JP2007035573A - Conductive particulate and anisotropic conductive material - Google Patents

Conductive particulate and anisotropic conductive material Download PDF

Info

Publication number
JP2007035573A
JP2007035573A JP2005221025A JP2005221025A JP2007035573A JP 2007035573 A JP2007035573 A JP 2007035573A JP 2005221025 A JP2005221025 A JP 2005221025A JP 2005221025 A JP2005221025 A JP 2005221025A JP 2007035573 A JP2007035573 A JP 2007035573A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
conductive fine
protrusions
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005221025A
Other languages
Japanese (ja)
Other versions
JP4718926B2 (en
JP2007035573A5 (en
Inventor
Hiroya Ishida
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005221025A priority Critical patent/JP4718926B2/en
Publication of JP2007035573A publication Critical patent/JP2007035573A/en
Publication of JP2007035573A5 publication Critical patent/JP2007035573A5/ja
Application granted granted Critical
Publication of JP4718926B2 publication Critical patent/JP4718926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive particulate having a small connection resistance value and a small variation in conduction performance of particles, and superior in conduction reliability, and an anisotropic conductive material. <P>SOLUTION: The conductive particulate is composed of a base material particulate and a conductive layer consisting of nickel formed on the surface of the base material particulate. The conductive layer has, on the surface, projection having as a core substance at least one kind of metal or metal oxide selected from a group of gold, silver, copper, palladium, zinc, cobalt, and titanium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、接続抵抗値が低く、粒子の導電性能のばらつきが小さく、導電信頼性に優れた導電性微粒子、及び、異方性導電材料に関する。 The present invention relates to a conductive fine particle having a low connection resistance value, small variation in conductive performance of particles, and excellent conductive reliability, and an anisotropic conductive material.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between opposing substrates and electrode terminals.

上記異方性導電材料に用いられる導電性微粒子としては、従来から、粒子径が均一で、適度な強度を有する樹脂微粒子等の非導電性微粒子の表面に、導電層として金属メッキ層を形成させた導電性微粒子が用いられてきている。しかしながら、近年の電子機器の急激な進歩や発展に伴って、異方性導電材料として用いられる導電性微粒子の接続抵抗の更なる低減が求められてきている。 Conventionally, as the conductive fine particles used in the anisotropic conductive material, a metal plating layer is formed as a conductive layer on the surface of non-conductive fine particles such as resin fine particles having a uniform particle size and appropriate strength. Conductive fine particles have been used. However, with rapid progress and development of electronic devices in recent years, there has been a demand for further reduction in connection resistance of conductive fine particles used as anisotropic conductive materials.

上記導電性微粒子の接続抵抗を低減するため、導電性微粒子として表面に突起を有する導電性微粒子が報告されている(例えば、特許文献1、特許文献2参照)。 In order to reduce the connection resistance of the conductive fine particles, conductive fine particles having protrusions on the surface have been reported as conductive fine particles (see, for example, Patent Document 1 and Patent Document 2).

特許文献1には、表面に突起を形成させた非導電性微粒子の表面に金属メッキを施した導電性微粒子が記載されている。しかしながら、これは母粒子と子粒子を複合させた複合粒子により形成させた突起粒子であり、その突起部分は、プラスチックやケイ酸ガラス等のガラス類が用いられていた。このため、突起を構成する材質は非導電性であり、接続抵抗の低い良好な導電性を得ることが困難であった。 Patent Document 1 describes conductive fine particles obtained by performing metal plating on the surface of non-conductive fine particles having protrusions formed on the surface. However, this is a protruding particle formed by composite particles obtained by combining mother particles and child particles, and glass such as plastic and silicate glass has been used for the protruding portion. For this reason, the material which comprises a processus | protrusion is nonelectroconductive, and it was difficult to obtain favorable electroconductivity with low connection resistance.

特許文献2には、非導電性微粒子に、無電解ニッケルメッキ法におけるニッケルメッキ液の自己分解を利用して、ニッケルの微小突起とニッケル被膜とを同時に形成させ、導電性無電解メッキ粉体を製造する方法が記載されている。しかしながら、この製造方法は突起を形成させるニッケルの微小粒子の大きさ、形状、量を制御することは極めて困難であるため、得られる突起の数、大きさ、形状を制御することは極めて困難であった。また、微小突起はリン成分を多く含むニッケルメッキ液を用いてメッキ工程で析出生成させているため、リンを多く含有することによって導電性が悪化するという欠点があった。
特開平4−36902号公報 特開2000−243132号公報
In Patent Document 2, a non-conductive fine particle and a nickel coating are formed simultaneously on non-conductive fine particles by utilizing the self-decomposition of a nickel plating solution in an electroless nickel plating method. A method of manufacturing is described. However, since it is extremely difficult to control the size, shape, and amount of nickel microparticles that form the protrusions in this manufacturing method, it is extremely difficult to control the number, size, and shape of the resulting protrusions. there were. In addition, since the microprotrusions are deposited and produced in the plating process using a nickel plating solution containing a large amount of phosphorus component, there is a drawback that the conductivity is deteriorated by containing a large amount of phosphorus.
JP-A-4-36902 JP 2000-243132 A

本発明は、上記現状に鑑み、接続抵抗値が低く、粒子の導電性能のばらつきが小さく、導電信頼性に優れた導電性微粒子、及び、異方性導電材料を提供することを目的とする。 An object of the present invention is to provide conductive fine particles and anisotropic conductive materials having low connection resistance values, small variations in conductive performance of particles, and excellent conductive reliability.

本発明は、基材微粒子と、前記基材微粒子の表面に形成されたニッケルからなる導電層とからなる導電性微粒子であって、前記導電層は、表面に、金、銀、銅、パラジウム、亜鉛、コバルト、及び、チタンからなる群より選択される少なくとも1種の金属又は金属酸化物を芯物質とする突起を有する導電性微粒子である。
以下に本発明を詳述する。
The present invention is a conductive fine particle comprising a substrate fine particle and a conductive layer made of nickel formed on the surface of the substrate fine particle, the conductive layer on the surface, gold, silver, copper, palladium, The conductive fine particles have a protrusion having a core material of at least one metal or metal oxide selected from the group consisting of zinc, cobalt, and titanium.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、回路基板等の電気的接続に用いる導電性微粒子として、所定の突起を有する導電性微粒子を用いることで、突起部の導電性を向上させ、導電性微粒子と回路基板等との間の接続抵抗を低減することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have improved the conductivity of the protrusions by using conductive fine particles having predetermined protrusions as the conductive fine particles used for electrical connection of a circuit board or the like. It has been found that the connection resistance between the circuit board and the circuit board can be reduced, and the present invention has been completed.

本発明の導電性微粒子は、基材微粒子と、前記基材微粒子の表面に形成されたニッケルからなる導電層とからなる。 The conductive fine particles of the present invention comprise substrate fine particles and a conductive layer made of nickel formed on the surface of the substrate fine particles.

上記基材微粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば無機材料を用いてなるものでも有機材料を用いてなるものでもよいが、弾性変形性及び復元性に優れていることから、樹脂を用いてなる樹脂微粒子であることが好ましい。 The substrate fine particles are not particularly limited, and may be made of an inorganic material or an organic material as long as it has an appropriate elastic modulus, elastic deformability, and resilience. And since it is excellent in the restoring property, it is preferably a resin fine particle using a resin.

上記樹脂微粒子を構成する樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;アクリレートとジビニルベンゼンとの共重合樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラニンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。 The resin constituting the resin fine particles is not particularly limited. For example, polyolefin such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, polybutadiene; polymethyl methacrylate, polymethyl acrylate Acrylic resin such as acrylate and divinylbenzene, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melanin formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin and the like. These resins may be used alone or in combination of two or more.

上記基材微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として回路基板等に用いられる範囲を超えることがある。
なお、上記基材微粒子の平均粒子径は、無作為に選んだ50個の基材微粒子について粒子径を測定し、これらを算術平均したものとする。
Although it does not specifically limit as an average particle diameter of the said base material fine particle, A preferable minimum is 1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 20 μm, it may exceed the range used for circuit boards and the like as anisotropic conductive materials. is there.
In addition, the average particle diameter of the said base material fine particle shall measure the particle diameter about 50 base material microparticles | fine-particles selected at random, and shall mean these arithmetically.

上記ニッケルからなる導電層の厚さとしては特に限定されないが、好ましい下限は10nm、好ましい上限は500nmである。10nm未満であると、所望の導電性が得られないことがあり、500nmを超えると、基材微粒子と導電層との熱膨張率の差から、上記導電層が剥離しやすくなることがある。
また、上記ニッケルからなる導電層には、リンやホウ素等の非金属成分が含有されていてもよい。
なお、上記導電層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
The thickness of the conductive layer made of nickel is not particularly limited, but a preferred lower limit is 10 nm and a preferred upper limit is 500 nm. If the thickness is less than 10 nm, desired conductivity may not be obtained. If the thickness exceeds 500 nm, the conductive layer may be easily peeled off due to the difference in thermal expansion coefficient between the substrate fine particles and the conductive layer.
Further, the conductive layer made of nickel may contain a nonmetallic component such as phosphorus or boron.
Note that the thickness of the conductive layer is a thickness obtained by measuring ten randomly selected particles and arithmetically averaging them.

本発明の導電性微粒子において、上記導電層は、表面に、金、銀、銅、パラジウム、亜鉛、コバルト、及び、チタンからなる群より選択される少なくとも1種の金属又は金属酸化物を芯物質とする突起を有する。
これにより、本発明の導電性微粒子を用いてなる異方性導電材料を回路基板等に挟んで導電接続時に圧着すると、突起部の導電性が高いことに加え、回路基板等と本発明の導電性微粒子との間に存在する異方性導電材料中のバインダー樹脂等を突き破ることにより(樹脂排除性)、導通不良防止とともに、抵抗値の低減化が可能となる。
In the conductive fine particles of the present invention, the conductive layer has, on the surface thereof, at least one metal or metal oxide selected from the group consisting of gold, silver, copper, palladium, zinc, cobalt, and titanium as a core substance. It has a projection.
As a result, when an anisotropic conductive material using the conductive fine particles of the present invention is sandwiched between a circuit board and the like and crimped at the time of conductive connection, in addition to the high conductivity of the protrusion, the circuit board and the conductive material of the present invention By breaking through the binder resin or the like in the anisotropic conductive material existing between the conductive fine particles (resin eliminability), it is possible to prevent conduction failure and reduce the resistance value.

上記芯物質の形状としては特に限定されないが、塊状又は粒子状であることが好ましい。形状が塊状のものとしては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、不定形の塊等が挙げられる。また、形状が粒子状のものとしては、例えば、球状、円盤状、柱状、板状、針状、立方体、直方体等が挙げられる。 The shape of the core substance is not particularly limited, but is preferably a lump or particle. Examples of the bulk shape include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump. Examples of the particle shape include a spherical shape, a disk shape, a columnar shape, a plate shape, a needle shape, a cube shape, and a rectangular parallelepiped shape.

上記芯物質が粒子状である場合には、芯物質の80%以上が、基材微粒子に接触しているか又は上記基材微粒子との距離が5nm以内であることが好ましい。
上記芯物質が、基材微粒子に接触しているか又は基材微粒子から近接した位置に存在することにより、芯物質が確実に導電層で覆われることになり、突起の基材微粒子に対する密着性が優れた導電性微粒子を得ることができる。更に、芯物質が基材微粒子に接触しているか又は基材微粒子から近接した位置に存在することにより、基材微粒子の表面上に突起を揃えることができる。また、芯物質の大きさを揃えやすく、突起の高さが基材微粒子の表面上で揃った導電性微粒子を得ることが可能となる。
従って、本発明の導電性微粒子を異方性導電材料として用いた電極間の接続時には、導電性微粒子の導電性能のばらつきが小さくなり、導電信頼性に優れるという効果が得られる。
When the core substance is in the form of particles, it is preferable that 80% or more of the core substance is in contact with the base particle or the distance from the base particle is within 5 nm.
When the core material is in contact with the substrate fine particles or is present at a position close to the substrate fine particles, the core material is surely covered with the conductive layer, and the adhesion of the protrusions to the substrate fine particles is improved. Excellent conductive fine particles can be obtained. Furthermore, when the core substance is in contact with the substrate fine particles or exists at a position close to the substrate fine particles, the protrusions can be aligned on the surface of the substrate fine particles. In addition, it is possible to obtain conductive fine particles in which the size of the core substance can be easily adjusted and the height of the protrusion is uniform on the surface of the base fine particles.
Therefore, at the time of connection between electrodes using the conductive fine particles of the present invention as an anisotropic conductive material, the variation in conductive performance of the conductive fine particles is reduced, and the effect of excellent conductive reliability can be obtained.

上記突起の平均高さとしては特に限定されないが、好ましい下限は基材微粒子の粒子直径の0.5%、好ましい上限は基材微粒子の粒子直径の25%である。0.5%未満であると、充分な樹脂排除性が得られないことがあり、25%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。より好ましい下限は基材微粒子の粒子直径の10%、より好ましい上限は基材微粒子の粒子直径の17%である。
なお、突起の平均高さは、無作為に選んだ50個の導電層上にある凸部の高さを測定し、それを算術平均して突起の平均高さとする。このとき、突起を付与した効果が得られるものとして、導電層上の10nm以上の凸部のものを突起として選ぶものとした。
The average height of the protrusions is not particularly limited, but a preferred lower limit is 0.5% of the particle diameter of the substrate fine particles, and a preferred upper limit is 25% of the particle diameter of the substrate fine particles. If it is less than 0.5%, sufficient resin exclusion property may not be obtained. If it exceeds 25%, the protrusion may be deeply embedded in the circuit board and the like, possibly damaging the circuit board. A more preferred lower limit is 10% of the particle diameter of the substrate fine particles, and a more preferred upper limit is 17% of the particle diameter of the substrate fine particles.
Note that the average height of the protrusions is obtained by measuring the heights of the protrusions on 50 conductive layers selected at random, and calculating the average height of the protrusions. At this time, a projection having a projection of 10 nm or more on the conductive layer was selected as the projection as an effect of providing the projection.

本発明の導電性微粒子において、突起と基材微粒子との密着性は、芯物質の粒子径とニッケルからなる導電層とに依存し、芯物質がより厚い導電層で被覆されているほうが突起は外れにくく良好となる。
芯物質の最長の外径をX、ニッケルからなる導電層の膜厚をYとしたとき、X/Y比は、0.5〜5であることが好ましい。このX/Y比の範囲に入るように芯物質の大きさと導電層の膜厚とを選択することが好ましい。
In the conductive fine particles of the present invention, the adhesion between the protrusions and the substrate fine particles depends on the particle diameter of the core substance and the conductive layer made of nickel, and the protrusions are more when the core substance is covered with a thicker conductive layer. It is hard to come off and becomes good.
When the longest outer diameter of the core substance is X and the film thickness of the conductive layer made of nickel is Y, the X / Y ratio is preferably 0.5 to 5. It is preferable to select the size of the core substance and the film thickness of the conductive layer so as to fall within the range of this X / Y ratio.

本発明における突起の存在密度は、本発明の導電性微粒子の性能に大きく影響するので重要である。
突起の存在密度は、1個の導電性微粒子当たりの突起数で表すと、3以上であることが好ましい。突起の存在密度が3以上であると、本発明の導電性微粒子を異方性導電材料として用いた接続時に、導電性微粒子がどのような方向に向いても、突起が電極と接触し、良好な接続状態となることができる。
突起の存在密度の制御は、例えば、基材微粒子の表面積に対して、添加する芯物質の量を変化させれば容易に行うことができる。
なお、上記突起の存在密度は、無作為に選んだ50個の粒子について、突起を付与した効果が得られるものとして、導電層上の10nm以上の凸部のものを突起として個数をカウントし、1個の導電性微粒子当たりの突起数に換算して、突起の存在密度とする。
The density of protrusions in the present invention is important because it greatly affects the performance of the conductive fine particles of the present invention.
The density of protrusions is preferably 3 or more in terms of the number of protrusions per conductive fine particle. When the density of protrusions is 3 or more, the protrusions are in contact with the electrodes in any direction when the conductive fine particles of the present invention are used as an anisotropic conductive material. Can be connected properly.
The density of the protrusions can be easily controlled by changing the amount of the core substance to be added with respect to the surface area of the substrate fine particles, for example.
In addition, the density of the protrusions described above was obtained by counting the number of protrusions of 10 nm or more on the conductive layer as protrusions, assuming that the effect of providing protrusions was obtained for 50 randomly selected particles. In terms of the number of protrusions per one conductive fine particle, the density of protrusions is defined.

本発明の導電性微粒子は、更に、導電層の表面に金層が形成されていることが好ましい。導電層の表面に金層を施すことにより、導電層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 The conductive fine particles of the present invention preferably further have a gold layer formed on the surface of the conductive layer. By applying a gold layer to the surface of the conductive layer, it is possible to prevent oxidation of the conductive layer, reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、導電層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層が導電層を侵食し、基材微粒子と導電層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. If it is less than 1 nm, it may be difficult to prevent oxidation of the conductive layer, and the connection resistance value may be high. If it exceeds 100 nm, the gold layer erodes the conductive layer, Adhesion with the conductive layer may be deteriorated.

本発明の導電性微粒子を製造する方法としては特に限定されないが、例えば、基材微粒子の表面に芯物質を付着させ、後述する無電解ニッケルメッキによりニッケルからなる導電層を形成する方法;基材微粒子の表面を、無電解ニッケルメッキによりニッケルからなる導電層を形成した後、芯物質を付着させ、更に無電解ニッケルメッキによりニッケルからなる導電層を形成する方法;上述の方法において無電解ニッケルメッキの代わりにスパッタリングによりニッケルからなる導電層を形成する方法等が挙げられる。 The method for producing the conductive fine particles of the present invention is not particularly limited. For example, a method of forming a conductive layer made of nickel by electroless nickel plating described later; A method in which a conductive layer made of nickel is formed on the surface of the fine particles by electroless nickel plating, and then a core substance is attached, and further a conductive layer made of nickel is formed by electroless nickel plating; Instead of the method, a method of forming a conductive layer made of nickel by sputtering or the like can be used.

上記芯物質を付着させる方法としては特に限定されず、例えば、基材微粒子の分散液中に、芯物質となる導電性物質を添加し、基材微粒子の表面上に芯物質を、例えば、ファンデルワールス力により集積させ付着させる方法;基材微粒子を入れた容器に、芯物質となる導電性物質を添加し、容器の回転等による機械的な作用により基材微粒子の表面上に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御し易いことから、分散液中の基材微粒子の表面上に芯物質を集積させ付着させる方法が好適に用いられる。 The method for adhering the core substance is not particularly limited. For example, a conductive substance serving as the core substance is added to the dispersion of the base particle, and the core substance is applied onto the surface of the base particle, for example, a fan. Method of collecting and adhering by Delwars force; adding a conductive material as a core material to a container containing the base material fine particles, and applying the core material on the surface of the base material fine particles by mechanical action such as rotation of the container The method of making it adhere, etc. are mentioned. Among them, since the amount of the core substance to be attached is easily controlled, a method of accumulating and attaching the core substance on the surface of the base particle in the dispersion is preferably used.

分散液中の基材微粒子の表面上に芯物質を集積させ付着させる方法としては、より具体的には、基材微粒子の平均粒子径に対して、0.5〜25%の粒子径の芯物質を用いることが好ましい。より好ましくは、1.5〜15%である。また、芯物質の分散媒への分散性を考慮すると、芯物質の比重はできるだけ小さいほうが好ましい。さらに、基材微粒子及び芯物質の表面電荷を著しく変化させないために、分散媒として脱イオン水を用いることが好ましい。 More specifically, as a method for accumulating and attaching the core substance on the surface of the base particle in the dispersion, the core having a particle diameter of 0.5 to 25% with respect to the average particle diameter of the base particle It is preferable to use a substance. More preferably, it is 1.5 to 15%. In consideration of the dispersibility of the core material in the dispersion medium, the specific gravity of the core material is preferably as small as possible. Furthermore, it is preferable to use deionized water as a dispersion medium in order not to significantly change the surface charges of the substrate fine particles and the core substance.

上記無電解ニッケルメッキ法とは、基材微粒子の表面に触媒付与を行い、ニッケル、及び、メッキ安定剤を含有するニッケルメッキ液中で、触媒付与された上記基材微粒子の表面に無電解メッキ法によりニッケル層を形成させる方法である。 The electroless nickel plating method applies a catalyst to the surface of the substrate fine particles, and electrolessly plating the surface of the substrate fine particles provided with a catalyst in a nickel plating solution containing nickel and a plating stabilizer. In this method, a nickel layer is formed by the method.

上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材微粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
As a method for performing the catalyst application, for example, acid neutralization and sensitizing in a tin dichloride (SnCl 2 ) solution are performed on the substrate fine particles etched with an alkali solution, and a palladium dichloride (PdCl 2 ) solution is then provided. The method of performing the electroless-plating pre-processing process which performs activating in is mentioned.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

本発明における導電性微粒子の各種特性、例えば、導電層の膜厚、金層の膜厚、基材微粒子の平均粒子径、導電性微粒子の平均粒子径、芯物質の形状、芯物質の最長の外径、突起の形状、突起部分の平均高さ、突起の存在密度等は、電子顕微鏡による導電性微粒子の粒子観察又は断面観察により得ることができる。 Various characteristics of the conductive fine particles in the present invention, for example, the thickness of the conductive layer, the thickness of the gold layer, the average particle size of the substrate fine particles, the average particle size of the conductive fine particles, the shape of the core substance, the longest of the core substance The outer diameter, the shape of the protrusion, the average height of the protrusion, the density of protrusions, and the like can be obtained by particle observation or cross-sectional observation of conductive fine particles using an electron microscope.

上記断面観察を行うための試料の作製法としては特に限定されず、例えば、導電性微粒子を熱硬化型の樹脂に埋め込み加熱硬化させ、所定の研磨紙や研磨剤を用いて観察可能な鏡面状態にまで試料を研磨する方法等が挙げられる。 The method for preparing the sample for performing the cross-sectional observation is not particularly limited. For example, a mirror state in which conductive fine particles are embedded in a thermosetting resin and cured by heating, and can be observed using a predetermined abrasive paper or abrasive. And a method of polishing the sample.

導電性微粒子の粒子観察は、走査電子顕微鏡(SEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、4000倍で観察することにより行うことが好適である。また、導電性微粒子の断面観察は、透過電子顕微鏡(TEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、10万倍で観察することにより行うことが好適である。 The conductive fine particles are observed with a scanning electron microscope (SEM). As a magnification, an easily observable magnification may be selected. For example, it is preferable to perform observation at 4000 times. Further, the cross-sectional observation of the conductive fine particles is performed with a transmission electron microscope (TEM), and as a magnification, an easily observable magnification may be selected. However, for example, it is preferable to perform the observation with a magnification of 100,000.

本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants and organic solvents Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明の導電性微粒子は、所定の突起を有する導電性微粒子とすることで、突起部の導電性を向上させることができるとともに、樹脂排除して確実に導電性微粒子と回路基板等とを接触させることができる。
本発明によれば、接続抵抗値が低く、粒子の導電性能のばらつきが小さく、導電信頼性に優れた導電性微粒子、及び、異方性導電材料を提供することができる。
By making the conductive fine particles of the present invention into conductive fine particles having predetermined protrusions, the conductivity of the protrusions can be improved, and the conductive fine particles are securely brought into contact with the circuit board by eliminating the resin. Can be made.
According to the present invention, it is possible to provide a conductive fine particle and an anisotropic conductive material having a low connection resistance value, a small variation in conductive performance of particles, and excellent conductive reliability.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(無電解メッキ前処理工程)
平均粒子径3μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂からなる基材微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
Example 1
(Electroless plating pretreatment process)
10 g of substrate fine particles made of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene having an average particle diameter of 3 μm were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.

(芯物質複合化工程)
得られた基材微粒子を脱イオン水300mLで攪拌により3分間分散させた後、その水溶液に金属銅粒子スラリー(平均粒子径300nm)1gを3分間かけて添加し、芯物質を付着させた基材微粒子を得た。
(Core material compounding process)
The obtained base material fine particles were dispersed with 300 mL of deionized water by stirring for 3 minutes, and then 1 g of metal copper particle slurry (average particle size 300 nm) was added to the aqueous solution over 3 minutes to attach the core substance. Material fine particles were obtained.

(無電解ニッケルメッキ工程)
得られた基材微粒子を更に水1200mLで希釈し、メッキ安定剤4mLを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを81mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
(Electroless nickel plating process)
The obtained substrate fine particles were further diluted with 1200 mL of water, and after adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, plating stabilizer were added to this aqueous solution. 120 mL of 6 mL of the mixed solution was added through a metering pump at an addition rate of 81 mL / min. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed.

次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。 Subsequently, 650 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 35 mL plating stabilizer was added through a metering pump at an addition rate of 27 mL / min. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed.

次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥してニッケルメッキされた導電性微粒子を得た。 Next, the plating solution was filtered, and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated conductive fine particles.

(金メッキ工程)
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Gold plating process)
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(実施例2)
芯物質複合化工程において、金属銀粒子スラリー(平均粒子径50nm)を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Example 2)
In the core material compounding step, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that a metal silver particle slurry (average particle size 50 nm) was used.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(実施例3)
芯物質複合化工程において、金属パラジウム粒子スラリー(平均粒子径50nm)を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Example 3)
In the core material compounding step, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that a metal palladium particle slurry (average particle diameter 50 nm) was used.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(実施例4)
芯物質複合化工程において、酸化亜鉛粒子スラリー(平均粒子径30nm)を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
Example 4
In the core material compounding step, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that the zinc oxide particle slurry (average particle size 30 nm) was used.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(実施例5)
芯物質複合化工程において、金属コバルト粒子スラリー(平均粒子径100nm)を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Example 5)
In the core material compounding step, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that a metal cobalt particle slurry (average particle diameter: 100 nm) was used.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(実施例6)
芯物質複合化工程において、酸化チタン粒子スラリー(平均粒子径35nm)を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Example 6)
In the core material compounding step, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that titanium oxide particle slurry (average particle size 35 nm) was used.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(実施例7)
芯物質複合化工程において、金属金粒子スラリー(平均粒子径30nm)を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Example 7)
In the core material compounding step, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that metal gold particle slurry (average particle size 30 nm) was used.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(比較例1)
基材微粒子に無電解メッキ前処理工程の後、芯物質複合化工程を行わなかったこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Comparative Example 1)
Nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that the core material composite step was not performed after the electroless plating pretreatment step on the base fine particles.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

(比較例2)
基材微粒子に無電解メッキ前処理工程の後、芯物質複合化工程を行わなかったこと、及び、無電解ニッケルメッキ工程において、最初に添加するメッキ安定剤4mLの代わりにメッキ安定剤1mLとし、その後はメッキ安定剤を添加しなかったこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。無電解ニッケルメッキ工程では、メッキ液の自己分解が起こっていた。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
(Comparative Example 2)
After the electroless plating pretreatment process on the substrate fine particles, the core material compounding process was not performed, and in the electroless nickel plating process, instead of the plating stabilizer 4 mL added first, the plating stabilizer was 1 mL, Thereafter, nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that no plating stabilizer was added. In the electroless nickel plating process, the plating solution self-decomposed.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.

<評価>
実施例1〜7及び比較例1〜2で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive fine particles obtained in Examples 1-7 and Comparative Examples 1-2. The results are shown in Table 1.

(1)膜厚の測定
得られた導電性微粒子について、日本電子データム社製透過型電子顕微鏡(TEM)により、倍率10万倍で断面観察を行い、ニッケル膜厚及び金膜厚を測定した。
(1) Measurement of film thickness The obtained conductive fine particles were subjected to cross-sectional observation at a magnification of 100,000 times by a transmission electron microscope (TEM) manufactured by JEOL Datum, and the nickel film thickness and the gold film thickness were measured.

(2)突起の存在密度
得られた導電性微粒子について、日立ハイテクノロジーズ社製走査電子顕微鏡(SEM)により、倍率10000倍で粒子観察を行い、突起の存在密度を調べた。
上記突起の存在密度は、無作為に選んだ50個の粒子について、突起を付与した効果が得られるものとして、10nm以上のものを突起として個数をカウントし、1個の導電性微粒子当たりの突起数に換算して、突起の存在密度とした。
(2) Presence density of protrusions The obtained conductive fine particles were observed with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation at a magnification of 10,000 times to examine the density of protrusions.
The density of the projections is 50 particles randomly selected, and the number of projections per conductive fine particle is counted by counting the number of projections of 10 nm or more assuming that the effect of imparting projections is obtained. Converted to a number, it was defined as the density of protrusions.

(3)電極間の抵抗値、及び、リーク電流の有無
まず、得られた導電性微粒子を用いて、以下の方法により異方性導電フィルムを作製した。
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、得られたそれぞれの導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
(3) Resistance between electrodes and presence / absence of leakage current First, an anisotropic conductive film was prepared by the following method using the obtained conductive fine particles.
100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin are sufficiently mixed using a planetary stirrer. Then, it was applied on the release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Subsequently, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin were obtained. After adding fine particles and mixing well using a planetary stirrer, it is coated on a release film so that the thickness after drying is 7 μm, and toluene is evaporated to form an adhesive film containing conductive fine particles Got. In addition, the compounding quantity of electroconductive fine particles was made for the content in a film to be 50,000 piece / cm < 2 >.
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.

得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、同じアルミニウム電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、10N、100℃の圧着条件で熱圧着した後、電極間の抵抗値、及び、電極間のリーク電流の有無を評価した。
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. This is attached to the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a resistance measurement lead wire on one side, and then a glass substrate having the same aluminum electrode. After the alignment, the electrodes were pasted together.
The bonded portion of the glass substrate was subjected to thermocompression bonding under a pressure bonding condition of 10 N and 100 ° C., and then the resistance value between the electrodes and the presence or absence of leakage current between the electrodes were evaluated.

Figure 2007035573
Figure 2007035573

本発明によれば、接続抵抗値が低く、粒子の導電性能のばらつきが小さく、導電信頼性に優れた導電性微粒子、及び異方性導電材料を提供することができる。
According to the present invention, it is possible to provide a conductive fine particle and an anisotropic conductive material having a low connection resistance value, a small variation in conductive performance of particles, and excellent conductive reliability.

Claims (6)

基材微粒子と、前記基材微粒子の表面に形成されたニッケルからなる導電層とからなる導電性微粒子であって、前記導電層は、表面に、金、銀、銅、パラジウム、亜鉛、コバルト、及び、チタンからなる群より選択される少なくとも1種の金属又は金属酸化物を芯物質とする突起を有することを特徴とする導電性微粒子。 Conductive fine particles comprising substrate fine particles and a conductive layer made of nickel formed on the surface of the substrate fine particles, wherein the conductive layer has gold, silver, copper, palladium, zinc, cobalt, And the electroconductive fine particle characterized by having the processus | protrusion which makes the core substance the at least 1 sort (s) of metal or metal oxide selected from the group which consists of titanium. 芯物質の80%以上が、基材微粒子に接触しているか又は前記基材微粒子との距離が5nm以内であることを特徴とする請求項1記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein 80% or more of the core substance is in contact with the base fine particles, or the distance from the base fine particles is within 5 nm. 基材微粒子は、樹脂微粒子であることを特徴とする請求項1又は2記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein the substrate fine particles are resin fine particles. 突起の平均高さが、基材微粒子の平均粒子径の0.5〜25%であることを特徴とする請求項1、2又は3記載の導電性微粒子。 The conductive fine particles according to claim 1, 2, or 3, wherein the average height of the protrusions is 0.5 to 25% of the average particle diameter of the substrate fine particles. 更に、導電層の表面に金層が形成されていることを特徴とする請求項1、2、3又は4記載の導電性微粒子。 5. The conductive fine particle according to claim 1, wherein a gold layer is formed on the surface of the conductive layer. 請求項1、2、3、4又は5記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 6. An anisotropic conductive material, wherein the conductive fine particles according to claim 1, 2, 3, 4 or 5 are dispersed in a resin binder.
JP2005221025A 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material Active JP4718926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221025A JP4718926B2 (en) 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221025A JP4718926B2 (en) 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material

Publications (3)

Publication Number Publication Date
JP2007035573A true JP2007035573A (en) 2007-02-08
JP2007035573A5 JP2007035573A5 (en) 2008-05-15
JP4718926B2 JP4718926B2 (en) 2011-07-06

Family

ID=37794555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221025A Active JP4718926B2 (en) 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP4718926B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
JP2011243456A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive materials, and connection structure
JP2011243455A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
US8395052B2 (en) 2008-07-24 2013-03-12 Dexerials Corporation Conductive particle, anisotropic conductive film, joined structure, and joining method
KR20140135631A (en) * 2013-05-16 2014-11-26 히타치가세이가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP2015057768A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015057769A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015187984A (en) * 2014-03-10 2015-10-29 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structure
KR20160006614A (en) * 2014-07-09 2016-01-19 히타치가세이가부시끼가이샤 Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connecting structure, and method for producing conductive particle
JP2016039153A (en) * 2014-08-07 2016-03-22 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2016039152A (en) * 2014-08-07 2016-03-22 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877230B2 (en) * 2005-11-18 2012-02-15 日立化成工業株式会社 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
US8395052B2 (en) 2008-07-24 2013-03-12 Dexerials Corporation Conductive particle, anisotropic conductive film, joined structure, and joining method
CN102089832B (en) * 2008-07-24 2014-03-26 迪睿合电子材料有限公司 Conductive particle, anisotropic conductive film, joined body, and connecting method
JP2011243456A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive materials, and connection structure
JP2011243455A (en) * 2010-05-19 2011-12-01 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
KR102187948B1 (en) * 2013-05-16 2020-12-07 쇼와덴코머티리얼즈가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
KR20140135631A (en) * 2013-05-16 2014-11-26 히타치가세이가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP2014241276A (en) * 2013-05-16 2014-12-25 日立化成株式会社 Conductive particles, insulation coated conductive particles, anisotropic conductive adhesive and method of producing conductive particles
JP2015057768A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015057769A (en) * 2013-08-12 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015187984A (en) * 2014-03-10 2015-10-29 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structure
KR20160006614A (en) * 2014-07-09 2016-01-19 히타치가세이가부시끼가이샤 Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connecting structure, and method for producing conductive particle
JP2016018705A (en) * 2014-07-09 2016-02-01 日立化成株式会社 Conductive particle, insulation coated conductive particle, anisotropic conductive adhesive, connection structure and method of producing conductive particle
KR102411476B1 (en) * 2014-07-09 2022-07-05 쇼와덴코머티리얼즈가부시끼가이샤 Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connecting structure, and method for producing conductive particle
JP2016039153A (en) * 2014-08-07 2016-03-22 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2016039152A (en) * 2014-08-07 2016-03-22 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2019140116A (en) * 2014-08-07 2019-08-22 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Also Published As

Publication number Publication date
JP4718926B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4563110B2 (en) Method for producing conductive fine particles
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP2009032397A (en) Conductive fine particle
JP2013229240A (en) Conductive particle and method for producing the same
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP2006086104A (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R151 Written notification of patent or utility model registration

Ref document number: 4718926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3