JP4154919B2 - Circuit connection material and circuit terminal connection structure using the same - Google Patents

Circuit connection material and circuit terminal connection structure using the same Download PDF

Info

Publication number
JP4154919B2
JP4154919B2 JP2002122699A JP2002122699A JP4154919B2 JP 4154919 B2 JP4154919 B2 JP 4154919B2 JP 2002122699 A JP2002122699 A JP 2002122699A JP 2002122699 A JP2002122699 A JP 2002122699A JP 4154919 B2 JP4154919 B2 JP 4154919B2
Authority
JP
Japan
Prior art keywords
conductive particles
circuit
connection
connection terminal
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002122699A
Other languages
Japanese (ja)
Other versions
JP2003323813A (en
Inventor
征宏 有福
伊津夫 渡辺
泰史 後藤
宏治 小林
貢 藤縄
和良 小島
孝 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002122699A priority Critical patent/JP4154919B2/en
Publication of JP2003323813A publication Critical patent/JP2003323813A/en
Application granted granted Critical
Publication of JP4154919B2 publication Critical patent/JP4154919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、回路接続材料及び回路接続材料を相対峙する回路電極間に介在させ、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路端子の接続構造に関する。
【0002】
【従来の技術】
従来、液晶ディスプレイとTCP又はFPCとTCPとの接続、FPCとプリント配線板との接続には接着剤中に導電性粒子を分散させた異方導電性接着剤が使用されている。また、最近では、半導体シリコンチップを基板に実装する場合でも、従来のワイヤーボンドではなく、半導体シリコンチップをフェイスダウンで基板に直接実装するいわゆるフリップチップ実装が行われており、ここでも異方導電性接着剤の適用が開始されている(特開昭59−120436号、特開昭60−191228号、特開平1−251787号、特開平7−90237号公報)。
【0003】
【発明が解決しようとする課題】
近年、電子機器の小型化、薄型化に伴い、回路の高密度化が進んでおり、電極の間隔や電極幅が非常に狭くなっている。この電極の断面が狭くなっていることにより回路の抵抗が高くなり、従来の導電粒子を含む回路接続部材を用いて高密度回路の接続を行った場合、回路全体の抵抗が高くなりすぎ、電子機器が正常に動作しない場合がある。また、半導体チップの接続に関しても、接続に用いられるバンプが小さくなりバンプ間も非常に狭くなってきている。一般に導電性粒子を含む回路接続材料を使用して、相対向する回路を接続する場合、接続抵抗を小さくするためには、回路またはバンプ上には導電性粒子が1個以上あることが必要である。しかしながら、回路間の幅やバンプ間の間隔が狭くなった場合でも回路上に必要とされる数の導電性粒子を配置するためには、回路接続材料中に含まれる導電粒子数を増加させる必要があるが、こうすると回路間に存在する導電性粒子数も増えてしまうために、絶縁性が低下する問題がある。このような問題を解決するために、導電性粒子の周りを絶縁性樹脂で被覆して粒子同士が回路間で接触しても絶縁性が保たれるような工夫がなされている(特開昭62-40183号公報)。
しかしながら、これらの導電粒子を絶縁樹脂で被覆する方法では完全に被覆することが困難で、導電性部分が露出しているため回路スペース間が狭くなったときに絶縁性の確保が困難になっている。
【0004】
【発明が解決しようとする課題】
本発明は、相対向する高密度回路の接続において良好な電気的接続が得られ、かつ、従来の回路の接続に対しても良好な電気的接続が可能な電気・電子用の回路接続材料とそれを用いた回路端子の接続構造を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、[1]導電粒子を含有する回路接続材料であって、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に当該回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続するために用いられ、対向配置した第一の接続端子と第二の接続端子のうち少なくとも一方の接続端子の面積が15000μm 以下であり、かつ、接続後の第一の接続端子と第二の接続端子の間に存在する導電粒子数が3個以上であり、導電粒子が有機高分子からなる核体に銅、ニッケル、ニッケル合金、銀若しくは銀合金をメッキしたものであり、銅、ニッケル、ニッケル合金、銀若しくは銀合金メッキの厚みが500〜1700Åであり、導電粒子の直径と硬度が下記の(a)から(d)の関係にあることを特徴とする回路接続材料である。
(a)導電粒子の直径;5μm以上、7μm未満の時、導電粒子の硬度が4.903GPa(500kgf/mm2)〜5.394GPa(550kg/mm2)の範囲
(b)導電粒子の直径;4μm以上、5μm未満の時、導電粒子の硬度が2.942GPa(300kgf/mm2)〜6.374GPa(650kg/mm2)の範囲
(c)導電粒子の直径;3μm以上、4μm未満の時、導電粒子の硬度が5.394GPa(550kgf/mm2)〜6.865GPa(700kg/mm2)の範囲
(d)導電粒子の直径;2μm以上、3μm未満の時、導電粒子の硬度が4.413GPa(450kgf/mm2)〜8.336GPa(850kg/mm2)の範囲
また、本発明は、[2]導電粒子最外層に金またはパラジウムを設けた導電粒子であり、金またはパラジウムの厚みが150〜700Åである上記[1]に記載の回路接続材料である。また、本発明は、[](1)エポキシ樹脂、(2)エポキシ樹脂の潜在性硬化剤を必須成分として含有する上記[1]または上記[]のいずれかに記載の回路接続材料である。また、本発明は、[](3)加熱により遊離ラジカルを発生する硬化剤、(4)ラジカル重合性物質を必須成分として含有する上記[1]または上記[]のいずれかに記載の回路接続材料である。また、本発明は、[]回路接続材料の硬化後の40℃での弾性率が500〜3000MPaであり、かつ、回路接続材料の硬化後のガラス転移温度(Tg)が60〜200℃である上記[1]ないし上記[]のいずれかに記載の回路接続材料である。また、本発明は、[]上記[1]ないし上記[3]のいずれかに記載の導電粒子を少なくとも2種類用いることを特徴とする上記[1]ないし上記[]のいずれかに記載の回路接続材料である。また、本発明は、[]さらに、フィルム形成材を含有する上記[4]ないし上記[]のいずれかに記載の回路接続材料である。また、本発明は、[]フィルム形成材がフェノキシ樹脂である上記[]記載の回路接続材料である。さらに、本発明は、[]第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に上記[1]ないし上記[]のいずれかに記載の回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続した回路端子の接続構造である。また、本発明は、[10]上記[]に記載の接続構造において、対向配置した第一の接続端子と第二の接続端子のうち少なくとも一方の接続端子の面積が15000μm以下であり、かつ、第一の接続端子と第二の接続端子の間に存在する導電粒子数が3個以上である上記[]に記載の回路端子の接続構造である。また、本発明は、[11]少なくとも一方の接続端子の表面が金、銀、錫、白金族の金属、インジュウム−錫酸化物(ITO)から選ばれる少なくとも一種で構成される上記[]または上記[10]に記載の回路端子の接続構造である。また、本発明は、[12]少なくとも一方の接続端子を支持する基板が、ガラス、シリコンから選ばれる少なくとも一種である上記[]ないし上記[11]のいずれかに記載の回路端子の接続構造である。
【0006】
【発明の実施の形態】
本発明に用いる導電粒子の硬度は、メッキされている場合、メッキ後の導電粒子を微少圧縮試験器(株式会社島津製作所製)を用いて、導電粒子の直径から導電粒子を10%変形させたときの加重P(MPa,Kgf)と導電粒子の半径r(mm)、圧縮の際の変位Δ(mm)から式1により求めることが出来る。
【数1】
導電粒子硬度=(3/√2)×P×Δ(−3/2)×r(−1/2)・・式1
【0007】
本発明の回路接続材料にて対向する回路間を電気的に接続する際、その接続抵抗は回路間に存在する導電粒子数と、回路と接している導電粒子の面積に依存し、この面積は導電粒子の扁平率によって変化する。回路間に存在する導電粒子数が多いほど接続抵抗は低くなり、導電粒子の扁平率が大きくなるほど回路と接している導電粒子の面積が広くなるため接続抵抗が低くなる。ここで、回路間に存在する導電粒子数は回路接続材料に配合する導電粒子量に依存し、導電粒子の扁平率は導電粒子の硬度に依存する。
所定体積に含まれる導電粒子の個数は導電粒子の径が小さくなるほど多くなるため、接続に寄与する導電粒子数は多くなる。このため導電粒子の径に対して良好な接続抵抗が得られる導電粒子の硬度は異なり、
(a)導電粒子直径;5μm以上、7μm未満の時、導電粒子の硬度が1.961GPa(200kgf/mm2)〜5.884GPa(600kg/mm2)の範囲にある。
(b)導電粒子の直径;4μm以上、5μm未満の時、導電粒子の硬度が2.942GPa(300kgf/mm2)〜6.374GPa(650kg/mm2)の範囲ある。
(c)導電粒子の直径;3μm以上、4μm未満の時、導電粒子の硬度が3.923GPa(400kgf/mm2)〜6.865GPa(700kg/mm2)の範囲にある。
(d)導電粒子の直径;2μm以上、3μm未満の時、導電粒子の硬度が4.413GPa(450kgf/mm2)〜8.336GPa(850kg/mm2)の範囲にある。
(e)導電粒子の直径;1μm以上、2μm未満の時、導電粒子の硬度が4.903GPa(500kgf/mm2)〜9.807GPa(1000kg/mm2)の範囲にある。
上記の導電粒子の直径と硬度の関係を満たす導電粒子を用いることで、良好な接続抵抗が得られる。
導電粒子の硬度が、上記、各導電粒子の直径における硬度の最小値を下回った場合、導電粒子の復元力が弱く、高温高湿試験等の信頼性試験後に接続抵抗が上昇してしまうため好ましくない。
また、導電粒子の硬度が、上記、各導電粒子直径における硬度の最大値を上回った場合、十分な導電粒子の扁平が得られないため、接触面積の減少等により高温高湿試験等の信頼性試験後に接続抵抗が上昇してしまうため好ましくない。
導電粒子の硬度は導電粒子の核体の硬度にほぼ支配される。導電粒子の硬度は核体を構成する分子の構造とその架橋点間距離、架橋度に依存する。ベンゾグアナミン等は分子中に剛直な構造を有し、その架橋点間距離も短いため、ベンゾグアナミン等の分子が核体を構成する分子に占める割合が高くなるほど、硬い導電粒子が得られ、また、導電粒子の核体の架橋度を高くすることで硬い導電粒子が得られる。アクリル酸エステル、ジアリルフタレート等は架橋点間距離が長くなるため、アクリル酸エステル、ジアリルフタレート等の分子が核体を構成する分子に占める割合が高くなるほど柔らかい導電粒子が得られ、また、架橋度を低くすることで柔らかい導電粒子を得ることが出来る。
【0008】
本発明で用いる導電粒子は、有機高分子からなる直径1〜7μmの核体に銅、ニッケル又はニッケル合金を無電解メッキ法にてメッキすることで得ることが出来る。また、有機高分子からなる直径1〜7μmの核体に銀又は銀合金メッキを無電解メッキ法にてメッキすることで得ることが出来る。銅、ニッケル等または銀等のメッキ厚みは500〜1700Åにおいて良好な接続抵抗が得られ、より好ましくは500〜1500Åである。メッキ厚みが500Å未満ではメッキの欠損等が発生し、1700Åを超えると粒子間で凝結が発生しやすくなる。
また、銅、ニッケル等、銀等の上に最外層として金またはパラジウムを置換メッキすることで、より良好な接続抵抗が得られる。ここで、ニッケル合金は、メッキ浴中に配合される添加剤により種々のものがあり,よく知られているのはニッケル−リン、ニッケル−ホウ素からなる合金等である。その他の合金も同じであり主成分の原子を示してある。
導電粒子の最外層に金またはパラジウムをメッキする場合、銅、ニッケル等、銀等のメッキ厚みは700〜1700Åにおいて好適にメッキをすることができる。
導電粒子の最外層に金またはパラジウムをメッキする場合、金またはパラジウムメッキ厚は150〜700Åにおいて良好な接続抵抗が得られる。メッキ厚が150オングストローム未満の場合にはメッキの欠損により十分な効果が得ることが出来ない。また、700オングストローム以上のメッキをしても良好な接続抵抗は得られるが、必要なメッキ液量が相乗的に増加するため非常に製造コストが高くなる。
【0009】
本発明に用いる導電粒子の核体は有機高分子であれば特に制限されないが、アクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂及びこれらの共重合体、また、これらを架橋したものを好適に使用することが出来る。
導電粒子は、接着剤樹脂成分100体積部に対して0.1〜30体積部の範囲で用途により使い分ける。過剰な導電粒子による隣接回路の短絡等を防止するためには0.1〜10体積部とするのがより好ましい。
【0010】
本発明に用いる(3)加熱により遊離ラジカルを発生する硬化剤としては、過酸化化合物、アゾ系化合物などの加熱により分解して遊離ラジカルを発生するものであり、目的とする接続温度、接続時間、ポットライフ等により適宜選定されるが、高反応性とポットライフの点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が170℃以下の有機過酸化物が好ましい。接続時間を25秒以下とした場合、硬化剤の配合量は十分な反応率を得るために2〜10重量部程度とするのが好ましく4〜8重量部がより好ましい。
配合量は、ラジカル重合性物質と必要により配合されるフィルム形成材との和100重量部に対し0.05〜20重量部が好ましく、0.1〜10重量部がより好ましい。
【0011】
硬化剤は、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルパーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイドなどから選定できる。また、回路部材の接続端子の腐食を押さえるために、硬化剤中に含有される塩素イオンや有機酸は5000ppm以下であることが好ましく、さらに、加熱分解後に発生する有機酸が少ないものがより好ましい。具体的には、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイドから選定され、高反応性が得られるパーオキシエステルから選定されることがより好ましい。上記硬化剤は、適宜混合して用いることができる。
【0012】
パーオキシエステルとして、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシノエデカノエート、t−ヘキシルパーオキシネオデカノデート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノネート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノネート、t−ヘキシルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が挙げられる。
【0013】
ジアルキルパーオキサイドとして、α,α’ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド等が挙げられる。
【0014】
ハイドロパーオキサイドとして、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。
【0015】
ジアシルパーオキサイドとして、イソブチルパーオキサイド、2,4―ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。
【0016】
パーオキシジカーボネートとしては、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等が挙げられる。
【0017】
パーオキシケタールとして、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1―(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が挙げられる。
【0018】
シリルパーオキサイドとして、t−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド、トリス(t−ブチル)アリルシリルパーオキサイド等が挙げられる。
これらの遊離ラジカル発生剤は単独又は混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるために好ましい。
【0019】
本発明で用いる(4)ラジカル重合性物質としては、ラジカルにより重合する官能基を有する物質であり、アクリレート、メタクリレート、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。ラジカル重合性物質はモノマー、オリゴマーいずれの状態で用いることが可能であり、モノマーとオリゴマーを併用することも可能である。アクリレート(対応するメタクリレートも含む、以下同じ)の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート、ウレタンアクリレート等がある。これらは単独又は併用して用いることができ、必要によりハドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。また、ジシクロペンテニル基及び/又はトリシクロデカニル基および/またはトリアジン環を有する場合は、耐熱性が向上するので好ましい。
【0020】
マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するもので、例えば、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、N,N’−m−トルイレンビスマレイミド、N,N’−4,4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3’−ジメチルビフェニレン)ビスマレイミド、N,N’−4,4−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−4,8−(4−マレイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−マレイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4−マレイミドフェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)ヘキサフルオロプロパンなどを挙げることができる。これらは単独でもまた組み合わせても使用できる。
【0021】
シトラコンイミド樹脂としては、分子中にシトラコンイミド基を少なくとも1個有しているシトラコンイミド化合物を重合させたもので、シトラコンイミド化合物としては、例えば、フェニルシトラコンイミド、1−メチル−2,4−ビスシトラコンイミドベンゼン、N,N'−m−フェニレンビスシトラコンイミド、N,N'−p−フェニレンビスシトラコンイミド、N,N'−4,4−ビフェニレンビスシトラコンイミド、N,N'−4,4−(3,3−ジメチルビフェニレン)ビスシトラコンイミド、N,N'−4,4−(3,3−ジメチルジフェニルメタン)ビスシトラコンイミド、N,N'−4,4−(3,3−ジエチルジフェニルメタン)ビスシトラコンイミド、N,N'−4,4−ジフェニルメタンビスシトラコンイミド、N,N'−4,4−ジフェニルプロパンビスシトラコンイミド、N,N'−4,4−ジフェニルエーテルビスシトラコンイミド、N,N'−4,4−ジフェニルスルホンビスシトラコンイミド、2,2−ビス(4−(4−シトラコンイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−3,4−(4−シトラコンイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−シトラコンイミドフェノキシ)フェニル)デカン、4,4'−シクロヘキシリデン−ビス(1−(4−シトラコンイミドフェノキシ)フェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−シトラコンイミドフェノキシ)フェニル)ヘキサフルオロプロパンなどが有り、単独でも2種類以上を混合して使用しても良い。
【0022】
ナジイミド樹脂としては、分子中にナジイミド基を少なくとも1個有しているナジイミド化合物を重合したもので、ナジイミド化合物としては、例えば、フェニルナジイミド、1−メチル−2,4−ビスナジイミドベンゼン、N,N'−m−フェニレンビスナジイミド、N,N'−p−フェニレンビスナジイミド、N,N'−4,4−ビフェニレンビスナジイミド、N,N'−4,4−(3,3−ジメチルビフェニレン)ビスナジイミド、N,N'−4,4−(3,3−ジメチルジフェニルメタン)ビスナジイミド、N,N'−4,4−(3,3−ジエチルジフェニルメタン)ビスナジイミド、N,N'−4,4−ジフェニルメタンビスナジイミド、N,N'−4,4−ジフェニルプロパンビスナジイミド、N,N'−4,4−ジフェニルエーテルビスナジイミド、N,N'−4,4−ジフェニルスルホンビスナジイミド、2,2−ビス(4−(4−ナジイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−3,4−(4−ナジイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−ナジイミドフェノキシ)フェニル)デカン、4,4'−シクロヘキシリデン−ビス(1−(4−ナジイミドフェノキシ)フェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−ナジイミドフェノキシ)フェニル)ヘキサフルオロプロパンなどが有り、単独でも2種類以上を混合して使用しても良い。
【0023】
また、上記のラジカル重合性物質に下式で示されるリン酸エステル構造を有するラジカル重合性物質を併用すると金属等の無機物表面での接着強度が向上するので好ましい。
この配合量はラジカル重合性物質と必要により配合するフィルム形成材の和100重量部に対し0.01から50重量部用いるのが好ましく、0.5〜5重量部がより好ましい。
リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2−ヒドロキシエチル(メタ)アクリレートの反応物として得られる。具体的には、モノ(2−メタクリロイルオキシエチル)アシッドフォスフェート、ジ(2−メタクリロイルオキシエチル)アシッドフォスフェート等がある。これらは単独でもまた組み合わせても使用できる。
【0024】
【化1】

Figure 0004154919
本発明の回路接続材料にはアリル(メタ)アクリレートも添加することができる。配合量は、ラジカル重合性物質と必要により配合されるフィルム形成材との和100重量部に対し0.1〜10重量部用いるのが好ましく、0.5〜5重量部がより好ましい。
【0025】
本発明で用いる(1)エポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等があり、これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。これらのエポキシ樹脂は、2種以上を併用してもよい。
【0026】
本発明で用いる(2)エポキシ樹脂の潜在性硬化剤として、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、ジシアンジアミド等、及びこれらの変成物があり、これらは単独あるいは2種以上の混合体として使用できる。これらはアニオン又はカチオン重合性の触媒型硬化剤であり、速硬化性を得やすく、また化学当量的な考慮が少なくて良いことから好ましい。硬化剤としては、その他にポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等の重付加型の適用や前記触媒型硬化剤との併用も可能である。
アニオン重合型の触媒型硬化剤としては、第3級アミン類やイミダゾール類を配合したエポキシ樹脂は、160℃〜200℃程度の中温で数10秒〜数時間程度の加熱により硬化するために可使時間(ポットライフ)が比較的長い。
カチオン重合型の触媒型硬化剤としては、エネルギー線照射により樹脂を硬化させる感光性オニウム塩、例えば、芳香族ジアゾニウム塩、芳香族スルホニウム塩等が主として用いられる。また、エネルギー線照射以外に加熱によっても活性化してエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩等がある。この種の硬化剤は速硬化性という特徴を有することから好ましい。
これらの硬化剤をポリウレタン系、ポリエステル系等の高分子物質や、ニッケル、銅等の金属薄膜及びケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、可使時間が延長できるため好ましい。
【0027】
本発明で用いるフィルム形成材しては、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂等が挙げられる。フィルム形成材とは、液状物を固形化し、構成組成物をフィルム形状とした場合に、そのフィルムの取扱いが容易で、容易に裂けたり、割れたり、べたついたりしない機械特性等を付与するものであり、通常の状態でフィルムとしての取扱いができるものである。
フィルム形成材の中でも接着性、相溶性、耐熱性、機械強度に優れることからフェノキシ樹脂が好ましい。
フェノキシ樹脂は2官能フェノール類とエピハロヒドリンを高分子量まで反応させるか、又は2官能エポキシ樹脂と2官能フェノール類を重付加させることにより得られる樹脂である。具体的には、2官能フェノール類1モルとエピハロヒドリン0.985〜1.015モルとをアルカリ金属水酸化物等の触媒の存在下において非反応性溶媒中で40〜120℃の温度で反応させることにより得ることができる。また、樹脂の機械的特性や熱的特性の点からは、特に2官能性エポキシ樹脂と2官能性フェノール類の配合当量比をエポキシ基/フェノール水酸基=1/0.9〜1/1.1としアルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下で沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で反応固形分が50重量部以下で50〜200℃に加熱して重付加反応させて得たものが好ましい。2官能エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルジグリシジルエーテル、メチル置換ビフェニルジグリシジルエーテルなどがある。2官能フェノール類は2個のフェノール性水酸基を持つもので、例えば、ハイドロキノン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールフルオレン、メチル置換ビスフェノールフルオレン、ジヒドロキシビフェニル、メチル置換ジヒドロキシビフェニル等のビスフェノール類などが挙げられる。フェノキシ樹脂はラジカル重合性の官能基や、その他の反応性化合物により変性されていてもよい。フェノキシ樹脂は、単独で用いても、2種類以上を混合して用いてもよい。
フェノキシ樹脂はラジカル重合性の官能基または、エポキシ基により変性されていてもよい。
【0028】
本発明の回路接続材料には、アクリル酸、アクリル酸エステル、メタクリル酸エステルまたはアクリロニトリルのうち少なくとも一つをモノマー成分とした重合体又は共重合体を使用することができ、グリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムを併用した場合、応力緩和に優れるので好ましい。これらアクリルゴムの分子量(重量平均)は接着剤の凝集力を高める点から20万以上が好ましい。
さらに、ゴム微粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤及びフェノール樹脂やメラミン樹脂、イソシアネート類等を含有することもできる。
ゴム微粒子としては、粒子の平均粒径が配合する導電性粒子の平均粒径の2倍以下であり、且つ室温での弾性率が導電性粒子及び接着剤の室温での弾性率の1/2以下であるものであれば材質形状等は特に限定しない。特に、ゴム微粒子の材質がシリコーン、アクリルエマルジョン、SBR、NBR、ポリブタジエンゴム微粒子は単独、または2種以上を混合して好適に用いることが出来る。また、3次元架橋したこれらゴム微粒子は耐溶剤性が向上し、接着剤に微粒子を分散させやすくなるためより好ましい。
充填剤を含有した場合、接続信頼性等の向上が得られるので好ましい。充填剤の最大径が導電粒子の粒径未満であれば使用でき、5〜60体積部(接着剤樹脂成分100体積部に対して)の範囲が好ましい。60体積部を超えると信頼性向上の効果が飽和することがあり、5体積部未満では添加の効果が少ない。
カップリング剤としてはビニル基、アクリル基、エポキシ基及びイソシアネート基含有物が、接着性の向上の点から好ましい。
【0029】
本発明の回路接続材料は、ICチップとチップ搭載基板との接着や電気回路相互の接着用のフィルム状接着剤として使用することもできる。すなわち、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に本発明の接続材料(フィルム状接着剤)を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させることができる。
このような回路部材としては半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板等が用いられる。
これらの回路部材には接続端子が通常は多数(場合によっては単数でもよい)設けられており、前記回路部材の少なくとも1組をそれらの回路部材に設けられた接続端子の少なくとも一部を対向配置し、対向配置した接続端子間に接着剤を介在させ、加熱加圧して対向配置した接続端子同士を電気的に接続して回路板とする。
回路部材の少なくとも1組を加熱加圧することにより、対向配置した接続端子同士は、直接接触により又は回路接続材料中の導電粒子を介して電気的に接続することができる。
【0030】
本発明の回路接続材料を用いて対向配置した第一の接続端子と第二の接続端子の接続を行う場合、接続する端子間に存在する導電粒子数が3個以上であり、少なくとも一方の接続端子の面積が15000μm以下の場合でも良好な接続をすることが出来る。
接続する端子間に存在する導電粒子数が6個以上の場合、より低い接続抵抗が得られるためより好ましい。
接続する端子間に存在する導電粒子数が2個以下の場合には接続抵抗が高くなりすぎ、正常に電子回路が動作しなくなるおそれがある。
【0031】
本発明の回路接続材料の硬化後の40℃での貯蔵弾性率は500〜3000MPaが好ましく、700〜2000MPaの場合は、適当な凝集力が得られ、かつ、回路端子間と回路接続材料界面の応力緩和による高い接着強度が期待できるためより好ましい。また、本発明の回路接続材料の硬化後のガラス転移温度は60〜200℃、好ましくは60〜180℃が好ましく、60℃未満の場合には高温における接着強度の低下、接続抵抗の劣化が顕著になり、200℃を超えて高い場合には硬化条件が高温、長時間必要となるため内部応力が増大することでクラックが発生する恐れがあり、接続する回路端子との界面応力が大きくなるため接着強度が低下する。
【0032】
本発明は、相対向する高密度回路の接続において良好な電気的接続が得られ、且つ従来の回路の接続に対しても良好な電気的接続が可能な電気・電子用の回路接続材料とそれを用いた回路端子の接続構造の提供が可能となる。
【0033】
【実施例】
テトラメチロールメタンテトラアクリレート、ジビニルベンゼン及びスチレンモノマーの混合比を変えて、重合開始剤としてベンゾイルパーオキサイドを用いて懸濁重合し、分級する事で目的の粒径で、硬度の異なる導電粒子の核体を得た。
得られた各核体を無電解Niメッキ、若しくは無電解Agメッキした。メッキ処理の際のメッキ液の仕込量、処理温度、時間によりメッキ厚を変更し、目的の導電粒子1,3,8〜10,13〜15,18,21,24を得た。また、Niメッキを行った導電粒子にさらにAuを置換メッキすることで目的の導電粒子2,4〜7,11,12,16,17,19,20,22,23,25,26を得た。また、Niメッキを行った導電粒子にさらにPdを置換メッキすることで目的の導電粒子27〜29を得た。このようにして得た導電粒子をまとめて表1に示した。
【0034】
【表1】
Figure 0004154919
【0035】
(実施例1)
フェノキシ樹脂(ユニオンカーバイド株式会社製、商品名PKHC、平均分子量45000)50gを、重量比でトルエン/酢酸エチル=50/50の混合溶剤に溶解して、固形分40重量%の溶液とした。
固形重量比でフェノキシ樹脂30g、ビスフェノールA型エポキシ樹脂30g、エポキシ樹脂の潜在性硬化剤としてノバキュア3941HPS(イミダゾール変性体を核とし、その表面をポリウレタンで被覆してなる平均粒径5μmのマイクロカプセル型硬化剤を、液状ビスフェノールF型エポキシ樹脂中に分散したマスターバッチ型硬化剤、旭チバ株式会社製商品名)40重量部となるように配合し、導電粒子1を5体積部配合分散させ、厚み80μmの片面を表面処理したPETフィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥により、接着剤層の厚みが20μmのフィルム状回路接続材料1を得た。
【0036】
(実施例2)
導電粒子に導電粒子2を用いた他は実施例1と同様にしてフィルム状回路接続材料2を得た。
(実施例3)
導電粒子に導電粒子3を用いた他は実施例1と同様にしてフィルム状回路接続材料3を得た。
(実施例4)
導電粒子に導電粒子4を用いた他は実施例1と同様にしてフィルム状回路接続材料4を得た。
(実施例5)
導電粒子に導電粒子5を用いた他は実施例1と同様にしてフィルム状回路接続材料5を得た。
(実施例6)
導電粒子に導電粒子6を用いた他は実施例1と同様にしてフィルム状回路接続材料6を得た。
(実施例7)
導電粒子に導電粒子7を用いた他は実施例1と同様にしてフィルム状回路接続材料7を得た。
(実施例8)
導電粒子に導電粒子1を2.5体積部、導電粒子2を2.5体積部配合分散させた以外は実施例1と同様にしてフィルム状回路接続材料8を得た。
【0037】
(実施例9)
(ウレタンアクリレートの合成)
平均分子量800のポリカプロラクトンジオール400重量部と、2−ヒドロキシプロピルアクリレート131重量部、触媒としてジブチル錫ジラウレート0.5重量部、重合禁止剤としてハイドロキノンモノメチルエーテル1.0重量部を攪拌しながら50℃に加熱して混合した。次いで、イソホロンジイソシアネート222重量部を滴下し更に攪拌しながら80℃に昇温してウレタン化反応を行った。イソシアネート基の反応率が99%以上になったことを確認後、反応温度を下げてウレタンアクリレートを得た。
【0038】
加熱により遊離ラジカルを発生する硬化剤としてt−ヘキシルパーオキシ−2−エチルヘキサノネートを用いた。
固形重量比でフェノキシ樹脂50g、上記で得られたウレタンアクリレート49g、リン酸エステル型アクリレート1g、t−ヘキシルパーオキシ−2−エチルヘキサノネート5gとなるように配合し、導電粒子7を5体積部配合分散させ、厚み80μmの片面を表面処理したPET(ポリエチレンテレフタレート)フィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥により、接着剤層の厚みが20μmのフィルム状回路接続材料9を得た。
【0039】
(比較例1)
導電粒子に導電粒子8を用いた他は実施例1と同様にしてフィルム状回路接続材料10を得た。
(比較例2)
導電粒子に導電粒子9を用いた他は実施例1と同様にしてフィルム状回路接続材料11を得た。
(比較例3)
導電粒子に導電粒子10を用いた他は実施例1と同様にしてフィルム状回路接続材料12を得た。
(比較例4)
導電粒子に導電粒子11を用いた他は実施例1と同様にしてフィルム状回路接続材料13を得た。
(比較例5)
導電粒子に導電粒子12を用いた他は実施例1と同様にしてフィルム状回路接続材料14を得た。
(比較例6)
導電粒子に導電粒子13を用いた他は実施例1と同様にしてフィルム状回路接続材料15を得た。
(比較例7)
導電粒子に導電粒子14を用いた他は実施例1と同様にしてフィルム状回路接続材料16を得た。
(比較例8)
導電粒子に導電粒子15を用いた他は実施例1と同様にしてフィルム状回路接続材料17を得た。
(比較例9)
導電粒子に導電粒子16を用いた他は実施例1と同様にしてフィルム状回路接続材料18を得た。
(比較例10)
導電粒子に導電粒子17を用いた他は実施例1と同様にしてフィルム状回路接続材料19を得た。
(比較例11)
導電粒子に導電粒子18を用いた他は実施例1と同様にしてフィルム状回路接続材料20を得た。
(比較例12)
導電粒子に導電粒子19を用いた他は実施例1と同様にしてフィルム状回路接続材料21を得た。
(比較例13)
導電粒子に導電粒子20を用いた他は実施例1と同様にしてフィルム状回路接続材料22を得た。
(比較例14)
導電粒子に導電粒子21を用いた他は実施例1と同様にしてフィルム状回路接続材料23を得た。
(比較例15)
導電粒子に導電粒子22を用いた他は実施例1と同様にしてフィルム状回路接続材料24を得た。
(比較例16)
導電粒子に導電粒子23を用いた他は実施例1と同様にしてフィルム状回路接続材料25を得た。
(比較例17)
導電粒子に導電粒子24を用いた他は実施例1と同様にしてフィルム状回路接続材料26を得た。
(比較例18)
導電粒子に導電粒子25を用いた他は実施例1と同様にしてフィルム状回路接続材料27を得た。
(比較例19)
導電粒子に導電粒子26を用いた他は実施例1と同様にしてフィルム状回路接続材料28を得た。
(比較例20)
導電粒子1を2体積部配合した他は実施例1と同様にしてフィルム状回路接続材料29を得た。
(比較例21)
導電粒子に導電粒子8を用いた他は実施例9と同様にしてフィルム状回路接続材料30を得た。
【0040】
(実施例10)
導電粒子に導電粒子27を用いた他は実施例1と同様にしてフィルム状回路接続材料31を得た。
(比較例22)
導電粒子に導電粒子28を用いた他は実施例1と同様にしてフィルム状回路接続材料32を得た。
(比較例23)
導電粒子に導電粒子29を用いた他は実施例1と同様にしてフィルム状回路接続材料33を得た。
【0041】
(回路の接続)
ライン幅9μm、ピッチ30μm、厚み8μmの銅回路500本をポリイミドフィルム(厚み40μm)上に形成したフレキシブル回路板(2層FPC)及び、ポリイミドとポリイミドと銅箔を接着する接着剤及び厚み18μmの銅箔からなる3層構成で、ライン幅7μm、ピッチ30μmのフレキシブル回路板(3層FPC)と、厚み1.1mmのガラス上にインジュウム−錫酸化物(ITO)を蒸着により形成したITO基板(表面抵抗<20Ω/□)を上記回路接続材料を用い180℃、3MPaで10秒間加熱加圧して幅1mmにわたり接続して回路端子の接続構造体を得た。このとき、あらかじめITO基板上に、回路接続材料の接着面を貼り付けた後、70℃、0.5MPaで5秒間加熱加圧して仮接続し、その後、PETフィルムを剥離してもう一方のFPCと接続した。
【0042】
(接続抵抗の測定)
回路の接続後、上記接続部を含むFPCの隣接回路間の抵抗値を、初期と、80℃、95%RHの高温高湿槽中に1000時間保持した後にマルチメータで測定した。抵抗値は隣接回路間の抵抗150点の平均値に標準偏差を3倍した値の和(x+3σ)で示した。
【0043】
(接続端子上に存在する導電粒子の計数)
回路の接続後、上記接続部の各接続端子に存在する導電粒子数を計数した。接続端子上の導電粒子数は151端子上に存在する導電粒子の平均で示した。
得られた結果を表2に示した。
【0044】
【表2】
Figure 0004154919
【0045】
実施例1〜10は2層FPC、3層FPCの接続において全て良好な接続抵抗を示し、80℃、95%RH、1000時間処理後の接続抵抗の上昇もほとんどないことが分かる。
一方、比較例1〜23は初期接続抵抗も高く、特に2層FPC、3層FPC(ピッチ30μm)の80℃、95%RH 1000時間処理後の接続抵抗の上昇が顕著である。
これは、比較例1、8、11、14、17は導電粒子のNiメッキ厚みが300Åと薄いため、回路接続時に導電粒子に圧力が加わった際にNiメッキにひび割れが多数入り、接続抵抗が高くなったと考えられる。また、高温高湿処理後にはNiメッキのひびが拡大することでより接続抵抗が高くなったと考えられる。比較例2、4、6、9、12、15、18、22は導電粒子の硬度が柔らかすぎるため高温高湿処理による、対向する回路端子間の距離の変動に追随できないためと考えられる。
また、比較例3、5、7、10、13、16、19、21、23は導電粒子が硬すぎるため、十分な導電粒子の扁平が得られないため、初期接続抵抗から抵抗値が高めであり、かつ、高温高湿処理による対向する回路端子間の距離の変動に追随できないためと考えられる。
比較例20は回路端子上に存在する導電粒子数が1個のため端子の形状や高さバラツキの影響を大きくうけ、接続抵抗、高温高湿処理後接続抵抗が上昇したと推測される。
【0046】
【発明の効果】
本発明によれば、相対向する高密度回路の接続において良好な電気的接続が得られ、かつ、従来の回路の接続に対しても良好な電気的接続が可能な電気・電子用の回路接続材料及びそれを用いた回路端子の接続構造の提供が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit terminal connection structure in which a circuit connecting material and a circuit connecting material are interposed between circuit electrodes facing each other, the opposing circuit electrodes are pressurized and the electrodes in the pressing direction are electrically connected.
[0002]
[Prior art]
Conventionally, an anisotropic conductive adhesive in which conductive particles are dispersed in an adhesive is used for connection between a liquid crystal display and TCP or between FPC and TCP and between FPC and a printed wiring board. Recently, even when a semiconductor silicon chip is mounted on a substrate, so-called flip chip mounting in which the semiconductor silicon chip is directly mounted on the substrate face down is performed instead of conventional wire bonding. Application of the adhesive has been started (Japanese Patent Laid-Open Nos. 59-120436, 60-191228, 1-251787, and 7-90237).
[0003]
[Problems to be solved by the invention]
In recent years, with the miniaturization and thinning of electronic devices, the density of circuits has been increased, and the distance between electrodes and the width of electrodes have become very narrow. The resistance of the circuit is increased due to the narrow cross section of this electrode, and when a high density circuit is connected using a conventional circuit connecting member containing conductive particles, the resistance of the entire circuit becomes too high, The device may not work properly. As for the connection of semiconductor chips, the bumps used for the connection have become smaller and the distance between the bumps has become very narrow. Generally, when connecting circuit opposite to each other using a circuit connecting material containing conductive particles, it is necessary to have at least one conductive particle on the circuit or bump in order to reduce the connection resistance. is there. However, it is necessary to increase the number of conductive particles contained in the circuit connection material in order to arrange the required number of conductive particles on the circuit even when the width between the circuits and the interval between the bumps are narrowed. However, if this is done, the number of conductive particles existing between the circuits also increases, so that there is a problem that the insulating property is lowered. In order to solve such a problem, a device has been devised in which conductive particles are covered with an insulating resin so that the insulating properties are maintained even if the particles contact each other between circuits (Japanese Patent Laid-Open No. Sho). 62-40183).
However, it is difficult to completely coat these conductive particles with an insulating resin, and it is difficult to ensure insulation when the space between circuit spaces becomes narrow because the conductive portions are exposed. Yes.
[0004]
[Problems to be solved by the invention]
The present invention provides an electrical / electronic circuit connection material that can provide a good electrical connection in the connection of high-density circuits facing each other, and that can achieve a good electrical connection even in connection with a conventional circuit connection. A circuit terminal connection structure using the same is provided.
[0005]
[Means for Solving the Problems]
  The present invention is [1] a circuit connecting material containing conductive particles,The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged so that the first connection terminal and the second connection terminal are opposed to each other, and the opposing arrangement is performed. In order to electrically connect the first connection terminal and the second connection terminal that are arranged opposite to each other by interposing the circuit connection material between the first connection terminal and the second connection terminal The area of at least one of the first connection terminals and the second connection terminals that are used and face each other is 15000 μm 2 And the number of conductive particles existing between the first connection terminal and the second connection terminal after connection is 3 or more, and the conductive particles are made of copper, nickel, Nickel alloy, silver or silver alloy plated, copper, nickel, nickel alloy, silver or silver alloy plating thickness is 500-1700 mm,The circuit connecting material is characterized in that the diameter and hardness of the conductive particles have the following relationships (a) to (d).
(A) The diameter of the conductive particles; when the particle size is 5 μm or more and less than 7 μm, the hardness of the conductive particles is4.903GPa (500kgf / mm2) ~5.394GPa (550kg / mm2Range
(B) Diameter of the conductive particles; when the particle diameter is 4 μm or more and less than 5 μm, the hardness of the conductive particles is 2.942 GPa (300 kgf / mm2) ~ 6.374GPa (650kg / mm2Range
(C) Diameter of the conductive particles; when the particle size is 3 μm or more and less than 4 μm, the hardness of the conductive particles is5.394GPa (550kgf / mm2) To 6.865 GPa (700 kg / mm2Range
(D) Diameter of the conductive particles; when the particle diameter is 2 μm or more and less than 3 μm, the hardness of the conductive particles is 4.413 GPa (450 kgf / mm2) ~ 8.336GPa (850kg / mm2Range
The present invention also provides [2]Electron particleButThe conductive particles having gold or palladium as the outermost layer, and the thickness of gold or palladium is 150 to 700 mm [1]]It is a circuit connection material of description. The present invention also provides [3[1] The above [1] containing an epoxy resin and (2) an epoxy resin latent curing agent as an essential componentOrthe above[2] The circuit connection material according to any one of the above. The present invention also provides [4(3) Curing agent that generates free radicals upon heating, (4) The above [1] containing a radical polymerizable substance as an essential componentOrthe above[2] The circuit connection material according to any one of the above. The present invention also provides [5The above-mentioned [1] to [[above] wherein the elastic modulus at 40 ° C. after curing of the circuit connecting material is 500 to 3000 MPa, and the glass transition temperature (Tg) after curing of the circuit connecting material is 60 to 200 ° C.4] The circuit connection material according to any one of the above. The present invention also provides [6[1] to [[3], wherein at least two kinds of the conductive particles according to any one of [1] to [3] are used.5] The circuit connection material according to any one of the above. The present invention also provides [7[4] to [[6] The circuit connection material according to any one of the above. The present invention also provides [8] The above [film forming material is a phenoxy resin]7The circuit connection material described in the above. Furthermore, the present invention provides [9The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are disposed so that the first connection terminal and the second connection terminal are opposed to each other, Between [1] to [[8] A circuit terminal connection structure in which the circuit connection material according to any one of the above is interposed and heated and pressed to electrically connect the first connection terminal and the second connection terminal facing each other. The present invention also provides [10]the above[9], The area of at least one connection terminal of the first connection terminal and the second connection terminal arranged to face each other is 15000 μm.2And the number of conductive particles present between the first connection terminal and the second connection terminal is 3 or more [9] Is a circuit terminal connection structure described in the above. The present invention also provides [11The above-mentioned structure, wherein the surface of at least one of the connection terminals is made of at least one selected from gold, silver, tin, platinum group metals, and indium-tin oxide (ITO).9] Or above [10] Is a circuit terminal connection structure described in the above. The present invention also provides [12] A substrate that supports at least one of the connection terminalsBut,The above [at least one selected from glass and silicon [9] Or above [11] Is a circuit terminal connection structure according to any one of the above.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
When the conductive particles used in the present invention are plated, the conductive particles after plating were deformed by 10% from the diameter of the conductive particles using a micro compression tester (manufactured by Shimadzu Corporation). The weight P (MPa, Kgf) at the time, the radius r (mm) of the conductive particles, and the displacement Δ (mm) at the time of compression can be obtained by Equation 1.
[Expression 1]
Conductive particle hardness = (3 / √2) × P × Δ(-3/2)Xr(-1/2)..Formula 1
[0007]
When electrically connecting the opposing circuits with the circuit connecting material of the present invention, the connection resistance depends on the number of conductive particles existing between the circuits and the area of the conductive particles in contact with the circuit. It varies depending on the flatness of the conductive particles. The larger the number of conductive particles existing between the circuits, the lower the connection resistance. The larger the flatness of the conductive particles, the larger the area of the conductive particles in contact with the circuit, so the connection resistance decreases. Here, the number of conductive particles existing between the circuits depends on the amount of conductive particles blended in the circuit connecting material, and the flatness of the conductive particles depends on the hardness of the conductive particles.
Since the number of conductive particles contained in the predetermined volume increases as the diameter of the conductive particles decreases, the number of conductive particles contributing to the connection increases. For this reason, the hardness of the conductive particles to obtain a good connection resistance with respect to the diameter of the conductive particles is different.
(A) Conductive particle diameter: when the particle diameter is 5 μm or more and less than 7 μm, the hardness of the conductive particles is 1.961 GPa (200 kgf / mm2) To 5.884 GPa (600 kg / mm2).
(B) Diameter of the conductive particles; when the particle diameter is 4 μm or more and less than 5 μm, the hardness of the conductive particles is 2.942 GPa (300 kgf / mm2) ~ 6.374GPa (650kg / mm2).
(C) Diameter of the conductive particles; when the particle diameter is 3 μm or more and less than 4 μm, the hardness of the conductive particles is 3.923 GPa (400 kgf / mm2) To 6.865 GPa (700 kg / mm2).
(D) Diameter of the conductive particles; when the particle diameter is 2 μm or more and less than 3 μm, the hardness of the conductive particles is 4.413 GPa (450 kgf / mm2) ~ 8.336GPa (850kg / mm2).
(E) Diameter of the conductive particles; when the particle size is 1 μm or more and less than 2 μm, the hardness of the conductive particles is 4.903 GPa (500 kgf / mm2) To 9.807 GPa (1000 kg / mm2).
By using conductive particles that satisfy the relationship between the diameter and hardness of the conductive particles, a good connection resistance can be obtained.
If the hardness of the conductive particles is less than the minimum value of the hardness of each conductive particle, the restoring force of the conductive particles is weak, and the connection resistance increases after reliability tests such as a high-temperature and high-humidity test. Absent.
In addition, when the hardness of the conductive particles exceeds the maximum value of the hardness at each conductive particle diameter, sufficient flatness of the conductive particles cannot be obtained. This is not preferable because the connection resistance increases after the test.
The hardness of the conductive particles is almost governed by the hardness of the core of the conductive particles. The hardness of the conductive particles depends on the structure of the molecules constituting the nucleus, the distance between the crosslinking points, and the degree of crosslinking. Since benzoguanamine and the like have a rigid structure in the molecule and the distance between the crosslinking points is short, the harder conductive particles are obtained as the proportion of molecules such as benzoguanamine in the molecule constituting the nucleus increases. Hard conductive particles can be obtained by increasing the degree of crosslinking of the core of the particles. Since acrylic ester, diallyl phthalate, etc. have a longer distance between cross-linking points, softer conductive particles are obtained as the proportion of molecules such as acrylate ester, diallyl phthalate, etc. in the molecules constituting the nucleus increases. Soft conductive particles can be obtained by lowering.
[0008]
The conductive particles used in the present invention can be obtained by plating copper, nickel, or a nickel alloy with a core of 1-7 μm in diameter made of an organic polymer by an electroless plating method. Moreover, it can obtain by plating silver or a silver alloy plating by the electroless-plating method on the core body of diameter 1-7 micrometers which consists of organic polymers. Good connection resistance is obtained when the plating thickness of copper, nickel or silver or silver is 500 to 1700 mm, and more preferably 500 to 1500 mm. When the plating thickness is less than 500 mm, plating defects occur, and when it exceeds 1700 mm, condensation tends to occur between particles.
Also, better connection resistance can be obtained by substitution plating with gold or palladium as the outermost layer on copper, nickel, silver or the like. Here, there are various types of nickel alloys depending on the additives blended in the plating bath, and well-known alloys include nickel-phosphorus and nickel-boron. The other alloys are the same and show the main component atoms.
When gold or palladium is plated on the outermost layer of the conductive particles, the plating thickness of silver, such as copper, nickel, etc. can be suitably plated at 700 to 1700 mm.
When gold or palladium is plated on the outermost layer of the conductive particles, a good connection resistance can be obtained when the gold or palladium plating thickness is 150 to 700 mm. When the plating thickness is less than 150 angstroms, a sufficient effect cannot be obtained due to plating defects. Moreover, although a good connection resistance can be obtained even if plating of 700 angstroms or more is performed, the manufacturing cost becomes very high because the required amount of plating solution increases synergistically.
[0009]
The core of the conductive particles used in the present invention is not particularly limited as long as it is an organic polymer, but an acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, and a copolymer thereof, and those obtained by crosslinking them are also used. It can be suitably used.
The conductive particles are properly used depending on the application within the range of 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive resin component. In order to prevent a short circuit of an adjacent circuit due to excessive conductive particles, the amount is more preferably 0.1 to 10 parts by volume.
[0010]
(3) Curing agents that generate free radicals upon heating used in the present invention are those that decompose upon heating of peroxide compounds, azo compounds, etc. to generate free radicals. However, from the viewpoint of high reactivity and pot life, an organic peroxide having a half-life of 10 hours at a temperature of 40 ° C. or higher and a half-life of 1 minute at a temperature of 180 ° C. or lower is selected. Preferably, organic peroxides having a half-life of 10 hours at a temperature of 60 ° C. or more and a half-life of 1 minute at a temperature of 170 ° C. or less are preferred. When the connection time is 25 seconds or less, the blending amount of the curing agent is preferably about 2 to 10 parts by weight in order to obtain a sufficient reaction rate, and more preferably 4 to 8 parts by weight.
The blending amount is preferably 0.05 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the sum of the radical polymerizable substance and the film forming material blended as necessary.
[0011]
The curing agent can be selected from diacyl peroxide, peroxydicarbonate, peroxyester peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide, and the like. Further, in order to suppress corrosion of the connection terminals of the circuit member, the chlorine ions and organic acids contained in the curing agent are preferably 5000 ppm or less, and more preferably less organic acids generated after the thermal decomposition. . Specifically, it is more preferably selected from peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and peroxyesters that provide high reactivity. The said hardening | curing agent can be mixed suitably and used.
[0012]
As peroxyesters, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, t-hexylper Oxyneodecanodate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethylhexa) Noylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, t- Xylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoylperoxy) ) Hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like.
[0013]
As the dialkyl peroxide, α, α′bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcumylper Examples include oxides.
[0014]
Examples of the hydroperoxide include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
[0015]
As diacyl peroxide, isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, benzoyl peroxide Examples thereof include oxytoluene and benzoyl peroxide.
[0016]
Examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, di ( 2-ethylhexyl peroxy) dicarbonate, dimethoxybutyl peroxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate and the like.
[0017]
As peroxyketals, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butyl) Peroxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like.
[0018]
As silyl peroxides, t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, tris (t-butyl) vinyl Examples include silyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide.
These free radical generators can be used alone or in combination, and may be used in combination with a decomposition accelerator, an inhibitor and the like. In addition, it is preferable to use these curing agents coated with a polyurethane-based or polyester-based polymer substance to form a microcapsule because the pot life is extended.
[0019]
The radically polymerizable substance (4) used in the present invention is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, maleimide compounds, citraconic imide resins, and nadiimide resins. The radical polymerizable substance can be used in either a monomer or oligomer state, and the monomer and oligomer can be used in combination. Specific examples of acrylates (including corresponding methacrylates, the same shall apply hereinafter) include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclo Examples include pentenyl acrylate, tricyclodecanyl acrylate, tris (acryloyloxyethyl) isocyanurate, and urethane acrylate. These can be used alone or in combination, and if necessary, a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be appropriately used. Moreover, when it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.
[0020]
The maleimide compound contains at least two maleimide groups in the molecule. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N′— p-phenylene bismaleimide, N, N′-m-toluylene bismaleimide, N, N′-4,4-biphenylene bismaleimide, N, N′-4,4- (3,3′-dimethylbiphenylene) bis Maleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′-4 , 4-Diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-3,3′-diphenylsulfone bismaleimide, N N′-4,4-diphenyl ether bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4,8- (4-maleimidophenoxy) ) Phenyl) propane, 1,1-bis (4- (4-maleimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-maleimidophenoxy) -2-cyclohexylbenzene, 2, Examples thereof include 2-bis (4- (4-maleimidophenoxy) phenyl) hexafluoropropane, which can be used alone or in combination.
[0021]
As a citraconic imide resin, a citraconic imide compound having at least one citraconic imide group in the molecule is polymerized. Examples of the citraconic imide compound include phenyl citraconic imide, 1-methyl-2,4- Biscitraconimide benzene, N, N′-m-phenylene biscitraconimide, N, N′-p-phenylene biscitraconimide, N, N′-4,4-biphenylenebiscitraconimide, N, N′-4, 4- (3,3-dimethylbiphenylene) biscitraconimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) biscitraconimide, N, N′-4,4- (3,3-diethyl Diphenylmethane) biscitraconimide, N, N′-4,4-diphenylmethanebiscitraconimide, N, N′-4,4-diphenylpropane biscitraco Imide, N, N′-4,4-diphenyl ether biscitraconimide, N, N′-4,4-diphenylsulfone biscitraconimide, 2,2-bis (4- (4-citraconimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-citraconimidophenoxy) phenyl) propane, 1,1-bis (4- (4-citraconimidophenoxy) phenyl) decane, 4,4 ′ -Cyclohexylidene-bis (1- (4-citraconimidophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-citraconimidophenoxy) phenyl) hexafluoropropane, etc. Two or more types may be mixed and used.
[0022]
The nadiimide resin is obtained by polymerizing a nadiimide compound having at least one nadiimide group in the molecule. Examples of the nadiimide compound include phenyl nadiimide, 1-methyl-2,4-bisnadiimidebenzene, N , N'-m-phenylene bisnadiimide, N, N'-p-phenylene bisnadiimide, N, N'-4,4-biphenylene bisnadiimide, N, N'-4,4- (3,3-dimethylbiphenylene ) Bisnadiimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bisnadiimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bisnadiimide, N, N′-4,4- Diphenylmethane bisnadiimide, N, N'-4,4-diphenylpropane bisnadiimide, N, N'-4,4-diphenyl ether bisnadiimide, N, N'-4,4-diphenylsulfo Bisnadiimide, 2,2-bis (4- (4-nadiimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-nadiimidophenoxy) phenyl) propane, 1, 1-bis (4- (4-nadiimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-nadiimidophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-Nadiimidophenoxy) phenyl) hexafluoropropane and the like may be used alone or in admixture of two or more.
[0023]
In addition, it is preferable to use a radical polymerizable substance having a phosphoric ester structure represented by the following formula in combination with the above radical polymerizable substance since the adhesion strength on the surface of an inorganic substance such as a metal is improved.
The blending amount is preferably 0.01 to 50 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the radical polymerizable substance and the film forming material to be blended if necessary.
The radically polymerizable substance having a phosphoric ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyethyl (meth) acrylate. Specific examples include mono (2-methacryloyloxyethyl) acid phosphate and di (2-methacryloyloxyethyl) acid phosphate. These can be used alone or in combination.
[0024]
[Chemical 1]
Figure 0004154919
Allyl (meth) acrylate can also be added to the circuit connecting material of the present invention. The blending amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the radically polymerizable substance and the film forming material blended as necessary.
[0025]
(1) As an epoxy resin used in the present invention, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F There are novolac type epoxy resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc. It may be halogenated or hydrogenated. Two or more of these epoxy resins may be used in combination.
[0026]
(2) As an epoxy resin latent curing agent used in the present invention, imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, diaminomaleonitrile, melamine and derivatives thereof, polyamine salt, dicyandiamide, etc. And modifications thereof, which can be used alone or as a mixture of two or more. These are anionic or cationic polymerizable catalyst-type curing agents, which are preferable because they can easily obtain fast curability and require less chemical equivalent considerations. As the curing agent, other polyaddition types such as polyamines, polymercaptans, polyphenols, and acid anhydrides, and the combined use with the catalyst-type curing agent can be used.
As an anionic polymerization type catalyst type curing agent, an epoxy resin containing a tertiary amine or imidazole is suitable for curing by heating at a medium temperature of about 160 ° C. to 200 ° C. for several tens of seconds to several hours. Use time (pot life) is relatively long.
As the cationic polymerization type catalyst-type curing agent, a photosensitive onium salt that cures the resin by energy ray irradiation, for example, an aromatic diazonium salt, an aromatic sulfonium salt, or the like is mainly used. In addition to energy beam irradiation, aliphatic sulfonium salts and the like are also activated by heating to cure the epoxy resin. This type of curing agent is preferred because it has the property of fast curing.
It is preferable to use these hardeners coated with a polymer material such as polyurethane or polyester, a metal thin film such as nickel or copper, and an inorganic material such as calcium silicate because the pot life can be extended. .
[0027]
Examples of the film forming material used in the present invention include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin and the like. The film-forming material is a material that solidifies a liquid material and forms a constituent composition into a film shape, so that the film is easy to handle and imparts mechanical properties that are not easily torn, cracked, or sticky. Yes, it can be handled as a film in a normal state.
Among the film forming materials, a phenoxy resin is preferable because it is excellent in adhesiveness, compatibility, heat resistance, and mechanical strength.
The phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin to a high molecular weight or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol. Specifically, 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin are reacted at a temperature of 40 to 120 ° C. in a non-reactive solvent in the presence of a catalyst such as an alkali metal hydroxide. Can be obtained. Further, from the viewpoint of the mechanical properties and thermal properties of the resin, the blending equivalent ratio of the bifunctional epoxy resin and the bifunctional phenols is particularly preferably epoxy group / phenol hydroxyl group = 1 / 0.9 to 1 / 1.1. In the presence of a catalyst such as an alkali metal compound, an organic phosphorus compound, or a cyclic amine compound, the reaction solid content in an organic solvent such as an amide, ether, ketone, lactone, or alcohol having a boiling point of 120 ° C. or higher Is preferably 50 parts by weight or less and heated to 50 to 200 ° C. for polyaddition reaction. Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, biphenyl diglycidyl ether, and methyl-substituted biphenyl diglycidyl ether. Bifunctional phenols have two phenolic hydroxyl groups, such as hydroquinones, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, bisphenol fluorene, methyl substituted bisphenol fluorene, dihydroxy biphenyl, methyl substituted dihydroxy biphenyl, etc. Bisphenols etc. are mentioned. The phenoxy resin may be modified with a radical polymerizable functional group or other reactive compound. A phenoxy resin may be used independently or may be used in mixture of 2 or more types.
The phenoxy resin may be modified with a radical polymerizable functional group or an epoxy group.
[0028]
For the circuit connection material of the present invention, a polymer or copolymer containing at least one of acrylic acid, acrylic acid ester, methacrylic acid ester or acrylonitrile as a monomer component can be used and contains a glycidyl ether group. When a copolymer acrylic rubber containing glycidyl acrylate or glycidyl methacrylate is used in combination, stress relaxation is excellent, which is preferable. The molecular weight (weight average) of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive.
Furthermore, rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins, melamine resins, isocyanates, and the like can also be contained.
As the rubber fine particles, the average particle size of the particles is not more than twice the average particle size of the conductive particles to be blended, and the elastic modulus at room temperature is 1/2 of the elastic modulus at room temperature of the conductive particles and the adhesive. If it is the following, a material shape etc. will not be specifically limited. In particular, the rubber fine particles can be suitably used alone or in combination of two or more kinds of silicone, acrylic emulsion, SBR, NBR, and polybutadiene rubber fine particles. These three-dimensionally cross-linked rubber fine particles are more preferable because the solvent resistance is improved and the fine particles are easily dispersed in the adhesive.
The inclusion of a filler is preferable because improvement in connection reliability and the like can be obtained. If the maximum diameter of a filler is less than the particle size of an electroconductive particle, it can be used, and the range of 5-60 volume parts (with respect to 100 volume parts of adhesive resin components) is preferable. If it exceeds 60 parts by volume, the effect of improving the reliability may be saturated, and if it is less than 5 parts by volume, the effect of addition is small.
As a coupling agent, a vinyl group, an acrylic group, an epoxy group and an isocyanate group-containing material are preferable from the viewpoint of improving adhesiveness.
[0029]
The circuit connecting material of the present invention can also be used as a film-like adhesive for bonding an IC chip and a chip mounting substrate or bonding electric circuits. That is, the first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged so that the first connection terminal and the second connection terminal are opposed to each other, and the opposing The connection material (film adhesive) of the present invention is interposed between the arranged first connection terminal and the second connection terminal, and the first connection terminal and the second connection terminal arranged opposite to each other by heating and pressing. Can be electrically connected.
As such a circuit member, a chip component such as a semiconductor chip, a resistor chip or a capacitor chip, a substrate such as a printed circuit board, or the like is used.
These circuit members are usually provided with a large number of connection terminals (or a single connection terminal in some cases), and at least one set of the circuit members is arranged so that at least a part of the connection terminals provided on the circuit members are opposed to each other. Then, an adhesive is interposed between the connection terminals arranged opposite to each other, and the connection terminals arranged opposite to each other by heating and pressing are electrically connected to form a circuit board.
By heating and pressurizing at least one set of circuit members, the opposingly arranged connection terminals can be electrically connected by direct contact or via conductive particles in the circuit connection material.
[0030]
When connecting the first connection terminal and the second connection terminal that face each other using the circuit connection material of the present invention, the number of conductive particles existing between the terminals to be connected is three or more, and at least one of the connections Terminal area is 15000μm2A good connection can be made even in the following cases.
When the number of conductive particles existing between the terminals to be connected is 6 or more, a lower connection resistance is obtained, which is more preferable.
When the number of conductive particles existing between the terminals to be connected is 2 or less, the connection resistance becomes too high, and the electronic circuit may not operate normally.
[0031]
The storage elastic modulus at 40 ° C. after curing of the circuit connecting material of the present invention is preferably 500 to 3000 MPa, and in the case of 700 to 2000 MPa, an appropriate cohesive force can be obtained, and between the circuit terminals and the interface of the circuit connecting material. It is more preferable because high adhesive strength due to stress relaxation can be expected. Further, the glass transition temperature after curing of the circuit connecting material of the present invention is 60 to 200 ° C., preferably 60 to 180 ° C. When the temperature is less than 60 ° C., the adhesive strength decreases at a high temperature and the connection resistance deteriorates remarkably. If the temperature is higher than 200 ° C., the curing conditions are required to be high temperature for a long time, so that the internal stress increases and cracks may occur, and the interface stress with the circuit terminal to be connected increases. Adhesive strength decreases.
[0032]
The present invention provides an electrical / electronic circuit connection material capable of obtaining a good electrical connection in the connection of opposing high-density circuits and capable of achieving a good electrical connection with respect to a conventional circuit connection. It is possible to provide a circuit terminal connection structure using the.
[0033]
【Example】
Change the mixing ratio of tetramethylol methane tetraacrylate, divinyl benzene and styrene monomer, suspension polymerization using benzoyl peroxide as a polymerization initiator, and classify the core of conductive particles with different target hardness by classification. Got the body.
Each core obtained was electroless Ni plated or electroless Ag plated. The plating thickness was changed according to the amount of plating solution charged, the processing temperature, and the time during the plating process, and the desired conductive particles 1, 3, 8 to 10, 13 to 15, 18, 21, and 24 were obtained. Further, the target conductive particles 2, 4-7, 11, 12, 16, 17, 19, 20, 22, 23, 25, 26 were obtained by further plating Au on the conductive particles subjected to Ni plating. . Moreover, the target electroconductive particles 27-29 were obtained by carrying out substitution plating of Pd to the electroconductive particle which performed Ni plating. The conductive particles thus obtained are collectively shown in Table 1.
[0034]
[Table 1]
Figure 0004154919
[0035]
Example 1
50 g of phenoxy resin (trade name PKHC, manufactured by Union Carbide Co., Ltd., average molecular weight 45000) was dissolved in a mixed solvent of toluene / ethyl acetate = 50/50 by weight to obtain a solution having a solid content of 40% by weight.
30g phenoxy resin, 30g bisphenol A epoxy resin by solid weight ratio, NovaCure 3914HPS as a latent curing agent for epoxy resin (microcapsule type with an average particle size of 5μm with imidazole modified as the core and coated with polyurethane on the surface) The curing agent is blended so as to be 40 parts by weight of a masterbatch type curing agent dispersed in a liquid bisphenol F type epoxy resin (trade name, manufactured by Asahi Ciba Co., Ltd.), and 5 parts by volume of conductive particles 1 are blended and dispersed. The film-like circuit connecting material 1 having an adhesive layer thickness of 20 μm was obtained by applying it to a PET film having a surface treated on one side of 80 μm using a coating apparatus and drying it with hot air at 70 ° C. for 10 minutes.
[0036]
(Example 2)
A film-like circuit connecting material 2 was obtained in the same manner as in Example 1 except that the conductive particles 2 were used as the conductive particles.
(Example 3)
A film-like circuit connecting material 3 was obtained in the same manner as in Example 1 except that the conductive particles 3 were used as the conductive particles.
Example 4
A film-like circuit connecting material 4 was obtained in the same manner as in Example 1 except that the conductive particles 4 were used as the conductive particles.
(Example 5)
A film-like circuit connecting material 5 was obtained in the same manner as in Example 1 except that the conductive particles 5 were used as the conductive particles.
(Example 6)
A film-like circuit connecting material 6 was obtained in the same manner as in Example 1 except that the conductive particles 6 were used as the conductive particles.
(Example 7)
A film-like circuit connecting material 7 was obtained in the same manner as in Example 1 except that the conductive particles 7 were used as the conductive particles.
(Example 8)
A film-like circuit connecting material 8 was obtained in the same manner as in Example 1 except that 2.5 parts by volume of the conductive particles 1 and 2.5 parts by volume of the conductive particles 2 were mixed and dispersed in the conductive particles.
[0037]
Example 9
(Synthesis of urethane acrylate)
While stirring 400 parts by weight of polycaprolactone diol having an average molecular weight of 800, 131 parts by weight of 2-hydroxypropyl acrylate, 0.5 parts by weight of dibutyltin dilaurate as a catalyst, and 1.0 part by weight of hydroquinone monomethyl ether as a polymerization inhibitor, 50 ° C. Heated to mix. Subsequently, 222 parts by weight of isophorone diisocyanate was dropped, and the temperature was raised to 80 ° C. while stirring to carry out a urethanization reaction. After confirming that the reaction rate of the isocyanate group was 99% or more, the reaction temperature was lowered to obtain urethane acrylate.
[0038]
T-Hexylperoxy-2-ethylhexanonate was used as a curing agent that generates free radicals upon heating.
50 g of phenoxy resin in solid weight ratio, 49 g of urethane acrylate obtained above, 1 g of phosphate ester acrylate, 5 g of t-hexylperoxy-2-ethylhexanate, and 5 volumes of conductive particles 7 A film-like circuit in which the adhesive layer has a thickness of 20 μm is applied to a PET (polyethylene terephthalate) film, which is partially mixed and dispersed, with a surface treatment of a PET (polyethylene terephthalate) film having a thickness of 80 μm, and dried by hot air at 70 ° C. for 10 minutes. A connecting material 9 was obtained.
[0039]
(Comparative Example 1)
A film-like circuit connecting material 10 was obtained in the same manner as in Example 1 except that the conductive particles 8 were used as the conductive particles.
(Comparative Example 2)
A film-like circuit connecting material 11 was obtained in the same manner as in Example 1 except that the conductive particles 9 were used as the conductive particles.
(Comparative Example 3)
A film-like circuit connecting material 12 was obtained in the same manner as in Example 1 except that the conductive particles 10 were used as the conductive particles.
(Comparative Example 4)
A film-like circuit connecting material 13 was obtained in the same manner as in Example 1 except that the conductive particles 11 were used as the conductive particles.
(Comparative Example 5)
A film-like circuit connecting material 14 was obtained in the same manner as in Example 1 except that the conductive particles 12 were used as the conductive particles.
(Comparative Example 6)
A film-like circuit connecting material 15 was obtained in the same manner as in Example 1 except that the conductive particles 13 were used as the conductive particles.
(Comparative Example 7)
A film-like circuit connecting material 16 was obtained in the same manner as in Example 1 except that the conductive particles 14 were used as the conductive particles.
(Comparative Example 8)
A film-like circuit connecting material 17 was obtained in the same manner as in Example 1 except that the conductive particles 15 were used as the conductive particles.
(Comparative Example 9)
A film-like circuit connecting material 18 was obtained in the same manner as in Example 1 except that the conductive particles 16 were used as the conductive particles.
(Comparative Example 10)
A film-like circuit connecting material 19 was obtained in the same manner as in Example 1 except that the conductive particles 17 were used as the conductive particles.
(Comparative Example 11)
A film-like circuit connecting material 20 was obtained in the same manner as in Example 1 except that the conductive particles 18 were used as the conductive particles.
(Comparative Example 12)
A film-like circuit connecting material 21 was obtained in the same manner as in Example 1 except that the conductive particles 19 were used as the conductive particles.
(Comparative Example 13)
A film-like circuit connecting material 22 was obtained in the same manner as in Example 1 except that the conductive particles 20 were used as the conductive particles.
(Comparative Example 14)
A film-like circuit connection material 23 was obtained in the same manner as in Example 1 except that the conductive particles 21 were used as the conductive particles.
(Comparative Example 15)
A film-like circuit connecting material 24 was obtained in the same manner as in Example 1 except that the conductive particles 22 were used as the conductive particles.
(Comparative Example 16)
A film-like circuit connecting material 25 was obtained in the same manner as in Example 1 except that the conductive particles 23 were used as the conductive particles.
(Comparative Example 17)
A film-like circuit connecting material 26 was obtained in the same manner as in Example 1 except that the conductive particles 24 were used as the conductive particles.
(Comparative Example 18)
A film-like circuit connecting material 27 was obtained in the same manner as in Example 1 except that the conductive particles 25 were used as the conductive particles.
(Comparative Example 19)
A film-like circuit connecting material 28 was obtained in the same manner as in Example 1 except that the conductive particles 26 were used as the conductive particles.
(Comparative Example 20)
A film-like circuit connecting material 29 was obtained in the same manner as in Example 1 except that 2 parts by volume of the conductive particles 1 were blended.
(Comparative Example 21)
A film-like circuit connecting material 30 was obtained in the same manner as in Example 9 except that the conductive particles 8 were used as the conductive particles.
[0040]
(Example 10)
A film-like circuit connecting material 31 was obtained in the same manner as in Example 1 except that the conductive particles 27 were used as the conductive particles.
(Comparative Example 22)
A film-like circuit connecting material 32 was obtained in the same manner as in Example 1 except that the conductive particles 28 were used as the conductive particles.
(Comparative Example 23)
A film-like circuit connecting material 33 was obtained in the same manner as in Example 1 except that the conductive particles 29 were used as the conductive particles.
[0041]
(Circuit connection)
A flexible circuit board (two-layer FPC) in which 500 copper circuits having a line width of 9 μm, a pitch of 30 μm and a thickness of 8 μm are formed on a polyimide film (thickness of 40 μm), an adhesive for bonding polyimide, polyimide and copper foil, and a thickness of 18 μm An ITO substrate having a three-layer structure made of copper foil and a flexible circuit board (three-layer FPC) having a line width of 7 μm and a pitch of 30 μm, and indium-tin oxide (ITO) formed on a 1.1 mm-thick glass by vapor deposition. Surface resistance <20Ω / □) was heated and pressurized at 180 ° C. and 3 MPa for 10 seconds using the above circuit connection material and connected over a width of 1 mm to obtain a circuit terminal connection structure. At this time, after adhering the adhesive surface of the circuit connecting material on the ITO substrate in advance, it is temporarily connected by heating and pressurizing at 70 ° C. and 0.5 MPa for 5 seconds, and then the PET film is peeled off to remove the other FPC. And connected.
[0042]
(Measurement of connection resistance)
After the circuit connection, the resistance value between the adjacent circuits of the FPC including the connection part was measured with a multimeter after being initially held in a high-temperature and high-humidity bath at 80 ° C. and 95% RH for 1000 hours. The resistance value was shown as the sum (x + 3σ) of the average value of 150 resistances between adjacent circuits multiplied by 3 times the standard deviation.
[0043]
(Counting conductive particles present on connection terminals)
After the circuit was connected, the number of conductive particles present at each connection terminal of the connection part was counted. The number of conductive particles on the connection terminal is shown as an average of the conductive particles existing on the 151 terminal.
The obtained results are shown in Table 2.
[0044]
[Table 2]
Figure 0004154919
[0045]
Examples 1 to 10 all show good connection resistance in the connection of the two-layer FPC and the three-layer FPC, and it can be seen that there is almost no increase in the connection resistance after 1000 ° C. treatment at 80 ° C. and 95% RH.
On the other hand, Comparative Examples 1 to 23 also have a high initial connection resistance. In particular, the increase in the connection resistance after treating the 2-layer FPC and 3-layer FPC (pitch 30 μm) at 80 ° C. and 95% RH for 1000 hours is remarkable.
In Comparative Examples 1, 8, 11, 14, and 17, the Ni plating thickness of the conductive particles is as thin as 300 mm. Therefore, when pressure is applied to the conductive particles at the time of circuit connection, many cracks are formed in the Ni plating, and the connection resistance is low. Probably higher. Further, it is considered that the connection resistance was further increased by the expansion of Ni plating cracks after the high temperature and high humidity treatment. In Comparative Examples 2, 4, 6, 9, 12, 15, 18, and 22, it is considered that the hardness of the conductive particles is too soft to follow the variation in the distance between the opposing circuit terminals due to the high temperature and high humidity treatment.
In Comparative Examples 3, 5, 7, 10, 13, 16, 19, 21, and 23, since the conductive particles are too hard and sufficient flatness of the conductive particles cannot be obtained, the resistance value is increased from the initial connection resistance. This is considered to be because the change in the distance between the opposing circuit terminals due to the high temperature and high humidity treatment cannot be followed.
In Comparative Example 20, since the number of conductive particles existing on the circuit terminal is one, it is presumed that the connection resistance and the connection resistance after high-temperature and high-humidity treatment increased greatly due to the influence of terminal shape and height variation.
[0046]
【The invention's effect】
According to the present invention, a good electrical connection can be obtained in the connection of high-density circuits facing each other, and a good electrical connection can be achieved even with respect to a conventional circuit connection. It is possible to provide a material and a circuit terminal connection structure using the material.

Claims (12)

導電粒子を含有する回路接続材料であって、
第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に当該回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続するために用いられ、
対向配置した第一の接続端子と第二の接続端子のうち少なくとも一方の接続端子の面積が15000μm 以下であり、かつ、接続後の第一の接続端子と第二の接続端子の間に存在する導電粒子数が3個以上であり、
導電粒子が有機高分子からなる核体に銅、ニッケル、ニッケル合金、銀若しくは銀合金をメッキしたものであり、銅、ニッケル、ニッケル合金、銀若しくは銀合金メッキの厚みが500〜1700Åであり、
導電粒子の直径と硬度が下記の(a)から(d)の関係にあることを特徴とする回路接続材料。
(a)導電粒子の直径;5μm以上、7μm未満の時、導電粒子の硬度が4.903GPa(500kgf/mm2)〜5.394GPa(550kg/mm2)の範囲
(b)導電粒子の直径;4μm以上、5μm未満の時、導電粒子の硬度が2.942GPa(300kgf/mm2)〜6.374GPa(650kg/mm2)の範囲
(c)導電粒子の直径;3μm以上、4μm未満の時、導電粒子の硬度が5.394GPa(550kgf/mm2)〜6.865GPa(700kg/mm2)の範囲
(d)導電粒子の直径;2μm以上、3μm未満の時、導電粒子の硬度が4.413GPa(450kgf/mm2)〜8.336GPa(850kg/mm2)の範囲
A circuit connection material containing conductive particles,
The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged so that the first connection terminal and the second connection terminal are opposed to each other, and the opposing arrangement is performed. In order to electrically connect the first connection terminal and the second connection terminal that are arranged opposite to each other by interposing the circuit connection material between the first connection terminal and the second connection terminal Used,
The area of at least one of the first connection terminal and the second connection terminal arranged opposite each other is 15000 μm 2 or less, and exists between the first connection terminal and the second connection terminal after connection. The number of conducting particles to be 3 or more,
The core of the conductive particles is an organic polymer plated with copper, nickel, nickel alloy, silver or silver alloy, and the thickness of the copper, nickel, nickel alloy, silver or silver alloy plating is 500 to 1700 mm,
A circuit connecting material, wherein the diameter and hardness of the conductive particles are in the following relationships (a) to (d):
(A) Diameter of conductive particles; when the particle size is 5 μm or more and less than 7 μm, the hardness of the conductive particles is in the range of 4.903 GPa ( 500 kgf / mm 2 ) to 5.394 GPa ( 550 kg / mm 2 ) (b) Particle diameter: When the particle diameter is 4 μm or more and less than 5 μm, the hardness of the conductive particles is in the range of 2.942 GPa (300 kgf / mm 2 ) to 6.374 GPa (650 kg / mm 2 ) (c) The diameter of the conductive particles: 3 μm or more and 4 μm The hardness of the conductive particles is in the range of 5.394 GPa ( 550 kgf / mm 2 ) to 6.865 GPa (700 kg / mm 2 ) (d) the diameter of the conductive particles; when the conductive particles are 2 μm or more and less than 3 μm, the conductive particles Hardness of 4.413 GPa (450 kgf / mm 2 ) to 8.336 GPa (850 kg / mm 2 )
導電粒子最外層に金、またはパラジウムを設けた導電粒子であり、金、またはパラジウムの厚みが150〜700Åである請求項1に記載の回路接続材料。The circuit connection material according to claim 1 , wherein the conductive particles are conductive particles in which gold or palladium is provided on the outermost layer, and the thickness of the gold or palladium is 150 to 700 mm. (1)エポキシ樹脂、(2)エポキシ樹脂の潜在性硬化剤を必須成分として含有する請求項1または請求項に記載の回路接続材料。(1) an epoxy resin, (2) circuit connecting material according to claim 1 or claim 2 containing as an essential component a latent curing agent for epoxy resin. (3)加熱により遊離ラジカルを発生する硬化剤、(4)ラジカル重合性物質を必須成分として含有する請求項1または請求項に記載の回路接続材料。The circuit connecting material according to claim 1 or 2 , comprising (3) a curing agent that generates free radicals upon heating, and (4) a radical polymerizable substance as an essential component. 回路接続材料の硬化後の40℃での弾性率が500〜3000MPaであり、かつ、回路接続材料の硬化後のガラス転移温度(Tg)が60〜200℃である請求項1ないし請求項のいずれかに記載の回路接続材料。5. The elastic modulus at 40 ° C. after curing of the circuit connecting material is 500 to 3000 MPa, and the glass transition temperature (Tg) after curing of the circuit connecting material is 60 to 200 ° C. 5 . The circuit connection material according to any one of the above. 電粒子を少なくとも2種類用いることを特徴とする請求項1ないし請求項のいずれかに記載の回路接続材料。Circuit connecting material according to any one of claims 1 to 5 for the conductive particles, characterized by using at least two kinds. さらに、フィルム形成材を含有する請求項ないし請求項のいずれかに記載の回路接続材料。Furthermore, the circuit connection material in any one of Claim 3 thru | or 6 containing a film formation material. フィルム形成材がフェノキシ樹脂である請求項記載の回路接続材料。The circuit connection material according to claim 7 , wherein the film forming material is a phenoxy resin. 第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に請求項1ないし請求項のいずれかに記載の回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続した回路端子の接続構造。The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged so that the first connection terminal and the second connection terminal are opposed to each other, and the opposing arrangement is performed. A circuit connection material according to any one of claims 1 to 8 is interposed between the first connection terminal and the second connection terminal, and the first connection terminal and the second connection terminal disposed opposite to each other by heating and pressing. A circuit terminal connection structure in which two connection terminals are electrically connected. 請求項に記載の回路端子の接続構造において、対向配置した第一の接続端子と第二の接続端子のうち少なくとも一方の接続端子の面積が15000μm以下であり、かつ、第一の接続端子と第二の接続端子の間に存在する導電粒子数が3個以上である請求項に記載の回路端子の接続構造。10. The circuit terminal connection structure according to claim 9 , wherein an area of at least one of the first connection terminal and the second connection terminal arranged to face each other is 15000 μm 2 or less, and the first connection terminal. The circuit terminal connection structure according to claim 9 , wherein the number of conductive particles existing between the first connection terminal and the second connection terminal is three or more. 少なくとも一方の接続端子の表面が金、銀、錫、白金族の金属、インジュウム−錫酸化物(ITO)から選ばれる少なくとも一種で構成される請求項または請求項10に記載の回路端子の接続構造。At least one surface gold connection terminals, silver, tin, platinum group metals, indium - connection of the circuit terminals according to the tin oxide claim 9 or claim 10 comprised of at least one member selected from (ITO) Construction. 少なくとも一方の接続端子を支持する基板が、ガラス、シリコンから選ばれる少なくとも一種である請求項ないし請求項11のいずれかに記載の回路端子の接続構造。Substrate supporting at least one of the connection terminals, glass, connection structure for a circuit terminal of any one of claims 9 to 11 is at least one selected from silicon.
JP2002122699A 2002-02-28 2002-04-24 Circuit connection material and circuit terminal connection structure using the same Expired - Fee Related JP4154919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122699A JP4154919B2 (en) 2002-02-28 2002-04-24 Circuit connection material and circuit terminal connection structure using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002053912 2002-02-28
JP2002-53912 2002-02-28
JP2002122699A JP4154919B2 (en) 2002-02-28 2002-04-24 Circuit connection material and circuit terminal connection structure using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007116049A Division JP4844461B2 (en) 2002-02-28 2007-04-25 Circuit connection material and circuit terminal connection structure using the same
JP2007325202A Division JP4400674B2 (en) 2002-02-28 2007-12-17 Circuit connection material and circuit terminal connection structure using the same

Publications (2)

Publication Number Publication Date
JP2003323813A JP2003323813A (en) 2003-11-14
JP4154919B2 true JP4154919B2 (en) 2008-09-24

Family

ID=29552130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122699A Expired - Fee Related JP4154919B2 (en) 2002-02-28 2002-04-24 Circuit connection material and circuit terminal connection structure using the same

Country Status (1)

Country Link
JP (1) JP4154919B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194393A (en) * 2004-01-07 2005-07-21 Hitachi Chem Co Ltd Adhesive film for circuit connection, and circuit connection structure
JP2005194413A (en) * 2004-01-08 2005-07-21 Hitachi Chem Co Ltd Adhesive film for circuit connection and circuit connection structure
JP2008308682A (en) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd Circuit connection material
JP5018270B2 (en) * 2007-06-22 2012-09-05 パナソニック株式会社 Semiconductor laminate and semiconductor device using the same
CN101849266A (en) * 2007-11-12 2010-09-29 日立化成工业株式会社 Circuit connecting material and structure for connecting circuit member
JP2009205842A (en) * 2008-02-26 2009-09-10 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material, and connection structure
JP5583611B2 (en) * 2011-01-27 2014-09-03 株式会社日本触媒 Conductive fine particles
JP5387592B2 (en) * 2011-02-07 2014-01-15 日立化成株式会社 Circuit connection material and method of manufacturing circuit member connection structure
JP2012057161A (en) * 2011-09-21 2012-03-22 Hitachi Chem Co Ltd Adhesive film for circuit connections, and circuit connection structure
JP5667557B2 (en) * 2011-12-14 2015-02-12 株式会社日本触媒 Conductive fine particles and anisotropic conductive materials
JP2021178913A (en) * 2020-05-13 2021-11-18 昭和電工マテリアルズ株式会社 Conductive adhesive, manufacturing method of circuit connection structure, and circuit connection structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795165B2 (en) * 1990-09-29 1995-10-11 積水ファインケミカル株式会社 Microsphere, spherical spacer for liquid crystal display device, and liquid crystal display device using the same
JP3241276B2 (en) * 1995-10-30 2001-12-25 積水化学工業株式会社 Conductive microsphere and liquid crystal display device
JP3027115B2 (en) * 1996-01-19 2000-03-27 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP2000034306A (en) * 1998-07-21 2000-02-02 Sekisui Chem Co Ltd Production of fine particle, fine particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive fine particle and conductive connection structure
JP2000309715A (en) * 1999-04-26 2000-11-07 Sekisui Chem Co Ltd Polymer microparticle and conductive microparticle
JP3739232B2 (en) * 1999-05-06 2006-01-25 積水化学工業株式会社 Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles
JP2001011503A (en) * 1999-06-25 2001-01-16 Catalysts & Chem Ind Co Ltd New conductive fine particle and its use
JP2001081438A (en) * 1999-09-14 2001-03-27 Sony Chem Corp Connecting material
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2001164210A (en) * 1999-12-13 2001-06-19 Sumitomo Bakelite Co Ltd Anisotropic conductive film and electronic equipment using the same
JP3738655B2 (en) * 2000-03-31 2006-01-25 ソニーケミカル株式会社 Anisotropic conductive adhesive material and connection method
JP4747396B2 (en) * 2000-05-17 2011-08-17 日立化成工業株式会社 Adhesive composition, circuit terminal connection method using the same, and circuit terminal connection structure

Also Published As

Publication number Publication date
JP2003323813A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4293187B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
JP4743322B2 (en) Circuit connection material and circuit member connection structure
JP4737177B2 (en) Circuit connection structure
JP5051221B2 (en) Circuit member connection structure and circuit member connection method
JP5737278B2 (en) Circuit connection material, connection body, and method of manufacturing connection body
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP6146302B2 (en) Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JPWO2009017001A1 (en) Circuit member connection structure
JP2019065062A (en) Conductive adhesive film
JP4325379B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2011054988A (en) Circuit connecting material
JP2007150324A (en) Circuit connection adhesive, and circuit connection method and circuit connection structure using same
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP2007169632A (en) Adhesive for circuit connection, circuit connection method using the same and circuit connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4154919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees