JP5091416B2 - Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material - Google Patents

Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material Download PDF

Info

Publication number
JP5091416B2
JP5091416B2 JP2006075228A JP2006075228A JP5091416B2 JP 5091416 B2 JP5091416 B2 JP 5091416B2 JP 2006075228 A JP2006075228 A JP 2006075228A JP 2006075228 A JP2006075228 A JP 2006075228A JP 5091416 B2 JP5091416 B2 JP 5091416B2
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
conductive
protrusions
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006075228A
Other languages
Japanese (ja)
Other versions
JP2007250464A (en
Inventor
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006075228A priority Critical patent/JP5091416B2/en
Publication of JP2007250464A publication Critical patent/JP2007250464A/en
Application granted granted Critical
Publication of JP5091416B2 publication Critical patent/JP5091416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

本発明は、樹脂排除性に優れ、抵抗値の低減化が可能な導電性微粒子、導電性微粒子の製造方法、及び、異方性導電材料に関する。 The present invention relates to conductive fine particles that are excellent in resin rejection and capable of reducing resistance, a method for producing conductive fine particles, and an anisotropic conductive material.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、回路基板同士を電気的に接続したり、半導体素子等の小型部品を回路基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are used to electrically connect circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the circuit board. For this reason, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性微粒子としては、従来、粒子径が均一で、適度な強度を有する樹脂粒子等の非導電性微粒子の表面に、導電層として金属メッキ層を形成させた導電性微粒子が用いられている。しかしながら、このような異方性導電材料を用いて回路基板同士を電気的に接続すると、導電性微粒子表面の導電層と回路基板等との間にバインダー樹脂等がはさまり、導電性微粒子と回路基板等との間の接続抵抗が高くなることがあった。特に近年の電子機器の急激な進歩や発展に伴って、導電性微粒子と回路基板等との間の接続抵抗の更なる低減が求められてきている。 As the conductive fine particles used for such anisotropic conductive materials, conventionally, a metal plating layer is formed as a conductive layer on the surface of non-conductive fine particles such as resin particles having a uniform particle size and appropriate strength. Conductive fine particles are used. However, when the circuit boards are electrically connected using such an anisotropic conductive material, a binder resin or the like is sandwiched between the conductive layer on the surface of the conductive fine particles and the circuit board. In some cases, the connection resistance between them and the like increases. In particular, with the rapid progress and development of electronic devices in recent years, there has been a demand for further reduction in connection resistance between conductive fine particles and circuit boards.

接続抵抗を低減する目的で、表面に突起を有する導電性微粒子が開示されている(例えば、特許文献1参照)。この導電性微粒子は、導電性微粒子表面の導電層と回路基板等との間に存在するバインダー樹脂等を突起が突き破ることで(樹脂排除性)、突起と回路基板等とを確実に接続させることで、導電性微粒子と回路基板等との間の接続抵抗の低減を図っている。 For the purpose of reducing connection resistance, conductive fine particles having protrusions on the surface are disclosed (for example, see Patent Document 1). This conductive fine particle ensures that the protrusion and the circuit board are connected by the protrusion breaking through the binder resin or the like existing between the conductive layer on the surface of the conductive fine particle and the circuit board. Thus, the connection resistance between the conductive fine particles and the circuit board or the like is reduced.

しかしながら、このような表面に突起を有する導電性微粒子を用いても、突起を形成する際の凝集により突起の大きさにばらつきが生じ、突起の大きさによっては突起と突起との間に樹脂噛みが生じたり、バインダー樹脂等を突起が突き破ることができないことがあったりするため、導電性微粒子と回路基板等との間の接続抵抗の低減化が充分に図られているとは言えなかった。
特開2000−243132号公報
However, even when conductive fine particles having protrusions on such a surface are used, the size of the protrusions varies due to agglomeration when forming the protrusions, and depending on the size of the protrusions, there is a resin bite between the protrusions. In other words, the protrusion may not be able to break through the binder resin or the like, and thus it cannot be said that the connection resistance between the conductive fine particles and the circuit board is sufficiently reduced.
JP 2000-243132 A

本発明は、上記現状に鑑み、樹脂排除性に優れ、抵抗値の低減化が可能な導電性微粒子、導電性微粒子の製造方法、及び、異方性導電材料を提供することを目的とする。 An object of the present invention is to provide conductive fine particles, a method for producing conductive fine particles, and an anisotropic conductive material that are excellent in resin rejection and capable of reducing resistance, in view of the above situation.

本発明は、触媒処理を施していない基材微粒子が分散した、分散剤を含有する基材微粒子分散液と、平均粒径5〜80nmの金属ナノ粒子を含有する高分散性の金属ナノペーストとを混合して、前記基材微粒子の表面に前記金属ナノ粒子をヘテロ凝集により付着させる工程1と、触媒処理を行った後、無電解メッキ法にて前記金属ナノ粒子が付着した基材微粒子の表面に厚さ10〜500nmの金属メッキ層を形成させる工程2とからなる導電性微粒子の製造方法である。
以下に本発明を詳述する。
The present invention relates to a base material fine particle dispersion containing a dispersing agent in which base material fine particles not subjected to catalyst treatment are dispersed, and a highly dispersible metal nano paste containing metal nanoparticles having an average particle diameter of 5 to 80 nm, And mixing the metal nanoparticles onto the surface of the substrate fine particles by heteroaggregation, and after performing the catalyst treatment, the substrate fine particles to which the metal nanoparticles are adhered by an electroless plating method This is a method for producing conductive fine particles comprising the step 2 of forming a metal plating layer having a thickness of 10 to 500 nm on the surface.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、回路基板等の電気的接続に用いる導電性微粒子として、突起の平均高さが低く、かつ、突起の高さにばらつきが少ない導電性微粒子を用いると、回路基板等と導電性微粒子との接触面積が増えるとともに、突起にかかる圧力が大きいため樹脂を突き破りやすいため、接続抵抗の低減化と安定した接続を保つことが可能であり、また、この導電性微粒子をバインダー樹脂等に分散させて異方性導電材料を作製する際には、導電性微粒子の分散性に優れるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have used conductive fine particles having a low average height of protrusions and a small variation in the height of protrusions as conductive fine particles used for electrical connection of circuit boards and the like. The contact area between the circuit board and the conductive fine particles increases, and the pressure applied to the protrusions is large, so it is easy to break through the resin. Therefore, it is possible to reduce the connection resistance and maintain a stable connection. When producing an anisotropic conductive material by dispersing fine particles in a binder resin or the like, the inventors have found that the dispersibility of the conductive fine particles is excellent, and have completed the present invention.

本発明の導電性微粒子は、基材微粒子と、上記基材微粒子の表面に形成された、平均粒径5〜80nmの金属ナノ粒子を芯材とする突起を有する金属メッキ層とからなる。 The conductive fine particles of the present invention are composed of substrate fine particles and a metal plating layer having protrusions with metal nanoparticles having an average particle diameter of 5 to 80 nm formed on the surface of the substrate fine particles.

上記基材微粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば、無機材料であっても有機材料であってもよいが、適度な弾性率、弾性変形性及び復元性を制御しやすいため、樹脂からなる樹脂微粒子であることが好ましい。 The substrate fine particles are not particularly limited, and may be an inorganic material or an organic material as long as it has an appropriate elastic modulus, elastic deformability, and restoration property. Since it is easy to control the deformability and the recoverability, resin fine particles made of resin are preferable.

上記樹脂微粒子としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ジビニルベンゼン重合樹脂;ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体、ジビニルベンゼン−メタクリル酸エステル共重合体等のジビニルベンゼン系共重合樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等からなるものが挙げられる。これらの樹脂微粒子は、単独で用いられてもよく、2種以上が併用されてもよい。 The resin fine particles are not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate Divinylbenzene polymer resin; divinylbenzene-styrene copolymer, divinylbenzene-acrylic acid ester copolymer, divinylbenzene-methacrylic acid ester copolymer and other divinylbenzene copolymer resins; polyalkylene terephthalate, polysulfone, polycarbonate, Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, etc. Thing, and the like. These resin fine particles may be used independently and 2 or more types may be used together.

上記基材微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。より好ましい上限は10μmである。 Although it does not specifically limit as an average particle diameter of the said base material fine particle, A preferable minimum is 1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 20 μm, it exceeds the range used between the substrate electrodes as an anisotropic conductive material. May end up. A more preferable upper limit is 10 μm.

上記金属ナノ粒子の金属の種類としては特に限定されず、例えば、銀、スズ、銀スズ合金等の低融点金属や、ニッケル、パラジウム、銅、金等が挙げられる。 The metal type of the metal nanoparticles is not particularly limited, and examples thereof include low melting point metals such as silver, tin, and silver tin alloy, nickel, palladium, copper, and gold.

上記金属ナノ粒子の平均粒径の下限は5nm、上限は80nmである。5nm未満であると、得られる突起が小さくなりすぎ、充分な樹脂排除性が得られず、80nmを超えると、得られる突起が大きくなりすぎ、回路基板間の接続に用いたときに回路基板と突起との接触面積が小さくなり、接続抵抗の低下に寄与できない。好ましい下限は10nm、好ましい上限は60nmである。 The lower limit of the average particle diameter of the metal nanoparticles is 5 nm, and the upper limit is 80 nm. If the thickness is less than 5 nm, the obtained protrusions are too small and sufficient resin-exclusion property cannot be obtained. If the thickness exceeds 80 nm, the obtained protrusions are too large, and when used for connection between circuit boards, The contact area with the protrusion is reduced, and cannot contribute to a decrease in connection resistance. A preferred lower limit is 10 nm and a preferred upper limit is 60 nm.

上記金属メッキ層の金属の種類としては特に限定されず、例えば、金、銀、銅、ニッケル、スズ等が挙げられる。 It does not specifically limit as a metal kind of the said metal plating layer, For example, gold | metal | money, silver, copper, nickel, tin etc. are mentioned.

上記金属メッキ層の厚さとしては特に限定されないが、好ましい下限は10nm、好ましい上限は500nmである。10nm未満であると、所望の導電性が得られないことがあり、500nmを超えると、基材微粒子と金属メッキ層との熱膨張率の差から、上記金属メッキ層が剥離しやすくなることがある。 Although it does not specifically limit as thickness of the said metal plating layer, A preferable minimum is 10 nm and a preferable upper limit is 500 nm. If the thickness is less than 10 nm, desired conductivity may not be obtained. If the thickness exceeds 500 nm, the metal plating layer may be easily peeled off due to the difference in thermal expansion coefficient between the substrate fine particles and the metal plating layer. is there.

上記金属ナノ粒子を芯材とする突起の平均高さの下限は20nm、上限は150nmである。20nm未満であると、充分な樹脂排除性の効果が得られず、150nmを超えると、回路基板間の接続に用いた際に、突起によって回路基板とメッキ被膜との接触が阻害され、また突起と突起間に樹脂が残存し、その結果、接触面積が小さくなり、接続抵抗の低下に寄与できない。好ましい下限は40nm、好ましい上限は130nmである。 The lower limit of the average height of the protrusions having the metal nanoparticles as a core is 20 nm, and the upper limit is 150 nm. If the thickness is less than 20 nm, sufficient resin exclusion effect cannot be obtained. If the thickness exceeds 150 nm, the contact between the circuit board and the plating film is inhibited by the protrusion when used for connection between the circuit boards. Resin remains between the protrusions, and as a result, the contact area becomes small and cannot contribute to the decrease in connection resistance. A preferred lower limit is 40 nm and a preferred upper limit is 130 nm.

突起の高さの測定方法としては、例えば、走査電子顕微鏡(SEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、具体的には例えば、4000倍で観察することにより行う。
また、本明細書においては、突起を付与した効果が得られるものとして、10nm以上の大きさのものを突起として選ぶものとし、突起の平均高さは、無作為に選んだ50個の粒子について測定し、それを算術平均したものである。
As a method for measuring the height of the protrusion, for example, a scanning electron microscope (SEM) is used. As the magnification, an easily observable magnification may be selected. Specifically, for example, the observation is performed at 4000 times.
In the present specification, it is assumed that the effect of providing protrusions is obtained, and those having a size of 10 nm or more are selected as protrusions, and the average height of protrusions is about 50 randomly selected particles. Measured and arithmetically averaged.

本発明の導電性微粒子は、上記突起の平均外径の好ましい下限が50nm、好ましい上限が180nmである。50nm未満であると、電極と突起との接触面積が小さく、接続抵抗の低下に寄与できないことがあり、180nmを超えると、突起1個当たりの面積が大きすぎ、突起1個当たりにかかる圧力が小さくなり、充分な樹脂排除性の効果が得られないことがある。より好ましい下限は60nm、より好ましい上限は150nmである。 In the conductive fine particles of the present invention, the preferable lower limit of the average outer diameter of the protrusions is 50 nm, and the preferable upper limit is 180 nm. If the thickness is less than 50 nm, the contact area between the electrode and the projection is small and may not contribute to the reduction in connection resistance. If the thickness exceeds 180 nm, the area per projection is too large, and the pressure applied to each projection is too high. It may become small and the sufficient resin exclusion effect may not be acquired. A more preferred lower limit is 60 nm, and a more preferred upper limit is 150 nm.

突起の外径の測定方法としては、例えば、走査電子顕微鏡(SEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、具体的には例えば、4000倍で観察することにより行う。
本明細書においては、突起の外径は、確認された多数の突起のなかで、ほぼ全体が観察された突起について、最表面を形成する基準表面から突起として現れている最長の外径を測定することにより行う。このとき、突起を付与した効果が得られるものとして、10nm以上の大きさのものを突起として選ぶものとする。また、突起の平均外径は、無作為に選んだ50個の粒子について測定し、それを算術平均したものである。
As a method for measuring the outer diameter of the protrusion, for example, a scanning electron microscope (SEM) is used. As the magnification, an easily observable magnification may be selected. Specifically, for example, the observation is performed at 4000 times.
In this specification, the outer diameter of the protrusion is the longest outer diameter that appears as a protrusion from the reference surface that forms the outermost surface of the protrusions that are almost entirely observed among the many protrusions that have been confirmed. To do. At this time, it is assumed that a projection having a size of 10 nm or more is selected as a projection that provides the effect of imparting the projection. Further, the average outer diameter of the protrusions is obtained by measuring 50 randomly selected particles and arithmetically averaging them.

本発明の導電性微粒子においては、全突起に対して200nm以上の高さの突起の割合が5%以下である。5%を超えると、本発明の導電性微粒子を用いて回路基板等の接続を行った際に、安定した接続を保つことができなくなる。
また、全突起に対して200nm以上の高さの突起の割合が5%以下ということは、上記基材微粒子の表面で上記金属ナノ粒子同士が重なり合っていたり、上記金属ナノ粒子が上記基材微粒子と接触せずに浮き上がっていたりするということがほとんどないということである。
In the conductive fine particles of the present invention, the ratio of protrusions having a height of 200 nm or more with respect to all protrusions is 5% or less. If it exceeds 5%, a stable connection cannot be maintained when a circuit board or the like is connected using the conductive fine particles of the present invention.
Further, the ratio of the protrusions having a height of 200 nm or more to the total protrusions is 5% or less, which means that the metal nanoparticles overlap each other on the surface of the base particle or the metal nanoparticles are the base particle. It is almost never lifted up without contact.

また、本発明の導電性微粒子は、上記突起の高さのCV値(突起の高さの分布の標準偏差を突起の高さの平均で除して百分率とした値)が20%以下であることが好ましい。CV値が20%以下であることにより、本発明の導電性微粒子を用いて回路基板等の接続を行った際に、回路基板等と導電性微粒子との接触面積のバラツキが少なくなり、安定した接続を保つことができる。 The conductive fine particles of the present invention have a CV value of the height of the protrusion (value obtained by dividing the standard deviation of the height distribution of the protrusion by the average of the protrusion height as a percentage) of 20% or less. It is preferable. Since the CV value is 20% or less, when the circuit board or the like is connected using the conductive fine particles of the present invention, the variation in the contact area between the circuit board and the conductive fine particles is reduced and stable. You can stay connected.

本発明の導電性微粒子を製造する方法としては特に限定されず、例えば、分散剤を含有する基材微粒子分散液と、平均粒径5〜80nmの金属ナノ粒子を含有する高分散性の金属ナノペーストとを混合して、上記基材微粒子の表面に上記金属ナノ粒子をヘテロ凝集により付着させる工程1と、上記金属ナノ粒子が付着した基材微粒子の表面に金属メッキ層を形成させる工程2とからなる導電性微粒子の製造方法等が挙げられる。
このような導電性微粒子の製造方法もまた、本発明の1つである。
以下に、この導電性微粒子の製造方法について詳述する。
The method for producing the conductive fine particles of the present invention is not particularly limited. For example, the base fine particle dispersion containing a dispersant and the highly dispersible metal nano particles containing metal nanoparticles having an average particle size of 5 to 80 nm. A step 1 of mixing the paste and attaching the metal nanoparticles to the surface of the substrate fine particles by hetero-aggregation; and a step 2 of forming a metal plating layer on the surface of the substrate fine particles to which the metal nanoparticles are attached. And the like, and the like.
Such a method for producing conductive fine particles is also one aspect of the present invention.
Below, the manufacturing method of this electroconductive fine particle is explained in full detail.

本発明の導電性微粒子の製造方法は、分散剤を含有する基材微粒子分散液と、平均粒径5〜80nmの金属ナノ粒子を含有する高分散性の金属ナノペーストとを混合して、上記基材微粒子の表面に上記金属ナノ粒子をヘテロ凝集により付着させる工程1を有する。
このようなヘテロ凝集は、表面電位差を適宜設定することにより生じさせることができる。
このようにヘテロ凝集による場合には、上記基材微粒子の表面には、上記金属ナノ粒子が均一に、かつ、重なり合ったりすることなく付着する。
The method for producing conductive fine particles of the present invention comprises mixing a base material fine particle dispersion containing a dispersant and a highly dispersible metal nanopaste containing metal nanoparticles having an average particle size of 5 to 80 nm, It has the process 1 which makes the said metal nanoparticle adhere to the surface of base-material microparticles | fine-particles by heteroaggregation.
Such heteroaggregation can be caused by appropriately setting the surface potential difference.
Thus, in the case of heteroaggregation, the metal nanoparticles adhere to the surface of the substrate fine particles uniformly and without overlapping.

更に、本発明の導電性微粒子の製造方法においては、基材微粒子表面の分散剤と、金属ナノ粒子表面の分散剤との相互作用により、基材微粒子と金属ナノ粒子とが強固に接着することから、表面に金属メッキを施す際に、上記基材微粒子表面から芯材が剥離したり、浮き上がったりすることがないため、均一な高さの突起を得ることができる。 Furthermore, in the method for producing conductive fine particles according to the present invention, the base fine particles and the metal nanoparticles are firmly bonded by the interaction between the dispersant on the surface of the base fine particles and the dispersant on the surface of the metal nanoparticles. Therefore, when the metal plating is performed on the surface, the core material is not peeled off or lifted up from the surface of the substrate fine particles, and thus a protrusion having a uniform height can be obtained.

上記基材微粒子分散液は、上記基材微粒子を作製する工程で分散剤が用いられている場合には、作製された基材微粒子を単離せずに、作製された基材微粒子分散液をそのまま用いてもよいし、上記基材微粒子を作製する工程で分散剤が用いられていない場合や基材微粒子を単離した場合には、基材微粒子を適当な溶液に分散させ、分散剤を添加したものであってもよい。 When the dispersing agent is used in the step of preparing the base material fine particles, the base material fine particle dispersion is not isolated from the prepared base material fine particles, and the prepared base material fine particle dispersion is used as it is. If the dispersant is not used in the process of preparing the above-mentioned base particles, or if the base particles are isolated, the base particles are dispersed in an appropriate solution, and the dispersant is added. It may be what you did.

上記分散剤としては特に限定されず、例えば、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ステアリン酸等の脂肪酸、ヘキサメタリン酸ソーダ等が挙げられる。 The dispersant is not particularly limited, and examples thereof include polyvinyl alcohol, polyvinyl acetal, polyvinyl pyrrolidone, fatty acids such as stearic acid, sodium hexametaphosphate, and the like.

本明細書において、上記金属ナノペーストとは、分散剤を含有する溶液中に金属ナノ粒子が分散したものを意味する。
上記分散剤としては特に限定されず、上述した分散剤と同様のものを用いればよい。
In the present specification, the metal nano paste means a material in which metal nanoparticles are dispersed in a solution containing a dispersant.
The dispersant is not particularly limited, and the same dispersant as that described above may be used.

本発明の導電性微粒子の製造方法は、上記金属ナノ粒子が付着した基材微粒子の表面に金属メッキ層を形成させる工程2を有する。 The manufacturing method of the electroconductive fine particles of this invention has the process 2 which forms a metal plating layer on the surface of the base-material fine particles to which the said metal nanoparticle adhered.

本発明の導電性微粒子の製造方法においては、基材微粒子の表面を金属ナノ粒子がコアシェルのように取り巻くため、無電解メッキの場合においては、従来のようなパラジウム等の触媒を必要とすることなく、金属ナノ粒子を基点として金属メッキを施すことが可能である。 In the method for producing conductive fine particles of the present invention, since the metal nanoparticles surround the surface of the substrate fine particles like a core-shell, a conventional catalyst such as palladium is required in the case of electroless plating. In addition, metal plating can be performed using metal nanoparticles as a base point.

金属メッキ層を形成させる方法としては特に限定されず、例えば、無電解メッキ、電気メッキ、スパッタリング等の方法が挙げられる。 The method for forming the metal plating layer is not particularly limited, and examples thereof include electroless plating, electroplating, and sputtering.

本発明の導電性微粒子の製造方法においては、上記金属ナノ粒子の融点が、金属メッキの融点よりも低い場合には、更に、導電性微粒子を金属ナノ粒子の融点以上、かつ、金属メッキの融点以下の温度で加熱する工程3を行うことが好ましい。これにより、金属ナノ粒子が融解し、融解した金属ナノ粒子が基材微粒子表面に密着することから、基材微粒子と突起との密着性を向上させることができ、突起の脱落を防ぐことができる。 In the method for producing conductive fine particles of the present invention, when the melting point of the metal nanoparticles is lower than the melting point of the metal plating, the conductive fine particles are more than the melting point of the metal nanoparticles and the melting point of the metal plating. It is preferable to perform the process 3 heated at the following temperatures. As a result, the metal nanoparticles are melted, and the melted metal nanoparticles are in close contact with the surface of the base particle, so that the adhesion between the base particle and the protrusion can be improved, and the protrusion can be prevented from falling off. .

本発明の導電性微粒子は、上記構成からなることにより、突起の高さが低く、かつ、高さのばらつきが小さいため、本発明の導電性微粒子を基板間の接続に用いた場合には、導電性微粒子と基板との接続において、導電性微粒子のメッキ被膜が基板に接触するのを阻害されず接触面積が増えるとともに、接触面積のバラツキも少ないため、安定した接続を保つことができる。更に、突起の外径が小さいため、突起1個当たりにかかる圧力が大きく樹脂を突き破りやすいため、安定した接続を保つことができる。 Since the conductive fine particle of the present invention has the above-described configuration, the height of the protrusion is low and the variation in height is small. Therefore, when the conductive fine particle of the present invention is used for connection between substrates, In the connection between the conductive fine particles and the substrate, the contact area of the plating film of the conductive fine particles is not hindered from increasing and the contact area is increased, and the variation in the contact area is small, so that stable connection can be maintained. Furthermore, since the outer diameter of the protrusion is small, the pressure applied to each protrusion is large and the resin is easily pierced, so that a stable connection can be maintained.

また、本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。
本発明の導電性微粒子は、突起が小さいことから、バインダー樹脂に対する分散性に優れる。
Further, an anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.
Since the conductive fine particles of the present invention have small protrusions, they are excellent in dispersibility with respect to the binder resin.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト(ACP)、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム(ACF)、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste (ACP), anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film (ACF), An anisotropic conductive sheet etc. are mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる様に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, apply to the release treatment surface of the release material such as release paper and release film so that it has a predetermined film thickness, perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明の導電性微粒子は、突起の平均高さが低く、かつ、突起の高さにばらつきが少ない導電性微粒子を用いると、導電性微粒子と基板との接続において、導電性微粒子のメッキ被膜が基板に接触するのを阻害されず接触面積が増えるとともに、接触面積のバラツキも少ないため、安定した接続を保つことができる。更に、突起の外径が小さいため、突起1個当たりにかかる圧力が大きく樹脂を突き破りやすいため、安定した接続を保つことができる。
また、この導電性微粒子をバインダー樹脂等に分散させて異方性導電材料を作製する際には、導電性微粒子の分散性に優れる。
本発明によれば、樹脂排除性に優れ、抵抗値の低減化が可能な導電性微粒子、導電性微粒子の製造方法、及び、異方性導電材料を提供することができる。
When the conductive fine particles of the present invention use conductive fine particles having a low average height of protrusions and little variation in the height of the protrusions, the conductive fine particle coating film is formed in the connection between the conductive fine particles and the substrate. Since the contact area increases without being obstructed from contacting the substrate and the contact area is less varied, a stable connection can be maintained. Furthermore, since the outer diameter of the protrusion is small, the pressure applied to each protrusion is large and the resin is easily pierced, so that a stable connection can be maintained.
Further, when an anisotropic conductive material is produced by dispersing the conductive fine particles in a binder resin or the like, the dispersibility of the conductive fine particles is excellent.
ADVANTAGE OF THE INVENTION According to this invention, it can provide the conductive fine particle which is excellent in resin exclusion property, and can reduce resistance value, the manufacturing method of conductive fine particle, and an anisotropic conductive material.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)芯物質複合化工程
平均粒子径4μmのジビニルベンゼン重合樹脂からなる基材微粒子10gを脱イオン水300mLで攪拌により3分間分散させた後、その水溶液に芯物質としてニッケルナノペースト(平均粒子径40nm、CV値10%)3gを添加し、芯物質を付着させた基材微粒子を得た。
その後、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
Example 1
(1) Core material compounding step After 10 g of substrate fine particles made of divinylbenzene polymerized resin having an average particle size of 4 μm are dispersed in 300 mL of deionized water for 3 minutes by stirring, nickel nanopaste (average particles) is used as the core material in the aqueous solution. 3 g (diameter 40 nm, CV value 10%) were added to obtain substrate fine particles to which a core substance was adhered.
Thereafter, alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution were performed. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.

(2)無電解ニッケルメッキ工程
得られた粒子を更に水1200mLで希釈し、メッキ安定剤4mLを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを81mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥してニッケルメッキされた微粒子を得た。
(2) Electroless nickel plating step After further diluting the obtained particles with 1200 mL of water and adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, 120 mL of a mixed solution of 6 mL of plating stabilizer was added through a metering pump at an addition rate of 81 mL / min. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed.
Subsequently, 650 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 35 mL plating stabilizer was added through a metering pump at an addition rate of 27 mL / min. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed.
Next, the plating solution was filtered, and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated fine particles.

(3)金メッキ工程
更に、置換メッキ法により表面に金メッキを施すことにより、導電性微粒子を得た。
(3) Gold plating step Further, conductive fine particles were obtained by performing gold plating on the surface by a displacement plating method.

(実施例2)
芯物質としてニッケルナノペースト(平均粒子径80nm、CV値16%)3gを使用したこと以外は、実施例1と同様にして導電性微粒子を作製した。
(Example 2)
Conductive fine particles were produced in the same manner as in Example 1 except that 3 g of nickel nanopaste (average particle size 80 nm, CV value 16%) was used as the core material.

(比較例1)
(1)無電解メッキ前処理工程
平均粒子径4μmのジビニルベンゼン重合樹脂からなる基材微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
(Comparative Example 1)
(1) Electroless Plating Pretreatment Step 10 g of substrate fine particles made of divinylbenzene polymer resin having an average particle size of 4 μm were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.

(2)芯物質複合化工程
得られた基材微粒子を脱イオン水300mLで攪拌により3分間分散させた後、その水溶液に芯物質としてニッケル粒子(平均粒子径200nm、CV値23%)3gを添加し、芯物質を付着させた基材微粒子を得た。
(2) Core material complexing step After the obtained base material fine particles were dispersed with 300 mL of deionized water for 3 minutes by stirring, 3 g of nickel particles (average particle size 200 nm, CV value 23%) were added to the aqueous solution as a core material. Substrate fine particles to which a core substance was adhered were added.

(3)無電解ニッケルメッキ工程
得られた基材微粒子を更に水1200mLで希釈し、メッキ安定剤4mLを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを81mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥してニッケルメッキされた微粒子を得た。
(3) Electroless nickel plating process After further diluting the obtained substrate fine particles with 1200 mL of water and adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, citric acid 120 mL of a mixed solution of 116 g / L sodium and 6 mL plating stabilizer was added through a metering pump at an addition rate of 81 mL / min. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed.
Subsequently, 650 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 35 mL plating stabilizer was added through a metering pump at an addition rate of 27 mL / min. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed.
Next, the plating solution was filtered, and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated fine particles.

(4)金メッキ工程
更に、置換メッキ法により表面に金メッキを施すことにより、導電性微粒子を作製した。
(4) Gold plating step Further, conductive fine particles were produced by performing gold plating on the surface by a displacement plating method.

(比較例2)
芯物質として金ナノペースト(平均粒子径8nm、CV値10%)3gを使用したこと以外は、実施例1と同様にして導電性微粒子を作製した。
(Comparative Example 2)
Conductive fine particles were produced in the same manner as in Example 1 except that 3 g of gold nanopaste (average particle diameter 8 nm, CV value 10%) was used as the core substance.

(比較例3)
芯物質として銅粒子(平均粒子径100nm、CV値16%)3gを使用したこと以外は、比較例1と同様にして導電性微粒子を作製した。
(Comparative Example 3)
Conductive fine particles were produced in the same manner as in Comparative Example 1 except that 3 g of copper particles (average particle size 100 nm, CV value 16%) were used as the core substance.

<評価>
実施例1〜2及び比較例1〜3で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive fine particles obtained in Examples 1-2 and Comparative Examples 1-3. The results are shown in Table 1.

(1)突起の平均高さ、及び、平均外径の測定
実施例及び比較例で得られた導電性微粒子について、日立ハイテクノロジーズ社製走査電子顕微鏡(SEM)による粒子観察を行い、導電性微粒子の突起の平均外径、突起の平均高さ、全突起に対する200nm以上の高さの突起の割合、及び、突起の高さのCV値を調べた。
また、実施例1のSEM写真を図1に、実施例2のSEM写真を図2に、比較例1のSEM写真を図3にそれぞれ示した。
(1) Measurement of average height of protrusions and average outer diameter For conductive fine particles obtained in Examples and Comparative Examples, particles were observed with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation, and conductive fine particles The average outer diameter of the protrusions, the average height of the protrusions, the ratio of protrusions having a height of 200 nm or more to the total protrusions, and the CV value of the height of the protrusions were examined.
Further, the SEM photograph of Example 1 is shown in FIG. 1, the SEM photograph of Example 2 is shown in FIG. 2, and the SEM photograph of Comparative Example 1 is shown in FIG.

(2)異方性導電材料の評価
実施例及び比較例で得られた導電性微粒子を用いて以下の方法により異方性導電材料を作製し、電極間の抵抗値を評価した。
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及びトルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及びトルエン100重量部に、得られたそれぞれの導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が4万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、ITO電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、9N、140℃の圧着条件で熱圧着した後、電極間の抵抗値を評価した。
(2) Evaluation of anisotropic conductive material An anisotropic conductive material was produced by the following method using the conductive fine particles obtained in Examples and Comparative Examples, and the resistance value between the electrodes was evaluated.
As a resin binder resin, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene were sufficiently mixed using a planetary stirrer. Then, it apply | coated so that the thickness after drying might be set to 10 micrometers on a release film, and toluene was evaporated, and the adhesive film was obtained.
Next, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin were obtained. And then thoroughly mixed using a planetary stirrer, and then coated on the release film so that the thickness after drying is 7 μm, and the adhesive film containing conductive fine particles is evaporated by evaporating toluene. Obtained. The blending amount of the conductive fine particles was such that the content in the film was 40,000 pieces / cm 2 .
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. After affixing this to approximately the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for resistance measurement, a glass substrate having an ITO electrode is obtained. After aligning the electrodes so that they overlap each other, they were bonded together.
The bonded portion of this glass substrate was thermocompression bonded under a pressure bonding condition of 9N and 140 ° C., and then the resistance value between the electrodes was evaluated.

本発明によれば、樹脂排除性に優れ、抵抗値の低減化が可能な導電性微粒子、導電性微粒子の製造方法、及び、異方性導電材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can provide the conductive fine particle which is excellent in resin exclusion property, and can reduce resistance value, the manufacturing method of conductive fine particle, and an anisotropic conductive material.

実施例1で得られた導電性微粒子のSEM写真である。2 is a SEM photograph of conductive fine particles obtained in Example 1. 実施例2で得られた導電性微粒子のSEM写真である。4 is a SEM photograph of conductive fine particles obtained in Example 2. 比較例1で得られた導電性微粒子のSEM写真である。3 is a SEM photograph of conductive fine particles obtained in Comparative Example 1.

Claims (2)

触媒処理を施していない基材微粒子が分散した、分散剤を含有する基材微粒子分散液と、平均粒径5〜80nmの金属ナノ粒子を含有する高分散性の金属ナノペーストとを混合して、前記基材微粒子の表面に前記金属ナノ粒子をヘテロ凝集により付着させる工程1と、
触媒処理を行った後、無電解メッキ法にて前記金属ナノ粒子が付着した基材微粒子の表面に厚さ10〜500nmの金属メッキ層を形成させる工程2とからなる
ことを特徴とする導電性微粒子の製造方法。
A base material fine particle dispersion containing a dispersing agent in which base material fine particles not subjected to catalyst treatment are dispersed is mixed with a highly dispersible metal nano paste containing metal nanoparticles having an average particle size of 5 to 80 nm. Step 1 for attaching the metal nanoparticles to the surface of the substrate fine particles by heteroaggregation;
After conducting the catalyst treatment, the method comprises the step 2 of forming a metal plating layer having a thickness of 10 to 500 nm on the surface of the substrate fine particles to which the metal nanoparticles are adhered by an electroless plating method. A method for producing fine particles.
更に、導電性微粒子を金属ナノ粒子の融点以上、かつ、金属メッキの融点以下の温度で加熱する工程3を有することを特徴とする請求項1記載の導電性微粒子の製造方法。 The method for producing conductive fine particles according to claim 1, further comprising a step 3 of heating the conductive fine particles at a temperature not lower than the melting point of the metal nanoparticles and not higher than the melting point of the metal plating.
JP2006075228A 2006-03-17 2006-03-17 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material Active JP5091416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075228A JP5091416B2 (en) 2006-03-17 2006-03-17 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075228A JP5091416B2 (en) 2006-03-17 2006-03-17 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material

Publications (2)

Publication Number Publication Date
JP2007250464A JP2007250464A (en) 2007-09-27
JP5091416B2 true JP5091416B2 (en) 2012-12-05

Family

ID=38594511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075228A Active JP5091416B2 (en) 2006-03-17 2006-03-17 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP5091416B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629641B2 (en) * 2011-05-19 2014-11-26 株式会社日本触媒 Conductive fine particles and method for producing the same
JP6523860B2 (en) * 2014-08-07 2019-06-05 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP6592298B2 (en) * 2014-08-07 2019-10-16 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR102593532B1 (en) 2016-06-03 2023-10-26 삼성디스플레이 주식회사 Anisotropic conductive film and display device using the same
JP7007138B2 (en) * 2016-09-09 2022-02-10 積水化学工業株式会社 Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906705B (en) * 2004-01-30 2010-04-21 积水化学工业株式会社 Conductive fine particle and anisotropic conductive material
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles

Also Published As

Publication number Publication date
JP2007250464A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
JP4563110B2 (en) Method for producing conductive fine particles
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4991666B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP5395482B2 (en) Coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP2009032397A (en) Conductive fine particle
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP2013229240A (en) Conductive particle and method for producing the same
JP4739999B2 (en) Method for manufacturing anisotropic conductive material and anisotropic conductive material
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP4897344B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007194210A (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5091416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3