JP2016213372A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2016213372A
JP2016213372A JP2015097218A JP2015097218A JP2016213372A JP 2016213372 A JP2016213372 A JP 2016213372A JP 2015097218 A JP2015097218 A JP 2015097218A JP 2015097218 A JP2015097218 A JP 2015097218A JP 2016213372 A JP2016213372 A JP 2016213372A
Authority
JP
Japan
Prior art keywords
photosensitive resin
film
manufacturing
semiconductor element
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015097218A
Other languages
Japanese (ja)
Inventor
一行 満倉
Kazuyuki Mitsukura
一行 満倉
蔵渕 和彦
Kazuhiko Kurabuchi
和彦 蔵渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015097218A priority Critical patent/JP2016213372A/en
Publication of JP2016213372A publication Critical patent/JP2016213372A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73259Bump and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a high density semiconductor device excellent in transmission between chips with a good yield at low cost.SOLUTION: A method of manufacturing a semiconductor device 101 includes the following steps of: (I) mounting a plurality of first semiconductor elements 2 on a carrier; (II) encapsulating the first semiconductor elements 2 with a first photosensitive resin material 3 as a block; (III) exposing and developing the first photosensitive resin material 3 to form a first cured film 3; (IV) forming first metal wiring 4 on the first cured film 3; and (V) peeling the carrier.SELECTED DRAWING: Figure 9

Description

本発明は、半導体装置の製造方法及びその方法により得られる半導体装置に関する。より詳しくは、微細化や高密度化の要求が高い半導体装置を効率よく、低コストに製造するための半導体装置の製造方法及びその方法により得られる半導体装置に関する。   The present invention relates to a method for manufacturing a semiconductor device and a semiconductor device obtained by the method. More specifically, the present invention relates to a method for manufacturing a semiconductor device for efficiently and inexpensively manufacturing a semiconductor device that is highly demanded for miniaturization and high density, and a semiconductor device obtained by the method.

半導体パッケージの高密度化、高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されており、低コストに製造可能なチップ間の高密度インターコネクト技術が重要になっている(例えば特許文献1参照)。   For the purpose of increasing the density and performance of semiconductor packages, a mounting form in which chips with different performances are mixed in one package has been proposed, and high-density interconnect technology between chips that can be manufactured at low cost is important. (For example, refer to Patent Document 1).

3次元実装形態として、パッケージ上に異なるパッケージをフリップチップ実装によって積層することで接続するパッケージ・オン・パッケージがスマートフォンやタブレット端末に広く採用されている(例えば非特許文献1及び非特許文献2参照)。さらに高密度で実装するための形態として、高密度配線を有する有機基板を用いたパッケージ技術、シリコン又はガラスインターポーザーを用いたパッケージ技術、シリコン貫通電極(TSV)を用いたパッケージ技術、基板に埋め込まれたチップをチップ間伝送に用いるパッケージ技術等が提案されている。   As a three-dimensional mounting form, a package-on-package that connects by stacking different packages on the package by flip chip mounting is widely used in smartphones and tablet terminals (see, for example, Non-Patent Document 1 and Non-Patent Document 2). ). As a form for mounting at higher density, packaging technology using an organic substrate having high-density wiring, packaging technology using silicon or glass interposer, packaging technology using a through silicon via (TSV), embedded in a substrate A packaging technique for using the obtained chip for inter-chip transmission has been proposed.

また、半導体チップ同士を高密度で導通させるために、チップ間の電気接続部のピッチをより狭く設計する要求がある。   In addition, there is a demand for designing the pitch of the electrical connection portions between the chips to be narrower in order to conduct the semiconductor chips with high density.

特表2012−529770号公報Special table 2012-529770 gazette

Application of Through Mold Via (TMV) as PoP Base Package, Electronic Components and Technology Conference (ECTC), 2008Application of Through Mold Via (TMV) as PoP Base Package, Electronic Components and Technology Conference (ECTC), 2008 Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB−PoP) Technology, ECTC, 2012Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB-PoP) Technology, ECTC, 2012

高密度配線を有する有機基板を用いたパッケージは微細配線の積層が必要なことから十分な歩留まりを得ることが難しい。また、シリコン又はガラスインターポーザを用いたパッケージは大面積のインターポーザが必要となるため、反りやコストの点で課題があった。また、高密度化のためにシリコン又はガラス貫通電極を用いたパッケージでは、歩留まりとコストの点で問題があった。   A package using an organic substrate having a high-density wiring is difficult to obtain a sufficient yield because fine wiring needs to be stacked. Further, since a package using a silicon or glass interposer requires a large area interposer, there are problems in terms of warpage and cost. Further, a package using a silicon or glass through electrode for increasing the density has problems in terms of yield and cost.

本発明は、チップ同士の伝送に優れた高密度の半導体装置を良好な歩留まり、かつ低コストで製造できる製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method which can manufacture the high-density semiconductor device excellent in transmission between chips | tips with a favorable yield and low cost.

本発明は以下の具体的態様を提供する。
<1>(I)キャリア上に複数の第1の半導体素子を能動面がキャリア側に配置されるように固定する工程と、
(II)前記第1の半導体素子を、第1の感光性樹脂材料で一括封止して第1の感光性樹脂膜を形成する工程と、
(III)前記第1の感光性樹脂膜を露光及び現像して第1のパターン硬化膜を形成する工程と、
(IV)前記第1のパターン硬化膜上に、第1の金属配線を形成する工程と、
(V)前記キャリアを剥離する工程とを備える半導体装置の製造方法。
<2>さらに、(VI)前記複数の第1の半導体素子の2以上の第1の半導体素子の能動面を跨るように、第2の半導体素子を能動面から搭載する工程を備える<1>記載の半導体装置の製造方法。
<3>さらに、前記(IV)の工程後、かつ前記(V)の工程前に、
(IV-1)前記第1の金属配線上に第2の感光性樹脂膜を形成する工程と、(IV-2)前記第2の感光性樹脂膜を露光及び現像して第2のパターン硬化膜を形成する工程と、
(IV-3)前記第2のパターン硬化膜上に、第2の金属配線を形成する工程とを備える<1>又は<2>記載の半導体装置の製造方法。
<4>前記第1の感光性樹脂材料が、シート状の材料である<1>〜<3>のいずれかに記載の半導体装置の製造方法。
<5>前記第1のパターン硬化膜の膜厚が50〜400μmである<1>〜<4>のいずれかに記載の半導体装置の製造方法。
<6>前記第1の感光性樹脂材料がネガ型である<1>〜<5>のいずれかに記載の半導体装置の製造方法。
<7><1>〜<6>のいずれかに記載の製造方法を用いて製造された半導体装置。
The present invention provides the following specific embodiments.
<1> (I) fixing a plurality of first semiconductor elements on a carrier so that an active surface is disposed on the carrier side;
(II) forming a first photosensitive resin film by collectively sealing the first semiconductor element with a first photosensitive resin material;
(III) exposing and developing the first photosensitive resin film to form a first pattern cured film;
(IV) forming a first metal wiring on the first patterned cured film;
(V) A method for manufacturing a semiconductor device comprising a step of peeling the carrier.
<2> The method further includes (VI) a step of mounting the second semiconductor element from the active surface so as to straddle the active surfaces of the two or more first semiconductor elements of the plurality of first semiconductor elements. The manufacturing method of the semiconductor device of description.
<3> Further, after the step (IV) and before the step (V),
(IV-1) a step of forming a second photosensitive resin film on the first metal wiring; and (IV-2) second pattern curing by exposing and developing the second photosensitive resin film. Forming a film;
(IV-3) The method for manufacturing a semiconductor device according to <1> or <2>, further comprising a step of forming a second metal wiring on the second patterned cured film.
<4> The method for manufacturing a semiconductor device according to any one of <1> to <3>, wherein the first photosensitive resin material is a sheet-like material.
<5> The method for manufacturing a semiconductor device according to any one of <1> to <4>, wherein the first patterned cured film has a thickness of 50 to 400 μm.
<6> The method for manufacturing a semiconductor device according to any one of <1> to <5>, wherein the first photosensitive resin material is a negative type.
<7> A semiconductor device manufactured using the manufacturing method according to any one of <1> to <6>.

本発明によれば、チップ同士の伝送に優れた高密度の半導体装置を良好な歩留まり、かつ低コストで製造できる製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which can manufacture the high-density semiconductor device excellent in transmission between chips | tips with favorable yield and low cost can be provided.

キャリアに複数の第1の半導体素子(第1のチップ)を搭載した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which mounted the some 1st semiconductor element (1st chip | tip) in the carrier. 第1の半導体素子を第1の感光性樹脂材料で封止して第1の感光性樹脂膜を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which sealed the 1st semiconductor element with the 1st photosensitive resin material, and formed the 1st photosensitive resin film. 第1の感光性樹脂膜を露光及び現像して第1のパターン硬化膜を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which exposed and developed the 1st photosensitive resin film and formed the 1st pattern cured film. 第1の金属配線を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in which the 1st metal wiring was formed. 第2のパターン硬化膜を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in which the 2nd pattern cured film was formed. 第2の金属配線を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in which the 2nd metal wiring was formed. 第3のパターン硬化膜及び第3の金属配線を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in which the 3rd pattern cured film and the 3rd metal wiring were formed. キャリアを剥離して半導体素子埋め込み基板100を作製した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which peeled the carrier and produced the semiconductor element embedding board | substrate 100. FIG. 複数の第1の半導体素子を跨るように第2の半導体素子(第2のチップ)を搭載して半導体パッケージ(半導体装置)を作製した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which mounted the 2nd semiconductor element (2nd chip | tip) so that the some 1st semiconductor element might be straddled, and produced the semiconductor package (semiconductor device). シリコン貫通電極(TSV)を用いた半導体素子積層体を含む半導体パッケージを模式的に示す断面図である。It is sectional drawing which shows typically the semiconductor package containing the semiconductor element laminated body using a silicon penetration electrode (TSV). 複数の第1の半導体素子を跨るように第2の半導体素子を搭載した半導体パッケージを模式的に示す上面図である。It is a top view which shows typically the semiconductor package which mounts the 2nd semiconductor element so that a some 1st semiconductor element may be straddled. 半導体ウェハを模式的に示す断面図である。It is sectional drawing which shows a semiconductor wafer typically. 半導体ウェハにフィルム状アンダーフィルを搭載した状態を模式的に示す断面図であるIt is sectional drawing which shows typically the state which mounted the film-like underfill on the semiconductor wafer. 個別化されたアンダーフィル付半導体素子を模式的に示す断面図である。It is sectional drawing which shows typically the semiconductor element with an underfill individualized.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

なお、「左」、「右」、「正面」、「裏面」、「上」、「下」、「上方」、「下方」等の用語が利用されている場合、これらは、説明を意図したものであり、必ずしも永久にこの相対位置である、という意味ではない。また、「能動面」とは、半導体素子において、電極やバンプ等の接続部を有する面をいう。   In addition, when terms such as “left”, “right”, “front”, “back”, “top”, “bottom”, “upward”, “downward” are used, these are intended for explanation. It does not necessarily mean that this relative position is permanent. In addition, the “active surface” refers to a surface having connection portions such as electrodes and bumps in a semiconductor element.

図1から図14を参照しながら、図9に示す半導体パッケージ(半導体装置)101の製造方法について説明する。なお、本発明の半導体装置の製造方法は、微細化及び多ピン化が必要とされる形態において好適に用いることができる。特に、本発明の製造方法は、異種チップを混載するためのインターポーザが必要なパッケージ形態において好適に用いることができる。
まず、第1の半導体素子2(第1のチップ)を、半導体素子2の電極13がキャリア1側に配置されるように、キャリア1上に固定する(図1)。
A method for manufacturing the semiconductor package (semiconductor device) 101 shown in FIG. 9 will be described with reference to FIGS. In addition, the manufacturing method of the semiconductor device of this invention can be used suitably in the form where refinement | miniaturization and a multipin increase are required. In particular, the manufacturing method of the present invention can be suitably used in a package form that requires an interposer for mixing different types of chips.
First, the first semiconductor element 2 (first chip) is fixed on the carrier 1 so that the electrode 13 of the semiconductor element 2 is disposed on the carrier 1 side (FIG. 1).

キャリア1は、特に限定されないが、シリコン板、ガラス板、SUS板、ガラスクロス入り基板等であり、高剛性材料からなる基板が好適である。また、キャリア上に、半導体素子2を固定させるための樹脂層や樹脂層付の金属薄膜を形成することもできる。また、シリコン板を埋め込むと低反りとなり好ましい。   The carrier 1 is not particularly limited, and is a silicon plate, a glass plate, an SUS plate, a glass cloth-containing substrate, or the like, and a substrate made of a highly rigid material is preferable. Also, a resin layer for fixing the semiconductor element 2 or a metal thin film with a resin layer can be formed on the carrier. Moreover, it is preferable to embed a silicon plate because of low warpage.

樹脂層には、例えば、シリコーンやフッ素等の非極性成分を含有した樹脂や、加熱によって体積膨張又は発泡する成分を含有した樹脂を用いることができる。   For the resin layer, for example, a resin containing a nonpolar component such as silicone or fluorine, or a resin containing a component that expands or foams when heated can be used.

キャリア1の厚みは0.2mm〜2.0mmの範囲であることが好ましい。0.2mmより薄い場合はハンドリングが困難になる一方、2.0mmより厚い場合は材料費が高くなる傾向にある。   The thickness of the carrier 1 is preferably in the range of 0.2 mm to 2.0 mm. When it is thinner than 0.2 mm, handling becomes difficult, while when it is thicker than 2.0 mm, the material cost tends to increase.

キャリア1はウェハ状でもパネル状でも構わない。サイズは特に限定されないが、直径200mm、直径300mm又は直径450mmのウェハや、一辺が300〜700mmの矩形パネルが好ましく用いられる。   The carrier 1 may be a wafer shape or a panel shape. Although the size is not particularly limited, a wafer having a diameter of 200 mm, a diameter of 300 mm, or a diameter of 450 mm, or a rectangular panel having a side of 300 to 700 mm is preferably used.

半導体素子2としては、半導体素子が積層されたものも用いることができ、例えばTSVを用いて積層したものを使用することができる。図10は、半導体パッケージ101に用いる半導体素子の一部が半導体素子積層体12である例を示す。半導体素子2の厚みは、絶縁材料を薄くすることで反りを小さくできる点から、400μm以下であることが好ましく、パッケージをさらに薄型化できる点から、200μm以下であることがより好ましい。また、取り扱い性の観点から30μm以上であることが好ましい。   As the semiconductor element 2, a semiconductor element stacked layer can be used, for example, a layer stacked using TSV can be used. FIG. 10 shows an example in which a part of the semiconductor element used for the semiconductor package 101 is the semiconductor element stacked body 12. The thickness of the semiconductor element 2 is preferably 400 μm or less from the viewpoint that the warp can be reduced by thinning the insulating material, and more preferably 200 μm or less from the point that the package can be further thinned. Moreover, it is preferable that it is 30 micrometers or more from a viewpoint of handleability.

半導体素子2をキャリア1の正確な位置に配置するために、半導体素子2及びキャリア1がアライメントマークを有していることが好ましい。   In order to arrange the semiconductor element 2 at an accurate position of the carrier 1, it is preferable that the semiconductor element 2 and the carrier 1 have an alignment mark.

半導体素子2は既存のシリコンプロセス技術で得られるため、インターコネクトピッチと幅が、有機基板内に作成される場合と比較して高密度である。そのため、優れた素子同士のインターコネクト密度を得ることができる。   Since the semiconductor element 2 is obtained by an existing silicon process technology, the interconnect pitch and width are higher than those in the case where the semiconductor element 2 is formed in an organic substrate. Therefore, an excellent interconnect density between elements can be obtained.

半導体素子2としては、例えばシステムオンパッケージ、シリコンフォトニクスチップやMEMS、センサーチップを用いることができる。また、TSVを有している半導体素子を使用することができる。   As the semiconductor element 2, for example, a system-on-package, a silicon photonics chip, a MEMS, or a sensor chip can be used. Further, a semiconductor element having TSV can be used.

次いで、第1の感光性樹脂材料を用いて半導体素子2を覆うように封止し、第1の感光性樹脂膜3を形成する(図2)。第1の感光性樹脂材料は特に限定されないが、液状、固形、又はフィルム状の感光性樹脂材料を用いることができる。なお、「フィルム状」とは、前記感光性樹脂材料を単層又は2層以上の積層体に成形したものを意味する。
低反りかつ低コストで封止でき、さらにクリーンルーム環境下での汚染を回避する点で、フィルム状の感光性樹脂材料が好適である。フィルム状の感光性樹脂材料による封止はラミネート方式でもコンプレッション方式でも構わない。
Next, the first photosensitive resin material is used to seal the semiconductor element 2 so as to cover it, thereby forming the first photosensitive resin film 3 (FIG. 2). The first photosensitive resin material is not particularly limited, but a liquid, solid, or film-shaped photosensitive resin material can be used. In addition, "film form" means what shape | molded the said photosensitive resin material in the laminated body of the single layer or two layers or more.
A film-like photosensitive resin material is preferable in that it can be sealed with low warpage and low cost, and further avoids contamination in a clean room environment. Sealing with a film-like photosensitive resin material may be a laminate method or a compression method.

感光性樹脂材料としては、熱硬化時のアウトガスが少なく、かつパターンの変形が少ない観点から、ネガ型の感光性樹脂材料が好ましい。ネガ型の感光性樹脂材料としては、特に限定はしないが、感光性接着材、ソルダーレジスト、感光性アンダーフィル等の感光性絶縁材料を例示できる。   As the photosensitive resin material, a negative photosensitive resin material is preferable from the viewpoint of less outgassing at the time of thermosetting and less deformation of the pattern. Although it does not specifically limit as a negative photosensitive resin material, Photosensitive insulating materials, such as a photosensitive adhesive material, a soldering resist, and a photosensitive underfill, can be illustrated.

感光性樹脂材料は熱硬化成分を含有することが好ましく、封止後にさらに加熱によって硬化させてもよい。加熱温度と時間は、例えば120〜180℃、30分〜3時間である。感光性樹脂材料を加熱硬化した後の室温から120℃までの平均熱膨張係数は25×10−6/℃〜100×10−6/℃の範囲であることが好ましい。25×10−6/℃より小さい場合は感光性樹脂材料が脆くなる傾向がある。一方、100×10−6/℃より大きい場合はパッケージに反りが生じ易くなり、ハンドリングが困難になる傾向がある。同様の理由から、感光性樹脂材料の加熱硬化した後の室温弾性率は1GPa〜10GPaの範囲であることが好ましい。 The photosensitive resin material preferably contains a thermosetting component, and may be further cured by heating after sealing. The heating temperature and time are, for example, 120 to 180 ° C. and 30 minutes to 3 hours. It is preferable that the average thermal expansion coefficient from room temperature to 120 ° C. after heat-curing the photosensitive resin material is in the range of 25 × 10 −6 / ° C. to 100 × 10 −6 / ° C. When it is less than 25 × 10 −6 / ° C., the photosensitive resin material tends to be brittle. On the other hand, when it is larger than 100 × 10 −6 / ° C., the package tends to be warped and handling tends to be difficult. For the same reason, the room temperature elastic modulus of the photosensitive resin material after being heat-cured is preferably in the range of 1 GPa to 10 GPa.

また、感光性樹脂材料による封止工程は、液状又は固形封止材を用いたコンプレッションモールドよりも低コストで製造でき、かつチップへのダメージも少ない観点から、ラミネート工程であることが好ましい。感光性樹脂材料としては、例えばフィルム状の感光性封止樹脂を用いることができる。   In addition, the sealing step with the photosensitive resin material is preferably a laminating step from the viewpoint of being able to be manufactured at a lower cost than a compression mold using a liquid or solid sealing material and causing less damage to the chip. As the photosensitive resin material, for example, a film-like photosensitive sealing resin can be used.

前記の感光性樹脂材料による半導体素子封止工程は、低温工程であることが好ましく、感光性樹脂材料は、40〜120℃で封止可能な感光性封止フィルムであることが好ましい。封止可能な温度が40℃を下回る感光性封止フィルムは常温でのタックが強く取り扱い性に悪化する傾向がある。一方、120℃を上回る感光性封止フィルムは封止後に反りが大きくなる傾向がある。   The semiconductor element sealing step using the photosensitive resin material is preferably a low-temperature step, and the photosensitive resin material is preferably a photosensitive sealing film that can be sealed at 40 to 120 ° C. A photosensitive sealing film having a sealable temperature lower than 40 ° C. has a strong tack at normal temperature and tends to deteriorate in handleability. On the other hand, the photosensitive sealing film exceeding 120 ° C. tends to have a large warp after sealing.

次いで、第1の感光性樹脂膜3を露光及び現像して、第1のパターン硬化膜3’を形成する(図3)。
感光性樹脂材料の露光方法としては、投影露光方式、コンタクト露光方式、直描露光方式等を用いることができる。
現像方法としては炭酸ナトリウムやTMAHのアルカリ水溶液等を用いることができる。
Next, the first photosensitive resin film 3 is exposed and developed to form a first pattern cured film 3 ′ (FIG. 3).
As an exposure method for the photosensitive resin material, a projection exposure method, a contact exposure method, a direct drawing exposure method, or the like can be used.
As the developing method, sodium carbonate, an alkaline aqueous solution of TMAH, or the like can be used.

露光の位置あわせは、半導体素子2又はキャリア1に形成されたアライメントマークを使用することができる。この際、アライメントマークの認識性を確保するために、感光性樹脂材料は、50μm厚において400〜800nmでの最大透過率が50%以上であることが好ましく、70%以上であることがより好ましい。最大透過率が50%を下回る場合はアライメントマーク認識が困難となる傾向がある。最大透過率が70%以上のときは露光の際の位置精度が良くなり歩留まりが高まる傾向がある。なお、最大透過率は分光光度計(日立ハイテクノロジーズ製:U−3310)を用いて、400〜800nmでの透過率を読み取ることで測定することができる。   For alignment of the exposure, alignment marks formed on the semiconductor element 2 or the carrier 1 can be used. At this time, in order to ensure the recognizability of the alignment mark, the photosensitive resin material preferably has a maximum transmittance of 50% or more at 400 to 800 nm at a thickness of 50 μm, more preferably 70% or more. . When the maximum transmittance is less than 50%, alignment mark recognition tends to be difficult. When the maximum transmittance is 70% or more, the positional accuracy during exposure is improved and the yield tends to increase. The maximum transmittance can be measured by reading the transmittance at 400 to 800 nm using a spectrophotometer (manufactured by Hitachi High-Technologies: U-3310).

感光性樹脂材料を露光、現像して得られるパターン硬化膜3’の厚み(キャリア1の面からの高さ)は、反り低減と取り扱い性向上の観点から、50〜400μmが好ましい。   The thickness of the pattern cured film 3 ′ (height from the surface of the carrier 1) obtained by exposing and developing the photosensitive resin material is preferably 50 to 400 μm from the viewpoint of reducing warpage and improving handleability.

次いで、第1のパターン硬化膜上に第1の金属配線4を形成する(図4)。配線形成方法は特に限定されないが、例えばめっき法を用いて形成する。具体的には、まず配線形成用の感光性材料を塗布し、露光、現像することでパターン形成する。前記パターンをマスクとして、シード層を無電解めっきにより形成後、電解めっきすることで金属配線4を形成することができる。
最後に前記パターンを除去する。
金属配線の材料としては、金、銀、銅、ニッケル、パラジウム、導電性高分子、カーボンナノチューブ等が挙げられる。
Next, the first metal wiring 4 is formed on the first pattern cured film (FIG. 4). Although the wiring formation method is not specifically limited, For example, it forms using the plating method. Specifically, first, a photosensitive material for wiring formation is applied, exposed, and developed to form a pattern. The metal wiring 4 can be formed by electroplating after forming the seed layer by electroless plating using the pattern as a mask.
Finally, the pattern is removed.
Examples of the metal wiring material include gold, silver, copper, nickel, palladium, a conductive polymer, and a carbon nanotube.

次いで第2の感光性樹脂材料を金属配線4を覆うように封止して、露光及び現像して第2のパターン硬化膜5を形成し(図5)、前記第2のパターン硬化膜上に、第2の金属配線6を形成する(図6)。第2の感光性樹脂材料、その封止方法、露光及び現像方法、第2の金属配線6及びその配線方法は、第1の感光性樹脂材料3と第1の金属配線4と同様である。   Next, the second photosensitive resin material is sealed so as to cover the metal wiring 4, exposed and developed to form a second pattern cured film 5 (FIG. 5), and on the second pattern cured film Then, the second metal wiring 6 is formed (FIG. 6). The second photosensitive resin material, its sealing method, exposure and development method, the second metal wiring 6 and its wiring method are the same as those of the first photosensitive resin material 3 and the first metal wiring 4.

第1の感光性樹脂材料と第2の感光性樹脂材料の組成は、同一でも異なっていてもよい。
第2のパターン硬化膜5の膜厚は微細配線の観点から2〜20μmであることが好ましい。膜厚が2μmを下回ると配線層の凹凸が大きくなったり、絶縁破壊を生じる傾向があり、20μmを上回ると微細パターン形成が困難であったり、反りが大きくなったりする傾向がある。
感光性樹脂材料は、大面積に均一に塗布できる点で、フィルム状の材料が好ましい。
The composition of the first photosensitive resin material and the second photosensitive resin material may be the same or different.
The film thickness of the second pattern cured film 5 is preferably 2 to 20 μm from the viewpoint of fine wiring. When the film thickness is less than 2 μm, the unevenness of the wiring layer tends to be large or dielectric breakdown tends to occur. When the film thickness is more than 20 μm, it is difficult to form a fine pattern or warpage tends to be large.
The photosensitive resin material is preferably a film-like material because it can be applied uniformly over a large area.

前記と同様に第3の感光性樹脂材料を封止、露光及び現像し第3のパターン硬化膜7の形成、第3の金属配線8形成を繰り返し(図7)、キャリア1を剥離することで、高密度配線をビルドアップした半導体素子埋め込み基板100を作製する(図8)。
本実施形態では、第3の金属配線までしか形成していないが、これに限定されず、同様の工程を繰り返して、さらにパターン硬化膜と金属配線を形成できる。第3以降の感光性樹脂材料、その封止方法、露光及び現像方法、第3以降の金属配線及びその配線方法は、第2の感光性樹脂材料と第2の金属配線6と同様である。
このように、高密度配線を半導体素子封止体(図3)上にビルドアップ方式で形成することによって金属接続部が少なくなり、高機能かつ良好な信頼性を有する半導体素子埋め込み基板100を得ることができる。
In the same manner as described above, the third photosensitive resin material is sealed, exposed and developed, and the formation of the third pattern cured film 7 and the formation of the third metal wiring 8 are repeated (FIG. 7), and the carrier 1 is peeled off. Then, a semiconductor element embedded substrate 100 in which high-density wiring is built up is manufactured (FIG. 8).
In the present embodiment, only the third metal wiring is formed. However, the present invention is not limited to this, and the pattern hardening film and the metal wiring can be further formed by repeating the same process. The third and subsequent photosensitive resin materials, the sealing method, the exposure and development method, the third and subsequent metal wirings and the wiring method thereof are the same as those of the second photosensitive resin material and the second metal wiring 6.
Thus, by forming the high density wiring on the semiconductor element sealing body (FIG. 3) by the build-up method, the metal connection portion is reduced, and the semiconductor element embedded substrate 100 having high functionality and good reliability is obtained. be able to.

なお、感光性樹脂材料を用いてパターン硬化膜を形成する際に、半導体素子周辺部の感光性樹脂材料をパターニングしてビア形状を開口し、シード層形成、めっき工程を経ることにより、開口したビアに銅等の導体を充填して、Through Mold Via(TMV)構造にすることもできる。   When forming a cured pattern film using a photosensitive resin material, patterning the photosensitive resin material in the periphery of the semiconductor element to open a via shape, opening the seed layer through a plating process Vias can be filled with a conductor such as copper to form a Through Mold Via (TMV) structure.

キャリア1の剥離方法としては特に限定はないが、ピール剥離、スライド剥離、加熱剥離等が挙げられる。また、剥離した後に溶剤やプラズマ等で洗浄することもできる。また、キャリア1を剥離した面に再配線層を形成することもできる。   Although there is no limitation in particular as a peeling method of the carrier 1, Peel peeling, slide peeling, heat peeling, etc. are mentioned. Moreover, it can also wash | clean with a solvent, plasma, etc. after peeling. A rewiring layer can also be formed on the surface from which the carrier 1 is peeled off.

次いで、複数の第1の半導体素子の2以上の半導体素子2を跨るように半導体素子9(第2の半導体素子)をアンダーフィル11を介して半導体素子埋め込み基板100に搭載し、半導体パッケージ101を作製する(図9)。これにより、接続用電極部10と第1の半導体素子の電極13が電気的に接続される。
接続用電極部10及び電極13は、各々独立に、めっき法により形成された金バンプや銅バンプ、銅の上にはんだが形成されたバンプ、研磨処理によって露出された銅、金ワイヤーを用いて形成される金スタッドバンプ、必要に応じて超音波を併用した熱圧着により電極パッドに固定された金属ボール等が挙げられる。また、接続用電極部10及び電極13は、複数の金属層を含む積層体であってもよい。
Next, the semiconductor element 9 (second semiconductor element) is mounted on the semiconductor element embedded substrate 100 via the underfill 11 so as to straddle two or more semiconductor elements 2 of the plurality of first semiconductor elements, and the semiconductor package 101 is mounted. Prepared (FIG. 9). Thereby, the electrode part 10 for a connection and the electrode 13 of a 1st semiconductor element are electrically connected.
Each of the connecting electrode portion 10 and the electrode 13 is independently formed using a gold bump or a copper bump formed by plating, a bump formed by solder on copper, a copper exposed by a polishing process, or a gold wire. Examples thereof include a gold stud bump to be formed and a metal ball fixed to an electrode pad by thermocompression using ultrasonic waves as necessary. Further, the connection electrode portion 10 and the electrode 13 may be a laminate including a plurality of metal layers.

接続用電極部10は、単一の金属から構成されている必要はなく、複数の金属を含んでもよい。接続用電極部10は、金、銀、銅、ニッケル、インジウム、パラジウム、スズ、ビスマス等を含んでもよい。   The connection electrode portion 10 does not need to be made of a single metal, and may include a plurality of metals. The connection electrode unit 10 may include gold, silver, copper, nickel, indium, palladium, tin, bismuth, or the like.

搭載方式は特に制限はないが、半導体素子9を搭載した後にアンダーフィルをキャピラリーで注入する方式、半導体素子9を搭載した後に固形アンダーフィルをモールドする方式、液状のアンダーフィルを塗布した後に搭載する方式、フィルム状アンダーフィルを塗布した後に搭載する方式が挙げられる。アンダーフィルは半導体素子9、半導体素子埋め込み基板100のいずれに塗布しても構わない。   The mounting method is not particularly limited, but a method of injecting the underfill with a capillary after mounting the semiconductor element 9, a method of molding a solid underfill after mounting the semiconductor element 9, and mounting after applying a liquid underfill The system and the system mounted after apply | coating a film-like underfill are mentioned. The underfill may be applied to either the semiconductor element 9 or the semiconductor element embedded substrate 100.

製造コストと歩留まり、高密度化されたバンプでの接続に対応できる観点から、接続用電極部10の付いた半導体ウェハ9’(図12)に、フィルム状アンダーフィル11をラミネートし(図13)、その後個片化した半導体素子9(図14)を圧着する方法が好ましい。   A film-like underfill 11 is laminated on the semiconductor wafer 9 ′ (FIG. 12) with the connecting electrode portion 10 (FIG. 13) from the viewpoint of manufacturing cost, yield, and connection with high density bumps. Then, the method of pressure-bonding the semiconductor element 9 (FIG. 14) separated into pieces is preferable.

フィルム状アンダーフィルは、露光工程及び現像工程によって接続用電極部10又は電極13上の不要なアンダーフィルを除去でき、アンダーフィルの噛み込みがない良好な接続体を得ることができる観点から、感光性アンダーフィルフィルムであることが好ましい。   The film-like underfill is photosensitive from the viewpoint that an unnecessary underfill on the connection electrode portion 10 or the electrode 13 can be removed by an exposure step and a development step, and a good connection body without underfill biting can be obtained. It is preferable that the conductive underfill film.

圧着方法としては、例えば、個片化した半導体素子9と個片化した半導体パッケージ100を接続させる方式、個片化した半導体素子9とパネル又はウェハ状態の半導体素子埋め込み基板100を接続させる方式が挙げられる。
製造コストと取り扱い性に観点から、後者の方式が好ましい。
圧着は通常80〜350℃で3〜30秒の条件で実施される。圧着温度が220℃よりも低い場合は、リフロー工程によって良好な金属接続状態にすることができる。より効率的にパッケージを製造するためには、個片化した半導体素子9と、パネル又はウェハ状態の半導体素子埋め込み基板100を150℃以下で仮圧着した後、リフロー工程によって金属接続させることが最も好ましい。
As the crimping method, for example, there is a method of connecting the separated semiconductor element 9 and the separated semiconductor package 100, or a method of connecting the separated semiconductor element 9 and the semiconductor element embedded substrate 100 in a panel or wafer state. Can be mentioned.
The latter method is preferable from the viewpoint of manufacturing cost and handleability.
The pressure bonding is usually performed at 80 to 350 ° C. for 3 to 30 seconds. When the pressure bonding temperature is lower than 220 ° C., a good metal connection state can be achieved by the reflow process. In order to manufacture a package more efficiently, it is most preferable to make a metal connection by a reflow process after temporarily bonding the individual semiconductor element 9 and the semiconductor element embedded substrate 100 in a panel or wafer state at 150 ° C. or lower. preferable.

半導体素子9はCPU、グラフィック処理ユニットGPU、DRAMやSRAM等の揮発性メモリ、フラッシュメモリ等の不揮発性メモリ、RFチップやこれらを組合せた性能を有するチップが好ましい。   The semiconductor element 9 is preferably a CPU, a graphic processing unit GPU, a volatile memory such as a DRAM or SRAM, a non-volatile memory such as a flash memory, an RF chip, or a chip having a combination of these.

前記方法によって作製した半導体パッケージ101の上面模式図を図11に示す。本実施形態では、チップ同士の伝送に半導体素子を使用するため高速通信が可能となる。   FIG. 11 is a schematic top view of the semiconductor package 101 manufactured by the above method. In this embodiment, since a semiconductor element is used for transmission between chips, high-speed communication is possible.

以上、本発明の一実施形態に係る半導体装置の製造方法について説明したが、本発明は上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。   The method for manufacturing a semiconductor device according to an embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and modifications may be made as appropriate without departing from the spirit of the present invention.

1…キャリア、2…第1の半導体素子(第1の半導体素子)、3…第1の感光性樹脂膜、3’…第1のパターン硬化膜、4…第1の金属配線、5…第2のパターン硬化膜、6…第2の金属配線、7…第3のパターン硬化膜、8…第3の金属配線、9…第2の半導体素子(第2の半導体素子)、9’…接続用電極部の付いた半導体ウェハ、10…接続用電極部、11…アンダーフィル、12…半導体素子積層体、13…電極、100…半導体素子埋め込み基板、101…半導体パッケージ(半導体装置) DESCRIPTION OF SYMBOLS 1 ... Carrier, 2 ... 1st semiconductor element (1st semiconductor element), 3 ... 1st photosensitive resin film, 3 '... 1st pattern cured film, 4 ... 1st metal wiring, 5 ... 1st 2 pattern cured film, 6 ... second metal wiring, 7 ... third pattern cured film, 8 ... third metal wiring, 9 ... second semiconductor element (second semiconductor element), 9 '... connection Semiconductor wafer with electrode portion for use, 10 ... Connecting electrode portion, 11 ... Underfill, 12 ... Semiconductor element laminate, 13 ... Electrode, 100 ... Semiconductor element embedded substrate, 101 ... Semiconductor package (semiconductor device)

Claims (7)

(I)キャリア上に複数の第1の半導体素子を能動面がキャリア側に配置されるように固定する工程と、
(II)前記第1の半導体素子を、第1の感光性樹脂材料で一括封止して第1の感光性樹脂膜を形成する工程と、
(III)前記第1の感光性樹脂膜を露光及び現像して第1のパターン硬化膜を形成する工程と、
(IV)前記第1のパターン硬化膜上に、第1の金属配線を形成する工程と、
(V)前記キャリアを剥離する工程とを備える半導体装置の製造方法。
(I) fixing a plurality of first semiconductor elements on a carrier so that an active surface is disposed on the carrier side;
(II) forming a first photosensitive resin film by collectively sealing the first semiconductor element with a first photosensitive resin material;
(III) exposing and developing the first photosensitive resin film to form a first pattern cured film;
(IV) forming a first metal wiring on the first patterned cured film;
(V) A method for manufacturing a semiconductor device comprising a step of peeling the carrier.
さらに、(VI)前記複数の第1の半導体素子の2以上の第1の半導体素子の能動面を跨るように、第2の半導体素子を能動面から搭載する工程を備える請求項1記載の半導体装置の製造方法。   2. The semiconductor according to claim 1, further comprising: (VI) mounting a second semiconductor element from an active surface so as to straddle active surfaces of two or more first semiconductor elements of the plurality of first semiconductor elements. Device manufacturing method. さらに、前記(IV)の工程後、かつ前記(V)の工程前に、
(IV-1)前記第1の金属配線上に第2の感光性樹脂膜を形成する工程と、(IV-2)前記第2の感光性樹脂膜を露光及び現像して第2のパターン硬化膜を形成する工程と、
(IV-3)前記第2のパターン硬化膜上に、第2の金属配線を形成する工程とを備える請求項1又は2記載の半導体装置の製造方法。
Further, after the step (IV) and before the step (V),
(IV-1) a step of forming a second photosensitive resin film on the first metal wiring; and (IV-2) second pattern curing by exposing and developing the second photosensitive resin film. Forming a film;
(IV-3) The method for manufacturing a semiconductor device according to claim 1 or 2, further comprising a step of forming a second metal wiring on the second cured pattern film.
前記第1の感光性樹脂材料が、フィルム状の材料である請求項1〜3のいずれか一項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the first photosensitive resin material is a film-like material. 前記第1のパターン硬化膜の膜厚が50〜400μmである請求項1〜4のいずれか一項に記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 1, wherein a thickness of the first pattern cured film is 50 to 400 μm. 前記第1の感光性樹脂材料がネガ型である請求項1〜5のいずれか一項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the first photosensitive resin material is a negative type. 請求項1〜6のいずれか一項に記載の製造方法を用いて製造された半導体装置。   The semiconductor device manufactured using the manufacturing method as described in any one of Claims 1-6.
JP2015097218A 2015-05-12 2015-05-12 Semiconductor device and method of manufacturing the same Pending JP2016213372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015097218A JP2016213372A (en) 2015-05-12 2015-05-12 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015097218A JP2016213372A (en) 2015-05-12 2015-05-12 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016213372A true JP2016213372A (en) 2016-12-15

Family

ID=57551775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015097218A Pending JP2016213372A (en) 2015-05-12 2015-05-12 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2016213372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210195761A1 (en) * 2011-10-31 2021-06-24 Unimicron Technology Corp. Manufacturing method of package structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243604A (en) * 2002-02-13 2003-08-29 Sony Corp Electronic component and manufacturing method of electronic component
WO2010101163A1 (en) * 2009-03-04 2010-09-10 日本電気株式会社 Substrate with built-in functional element, and electronic device using the substrate
JP2012169440A (en) * 2011-02-14 2012-09-06 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
JP2013219324A (en) * 2012-03-14 2013-10-24 Toshiba Corp Semiconductor device and method for manufacturing semiconductor device
JP2014086598A (en) * 2012-10-24 2014-05-12 Hitachi Chemical Co Ltd Method of manufacturing semiconductor device, semiconductor device, and photosensitive resin composition
JP2015510686A (en) * 2012-01-20 2015-04-09 華為技術有限公司Huawei Technologies Co.,Ltd. Method and apparatus for substrate core layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243604A (en) * 2002-02-13 2003-08-29 Sony Corp Electronic component and manufacturing method of electronic component
WO2010101163A1 (en) * 2009-03-04 2010-09-10 日本電気株式会社 Substrate with built-in functional element, and electronic device using the substrate
JP2012169440A (en) * 2011-02-14 2012-09-06 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
JP2015510686A (en) * 2012-01-20 2015-04-09 華為技術有限公司Huawei Technologies Co.,Ltd. Method and apparatus for substrate core layer
JP2013219324A (en) * 2012-03-14 2013-10-24 Toshiba Corp Semiconductor device and method for manufacturing semiconductor device
JP2014086598A (en) * 2012-10-24 2014-05-12 Hitachi Chemical Co Ltd Method of manufacturing semiconductor device, semiconductor device, and photosensitive resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210195761A1 (en) * 2011-10-31 2021-06-24 Unimicron Technology Corp. Manufacturing method of package structure
US11895780B2 (en) * 2011-10-31 2024-02-06 Unimicron Technology Corp. Manufacturing method of package structure

Similar Documents

Publication Publication Date Title
US9040361B2 (en) Chip scale package with electronic component received in encapsulant, and fabrication method thereof
TWI593082B (en) Semiconductor device and method of manufactures
KR101822236B1 (en) Semiconductor device and method of manufactures
US20180233441A1 (en) PoP Device
US7915080B2 (en) Bonding IC die to TSV wafers
JP6911982B2 (en) Semiconductor devices and their manufacturing methods
TWI517351B (en) Interposer package apparatus and method for constructing interposer assembly
US9287191B2 (en) Semiconductor device package and method
US20140042638A1 (en) Semiconductor package and method of fabricating the same
TW200901435A (en) Apparatus for packaging semiconductor devices, packaged semiconductor components, methods of manufacturing apparatus for packaging semiconductor devices, and methods of manufacturing semiconductor components
TWI614848B (en) Electronic package and method of manufacture thereof
JP2007110117A (en) Wafer level chip scale package of image sensor, and method of manufacturing same
JP2008218926A (en) Semiconductor and method of manufacturing the same
KR102647008B1 (en) Fan-out packages and methods of forming the same
CN109786274B (en) Semiconductor device and method for manufacturing the same
JP2012221989A (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP6792322B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US20150103494A1 (en) Printed circuit boards having metal layers and semiconductor packages including the same
JP2016213372A (en) Semiconductor device and method of manufacturing the same
JP2017092385A (en) Semiconductor device and semiconductor device manufacturing method
TWM521807U (en) Package structure and intermediate board thereof
JP6569288B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP7088242B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2003297977A (en) Method for producing electronic component
US10115694B2 (en) Electronic device, electronic device fabrication method, and electronic apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20171204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625