin or a conductive connection body in which the outer periphery of the formed cured photocurable insulating resin is metal-plated. 10. A method for producing a semiconductor laminated structure according to 10. 前記導電ビア形成工程以後の工程が、
前記第1半導体チップの前記第1導電ビアと接続し、前記第2半導体チップの前記第2導電ビアと対向する位置に、少なくとも1つの凸部を有する前記導電性接続体を光造形法により形成する導電性接続体形成工程と、
所定の前記導電性接続体の前記凸部と前記第2半導体チップの前記第2導電ビアとを位置合わせし、前記導電性接続体を介して前記第1導電ビアと前記第2導電ビアを電気的に接続させる半導体チップ積層工程と、
を含むことを特徴とする請求項10に記載の半導体積層構造体の製造方法。
The steps after the conductive via forming step are:
The conductive connection body having at least one protrusion is formed by stereolithography at a position connected to the first conductive via of the first semiconductor chip and facing the second conductive via of the second semiconductor chip. A conductive connecting body forming step,
The convex portion of the predetermined conductive connection body and the second conductive via of the second semiconductor chip are aligned, and the first conductive via and the second conductive via are electrically connected via the conductive connection body. Semiconductor chip stacking process to be connected to each other,
The manufacturing method of the semiconductor laminated structure of Claim 10 characterized by the above-mentioned.
少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体の製造方法であって、
前記第1半導体チップに前記第2半導体チップと積層方向に接続するとともに所定の前記第1配線電極と接続する第1貫通孔を形成する工程と、
前記第2半導体チップに前記第1半導体チップと積層方向に接続するとともに所定の前記第2配線電極と接続する第2貫通孔を形成する工程と、
前記第1半導体チップを光硬化性導電性樹脂液中に浸漬し、前記第1貫通孔内の前記光硬化性導電性樹脂を光硬化させて第1導電ビアを形成するとともに、前記第1導電ビアと接続される導電性接続体を形成する工程と、
さらに前記第2半導体チップを前記光硬化性導電性樹脂液中に浸漬し、前記導電性接続体に対応する前記第2貫通孔と位置合わせして、前記第2貫通孔内の前記光硬化性導電性樹脂を光硬化させて第2導電ビアを形成し、導電性接続体を介して前記第1導電ビアと前記第2導電ビアを電気的に接続させる半導体チップ積層工程と、
を含むことを特徴とする半導体積層構造体の製造方法。
A method for manufacturing a semiconductor stacked structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked,
Forming a first through-hole in the first semiconductor chip connected to the second semiconductor chip in the stacking direction and connected to the predetermined first wiring electrode;
Forming a second through hole connected to the second semiconductor chip in a stacking direction with the first semiconductor chip and connected to the predetermined second wiring electrode;
The first semiconductor chip is immersed in a photocurable conductive resin liquid, the photocurable conductive resin in the first through hole is photocured to form a first conductive via, and the first conductive Forming a conductive connection connected to the via;
Further, the second semiconductor chip is immersed in the photocurable conductive resin liquid, aligned with the second through hole corresponding to the conductive connector, and the photocurable property in the second through hole. A semiconductor chip stacking step in which a conductive resin is photocured to form a second conductive via, and the first conductive via and the second conductive via are electrically connected via a conductive connector;
The manufacturing method of the semiconductor laminated structure characterized by the above-mentioned.
少なくとも第1配線電極を有する第1半導体チップと第2配線電極を有する第2半導体チップが積層された半導体積層構造体の製造方法であって、
前記第1半導体チップに前記第2半導体チップと積層方向に接続するとともに所定の前記第1配線電極と接続する第1貫通孔に導電性樹脂ペーストを充填して前記第1半導体チップに第1導電ビアを形成し、前記第1導電ビアと接続する少なくとも1つの凸部を有する導電性接続体を光造形法により形成する第1半導体チップ形成工程と、
前記第2半導体チップに前記第1半導体チップと積層方向に接続するとともに所定の前記第2配線電極と接続する第2貫通孔に導電性樹脂ペーストを充填して前記第2半導体チップに第2導電ビアを形成する第2半導体チップ形成工程と、
前記第1半導体チップの前記導電性接続体の前記凸部と前記第2半導体チップの前記第2導電ビアとを位置合わせし、前記導電性接続体を介して前記第1導電ビアと前記第2導電ビアを電気的に接続させる半導体チップ積層工程と、
を含むことを特徴とする半導体積層構造体の製造方法。
A method for manufacturing a semiconductor stacked structure in which a first semiconductor chip having at least a first wiring electrode and a second semiconductor chip having a second wiring electrode are stacked,
The first semiconductor chip is filled with a conductive resin paste in a first through-hole connected to the first semiconductor chip in the stacking direction with the second semiconductor chip and connected to the predetermined first wiring electrode. A first semiconductor chip forming step of forming a via and forming a conductive connection body having at least one convex portion connected to the first conductive via by an optical modeling method;
The second semiconductor chip is filled with a conductive resin paste in a second through-hole connected to the second semiconductor chip in the stacking direction with the first semiconductor chip and connected to the predetermined second wiring electrode. A second semiconductor chip forming step of forming vias;
The convex portion of the conductive connection body of the first semiconductor chip is aligned with the second conductive via of the second semiconductor chip, and the first conductive via and the second are interposed via the conductive connection body. A semiconductor chip stacking step for electrically connecting conductive vias;
The manufacturing method of the semiconductor laminated structure characterized by the above-mentioned.
請求項10から請求項14のいずれか1項に記載の半導体積層構造体の製造方法により形成された半導体積層構造体を、配線基板の接続電極と接続して実装したことを特徴とする半導体装置の製造方法。 15. A semiconductor device, wherein the semiconductor multilayer structure formed by the method for manufacturing a semiconductor multilayer structure according to claim 10 is mounted in connection with a connection electrode of a wiring board. Manufacturing method.
JP2007164605A 2007-06-22 2007-06-22 Semiconductor laminate and semiconductor device using the same Expired - Fee Related JP5018270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164605A JP5018270B2 (en) 2007-06-22 2007-06-22 Semiconductor laminate and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164605A JP5018270B2 (en) 2007-06-22 2007-06-22 Semiconductor laminate and semiconductor device using the same

Publications (3)

Publication Number Publication Date
JP2009004593A true JP2009004593A (en) 2009-01-08
JP2009004593A5 JP2009004593A5 (en) 2010-04-22
JP5018270B2 JP5018270B2 (en) 2012-09-05

Family

ID=40320650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164605A Expired - Fee Related JP5018270B2 (en) 2007-06-22 2007-06-22 Semiconductor laminate and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP5018270B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232648A (en) * 2009-03-04 2010-10-14 Nec Corp Semiconductor device and method of manufacturing the same
JP2011009489A (en) * 2009-06-26 2011-01-13 Sony Corp Method for manufacturing semiconductor device, semiconductor device, and solid-state image pickup device
WO2011036819A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Method for manufacturing semiconductor device
WO2016114320A1 (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Multilayer substrate
US9704915B2 (en) 2010-07-09 2017-07-11 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
CN111508967A (en) * 2019-01-30 2020-08-07 爱思开海力士有限公司 Semiconductor memory device and method of manufacturing the same
US20210384654A1 (en) * 2018-11-09 2021-12-09 Guangzhou Fangbang Electronics Co., Ltd. Flexible Connector and Manufacturing Method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323813A (en) * 2002-02-28 2003-11-14 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit terminal using the same
JP2004172453A (en) * 2002-11-21 2004-06-17 Toray Eng Co Ltd Semiconductor substrate segment, manufacturing method thereof, laminated semiconductor substrate in which the segments are laminated, and manufacturing method thereof
JP2005166438A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Circuit connecting material, and connection structure of circuit member using it
JP2005217071A (en) * 2004-01-28 2005-08-11 Nec Electronics Corp Chip for multi-chip semiconductor device and its manufacturing method
JP2005277059A (en) * 2004-03-24 2005-10-06 Rohm Co Ltd Semiconductor device, method for manufacturing the same and semiconductor chip
JP2006165073A (en) * 2004-12-03 2006-06-22 Hitachi Ulsi Systems Co Ltd Semiconductor device and its manufacturing method
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323813A (en) * 2002-02-28 2003-11-14 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit terminal using the same
JP2004172453A (en) * 2002-11-21 2004-06-17 Toray Eng Co Ltd Semiconductor substrate segment, manufacturing method thereof, laminated semiconductor substrate in which the segments are laminated, and manufacturing method thereof
JP2005166438A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Circuit connecting material, and connection structure of circuit member using it
JP2005217071A (en) * 2004-01-28 2005-08-11 Nec Electronics Corp Chip for multi-chip semiconductor device and its manufacturing method
JP2005277059A (en) * 2004-03-24 2005-10-06 Rohm Co Ltd Semiconductor device, method for manufacturing the same and semiconductor chip
JP2006165073A (en) * 2004-12-03 2006-06-22 Hitachi Ulsi Systems Co Ltd Semiconductor device and its manufacturing method
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232648A (en) * 2009-03-04 2010-10-14 Nec Corp Semiconductor device and method of manufacturing the same
JP2011009489A (en) * 2009-06-26 2011-01-13 Sony Corp Method for manufacturing semiconductor device, semiconductor device, and solid-state image pickup device
WO2011036819A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Method for manufacturing semiconductor device
US8535977B2 (en) 2009-09-28 2013-09-17 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
JP5377657B2 (en) * 2009-09-28 2013-12-25 株式会社東芝 Manufacturing method of semiconductor device
US9704915B2 (en) 2010-07-09 2017-07-11 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
US10263034B2 (en) 2010-07-09 2019-04-16 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
US10651231B2 (en) 2010-07-09 2020-05-12 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
US11545519B2 (en) 2010-07-09 2023-01-03 Canon Kabushiki Kaisha Member for solid-state image pickup device and method for manufacturing solid-state image pickup device
WO2016114320A1 (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Multilayer substrate
US11901325B2 (en) 2015-01-13 2024-02-13 Dexerials Corporation Multilayer substrate
US20210384654A1 (en) * 2018-11-09 2021-12-09 Guangzhou Fangbang Electronics Co., Ltd. Flexible Connector and Manufacturing Method
US11848508B2 (en) * 2018-11-09 2023-12-19 Guangzhou Fangbang Electronics Co., Ltd. Flexible connector and manufacturing method
CN111508967A (en) * 2019-01-30 2020-08-07 爱思开海力士有限公司 Semiconductor memory device and method of manufacturing the same
CN111508967B (en) * 2019-01-30 2023-09-15 爱思开海力士有限公司 Semiconductor memory device and method for manufacturing the same

Also Published As

Publication number Publication date
JP5018270B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US8198140B2 (en) Wiring substrate for mounting semiconductors, method of manufacturing the same, and semiconductor package
JP5018270B2 (en) Semiconductor laminate and semiconductor device using the same
TWI384630B (en) Method of manufacturing an electronic parts packaging structure
KR100865426B1 (en) Semiconductor device and its manufacturing method
KR100987688B1 (en) Printed wiring board and method for manufacturing printed wiring board
JP5152177B2 (en) Conductive bump, manufacturing method thereof, and electronic component mounting structure
JP5585634B2 (en) Electronic parts and manufacturing method thereof
JPWO2006109383A1 (en) ELECTRONIC DEVICE HAVING WIRING BOARD, MANUFACTURING METHOD THEREOF, AND WIRING BOARD USED FOR THE ELECTRONIC DEVICE
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
JPWO2018047861A1 (en) Wiring board and method of manufacturing wiring board
JP2010277829A (en) Substrate having connection terminal
JP2010153498A (en) Resin-sealed package and method for manufacturing the same
JP2000183283A (en) Laminated-type circuit module and its manufacturing method
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP5272922B2 (en) Semiconductor device and manufacturing method thereof
JP2008118075A (en) Electronic component mounting method, electronic substrate, and electronic apparatus
JP2008053693A (en) Semiconductor module, portable device, and manufacturing method of semiconductor module
JP3833669B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5456113B2 (en) Resin sealed package
JP3851585B2 (en) Connection method of bare chip semiconductor element to printed wiring board
JP2010010319A (en) Conductive bump, method of forming the same, and electronic component mounting structure using the same
JP2006173234A (en) Semiconductor device and its manufacturing method
JP2010050335A (en) Production method for component built-in module and the component built-in module
JP2018163919A (en) Semiconductor device and method of manufacturing the same
JP2016213372A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees