JP5395482B2 - Coated conductive fine particles, anisotropic conductive material, and conductive connection structure - Google Patents
Coated conductive fine particles, anisotropic conductive material, and conductive connection structure Download PDFInfo
- Publication number
- JP5395482B2 JP5395482B2 JP2009072420A JP2009072420A JP5395482B2 JP 5395482 B2 JP5395482 B2 JP 5395482B2 JP 2009072420 A JP2009072420 A JP 2009072420A JP 2009072420 A JP2009072420 A JP 2009072420A JP 5395482 B2 JP5395482 B2 JP 5395482B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- insulating
- conductive
- particles
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Non-Insulated Conductors (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Conductive Materials (AREA)
Description
本発明は、接続信頼性に優れた被覆導電性微粒子、異方性導電材料、及び、導電接続構造体に関する。 The present invention relates to a coated conductive fine particle, an anisotropic conductive material, and a conductive connection structure excellent in connection reliability.
金属表面を有する粒子はバインダー樹脂に混合され、異方性導電材料として使用されている。異方性導電材料は、半導体素子等の小型電機部品を基板に電気的に接続するために用いられる。 Particles having a metal surface are mixed with a binder resin and used as an anisotropic conductive material. The anisotropic conductive material is used for electrically connecting a small electric component such as a semiconductor element to a substrate.
近年、電子機器や電子部品が小型化しており、基板等の電極が微細になってきた。一方で、高い接続信頼性を確保するために、異方性導電材料中の導電性微粒子の配合量を増加する必要があった。しかし、このような微細な配線を有する基板等は、隣接する導電性微粒子同士の横方向の導通が起こり、隣接する電極間で短絡が生じるという問題があった。この問題を解決するため、導電性微粒子の表面を絶縁体で被覆した被覆導電性微粒子が提案されている。 In recent years, electronic devices and electronic components have been miniaturized, and electrodes such as substrates have become finer. On the other hand, in order to ensure high connection reliability, it is necessary to increase the blending amount of the conductive fine particles in the anisotropic conductive material. However, a substrate or the like having such fine wiring has a problem in that conduction between adjacent conductive fine particles occurs in a lateral direction, and a short circuit occurs between adjacent electrodes. In order to solve this problem, coated conductive fine particles in which the surface of the conductive fine particles is coated with an insulator have been proposed.
導電性微粒子の表面を絶縁体で被覆する方法として、例えば、特許文献1には導電性微粒子の存在下で界面重合、懸濁重合、乳化重合等を行い、導電性微粒子を樹脂によりマイクロカプセル化する方法が記載されている。特許文献2には樹脂溶液に分散させた導電性微粒子を乾燥させるディッピング法により導電性微粒子をマイクロカプセル化する方法が記載されている。特許文献3にはスプレードライ法、ハイブリダイゼーション法により導電性微粒子の表面に絶縁被覆層を形成する方法が記載されている。 As a method for coating the surface of the conductive fine particles with an insulator, for example, in Patent Document 1, interfacial polymerization, suspension polymerization, emulsion polymerization, etc. are performed in the presence of the conductive fine particles, and the conductive fine particles are microencapsulated with a resin. How to do is described. Patent Document 2 describes a method of encapsulating conductive fine particles by a dipping method in which conductive fine particles dispersed in a resin solution are dried. Patent Document 3 describes a method of forming an insulating coating layer on the surface of conductive fine particles by a spray drying method or a hybridization method.
しかしながら、このような方法では絶縁層の厚さを一定にすることが困難であった。また、複数の導電性微粒子を同時に被覆してしまうことがあった。絶縁被覆層の厚みが均一ではない被覆導電性微粒子を含有する異方性導電材料を用いて電極間を接続すると、接続抵抗値が高くなることがあった。例えば、ハイブリダイゼーション法による絶縁被覆の形成方法とは、導電性微粒子の表面に被覆層となる絶縁微粒子を物理的な力で付着させる方法である。ハイブリダイゼーション法では、導電性微粒子の表面に単層の絶縁被覆層を形成させることができなかった。また、絶縁被覆層の厚みの制御が困難であった。加熱、摩擦熱等の熱や衝撃が加わって、絶縁微粒子が溶融するため、導電性微粒子の表面に、均一な絶縁被覆層を形成することは困難であった。また、絶縁微粒子が導電性微粒子に接触している接触面積が大きくなるため、絶縁被覆層が除去されにくく、接続抵抗値が高くなるといった問題があった。 However, with such a method, it has been difficult to keep the thickness of the insulating layer constant. In addition, a plurality of conductive fine particles may be coated at the same time. When the electrodes are connected using an anisotropic conductive material containing coated conductive fine particles whose insulating coating layer thickness is not uniform, the connection resistance value may be increased. For example, a method for forming an insulating coating by a hybridization method is a method in which insulating fine particles serving as a coating layer are attached to the surface of conductive fine particles by a physical force. In the hybridization method, a single insulating coating layer could not be formed on the surface of the conductive fine particles. In addition, it is difficult to control the thickness of the insulating coating layer. Since heat and impact such as heating and frictional heat are applied and the insulating fine particles are melted, it is difficult to form a uniform insulating coating layer on the surface of the conductive fine particles. Further, since the contact area where the insulating fine particles are in contact with the conductive fine particles is increased, there is a problem that the insulating coating layer is hardly removed and the connection resistance value is increased.
特許文献4及び特許文献5には、絶縁微粒子を静電相互作用やハイブリダイゼーション法により導電性微粒子の表面に付着させた被覆導電性微粒子が記載されている。しかしながら、この被覆導電性微粒子は、絶縁微粒子と導電性微粒子との結合力が非常に弱かった。この被覆導電性微粒子をバインダー樹脂中に分散させると、導電性微粒子の表面から絶縁微粒子が剥がれ、充分な絶縁性が確保できないといった問題があった。 Patent Documents 4 and 5 describe coated conductive fine particles in which insulating fine particles are attached to the surface of the conductive fine particles by electrostatic interaction or a hybridization method. However, the coated conductive fine particles have a very weak bonding force between the insulating fine particles and the conductive fine particles. When the coated conductive fine particles are dispersed in the binder resin, there is a problem that the insulating fine particles are peeled off from the surface of the conductive fine particles and sufficient insulation cannot be secured.
また、導電性微粒子は、絶縁性のバインダー樹脂中に分散されて異方性導電材料として用いられる。このような異方性導電材料を用いて導電接続すると、接続抵抗値が高くなってしまうという問題もあった。これは、電極と導電性微粒子との間のバインダー樹脂を充分に排除できず、電極と導電性微粒子との間にバインダー樹脂が残留してしまうためと考えられた。 The conductive fine particles are dispersed in an insulating binder resin and used as an anisotropic conductive material. When such an anisotropic conductive material is used for conductive connection, there is a problem that the connection resistance value is increased. This was considered because the binder resin between the electrode and the conductive fine particles could not be sufficiently eliminated, and the binder resin remained between the electrode and the conductive fine particles.
本発明は、接続信頼性に優れた被覆導電性微粒子、異方性導電材料、及び、導電接続構造体を提供することを目的とする。 An object of the present invention is to provide a coated conductive fine particle, an anisotropic conductive material, and a conductive connection structure excellent in connection reliability.
本発明は、導電性の金属表面を有する基材微粒子の表面に絶縁微粒子が付着している被覆導電性微粒子であって、前記基材微粒子は、表面に突起を有し、前記絶縁微粒子の直径が200〜500nmであり、前記突起の高さは、50nm以上であり、かつ、前記絶縁微粒子の直径より100nm以上小さい被覆導電性微粒子である。
以下に本発明を詳述する。
The present invention is a coated conductive fine particle in which insulating fine particles are attached to the surface of a substrate fine particle having a conductive metal surface, wherein the substrate fine particle has a protrusion on the surface, and the diameter of the insulating fine particle 200 to 500 nm, and the height of the protrusion is 50 nm or more, and the coated conductive fine particles are 100 nm or more smaller than the diameter of the insulating fine particles.
The present invention is described in detail below.
本発明の被覆導電性微粒子は、導電性の金属表面を有する基材微粒子の表面に絶縁微粒子が付着している。このように、導電性の金属表面を有する基材微粒子の表面に絶縁微粒子が付着している被覆導電性微粒子を用いて基板等の導電接続を行うと、微細な配線を有する基板等であっても、隣接する導電性微粒子同士の横方向の導通等が起こりにくくなる。また、被覆導電性微粒子が熱圧着されると、金属表面が露出するため、対向する電極間を導通させることができる。 In the coated conductive fine particles of the present invention, insulating fine particles are attached to the surface of the substrate fine particles having a conductive metal surface. Thus, when conductive connection of a substrate or the like is performed using coated conductive fine particles in which insulating fine particles are attached to the surface of the substrate fine particles having a conductive metal surface, the substrate or the like having fine wiring is obtained. However, it is difficult for the adjacent conductive fine particles to conduct in the lateral direction. Further, when the coated conductive fine particles are thermocompression bonded, the metal surface is exposed, so that the electrodes facing each other can be made conductive.
上記基材微粒子は、基材微粒子の最表面に、導電性の金属表面を有し、かつ、金属表面に突起が形成されている。上記基材微粒子は特に限定されず、例えば、実質的に金属で形成された基材微粒子、コア粒子の表面に金属層が形成された基材微粒子、コア粒子の表面に金属の微細粒子が付着した基材微粒子等が挙げられる。
上記コア粒子は特に限定されず、有機微粒子、無機微粒子、有機無機ハイブリッド微粒子等が挙げられる。
なかでも、有機微粒子の表面に金属層が形成された基材微粒子は、電極間に挟み込んで圧着すると、基材微粒子が変形して電極との接触面積を増やすことができる。
The substrate fine particles have a conductive metal surface on the outermost surface of the substrate fine particles, and protrusions are formed on the metal surface. The substrate fine particles are not particularly limited. For example, the substrate fine particles substantially formed of metal, the substrate fine particles in which a metal layer is formed on the surface of the core particles, and the metal fine particles adhere to the surface of the core particles. Base material fine particles and the like.
The core particles are not particularly limited, and examples thereof include organic fine particles, inorganic fine particles, and organic / inorganic hybrid fine particles.
In particular, when the substrate fine particles having a metal layer formed on the surface of the organic fine particles are sandwiched between the electrodes and pressed, the substrate fine particles are deformed to increase the contact area with the electrodes.
上記有機微粒子は特に限定されず、例えば、ポリオレフィン樹脂、アクリル樹脂、ポリアルキレンテレフタレート樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等で構成される有機微粒子が挙げられる。
上記ポリオレフィン樹脂は特に限定されず、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等が挙げられる。上記アクリル樹脂は特に限定されず、ポリメチルメタクリレート樹脂、ポリメチルアクリレート樹脂等が挙げられる。
The organic fine particles are not particularly limited, and include, for example, polyolefin resin, acrylic resin, polyalkylene terephthalate resin, polysulfone resin, polycarbonate resin, polyamide resin, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, and the like. Organic fine particles.
The polyolefin resin is not particularly limited, and examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, polyisobutylene resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, and polytetrafluoroethylene resin. The acrylic resin is not particularly limited, and examples thereof include polymethyl methacrylate resin and polymethyl acrylate resin.
上記コア粒子の平均粒子径は特に限定されず、好ましい下限は0.5μm、好ましい上限は100μmである。上記コア粒子の平均粒子径が0.5μm未満であると、コア粒子が凝集しやすいため、凝集したコア粒子の表面に金属層が形成された基材微粒子が隣接する電極間を短絡させることがある。上記コア粒子の平均粒子径が100μmを超えると、被覆導電性微粒子の金属層が剥がれやすくなることがある。上記コア粒子の平均粒子径のより好ましい下限は1μm、より好ましい上限は20μmである。
なお、上記コア粒子の平均粒子径は、光学顕微鏡、又は、電子顕微鏡を用いて無作為に選んだ50個のコア粒子を観察して得られた直径の平均値を意味する。
The average particle diameter of the core particles is not particularly limited, and a preferable lower limit is 0.5 μm and a preferable upper limit is 100 μm. If the average particle diameter of the core particles is less than 0.5 μm, the core particles are likely to aggregate, and therefore, the base particles in which a metal layer is formed on the surface of the aggregated core particles may short-circuit between adjacent electrodes. is there. When the average particle diameter of the core particles exceeds 100 μm, the metal layer of the coated conductive fine particles may be easily peeled off. The more preferable lower limit of the average particle diameter of the core particles is 1 μm, and the more preferable upper limit is 20 μm.
In addition, the average particle diameter of the said core particle means the average value of the diameter obtained by observing 50 core particles selected at random using an optical microscope or an electron microscope.
また、上記コア粒子は、CV値の好ましい上限が15%である。CV値が15%を超えると、被覆導電性微粒子の接続信頼性が低下することがある。CV値のより好ましい上限は10%である。なお、CV値は、標準偏差を平均粒子径で割った値を百分率(%)で示した数値である。 In addition, the upper limit of the CV value of the core particles is 15%. If the CV value exceeds 15%, the connection reliability of the coated conductive fine particles may be lowered. A more preferable upper limit of the CV value is 10%. The CV value is a numerical value obtained by dividing the standard deviation by the average particle diameter in percentage (%).
上記コア粒子の10%K値の好ましい下限は1000N/mm2、好ましい上限は15000N/mm2である。上記10%K値が1000N/mm2未満であると、被覆導電性微粒子を大きく圧縮変形させると、コア粒子が破壊されることがある。上記10%K値が15000N/mm2を超えると、被覆導電性微粒子が電極を傷つけることがある。上記10%K値のより好ましい下限は2000N/mm2、より好ましい上限は10000N/mm2である。
なお、上記10%K値は、微小圧縮試験器(例えば、島津製作所社製「PCT−200」)を用い、コア粒子を直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度2.6mN/秒、最大試験荷重10gの条件下で圧縮した場合の圧縮変位(mm)を測定し、下記式により求めることができる。
K値(N/mm2)=(3/√2)・F・S−3/2・R−1/2
F:コア粒子の10%圧縮変形における荷重値(N)
S:コア粒子の10%圧縮変形における圧縮変位(mm)
R:コア粒子の半径(mm)
A preferred lower limit of the 10% K value of the core particles 1000 N / mm 2, the upper limit is preferably 15000 N / mm 2. If the 10% K value is less than 1000 N / mm 2 , the core particles may be destroyed when the coated conductive fine particles are greatly compressed and deformed. When the 10% K value exceeds 15000 N / mm 2 , the coated conductive fine particles may damage the electrode. A more preferred lower limit of the 10% K value 2000N / mm 2, and more preferable upper limit is 10000 N / mm 2.
The 10% K value is obtained by using a micro compression tester (for example, “PCT-200” manufactured by Shimadzu Corporation), the core particle is a smooth indenter end face of a diamond cylinder having a diameter of 50 μm, and the compression speed is 2.6 mN / The compression displacement (mm) when compressed under conditions of seconds and a maximum test load of 10 g can be measured and determined by the following equation.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of core particles (N)
S: Compression displacement (mm) in 10% compression deformation of core particles
R: Core particle radius (mm)
上記金属は、導電性を有している金属であれば特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、錫、鉛、パラジウム、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等の金属や、ITO、ハンダ等の金属化合物が挙げられる。 The metal is not particularly limited as long as it has conductivity, for example, gold, silver, copper, platinum, zinc, iron, tin, lead, palladium, aluminum, cobalt, indium, nickel, chromium, Examples thereof include metals such as titanium, antimony, bismuth, germanium, cadmium, and silicon, and metal compounds such as ITO and solder.
上記金属層は、単層構造であってもよいし、複数の層が積層された積層構造であってもよい。上記金属層が積層構造である場合、積層構造の最外層は金層であることが好ましく、ニッケル層又はパラジウム層であることがより好ましい。積層構造の最外層が金層であると、電極間の接続抵抗値が低くなり、積層構造の最外層がニッケル層又はパラジウム層であると、上記金属層がより硬くなるため、導電性がより向上する。 The metal layer may have a single layer structure or a stacked structure in which a plurality of layers are stacked. When the metal layer has a laminated structure, the outermost layer of the laminated structure is preferably a gold layer, and more preferably a nickel layer or a palladium layer. When the outermost layer of the laminated structure is a gold layer, the connection resistance value between the electrodes is low, and when the outermost layer of the laminated structure is a nickel layer or a palladium layer, the metal layer becomes harder, and thus the conductivity is higher. improves.
上記金属層の厚みは特に限定されないが、好ましい下限は0.005μm、好ましい上限は1μmである。上記金属層の厚みが0.005μm未満であると、電極間の接続抵抗値が高くなることがある。上記金属層の厚みが1μmを超えると、被覆導電性微粒子の比重が高くなるため、被覆導電性微粒子がバインダー樹脂に均一に分散しないことがある。上記金属層の厚みのより好ましい下限は0.01μm、より好ましい上限は0.3μmである。 Although the thickness of the said metal layer is not specifically limited, A preferable minimum is 0.005 micrometer and a preferable upper limit is 1 micrometer. When the thickness of the metal layer is less than 0.005 μm, the connection resistance value between the electrodes may increase. When the thickness of the metal layer exceeds 1 μm, the specific gravity of the coated conductive fine particles increases, and the coated conductive fine particles may not be uniformly dispersed in the binder resin. The more preferable lower limit of the thickness of the metal layer is 0.01 μm, and the more preferable upper limit is 0.3 μm.
上記金属層を形成する方法は特に限定されず、例えば、金属蒸着法、無電解メッキ法等の方法が挙げられる。上記コア粒子の表面に上記金属層を容易に形成できるため、無電解メッキ法が好ましい。
上記金属層は、例えば、金、銀、銅、プラチナ、パラジウム、ニッケル、ロジウム、ルテニウム、コバルト、錫等を含有する金属層が挙げられる。
上記金属層が積層構造である場合、上記コア粒子の表面に、ニッケル層と、金層とが順次形成されていてもよく、上記コア粒子の表面に、ニッケル層と、パラジウム層とが順次形成されていてもよい。
The method for forming the metal layer is not particularly limited, and examples thereof include a metal vapor deposition method and an electroless plating method. An electroless plating method is preferred because the metal layer can be easily formed on the surface of the core particles.
Examples of the metal layer include metal layers containing gold, silver, copper, platinum, palladium, nickel, rhodium, ruthenium, cobalt, tin and the like.
When the metal layer has a laminated structure, a nickel layer and a gold layer may be sequentially formed on the surface of the core particle, and a nickel layer and a palladium layer are sequentially formed on the surface of the core particle. May be.
上記基材微粒子の表面の突起は、少なくとも突起の表面が導電性の金属で被覆されていれば特に限定されない。 The protrusion on the surface of the substrate fine particle is not particularly limited as long as at least the surface of the protrusion is covered with a conductive metal.
上記突起の高さの下限は50nmである。上記突起の高さが50nm未満であると、電極間に被覆導電性微粒子を挟み込んで電極間を接続しても、上記突起が電極に接触できない。上記突起の高さの好ましい下限は100nmであり、より好ましい下限は150nmである。
また、上記突起の高さは、上記基材微粒子の直径の40%以下であることが好ましい。上記突起の高さが上記基材微粒子の直径の40%を超えると、上記突起が電極を破損させることがある。上記突起の高さは、上記基材微粒子の直径の20%以下であることがより好ましい。
The lower limit of the height of the protrusion is 50 nm. If the height of the protrusion is less than 50 nm, the protrusion cannot contact the electrode even if the electrodes are connected by sandwiching the coated conductive fine particles between the electrodes. A preferable lower limit of the height of the protrusion is 100 nm, and a more preferable lower limit is 150 nm.
Further, the height of the protrusion is preferably 40% or less of the diameter of the base particle. When the height of the protrusion exceeds 40% of the diameter of the base particle, the protrusion may damage the electrode. The height of the protrusion is more preferably 20% or less of the diameter of the substrate fine particles.
また、上記突起の高さは、後述する絶縁微粒子の直径より100nm以上小さい。上記突起の高さが、上記絶縁微粒子の直径より100nm以上小さくないと、被覆導電性微粒子の突起が、隣接する被覆導電性微粒子に接触することがある。その結果、隣接する電極間が短絡する。上記突起の高さは、上記絶縁微粒子の直径より150nm以上小さいことが好ましく、200nm以上小さいことがより好ましく、さらに250nm以上小さいことがより好ましい。 Further, the height of the protrusion is 100 nm or more smaller than the diameter of insulating fine particles described later. If the height of the protrusion is not smaller than 100 nm by the diameter of the insulating fine particle, the protrusion of the coated conductive fine particle may come into contact with the adjacent coated conductive fine particle. As a result, the adjacent electrodes are short-circuited. The height of the protrusion is preferably 150 nm or more smaller than the diameter of the insulating fine particles, more preferably 200 nm or more, and even more preferably 250 nm or more.
上記突起の高さは、以下の方法で算出できる。本発明の被覆導電性微粒子50個を走査型電子顕微鏡で観察し、観察された被覆導電性微粒子の周縁部の突起すべての高さを測定する。突起が形成されていない金属表面を基準表面として、突起の高さを測定し、測定値を算術平均することにより、上記突起の高さを算出した。 The height of the protrusion can be calculated by the following method. Fifty coated conductive fine particles of the present invention are observed with a scanning electron microscope, and the heights of all the protrusions at the peripheral edge of the observed coated conductive fine particles are measured. The height of the protrusion was calculated by measuring the height of the protrusion using the metal surface on which the protrusion was not formed as a reference surface, and arithmetically averaging the measured values.
上記突起の数は特に限定されないが、被覆導電性微粒子1個当たりの平均突起数は8以上であることが好ましい。上記平均突起数が8未満であると、電極間の接続抵抗値が高くなることがある。 The number of protrusions is not particularly limited, but the average number of protrusions per coated conductive fine particle is preferably 8 or more. If the average number of protrusions is less than 8, the connection resistance value between the electrodes may increase.
上記突起を有する基材微粒子を製造する方法は特に限定されない。例えば、以下の方法が挙げられる。
1)無機材料又は有機材料等で構成される粒子を上記金属層に取り込ませながら、上記コア粒子の表面に上記金属層を形成する方法。
2)上記金属層を構成する金属に対して親和性が高い物質を、上記コア粒子の表面に付着させ、上記金属に対して親和性が高い物質が付着した箇所に導電性の突起を成長させながら、上記コア粒子の表面に上記金属層を形成する方法。
3)無機材料又は有機材料等で構成される粒子をコア粒子に付着させた突起粒子の表面に上記金属層を形成する方法。
The method for producing the substrate fine particles having the protrusions is not particularly limited. For example, the following method is mentioned.
1) A method of forming the metal layer on the surface of the core particle while incorporating particles composed of an inorganic material or an organic material into the metal layer.
2) A substance having a high affinity for the metal constituting the metal layer is attached to the surface of the core particle, and a conductive protrusion is grown at a location where a substance having a high affinity for the metal is attached. However, the method of forming the said metal layer on the surface of the said core particle.
3) A method of forming the metal layer on the surface of the protruding particles in which particles composed of an inorganic material or an organic material are attached to the core particles.
上記1)法は、特に限定されないが、以下の方法が挙げられる。
上記コア粒子をイオン交換水に分散させた懸濁液を、ニッケル塩、還元剤、錯化剤等を含有する無電解メッキ浴に添加し、無電解ニッケルメッキを行う。上記コア粒子の表面に、ニッケル層を形成させると同時に、無電解メッキ浴の自己分解を起こす。自己分解物が突起の核になるため、上記コア粒子の表面に、ニッケル層と突起とが同時に形成される。
The method 1) is not particularly limited, and examples include the following method.
The suspension in which the core particles are dispersed in ion-exchanged water is added to an electroless plating bath containing a nickel salt, a reducing agent, a complexing agent, etc., and electroless nickel plating is performed. A nickel layer is formed on the surface of the core particles, and at the same time, self-decomposition of the electroless plating bath occurs. Since the self-decomposed product becomes the nucleus of the protrusion, a nickel layer and a protrusion are simultaneously formed on the surface of the core particle.
上記2)法は、特に限定されないが、以下の方法が挙げられる。
上記コア粒子の表面にパラジウム塩を付着させる。上記コア粒子の表面に付着したパラジウム塩を極めて穏やかに還元させ、無電解ニッケルメッキの起点となるパラジウム触媒をコア粒子の表面に担持させる。パラジウム触媒が担持されたコア粒子を、ニッケル塩、還元剤、錯化剤等を含有する無電解メッキ浴に添加し、無電解ニッケルメッキを行う。
この方法では、パラジウムが多く担持されている箇所は、パラジウムの担持が少ない箇所と比較して、ニッケルの析出速度が速くなるため、上記コア粒子の表面に、ニッケル層と突起とが同時に形成される。
The method 2) is not particularly limited, and examples include the following method.
A palladium salt is attached to the surface of the core particle. The palladium salt adhering to the surface of the core particle is extremely gently reduced, and a palladium catalyst serving as a starting point for electroless nickel plating is supported on the surface of the core particle. The core particles carrying the palladium catalyst are added to an electroless plating bath containing a nickel salt, a reducing agent, a complexing agent, etc., and electroless nickel plating is performed.
In this method, the nickel deposition rate is higher at the places where a large amount of palladium is supported than at the places where the palladium is less supported, so that a nickel layer and protrusions are simultaneously formed on the surface of the core particles. The
上記3)法は、特に限定されないが、以下の方法が挙げられる。
上記コア粒子の表面に、ハイブリダイゼーション法等により、無機材料又は有機材料等で構成される粒子が付着した突起粒子を作製する。突起粒子を無電解ニッケルメッキし、ニッケル層と突起とが同時に形成される。
また、上記コア粒子の表面に、ニッケル粒子等の金属粒子を付着した突起粒子を作製し、突起粒子を無電解ニッケルメッキし、ニッケル層と突起とを同時に形成してもよい。
また、重合性不飽和単量体と媒体とを含有する重合性液滴、又は、媒体中でシード粒子を重合性単量体で膨潤させた重合性液滴の表面に、無機材料又は有機材料等で構成される粒子を付着させる。粒子が付着した重合性液滴を重合し、突起粒子を作製する。突起粒子を無電解ニッケルメッキし、ニッケル層と突起とが同時に形成される。
The method 3) is not particularly limited, and examples include the following method.
Protrusion particles in which particles composed of an inorganic material or an organic material are attached to the surface of the core particles by a hybridization method or the like are produced. The protruding particles are plated with electroless nickel, and a nickel layer and protrusions are formed simultaneously.
In addition, protruding particles in which metal particles such as nickel particles are attached to the surface of the core particles may be prepared, and the protruding particles may be electroless nickel-plated to form the nickel layer and the protrusions simultaneously.
Further, an inorganic material or an organic material is formed on the surface of a polymerizable droplet containing a polymerizable unsaturated monomer and a medium, or a polymerizable droplet obtained by swelling seed particles with a polymerizable monomer in a medium. The particles composed of etc. are adhered. Polymerizable droplets with particles attached are polymerized to produce protruding particles. The protruding particles are plated with electroless nickel, and a nickel layer and protrusions are formed simultaneously.
無機材料又は有機材料等で構成される粒子を付着させたコア粒子の表面に上記金属層を形成する方法は、特に限定されない。例えば、重合性不飽和単量体と媒体とを含有する重合性液滴が媒体中に分散した分散液を調製する工程と、上記分散液に上記粒子を添加し、上記粒子を重合性液滴の表面に付着させる工程と、上記粒子が付着した重合性液滴を重合させて突起粒子を作製する工程と、突起粒子を金属メッキする工程とを有する方法が好ましい。 The method for forming the metal layer on the surface of the core particle to which particles composed of an inorganic material or an organic material are attached is not particularly limited. For example, a step of preparing a dispersion liquid in which polymerizable droplets containing a polymerizable unsaturated monomer and a medium are dispersed in the medium; and the particles are added to the dispersion liquid, and the particles are converted into the polymerizable liquid droplets. A method comprising a step of adhering to the surface of the material, a step of polymerizing the polymerizable droplets to which the particles adhere, producing a protruding particle, and a step of metal plating the protruding particle.
また、他の方法として、例えば、シード粒子と、重合性不飽和単量体を含有する媒体とを混合してシード粒子が媒体中に分散した分散液を調製する工程と、上記シード粒子に重合性不飽和単量体を吸収させ重合性液滴を調製する工程と、分散液に上記粒子を添加し、上記粒子を重合性液滴の表面に付着させる工程と、上記粒子が付着した重合性液滴を重合させ突起粒子を作製する工程と、突起粒子を金属メッキする工程とを有する方法が挙げられる。 As another method, for example, a step of mixing a seed particle and a medium containing a polymerizable unsaturated monomer to prepare a dispersion in which the seed particle is dispersed in the medium, and polymerization onto the seed particle. A step of preparing polymerizable droplets by absorbing the polymerizable unsaturated monomer, a step of adding the particles to the dispersion and attaching the particles to the surface of the polymerizable droplets, and a polymerization property of the particles attached Examples thereof include a method of polymerizing droplets to produce protruding particles and a step of metal plating the protruding particles.
上記絶縁微粒子は、絶縁性の粒子であれば特に限定されず、例えば、絶縁性樹脂で構成される絶縁微粒子、シリカ等の絶縁微粒子等が挙げられる。なかでも絶縁性樹脂で構成される絶縁微粒子が好ましい。上記絶縁性樹脂は特に限定されず、例えば、上記有機微粒子に用いられる樹脂等が挙げられる。これらの樹脂は単独で用いられてもよいし、2種以上が併用されてもよい。 The insulating fine particles are not particularly limited as long as they are insulating particles, and examples thereof include insulating fine particles composed of an insulating resin, and insulating fine particles such as silica. Among these, insulating fine particles composed of an insulating resin are preferable. The insulating resin is not particularly limited, and examples thereof include resins used for the organic fine particles. These resins may be used alone or in combination of two or more.
上記絶縁微粒子の直径の下限は200nm、上限は500nmである。上記絶縁微粒子の直径が200〜500nmの範囲内であると、隣接する電極間の短絡を防止し、対向する電極間の接続抵抗値を低下させる効果に優れる。上記絶縁微粒子の直径の好ましい下限は240nm、より好ましい下限は250nmである。上記絶縁微粒子の直径の好ましい上限は450nmであり、より好ましい上限は420nmである。
なお、上記絶縁微粒子の直径は、電子顕微鏡を用いて無作為に選んだ50個の絶縁微粒子を観察して得られた直径の平均値を意味する。
The lower limit of the diameter of the insulating fine particles is 200 nm, and the upper limit is 500 nm. When the diameter of the insulating fine particles is in the range of 200 to 500 nm, the short circuit between the adjacent electrodes is prevented, and the effect of reducing the connection resistance value between the opposing electrodes is excellent. A preferable lower limit of the diameter of the insulating fine particles is 240 nm, and a more preferable lower limit is 250 nm. A preferable upper limit of the diameter of the insulating fine particles is 450 nm, and a more preferable upper limit is 420 nm.
The diameter of the insulating fine particles means an average value of diameters obtained by observing 50 insulating fine particles selected at random using an electron microscope.
上記絶縁微粒子は、粒子径のCV値が20%以下であることが好ましい。CV値が20%を超えると、被覆導電性微粒子の接続信頼性が低下することがある。 The insulating fine particles preferably have a CV value of a particle diameter of 20% or less. When the CV value exceeds 20%, the connection reliability of the coated conductive fine particles may be lowered.
上記絶縁微粒子は、正電荷を有する絶縁微粒子であることが好ましい。上記絶縁微粒子が正電荷を有することにより、後述するヘテロ凝集法を用いて、上記絶縁微粒子が基材微粒子に付着する。また、上記絶縁微粒子同士が静電反発するため、絶縁微粒子同士の凝集が抑制される。その結果、上記基材微粒子の表面に、単層の被覆層が形成される。
また、上記絶縁微粒子がアンモニウム基又はスルホニウム基を有すると、上記絶縁微粒子は正電荷を有する。上記アンモニウム基又はスルホニウム基は、後述する金属に対して結合性を有する官能基(A)としても作用する。その結果、絶縁微粒子が基材微粒子の表面の金属と化学結合を形成しやすくなる。従って、上記絶縁微粒子はアンモニウム基又はスルホニウム基を有する樹脂で構成されていることが好ましい。なかでも、上記絶縁微粒子はスルホニウム基を有する樹脂で構成されていることがより好ましい。
The insulating fine particles are preferably insulating fine particles having a positive charge. When the insulating fine particles have a positive charge, the insulating fine particles adhere to the base particle using a heteroaggregation method described later. Further, since the insulating fine particles repel each other, aggregation of the insulating fine particles is suppressed. As a result, a single coating layer is formed on the surface of the substrate fine particles.
Further, when the insulating fine particles have an ammonium group or a sulfonium group, the insulating fine particles have a positive charge. The ammonium group or sulfonium group also acts as a functional group (A) having a binding property to the metal described later. As a result, the insulating fine particles easily form a chemical bond with the metal on the surface of the base fine particles. Therefore, the insulating fine particles are preferably composed of a resin having an ammonium group or a sulfonium group. Among these, the insulating fine particles are more preferably made of a resin having a sulfonium group.
上記正電荷を有する絶縁微粒子は特に限定されないが、正電荷を有する重合性単量体を重合させた絶縁微粒子、正電荷を有するラジカル開始剤を用いて重合した絶縁微粒子、正電荷を有する分散安定剤又は乳化剤を用いて製造された絶縁微粒子等が挙げられる。
上記正電荷を有する重合性単量体は、例えば、N,N−ジメチルアミノエチルメタクリレート、N,N−ジメチルアミノプロピルアクリルアミド、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド等のアンモニウム基含有モノマー、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩等のスルホニウム基を有するモノマー等が挙げられる。上記正電荷を有するラジカル開始剤は、例えば、2,2’−アゾビス{2−メチル−N−[2−(1−ヒドロキシ−ブチル)]−プロピオンアミド}、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス(2−アミノジプロパン)及びこれらの塩等が挙げられる。
The insulating fine particles having a positive charge are not particularly limited, but the insulating fine particles obtained by polymerizing a polymerizable monomer having a positive charge, the insulating fine particles polymerized using a radical initiator having a positive charge, the dispersion stability having a positive charge. Insulating fine particles produced using an agent or an emulsifier.
Examples of the positively charged polymerizable monomer include N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropylacrylamide, N, N, N-trimethyl-N-2-methacryloyloxyethylammonium chloride, and the like. And monomers having a sulfonium group such as phenyldimethylsulfonium methylsulfate methacrylate. Examples of the radical initiator having a positive charge include 2,2′-azobis {2-methyl-N- [2- (1-hydroxy-butyl)]-propionamide}, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis (2-aminodipropane) and salts thereof.
上記導電性の金属表面を有する基材微粒子は、導電性の金属に対して結合性を有する官能基(A)を介して、上記絶縁微粒子と化学結合していることが好ましい。
上記絶縁微粒子は、上記基材微粒子に化学結合しているため、ファンデルワールス力や静電気力による結合に比べて結合力が強い。そのため、本発明の被覆導電性微粒子をバインダー樹脂等に混合しても、絶縁微粒子が剥がれ落ちにくくなる。従って、本発明の被覆導電性微粒子を異方性導電材料として用いると、絶縁微粒子が剥がれ落ちにくいため、隣接する被覆導電性微粒子同士の短絡が防止できる。
上記基材微粒子は表面に突起を有するため、絶縁微粒子が基材微粒子に強固に化学結合していたとしても、熱圧着により突起が絶縁微粒子を押し退ける。その結果、電極間を確実に導電接続できる。更に、この化学結合は基材微粒子と絶縁微粒子との間にのみ形成されるため、絶縁微粒子同士が化学結合しない。従って、絶縁微粒子による被覆層は単層となる。このことから、基材微粒子及び絶縁微粒子の粒子径を揃えれば、本発明の被覆導電性微粒子の粒子径を制御できる。
It is preferable that the substrate fine particles having the conductive metal surface are chemically bonded to the insulating fine particles via the functional group (A) having a binding property to the conductive metal.
Since the insulating fine particles are chemically bonded to the substrate fine particles, the bonding strength is stronger than the bonding by van der Waals force or electrostatic force. Therefore, even if the coated conductive fine particles of the present invention are mixed with a binder resin or the like, the insulating fine particles are difficult to peel off. Therefore, when the coated conductive fine particles of the present invention are used as an anisotropic conductive material, the insulating fine particles are not easily peeled off, so that a short circuit between adjacent coated conductive fine particles can be prevented.
Since the substrate fine particles have protrusions on the surface, even if the insulating fine particles are strongly chemically bonded to the substrate fine particles, the protrusions push away the insulating fine particles by thermocompression bonding. As a result, the electrodes can be reliably conductively connected. Further, since this chemical bond is formed only between the base material fine particles and the insulating fine particles, the insulating fine particles do not chemically bond with each other. Therefore, the coating layer made of insulating fine particles is a single layer. From this, the particle diameter of the coated conductive fine particles of the present invention can be controlled by aligning the particle diameters of the substrate fine particles and the insulating fine particles.
上記官能基(A)は、上記導電性の金属とイオン結合、共有結合、配位結合できる官能基であれば特に限定されず、例えば、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、燐酸基、ニトリル基等が挙げられる。なかでも、配位結合できる官能基が好ましく、S、N、P原子を有する官能基がより好ましい。例えば、金属が金である場合は、上記官能基(A)は、金に対して配位結合を形成するS原子を有する官能基であることが好ましく、特にチオール基、スルフィド基であることがより好ましい。 The functional group (A) is not particularly limited as long as it is a functional group capable of ionic bond, covalent bond, and coordinate bond with the conductive metal. For example, silane group, silanol group, carboxyl group, amino group, ammonium group Nitro group, hydroxyl group, carbonyl group, thiol group, sulfonic acid group, sulfonium group, boric acid group, oxazoline group, pyrrolidone group, phosphoric acid group, nitrile group and the like. Especially, the functional group which can be coordinate-bonded is preferable, and the functional group which has S, N, and P atom is more preferable. For example, when the metal is gold, the functional group (A) is preferably a functional group having an S atom that forms a coordinate bond with gold, and particularly a thiol group or a sulfide group. More preferred.
このような官能基(A)を用いて上記基材微粒子と上記絶縁微粒子とを化学結合させる方法は特に限定されない。例えば、1)官能基(A)を表面に有する絶縁微粒子を基材微粒子の表面に導入する方法、2)官能基(A)と反応性官能基(B)とを有する化合物を基材微粒子の金属表面に導入し、一段階又は多段階の反応により反応性官能基(B)と絶縁微粒子とを反応させて結合する方法等が挙げられる。
上記1)の方法では、官能基(A)を表面に有する絶縁微粒子を作製する方法は特に限定されず、例えば、官能基(A)を有するモノマーを絶縁微粒子の重合時に混入させる方法、絶縁微粒子の表面に化学結合により官能基(A)を導入する方法、絶縁微粒子の表面を化学処理し官能基(A)に改質する方法、絶縁微粒子の表面をプラズマ等で官能基(A)に改質する方法等が挙げられる。
A method for chemically bonding the base material fine particles and the insulating fine particles using such a functional group (A) is not particularly limited. For example, 1) a method of introducing insulating fine particles having a functional group (A) on the surface thereof to the surface of the substrate fine particles, 2) a compound having a functional group (A) and a reactive functional group (B) Examples thereof include a method of introducing into a metal surface and reacting and bonding the reactive functional group (B) and insulating fine particles by a one-step or multi-step reaction.
In the method 1), the method for producing the insulating fine particles having the functional group (A) on the surface is not particularly limited. For example, a method in which a monomer having the functional group (A) is mixed during the polymerization of the insulating fine particles, insulating fine particles A method of introducing a functional group (A) into the surface of the substrate by chemical bonding, a method of chemically treating the surface of the insulating fine particles to modify the surface to the functional group (A), and modifying the surface of the insulating fine particles into a functional group (A) with plasma or the like. The method of quality is mentioned.
上記2)の方法では、例えば、同一分子内に官能基(A)と、ヒドロキシル基、カルボキシル基、アミノ基、エポキシ基、シリル基、シラノール基、イソシアネート基等の反応性官能基(B)とを有する化合物を基材微粒子と反応させる。次いで、反応性官能基(B)に共有結合できる官能基を表面に有する絶縁微粒子を反応させる方法等が挙げられる。このような同一分子内に官能基(A)と反応性官能基(B)とを有する化合物は、例えば、2−アミノエタンチオール、p−アミノチオフェノール等が挙げられる。例えば、基材微粒子の表面にチオール基を介して2−アミノエタンチオールを結合させ、一方のアミノ基に対して例えば表面にエポキシ基やカルボキシル基等を有する絶縁微粒子を反応させることにより、上記基材微粒子と上記絶縁微粒子とを結合することができる。 In the above method 2), for example, a functional group (A) and a reactive functional group (B) such as hydroxyl group, carboxyl group, amino group, epoxy group, silyl group, silanol group, and isocyanate group in the same molecule A compound having a reaction with the substrate fine particles. Next, a method of reacting insulating fine particles having a functional group that can be covalently bonded to the reactive functional group (B) on the surface can be mentioned. Examples of such a compound having a functional group (A) and a reactive functional group (B) in the same molecule include 2-aminoethanethiol and p-aminothiophenol. For example, by bonding 2-aminoethanethiol to the surface of the substrate fine particle via a thiol group, and reacting an insulating fine particle having, for example, an epoxy group or a carboxyl group on the surface with one amino group, the group The material fine particles can be bonded to the insulating fine particles.
本発明の被覆導電性微粒子を用いて電極間の接合を行う場合、熱及び圧力を加えて熱圧着することにより上記基材微粒子の金属表面を露出させて導通させる。ここで金属表面が露出するとは、上記基材微粒子の金属表面の少なくとも一部が絶縁微粒子に妨げられずに直接電極と接することができる状態である。なお、上記熱圧着の条件は、異方性導電材料中の被覆導電性微粒子の密度や接続する電子部品の種類等により必ずしも限定されないが、上記熱圧着は、120〜220℃の温度で、9.8×104〜4.9×106Paの圧力により行う。 When joining between electrodes using the coated conductive fine particles of the present invention, heat and pressure are applied to apply heat and pressure to expose the metal surface of the substrate fine particles, thereby conducting. Here, the metal surface is exposed is a state in which at least a part of the metal surface of the substrate fine particles can be in direct contact with the electrode without being blocked by the insulating fine particles. The thermocompression bonding conditions are not necessarily limited by the density of the coated conductive fine particles in the anisotropic conductive material, the type of electronic component to be connected, and the like. However, the thermocompression bonding is performed at a temperature of 120 to 220 ° C., 9 The pressure is from 8 × 10 4 to 4.9 × 10 6 Pa.
上記基材微粒子の金属表面が露出する態様は、以下の3つの態様が挙げられる。
第1の態様は、熱圧着することにより、絶縁微粒子が溶融して、基材微粒子の金属表面が露出する態様である。第2の態様は、熱圧着することにより、絶縁微粒子が変形して、基材微粒子の金属表面が露出する態様である。第3の態様は、熱圧着することにより、基材微粒子と絶縁微粒子とが解離して、基材微粒子の金属表面が露出する態様である。
なかでも、第2の態様により基材微粒子の金属表面が露出して導電接続されることが好ましい。
第1の態様による場合は、溶融した絶縁微粒子がブリードアウトして、バインダー樹脂や基板を汚染することがある。また、隣接する被覆導電性微粒子間を絶縁する被覆層が溶融して充分な絶縁性が得られないことがある。
第3の態様による場合は、熱圧着時に基材微粒子と絶縁微粒子とが対向する電極間に並んでいると、接続信頼性が低くなることがある。なお、基材微粒子が表面に突起を有することにより、第2の態様及び第3の態様であっても、基材微粒子の金属表面が露出し易くなる。
The following three aspects are mentioned as the aspect which the metal surface of the said base material microparticles | fine-particles exposes.
In the first aspect, the insulating fine particles are melted by thermocompression bonding, and the metal surface of the substrate fine particles is exposed. In the second aspect, the insulating fine particles are deformed by thermocompression bonding, and the metal surfaces of the base material fine particles are exposed. The third aspect is an aspect in which the base material fine particles and the insulating fine particles are dissociated by thermocompression bonding, and the metal surface of the base material fine particles is exposed.
In particular, it is preferable that the metal surface of the base particle is exposed and conductively connected according to the second aspect.
In the case of the first aspect, the molten insulating fine particles may bleed out and contaminate the binder resin or the substrate. In addition, the coating layer that insulates adjacent coated conductive fine particles may melt, and sufficient insulation may not be obtained.
In the case of the third aspect, the connection reliability may be lowered if the base particle and the insulating particle are arranged between the facing electrodes during thermocompression bonding. In addition, when the substrate fine particles have protrusions on the surface, the metal surface of the substrate fine particles is easily exposed even in the second aspect and the third aspect.
基材微粒子の金属表面が露出して導電接続が行われる態様は、熱圧着条件等に影響されることがある。通常は、この態様は、基材微粒子の硬さと絶縁微粒子の硬さとの相対関係により制御ができる。ここで粒子の硬さとは、熱圧着条件下における相対的な硬さをいう。例えば、基材微粒子と比較して絶縁微粒子の軟化温度が低く、熱圧着条件下では絶縁微粒子のみが軟化する場合は、絶縁微粒子が軟らかいといえる。 The mode in which the metal surface of the substrate fine particles is exposed and conductive connection is made may be affected by the thermocompression bonding conditions and the like. Usually, this aspect can be controlled by the relative relationship between the hardness of the substrate fine particles and the hardness of the insulating fine particles. Here, the hardness of the particles refers to the relative hardness under thermocompression bonding conditions. For example, if the softening temperature of the insulating fine particles is lower than that of the base fine particles and only the insulating fine particles soften under the thermocompression bonding condition, it can be said that the insulating fine particles are soft.
なお、上記基材微粒子の金属表面を露出させるために、絶縁微粒子の被覆率が5〜50%であることが好ましい。絶縁微粒子の被覆率とは、基材微粒子の表面積全体に占める絶縁微粒子により被覆されている部分の面積の割合を意味する。絶縁微粒子の被覆率が5%未満であると隣接する被覆導電性微粒子同士の絶縁が充分ではないことがある。絶縁微粒子の被覆率が50%を超えると、第1の態様の場合では、隣接する被覆導電性微粒子間を絶縁する被覆層が溶融して充分な絶縁性を示さないことがある。第2の態様の場合では、絶縁微粒子が変形しても、基材微粒子の金属表面が充分に露出しないことがある。第3の態様の場合では、被覆導電性微粒子と電極との間に存在する絶縁微粒子を押し退ける必要がある。 In order to expose the metal surface of the substrate fine particles, the insulating fine particle coverage is preferably 5 to 50%. The coverage of insulating fine particles means the ratio of the area of the portion covered with the insulating fine particles to the entire surface area of the substrate fine particles. If the coverage of insulating fine particles is less than 5%, insulation between adjacent coated conductive fine particles may not be sufficient. When the coverage of the insulating fine particles exceeds 50%, in the case of the first aspect, the coating layer that insulates the adjacent coated conductive fine particles may melt and may not exhibit sufficient insulation. In the case of the second aspect, even if the insulating fine particles are deformed, the metal surface of the substrate fine particles may not be sufficiently exposed. In the case of the third aspect, it is necessary to push away the insulating fine particles existing between the coated conductive fine particles and the electrode.
本発明の被覆導電性微粒子を作製する方法として、上記突起を有する基材微粒子の表面に上記絶縁微粒子を接触させ化学結合させる方法が好ましい。例えば、有機溶剤又は水中において、導電性の金属表面を有する基材微粒子に絶縁微粒子をファンデルワールス力又は静電相互作用により凝集させる工程1と、導電性の金属表面を有する基材微粒子と絶縁微粒子とを化学結合させる工程2とを有する方法が好ましい。工程1の凝集法はヘテロ凝集法と呼ばれる方法である。ヘテロ凝集法を用いれば、溶媒効果により基材微粒子と絶縁微粒子との間の化学反応が迅速かつ確実に起こる。従来の高速攪拌機やハイブリダイザー等の乾式方法により、基材微粒子の表面に絶縁微粒子を導入すると、基材微粒子に圧力や摩擦熱等の負荷がかかりやすい。絶縁微粒子が基材微粒子より硬いと、基材微粒子に傷がついたり、金属層が剥離したりすることがある。また、絶縁微粒子が基材微粒子より柔らかいと、基材微粒子との衝突や摩擦熱により絶縁微粒子が変形することがある。
上記有機溶剤は、絶縁微粒子を溶解しない有機溶剤であれば特に限定されない。
As a method for producing the coated conductive fine particles of the present invention, a method in which the insulating fine particles are brought into contact with and chemically bonded to the surface of the substrate fine particles having the protrusions is preferable. For example, step 1 of aggregating insulating fine particles to base fine particles having a conductive metal surface in an organic solvent or water by van der Waals force or electrostatic interaction, and insulating the base fine particles having a conductive metal surface. A method including the step 2 of chemically bonding the fine particles is preferable. The aggregation method in Step 1 is a method called a heteroaggregation method. If the hetero-aggregation method is used, a chemical reaction between the substrate fine particles and the insulating fine particles occurs quickly and reliably due to the solvent effect. When insulating fine particles are introduced onto the surface of the base material fine particles by a conventional dry method such as a high-speed stirrer or a hybridizer, a load such as pressure or frictional heat is easily applied to the base material fine particles. If the insulating fine particles are harder than the substrate fine particles, the substrate fine particles may be damaged or the metal layer may be peeled off. If the insulating fine particles are softer than the base fine particles, the insulating fine particles may be deformed by collision with the base fine particles or frictional heat.
The organic solvent is not particularly limited as long as it does not dissolve the insulating fine particles.
本発明の被覆導電性微粒子は、基材微粒子の表面に絶縁微粒子が付着していることから、異方性導電材料として用いても、隣接する被覆導電性微粒子間で短絡が発生しにくい。更に、上記基材微粒子の表面に突起があることから、接続時に基材微粒子の金属表面が露出して確実に導通が得られる。また、基材微粒子と絶縁微粒子とが化学結合している場合、バインダー樹脂に混合しても、絶縁微粒子が剥がれ落ちにくい。 Since the coated conductive fine particles of the present invention have insulating fine particles attached to the surface of the substrate fine particles, even when used as an anisotropic conductive material, short-circuiting between adjacent coated conductive fine particles is unlikely to occur. Furthermore, since there are protrusions on the surface of the substrate fine particles, the metal surface of the substrate fine particles is exposed at the time of connection, and conduction can be reliably obtained. Further, when the base particles and the insulating particles are chemically bonded, the insulating particles are not easily peeled off even when mixed with the binder resin.
本発明の被覆導電性微粒子は、異方性導電材料、熱線反射材料、電磁波シールド材料等の用途に用いることができる。なかでも、本発明の被覆導電性微粒子は、絶縁性のバインダー樹脂中に分散させることにより異方性導電材料として好適に用いることができる。
本発明の被覆導電性微粒子が絶縁性のバインダー樹脂中に分散されてなる異方性導電材料もまた、本発明の1つである。
なお、本明細書において、異方性導電材料には、異方性導電膜、異方性導電ペースト、異
方性導電接着剤、異方性導電インク等が含まれる。
The coated conductive fine particles of the present invention can be used for applications such as anisotropic conductive materials, heat ray reflective materials, and electromagnetic shielding materials. Among these, the coated conductive fine particles of the present invention can be suitably used as an anisotropic conductive material by being dispersed in an insulating binder resin.
An anisotropic conductive material in which the coated conductive fine particles of the present invention are dispersed in an insulating binder resin is also one aspect of the present invention.
Note that in this specification, the anisotropic conductive material includes an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, an anisotropic conductive ink, and the like.
上記絶縁性のバインダー樹脂は、絶縁性であれば特に限定されないが、例えば、アクリル酸エステル、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体、スチレン−ブタジエンブロック共重合体の水添物、スチレン−イソプレンブロック共重合体、スチレン−イソプレンブロック共重合体の水添物、エポキシ樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂等が挙げられる。 The insulating binder resin is not particularly limited as long as it is insulative. For example, acrylic ester, ethylene-vinyl acetate resin, styrene-butadiene block copolymer, hydrogenated product of styrene-butadiene block copolymer, Examples thereof include styrene-isoprene block copolymers, hydrogenated products of styrene-isoprene block copolymers, epoxy resins, melamine resins, urea resins, and phenol resins.
本発明の異方性導電材料は、必須成分であるバインダー樹脂及び本発明の被覆導電性微粒子以外に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、難燃剤等の各種添加剤が添加されてもよい。 The anisotropic conductive material of the present invention, in addition to the binder resin as an essential component and the coated conductive fine particles of the present invention, as necessary, for example, in a range that does not hinder the achievement of the present invention, Various additives such as a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent, and a flame retardant may be added. .
本発明の異方性導電材料は、絶縁微粒子に含まれる官能基と、バインダー樹脂中の官能基とが化学結合することが好ましい。上記絶縁微粒子とバインダー樹脂とが化学結合することにより、バインダー樹脂中に分散された本発明の被覆導電性微粒子の安定性が優れる。また、熱溶融した絶縁微粒子がブリードアウトして電極や液晶を汚染することがない。その結果、長期的な接続の安定性や信頼性に優れる異方性導電材料が得られる。 In the anisotropic conductive material of the present invention, the functional group contained in the insulating fine particles and the functional group in the binder resin are preferably chemically bonded. By chemically bonding the insulating fine particles and the binder resin, the stability of the coated conductive fine particles of the present invention dispersed in the binder resin is excellent. In addition, the thermally melted insulating fine particles do not bleed out and contaminate the electrodes and the liquid crystal. As a result, an anisotropic conductive material having excellent long-term connection stability and reliability can be obtained.
上記バインダー樹脂中に本発明の被覆導電性微粒子を分散させる方法は特に限定されず、従来公知の分散方法を用いることができる。例えば、バインダー樹脂中に被覆導電性微粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、被覆導電性微粒子を水や有機溶剤中にホモジナイザー等を用いて均一に分散させた後、バインダー樹脂中へ添加し、プラネタリーミキサー等で混練して分散させる方法、バインダー樹脂を水や有機溶剤等で希釈した後、被覆導電性微粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等の機械的剪断力を付与する分散方法等が挙げられる。これらの分散方法は、単独で用いられてもよいし、併用されてもよい。 The method for dispersing the coated conductive fine particles of the present invention in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. For example, after adding the coated conductive fine particles in the binder resin, kneading and dispersing with a planetary mixer or the like, after uniformly dispersing the coated conductive fine particles in water or an organic solvent using a homogenizer or the like, Add into binder resin, knead and disperse with planetary mixer, etc., dilute binder resin with water or organic solvent, add coated conductive fine particles, knead and disperse with planetary mixer etc. Examples thereof include a dispersion method for applying a mechanical shearing force such as a method. These dispersion methods may be used alone or in combination.
上記異方性導電膜を作製する方法は特に限定されない。例えば、バインダー樹脂に溶媒を加え、更に本発明の被覆導電性微粒子を懸濁させ、懸濁液を作製する。この懸濁液を離型フィルム上に塗布して被膜を作り、被膜から溶媒を揮発させ、異方性導電膜を作製する方法等が挙げられる。 A method for producing the anisotropic conductive film is not particularly limited. For example, a solvent is added to the binder resin, and the coated conductive fine particles of the present invention are suspended to prepare a suspension. Examples include a method in which this suspension is applied onto a release film to form a film, and a solvent is volatilized from the film to prepare an anisotropic conductive film.
上記異方性導電ペーストは、例えば、異方性導電接着剤をペースト状にすることにより作製できる。異方性導電ペーストを、接続すべき電極上に所望の厚みに塗り、この上に対向電極を重ね合わせ、熱圧着して樹脂を硬化させる。 The anisotropic conductive paste can be produced, for example, by making an anisotropic conductive adhesive into a paste. An anisotropic conductive paste is applied on the electrode to be connected to a desired thickness, the counter electrode is overlaid thereon, and the resin is cured by thermocompression bonding.
上記異方性導電インクは、例えば、異方性導電接着剤に溶媒を加えて印刷に適した粘度に調整することにより、作製できる。異方性導電インクを電極上にスクリーン印刷し、その後溶媒を揮発させ、対向する電極を重ねて熱圧着することにより接続できる。 The anisotropic conductive ink can be produced, for example, by adding a solvent to the anisotropic conductive adhesive to adjust the viscosity to be suitable for printing. Connection can be made by screen-printing anisotropic conductive ink on the electrodes, then volatilizing the solvent, and overlapping the opposing electrodes and thermocompression bonding.
本発明の被覆導電性微粒子又は本発明の異方性導電材料によりICチップや基板等の電子部品が導電接続されている導電接続構造体もまた、本発明の1つである。 A conductive connection structure in which an electronic component such as an IC chip or a substrate is conductively connected by the coated conductive fine particles of the present invention or the anisotropic conductive material of the present invention is also one aspect of the present invention.
本発明によれば、接続信頼性に優れた被覆導電性微粒子、異方性導電材料、及び、導電接続構造体を提供できる。 According to the present invention, it is possible to provide coated conductive fine particles, an anisotropic conductive material, and a conductive connection structure excellent in connection reliability.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(無電解メッキ前処理工程)
テトラメチロールメタンテトラアクリレート50重量部とジビニルベンゼン50重量部とを共重合させ、樹脂微粒子(平均粒子径3μm)を作製した。樹脂微粒子10gの表面にパラジウム触媒を付与した。
Example 1
(Electroless plating pretreatment process)
50 parts by weight of tetramethylol methane tetraacrylate and 50 parts by weight of divinylbenzene were copolymerized to prepare resin fine particles (average particle size 3 μm). A palladium catalyst was applied to the surface of 10 g of resin fine particles.
(芯物質複合化工程)
パラジウム触媒が付与された樹脂微粒子10gをイオン交換水300mLに分散させ、水溶液を作製した。水溶液に金属ニッケル粒子(平均粒子径50nm)1gを3分間かけて添加し、金属ニッケル粒子が付着した樹脂微粒子を作製した。
(Core material compounding process)
10 g of resin fine particles provided with a palladium catalyst were dispersed in 300 mL of ion-exchanged water to prepare an aqueous solution. 1 g of metallic nickel particles (average particle diameter 50 nm) was added to the aqueous solution over 3 minutes to prepare resin fine particles to which the metallic nickel particles adhered.
(無電解ニッケルメッキ工程)
金属ニッケル粒子が付着した樹脂微粒子を、イオン交換水1200mLに分散させ、メッキ安定剤4mLを添加し、懸濁液を作製した。懸濁液に、硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを、81mL/分の添加速度で定量ポンプを通して添加した。その後、メッキ液のpHが安定するまで攪拌し、水素の発泡が停止するまで、無電解メッキ前期工程を行った。
(Electroless nickel plating process)
The resin fine particles to which the metallic nickel particles were adhered were dispersed in 1200 mL of ion exchange water, and 4 mL of a plating stabilizer was added to prepare a suspension. To the suspension, 120 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 6 mL plating stabilizer was added through a metering pump at an addition rate of 81 mL / min. Thereafter, the plating solution was stirred until the pH of the plating solution was stabilized, and the electroless plating first stage step was performed until hydrogen bubbling stopped.
次いで、メッキ液に、硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その後、メッキ液のpHが安定するまで攪拌し、水素の発泡が停止するまで、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、得られた粒子を水で洗浄した後、真空乾燥機で乾燥して、0.1μmのニッケル層が形成された導電性微粒子を作製した。
Next, 650 mL of a mixed solution of nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, and plating stabilizer 35 mL was added to the plating solution through a metering pump at an addition rate of 27 mL / min. Then, it stirred until the pH of plating solution was stabilized, and the electroless-plating late process was performed until hydrogen foaming stopped.
Next, the plating solution was filtered, and the resulting particles were washed with water and then dried with a vacuum dryer to produce conductive fine particles on which a 0.1 μm nickel layer was formed.
(金メッキ工程)
ニッケル層が形成された導電性微粒子を置換金メッキし、ニッケル層の表面に0.03μmの金層が形成された導電性微粒子を作製した。なお、置換金メッキ後のニッケル層の厚さは0.07μmであった。
(Gold plating process)
The conductive fine particles on which the nickel layer was formed were subjected to substitution gold plating to produce conductive fine particles in which a gold layer of 0.03 μm was formed on the surface of the nickel layer. In addition, the thickness of the nickel layer after substitution gold plating was 0.07 micrometer.
(絶縁微粒子の作製)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた1000mLのセパラブルフラスコに、メタクリル酸グリシジル20mmol、メタクリル酸メチル180mmol、ジメタクリル酸エチレングリコール6mmol、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩1mmol、2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミノ]ジプロパン}1mmolを含有するモノマー組成物を作製した。モノマー組成物の固形分率が5重量%となるようにイオン交換水に分散させた後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合した。反応終了後、凍結乾燥して、表面にスルホニウム基及びエポキシ基を有する平均直径240nm、粒子径のCV値7%の絶縁微粒子を作製した。
(Preparation of insulating fine particles)
A 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, condenser, temperature probe, glycidyl methacrylate 20 mmol, methyl methacrylate 180 mmol, dimethacrylic acid ethylene glycol 6 mmol, phenyldimethylsulfonium methacrylate A monomer composition containing 1 mmol of methyl sulfate and 1 mmol of 2,2′-azobis {2- [N- (2-carboxyethyl) amino] dipropane} was prepared. After being dispersed in ion-exchanged water so that the solid content of the monomer composition was 5% by weight, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, the mixture was freeze-dried to produce insulating fine particles having a sulfonium group and an epoxy group on the surface, an average diameter of 240 nm, and a CV value of 7%.
(被覆導電性微粒子の製造)
絶縁微粒子を超音波照射下でイオン交換水に分散させ、10重量%の絶縁微粒子分散液を作製した。
ニッケル層の表面に金層が形成された導電性微粒子10gをイオン交換水500mLに分散させ、10重量%の絶縁微粒子分散液4gを添加し、室温で6時間攪拌した。分散液を3μmのメッシュフィルターで濾過し、得られた粒子を水で洗浄した後、真空乾燥機で乾燥して、被覆導電性微粒子を作製した。
(Manufacture of coated conductive fine particles)
Insulating fine particles were dispersed in ion-exchanged water under ultrasonic irradiation to prepare a 10 wt% insulating fine particle dispersion.
10 g of conductive fine particles having a gold layer formed on the surface of the nickel layer were dispersed in 500 mL of ion-exchanged water, 4 g of 10 wt% insulating fine particle dispersion was added, and the mixture was stirred at room temperature for 6 hours. The dispersion was filtered through a 3 μm mesh filter, and the resulting particles were washed with water and then dried in a vacuum dryer to produce coated conductive fine particles.
走査電子顕微鏡(SEM)により観察したところ、被覆導電性微粒子は、突起を有する基材微粒子の表面に、絶縁微粒子の被覆層が1層のみ形成されていた。画像解析により被覆導電性微粒子の中心より2.5μmの面積に対する絶縁微粒子の被覆面積(即ち絶縁微粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), the coated conductive fine particles had only one insulating fine particle coating layer formed on the surface of the substrate fine particles having protrusions. When the coated area of the insulating fine particles (that is, the projected area of the particle diameter of the insulating fine particles) with respect to the area of 2.5 μm from the center of the coated conductive fine particles was calculated by image analysis, the coverage was 30%.
また、得られた被覆導電性微粒子の表面に形成された突起の高さは、55nmであった。
上記突起の高さは、以下の方法で算出できる。被覆導電性微粒子50個を走査型電子顕微鏡で観察し、観察された被覆導電性微粒子の周縁部の突起すべての高さを測定する。突起が形成されていない金属表面を基準表面として、突起の高さを測定し、測定値を算術平均することにより、上記突起の高さを算出した。
Further, the height of the protrusion formed on the surface of the obtained coated conductive fine particle was 55 nm.
The height of the protrusion can be calculated by the following method. Fifty coated conductive fine particles are observed with a scanning electron microscope, and the heights of all the protrusions at the peripheral edge of the observed coated conductive fine particles are measured. The height of the protrusion was calculated by measuring the height of the protrusion using the metal surface on which the protrusion was not formed as a reference surface, and arithmetically averaging the measured values.
得られた被覆導電性微粒子をt−ブチルアルコールに分散し、10mm×10mmのシリコンウエハ上に乾燥後の被覆導電性微粒子の重量が0.00004g(約24万個)となるように塗布した。t−ブチルアルコールを揮発させた後、10mm×10mmのシリコンウエハをかぶせ、100Nの加圧下、200℃で30秒間加熱した。その後、シリコンウエハを剥がし、走査電子顕微鏡(SEM)により被覆導電性微粒子の表面の絶縁微粒子を観察した。溶融した絶縁微粒子を押し退けて基材微粒子の突起が露出していたことが確認された。 The obtained coated conductive fine particles were dispersed in t-butyl alcohol and coated on a 10 mm × 10 mm silicon wafer so that the weight of the coated conductive fine particles after drying was 0.00004 g (about 240,000 particles). After volatilizing t-butyl alcohol, a silicon wafer of 10 mm × 10 mm was covered and heated at 200 ° C. for 30 seconds under a pressure of 100 N. Thereafter, the silicon wafer was peeled off, and the insulating fine particles on the surface of the coated conductive fine particles were observed with a scanning electron microscope (SEM). It was confirmed that protrusions of the substrate fine particles were exposed by pushing away the molten insulating fine particles.
(実施例2〜6)
突起の高さ、及び、絶縁微粒子の直径を表1の値に調整したこと以外は、実施例1と同様にして被覆導電性微粒子を作製した。
(Examples 2 to 6)
Coated conductive fine particles were produced in the same manner as in Example 1 except that the height of the protrusions and the diameter of the insulating fine particles were adjusted to the values shown in Table 1.
(実施例7)
(被覆導電性微粒子の製造)
実施例1と同様にして得られた絶縁微粒子を超音波照射下でイオン交換水に分散させ、10重量%の絶縁微粒子分散液を作製した。
実施例1と同様にして得られた0.1μmのニッケル層が形成された導電性微粒子10gをイオン交換水500mLに分散させ、10重量%の絶縁微粒子分散液4gを添加し、室温で6時間攪拌した。分散液を3μmのメッシュフィルターで濾過し、得られた粒子を水で洗浄した後、真空乾燥機で乾燥して、被覆導電性微粒子を作製した。
得られた被覆導電性微粒子について、実施例1と同様にして測定した結果、被覆率は30%、表面に形成された突起の高さは55nmであった。
(Example 7)
(Manufacture of coated conductive fine particles)
The insulating fine particles obtained in the same manner as in Example 1 were dispersed in ion-exchanged water under ultrasonic irradiation to prepare a 10% by weight insulating fine particle dispersion.
Conductive fine particles 10 g formed with a 0.1 μm nickel layer formed in the same manner as in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of 10 wt% insulating fine particle dispersion was added, and the mixture was heated at room temperature for 6 hours. Stir. The dispersion was filtered through a 3 μm mesh filter, and the resulting particles were washed with water and then dried in a vacuum dryer to produce coated conductive fine particles.
The obtained coated conductive fine particles were measured in the same manner as in Example 1. As a result, the coverage was 30%, and the height of the protrusion formed on the surface was 55 nm.
得られた被覆導電性微粒子をt−ブチルアルコールに分散し、10mm×10mmのシリコンウエハ上に乾燥後の被覆導電性微粒子の重量が0.00004g(約24万個)となるように塗布した。t−ブチルアルコールを揮発させた後、10mm×10mmのシリコンウエハをかぶせ、100Nの加圧下、200℃で30秒間加熱した。その後、シリコンウエハを剥がし、走査電子顕微鏡(SEM)により被覆導電性微粒子の表面の絶縁微粒子を観察した。溶融した絶縁微粒子を押し退けて基材微粒子の突起が露出していたことが確認された。 The obtained coated conductive fine particles were dispersed in t-butyl alcohol and coated on a 10 mm × 10 mm silicon wafer so that the weight of the coated conductive fine particles after drying was 0.00004 g (about 240,000 particles). After volatilizing t-butyl alcohol, a silicon wafer of 10 mm × 10 mm was covered and heated at 200 ° C. for 30 seconds under a pressure of 100 N. Thereafter, the silicon wafer was peeled off, and the insulating fine particles on the surface of the coated conductive fine particles were observed with a scanning electron microscope (SEM). It was confirmed that protrusions of the substrate fine particles were exposed by pushing away the molten insulating fine particles.
(実施例8〜12)
突起の高さ、及び、絶縁微粒子の直径を表1の値に調整したこと以外は、実施例7と同様にして被覆導電性微粒子を作製した。
(Examples 8 to 12)
Coated conductive fine particles were produced in the same manner as in Example 7 except that the height of the protrusions and the diameter of the insulating fine particles were adjusted to the values shown in Table 1.
(実施例13)
(無電解パラジウムメッキ工程)
実施例1と同様にして得られた0.07μmのニッケル層が形成された導電性微粒子10gを、超音波処理機により、イオン交換水500mLに分散させ、粒子懸濁液を得た。この懸濁液を50℃で攪拌しながら、硫酸パラジウム0.02mol/L、錯化剤としてエチレンジアミン0.04mol/L、還元剤として蟻酸ナトリウム0.06mol/L及び結晶調整剤を含むpH10.0の無電解メッキ液を徐々に添加し、無電解パラジウムメッキを行った。パラジウム層の厚みが0.03μmになった時点で無電解パラジウムメッキを終了した。次に、洗浄し、真空乾燥することにより、ニッケル層の表面にパラジウム層が形成された導電性微粒子を得た。
(Example 13)
(Electroless palladium plating process)
10 g of conductive fine particles formed with a nickel layer of 0.07 μm obtained in the same manner as in Example 1 were dispersed in 500 mL of ion-exchanged water using an ultrasonic processor to obtain a particle suspension. While stirring the suspension at 50 ° C., 0.02 mol / L of palladium sulfate, 0.04 mol / L of ethylenediamine as a complexing agent, 0.06 mol / L of sodium formate as a reducing agent, and pH 10.0 containing a crystal modifier. The electroless plating solution was gradually added to perform electroless palladium plating. When the thickness of the palladium layer reached 0.03 μm, the electroless palladium plating was finished. Next, by washing and vacuum drying, conductive fine particles having a palladium layer formed on the surface of the nickel layer were obtained.
(被覆導電性微粒子の製造)
実施例1と同様にして得られた絶縁微粒子を超音波照射下でイオン交換水に分散させ、10重量%の絶縁微粒子分散液を作製した。
ニッケル層の表面にパラジウム層が形成された導電性微粒子10gをイオン交換水500mLに分散させ、10重量%の絶縁微粒子分散液4gを添加し、室温で6時間攪拌した。分散液を3μmのメッシュフィルターで濾過し、得られた粒子を水で洗浄した後、真空乾燥機で乾燥して、被覆導電性微粒子を作製した。
(Manufacture of coated conductive fine particles)
The insulating fine particles obtained in the same manner as in Example 1 were dispersed in ion-exchanged water under ultrasonic irradiation to prepare a 10% by weight insulating fine particle dispersion.
10 g of conductive fine particles having a palladium layer formed on the surface of the nickel layer were dispersed in 500 mL of ion-exchanged water, 4 g of 10 wt% insulating fine particle dispersion was added, and the mixture was stirred at room temperature for 6 hours. The dispersion was filtered through a 3 μm mesh filter, and the resulting particles were washed with water and then dried in a vacuum dryer to produce coated conductive fine particles.
得られた被覆導電性微粒子について、実施例1と同様にして測定した結果、被覆率は30%、表面に形成された突起の高さは55nmであった。 The obtained coated conductive fine particles were measured in the same manner as in Example 1. As a result, the coverage was 30%, and the height of the protrusion formed on the surface was 55 nm.
得られた被覆導電性微粒子をt−ブチルアルコールに分散し、10mm×10mmのシリコンウエハ上に乾燥後の被覆導電性微粒子の重量が0.00004g(約24万個)となるように塗布した。t−ブチルアルコールを揮発させた後、10mm×10mmのシリコンウエハをかぶせ、100Nの加圧下、200℃で30秒間加熱した。その後、シリコンウエハを剥がし、走査電子顕微鏡(SEM)により被覆導電性微粒子の表面の絶縁微粒子を観察した。溶融した絶縁微粒子を押し退けて基材微粒子の突起が露出していたことが確認された。 The obtained coated conductive fine particles were dispersed in t-butyl alcohol and coated on a 10 mm × 10 mm silicon wafer so that the weight of the coated conductive fine particles after drying was 0.00004 g (about 240,000 particles). After volatilizing t-butyl alcohol, a silicon wafer of 10 mm × 10 mm was covered and heated at 200 ° C. for 30 seconds under a pressure of 100 N. Thereafter, the silicon wafer was peeled off, and the insulating fine particles on the surface of the coated conductive fine particles were observed with a scanning electron microscope (SEM). It was confirmed that protrusions of the substrate fine particles were exposed by pushing away the molten insulating fine particles.
(実施例14〜18)
突起の高さ、及び、絶縁微粒子の直径を表1の値に調整したこと以外は、実施例13と同様にして被覆導電性微粒子を作製した。
(Examples 14 to 18)
Coated conductive fine particles were produced in the same manner as in Example 13 except that the height of the protrusions and the diameter of the insulating fine particles were adjusted to the values shown in Table 1.
(比較例1〜7、11)
突起の高さ、及び、絶縁微粒子の直径を表2の値に調整したこと以外は、実施例1と同様にして被覆導電性微粒子を作製した。
(Comparative Examples 1-7, 11)
Coated conductive fine particles were produced in the same manner as in Example 1 except that the height of the protrusions and the diameter of the insulating fine particles were adjusted to the values shown in Table 2.
(比較例8)
(無電解メッキ前処理工程)
テトラメチロールメタンテトラアクリレート50重量部とジビニルベンゼン50重量部とを共重合させ、樹脂微粒子(平均粒子径3μm)を作製した。
(Comparative Example 8)
(Electroless plating pretreatment process)
50 parts by weight of tetramethylol methane tetraacrylate and 50 parts by weight of divinylbenzene were copolymerized to prepare resin fine particles (average particle size 3 μm).
(無電解ニッケルメッキ工程)
得られた樹脂微粒子を、イオン交換水1200mLに分散させ、メッキ安定剤4mLを添加し、懸濁液を作製した。懸濁液に、硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを、81mL/分の添加速度で定量ポンプを通して添加した。その後、メッキ液のpHが安定するまで攪拌し、水素の発泡が停止するまで、無電解メッキ前期工程を行った。
(Electroless nickel plating process)
The obtained resin fine particles were dispersed in 1200 mL of ion exchange water, and 4 mL of a plating stabilizer was added to prepare a suspension. To the suspension, 120 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 6 mL plating stabilizer was added through a metering pump at an addition rate of 81 mL / min. Thereafter, the plating solution was stirred until the pH of the plating solution was stabilized, and the electroless plating first stage step was performed until hydrogen bubbling stopped.
次いで、メッキ液に、硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その後、メッキ液のpHが安定するまで攪拌し、水素の発泡が停止するまで、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、得られた粒子を水で洗浄した後、真空乾燥機で乾燥して、0.1μmのニッケル層が形成された導電性微粒子(突起無し)を作製した。
Next, 650 mL of a mixed solution of nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, and plating stabilizer 35 mL was added to the plating solution through a metering pump at an addition rate of 27 mL / min. Then, it stirred until the pH of plating solution was stabilized, and the electroless-plating late process was performed until hydrogen foaming stopped.
Next, the plating solution was filtered, and the resulting particles were washed with water and then dried with a vacuum dryer to produce conductive fine particles (no protrusions) on which a 0.1 μm nickel layer was formed.
(金メッキ工程)
ニッケル層が形成された導電性微粒子(突起無し)を置換金メッキし、ニッケル層の表面に0.03μmの金層が形成された導電性微粒子(突起無し)を作製した。なお、置換金メッキ後のニッケル層の厚さは0.07μmであった。
(Gold plating process)
Conductive fine particles (with no protrusions) on which the nickel layer was formed were plated by substitution gold to produce conductive fine particles (with no protrusions) on which a 0.03 μm gold layer was formed on the surface of the nickel layer. In addition, the thickness of the nickel layer after substitution gold plating was 0.07 micrometer.
(被覆導電性微粒子の製造)
実施例1と同様にして得られた絶縁微粒子を超音波照射下でイオン交換水に分散させ、10重量%の絶縁微粒子分散液を作製した。
ニッケル層の表面に金層が形成された導電性微粒子(突起無し)10gをイオン交換水500mLに分散させ、10重量%の絶縁微粒子分散液4gを添加し、室温で6時間攪拌した。分散液を3μmのメッシュフィルターで濾過し、得られた粒子を水で洗浄した後、真空乾燥機で乾燥して、被覆導電性微粒子(突起無し)を作製した。
(Manufacture of coated conductive fine particles)
The insulating fine particles obtained in the same manner as in Example 1 were dispersed in ion-exchanged water under ultrasonic irradiation to prepare a 10% by weight insulating fine particle dispersion.
10 g of conductive fine particles (no protrusions) having a gold layer formed on the surface of the nickel layer were dispersed in 500 mL of ion-exchanged water, 4 g of 10 wt% insulating fine particle dispersion was added, and stirred at room temperature for 6 hours. The dispersion was filtered through a 3 μm mesh filter, and the resulting particles were washed with water and then dried in a vacuum dryer to produce coated conductive fine particles (no protrusions).
(比較例9、10)
絶縁微粒子の直径を表2の値に調整したこと以外は、比較例8と同様にして被覆導電性微粒子(突起無し)を作製した。
(Comparative Examples 9 and 10)
Coated conductive fine particles (no protrusions) were produced in the same manner as in Comparative Example 8 except that the diameter of the insulating fine particles was adjusted to the values shown in Table 2.
(比較例12〜15)
突起の高さ、及び、絶縁微粒子の直径を表2の値に調整したこと以外は、実施例7と同様にして被覆導電性微粒子を作製した。
(Comparative Examples 12-15)
Coated conductive fine particles were produced in the same manner as in Example 7 except that the height of the protrusions and the diameter of the insulating fine particles were adjusted to the values shown in Table 2.
(比較例16〜18)
突起の高さ、及び、絶縁微粒子の直径を表2の値に調整したこと以外は、実施例13と同様にして被覆導電性微粒子を作製した。
(Comparative Examples 16-18)
Coated conductive fine particles were produced in the same manner as in Example 13 except that the height of the protrusions and the diameter of the insulating fine particles were adjusted to the values shown in Table 2.
<評価>
実施例及び比較例で得られた被覆導電性微粒子について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about the covering electroconductive fine particles obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)異方性導電膜の作製
バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合し、混合物を得た。得られた混合物を、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを揮発させて接着性フィルム1を得た。
次いで、バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、被覆導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合し、混合物を得た。得られた混合物を、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを揮発させて導電性微粒子を含有する接着性フィルム2をそれぞれ得た。なお、接着性フィルム2における導電性微粒子の含有量は20万個/cm2となるように調整した。
得られた接着性フィルム1と接着性フィルム2とを常温でラミネートし、2層構造を有する厚さ17μmの異方性導電膜を得た。
なお、被覆導電性微粒子を含有した混合物の一部をトルエンで洗浄し、被覆導電性微粒子を取り出した。次いで、被覆導電性微粒子をSEMにより観察したところ、絶縁微粒子は、被覆導電性微粒子から剥離していなかった。
(1) Production of anisotropic conductive film 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a binder resin The mixture was sufficiently mixed using a stirrer to obtain a mixture. The obtained mixture was applied onto a release film so that the thickness after drying was 10 μm, and toluene was volatilized to obtain an adhesive film 1.
Next, coated conductive fine particles are added to 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a binder resin, and planetary type The mixture was sufficiently mixed using a stirrer to obtain a mixture. The obtained mixture was applied onto a release film so that the thickness after drying was 7 μm, and toluene was volatilized to obtain adhesive films 2 containing conductive fine particles. The content of conductive fine particles in the adhesive film 2 was adjusted to 200,000 particles / cm 2 .
The obtained adhesive film 1 and adhesive film 2 were laminated at room temperature to obtain a 17 μm thick anisotropic conductive film having a two-layer structure.
A part of the mixture containing the coated conductive fine particles was washed with toluene, and the coated conductive fine particles were taken out. Next, when the coated conductive fine particles were observed by SEM, the insulating fine particles were not peeled off from the coated conductive fine particles.
(2)導電性評価
得られた異方性導電膜を3cm×4cmの大きさに切断した。切断した異方性導電膜を、一方に抵抗測定用の引き回し線を有したアルミニウム電極(高さ0.2μm、L/S=20μm/20μm)を有するガラス基板(幅3cm、長さ4cm)のアルミニウム電極側のほぼ中央に貼り付けた。次いで、同じアルミニウム電極を有するガラス基板(幅3cm、長さ4cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板の積層体を、10N、100℃の圧着条件で熱圧着し、導電接続構造体を得た。得られた導電接続構造体の対向する電極間の接続抵抗値を4端子法により測定した。導電性評価は以下の基準で行った。
◎:接続抵抗値が5Ω未満であった
○:接続抵抗値が10Ω未満5Ω以上であった
×:接続抵抗値が10Ω以上であった
(2) Conductivity evaluation The obtained anisotropic conductive film was cut into a size of 3 cm × 4 cm. The cut anisotropic conductive film is formed on a glass substrate (width 3 cm, length 4 cm) having an aluminum electrode (height 0.2 μm, L / S = 20 μm / 20 μm) having a resistance measurement lead wire on one side. Affixed almost at the center on the aluminum electrode side. Next, a glass substrate (width 3 cm, length 4 cm) having the same aluminum electrode was aligned and aligned so that the electrodes overlap each other. This laminated body of glass substrates was thermocompression bonded under pressure bonding conditions of 10N and 100 ° C. to obtain a conductive connection structure. The connection resistance value between the opposing electrodes of the obtained conductive connection structure was measured by a four-terminal method. Conductivity evaluation was performed according to the following criteria.
◎: Connection resistance value was less than 5Ω ○: Connection resistance value was less than 10Ω and 5Ω or more ×: Connection resistance value was 10Ω or more
(3)絶縁性評価
得られた導電接続構造体の隣接する電極間の絶縁性を評価した。絶縁性評価は以下の基準で行った。
○:隣接する電極間に短絡が確認されなかった
×:隣接する電極間に短絡が確認された
(3) Evaluation of insulation The insulation between adjacent electrodes of the obtained conductive connection structure was evaluated. The insulation evaluation was performed according to the following criteria.
○: Short circuit was not confirmed between adjacent electrodes ×: Short circuit was confirmed between adjacent electrodes
本発明によれば、接続信頼性に優れた被覆導電性微粒子、異方性導電材料、及び、導電接続構造体を提供できる。 According to the present invention, it is possible to provide coated conductive fine particles, an anisotropic conductive material, and a conductive connection structure excellent in connection reliability.
Claims (5)
前記基材微粒子は、表面に突起を有し、前記絶縁微粒子の直径が200〜500nmであり、前記突起の高さは、50nm以上であり、かつ、前記絶縁微粒子の直径より100nm以上小さいものであり、
前記絶縁微粒子は、金属表面に結合性を有する官能基(A)を介して、金属表面に化学結合することにより単層の被覆層を形成している
ことを特徴とする被覆導電性微粒子。 Coated conductive fine particles, in which insulating fine particles are attached to the surface of the substrate fine particles having a conductive metal surface,
The substrate fine particles have protrusions on the surface, the diameter of the insulating fine particles is 200 to 500 nm, the height of the protrusions is 50 nm or more, and 100 nm or more smaller than the diameter of the insulating fine particles. Yes,
The insulating fine particles through a functional group (A) capable of binding to the metal surface, the Kutsugaeshirube conductive fine particles you characterized by forming a coating layer of a single layer by a chemical bond to the metal surface .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009072420A JP5395482B2 (en) | 2008-03-25 | 2009-03-24 | Coated conductive fine particles, anisotropic conductive material, and conductive connection structure |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008078185 | 2008-03-25 | ||
JP2008078185 | 2008-03-25 | ||
JP2009072420A JP5395482B2 (en) | 2008-03-25 | 2009-03-24 | Coated conductive fine particles, anisotropic conductive material, and conductive connection structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009259804A JP2009259804A (en) | 2009-11-05 |
JP5395482B2 true JP5395482B2 (en) | 2014-01-22 |
Family
ID=41386926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009072420A Active JP5395482B2 (en) | 2008-03-25 | 2009-03-24 | Coated conductive fine particles, anisotropic conductive material, and conductive connection structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5395482B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8530559B2 (en) | 2010-03-24 | 2013-09-10 | Dic Corporation | Composite of organic compound and copper nanoparticles, composite of organic compound and copper(I) oxide nanoparticles, and methods for producing the composites |
KR20130018276A (en) | 2010-03-31 | 2013-02-20 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Electronic articles for displays and methods of making same |
JP5498907B2 (en) * | 2010-09-29 | 2014-05-21 | 株式会社日本触媒 | Resin particles, insulated conductive particles and anisotropic conductive materials using the same |
JP5576231B2 (en) * | 2010-09-30 | 2014-08-20 | 積水化学工業株式会社 | Conductive particles, anisotropic conductive materials, and connection structures |
KR101151366B1 (en) | 2011-11-24 | 2012-06-08 | 한화케미칼 주식회사 | Conductive particles and method for preparing the same |
JP6577698B2 (en) * | 2013-05-14 | 2019-09-18 | 積水化学工業株式会社 | Conductive film and connection structure |
WO2015001717A1 (en) * | 2013-07-01 | 2015-01-08 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
JP6431411B2 (en) * | 2014-03-10 | 2018-11-28 | 積水化学工業株式会社 | Conductive particles with insulating particles, conductive material, and connection structure |
JP6577723B2 (en) * | 2014-03-10 | 2019-09-18 | 積水化学工業株式会社 | Conductive particles with insulating particles, conductive material, and connection structure |
JP6564302B2 (en) * | 2014-10-28 | 2019-08-21 | 積水化学工業株式会社 | Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4387175B2 (en) * | 2003-07-07 | 2009-12-16 | 積水化学工業株式会社 | Coated conductive particles, anisotropic conductive material, and conductive connection structure |
JP4313664B2 (en) * | 2003-12-11 | 2009-08-12 | 積水化学工業株式会社 | Protruding conductive particles, coated conductive particles, and anisotropic conductive material |
JP2006269296A (en) * | 2005-03-24 | 2006-10-05 | Sekisui Chem Co Ltd | Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material |
-
2009
- 2009-03-24 JP JP2009072420A patent/JP5395482B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009259804A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5395482B2 (en) | Coated conductive fine particles, anisotropic conductive material, and conductive connection structure | |
JP4773685B2 (en) | Coated conductive fine particles, method for producing coated conductive fine particles, anisotropic conductive material, and conductive connection structure | |
JP4387175B2 (en) | Coated conductive particles, anisotropic conductive material, and conductive connection structure | |
JP4563110B2 (en) | Method for producing conductive fine particles | |
JP4991666B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
JP5368760B2 (en) | Insulating coating conductive particles, anisotropic conductive material, and connection structure | |
JP4686120B2 (en) | Coated conductive particles, anisotropic conductive material, and conductive connection structure | |
TW201841170A (en) | Conductive particles, conductive material, and connection structure | |
JP5476210B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
JP5476221B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
JP6431411B2 (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
JP5940760B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
JP5091416B2 (en) | Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material | |
JP7412100B2 (en) | Conductive particles with insulating particles, conductive materials and connected structures | |
JP2012004033A (en) | Conductive particles, anisotropic conductive material and connection structure | |
JP6577723B2 (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
JP2020113545A (en) | Conductive particle, conductive material and connection structure | |
JP7312109B2 (en) | Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure | |
JP7312108B2 (en) | Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure | |
WO2011111152A1 (en) | Electroconductive particle, anisotropic electroconductive material and connecting structure | |
JP7271543B2 (en) | Conductive particles with insulating particles, conductive materials and connection structures | |
JP6441555B2 (en) | Conductive particles, conductive materials, and connection structures | |
JP7235611B2 (en) | Conductive materials and connecting structures | |
JP7077963B2 (en) | Insulation coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure and method for manufacturing connection structure | |
KR20240006491A (en) | Conductive particles, conductive materials and connection structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131018 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5395482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |