JP5368760B2 - Insulating coating conductive particles, anisotropic conductive material, and connection structure - Google Patents
Insulating coating conductive particles, anisotropic conductive material, and connection structure Download PDFInfo
- Publication number
- JP5368760B2 JP5368760B2 JP2008251055A JP2008251055A JP5368760B2 JP 5368760 B2 JP5368760 B2 JP 5368760B2 JP 2008251055 A JP2008251055 A JP 2008251055A JP 2008251055 A JP2008251055 A JP 2008251055A JP 5368760 B2 JP5368760 B2 JP 5368760B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- conductive particles
- insulating
- fine particles
- insulating fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Combinations Of Printed Boards (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、強いせん断力を加える過酷な条件の前処理工程を行なっても絶縁性微粒子が剥離しにくく、ファインピッチ仕様の微細な回路電極部材同士を接続したときに接続部分の充分に低い抵抗値と隣接する回路電極間の優れた絶縁性とを両立することができる絶縁被覆導電性粒子に関する。 The present invention makes it difficult for the insulating fine particles to be peeled off even when a pretreatment step under severe conditions in which a strong shearing force is applied, and the resistance of the connection portion is sufficiently low when connecting fine circuit electrode members of fine pitch specifications. The present invention relates to an insulating coated conductive particle capable of achieving both a value and an excellent insulating property between adjacent circuit electrodes.
液晶ディスプレイ用ガラスパネルに液晶駆動用ICを実装する回路接続材料として、バインダー樹脂中に導電性粒子を分散させた異方性導電材料が用いられている。
近年の液晶表示の高精細化に伴い、液晶駆動用ICの電極であるバンプや、フレキシブルプリント回路基板の金属配線等のピッチが狭くなり、電極の面積が小さくなっている。このため、従来の異方性導電材料では接続すべき回路電極間に介在する導電性粒子の数が不足するため、接続部分の抵抗値が高くなるという問題が生じることがあった。
An anisotropic conductive material in which conductive particles are dispersed in a binder resin is used as a circuit connection material for mounting a liquid crystal driving IC on a glass panel for a liquid crystal display.
With the recent increase in definition of liquid crystal displays, the pitch of bumps, which are electrodes of liquid crystal driving ICs, and metal wirings of flexible printed circuit boards has become narrower, and the area of the electrodes has become smaller. For this reason, in the conventional anisotropic conductive material, since the number of conductive particles interposed between circuit electrodes to be connected is insufficient, there is a problem that the resistance value of the connection portion becomes high.
このような問題を防ぐために、異方性導電材料中の導電性粒子の含有量を多くすることが考えられる。しかし、導電性粒子の含有量を多くすると、隣接する回路電極間の絶縁性が低下するおそれがある。
そこで接続部分の抵抗値を低減し、かつ、隣接する回路電極間の絶縁性を確保するために、導電性粒子の表面を絶縁体で被覆した絶縁被覆導電性粒子を用いた異方性導電材料が提案されている。
In order to prevent such problems, it is conceivable to increase the content of conductive particles in the anisotropic conductive material. However, when the content of conductive particles is increased, the insulation between adjacent circuit electrodes may be reduced.
Therefore, in order to reduce the resistance value of the connection portion and ensure the insulation between the adjacent circuit electrodes, the anisotropic conductive material using the insulating coated conductive particles whose surface is coated with an insulator. Has been proposed.
導電性粒子の表面を絶縁体で被覆する方法として、例えば特許文献1には、導電性粒子の存在下で界面重合、懸濁重合、乳化重合等を行い、樹脂により導電性粒子を被覆する方法が記載されている。
特許文献2には、樹脂溶液中へ導電性粒子を分散した後、乾燥させるディッピング法が記載されている。
特許文献3、4には、スプレードライ法やハイブリダイゼーション法により、導電性粒子の表面に絶縁性樹脂や絶縁性微粒子を付着させる方法が記載されている。
その他にも、真空蒸着等により導電性粒子の表面を絶縁体で被覆する方法が考えられる。
As a method of coating the surface of the conductive particles with an insulator, for example, Patent Document 1 discloses a method in which interfacial polymerization, suspension polymerization, emulsion polymerization, or the like is performed in the presence of conductive particles, and the conductive particles are coated with a resin. Is described.
Patent Document 2 describes a dipping method in which conductive particles are dispersed in a resin solution and then dried.
Patent Documents 3 and 4 describe a method of attaching an insulating resin or insulating fine particles to the surface of conductive particles by a spray drying method or a hybridization method.
In addition, a method of covering the surface of the conductive particles with an insulator by vacuum deposition or the like is conceivable.
しかしながら、特許文献1〜4に記載された方法では、絶縁被覆層の厚さを一定にすることが困難であるという問題があった。例えば、特許文献3、4に記載されたハイブリダイゼーション法では、導電性粒子の表面に被覆層となる絶縁性微粒子を物理的な力で付着させる。ハイブリダイゼーション法では、絶縁性微粒子が導電性粒子の表面に重ねて付着されたり、摩擦熱により絶縁性微粒子が溶融したり、衝撃により絶縁性微粒子が変形したりするため、均一な被覆を行うことは困難であった。
被覆導電性粒子を用いて導電接続を行う場合、導電性粒子の粒子径を高度に制御したとしても、絶縁被覆層の厚みが均一でないと、熱や圧力により電極間に固定する際に圧力が均等に伝わらず、接続抵抗値が高くなる。
また、特許文献1〜4に記載された方法では、絶縁被覆層と導電性粒子との接触面積が大きくなるため、液晶素子のような熱や圧力をかけにくいデバイスに用いた場合には、絶縁被覆層が除去されにくく、接続抵抗値が高くなるという問題もあった。
However, the methods described in Patent Documents 1 to 4 have a problem that it is difficult to make the thickness of the insulating coating layer constant. For example, in the hybridization methods described in Patent Documents 3 and 4, insulating fine particles serving as a coating layer are attached to the surface of the conductive particles by a physical force. In the hybridization method, the insulating fine particles are adhered to the surface of the conductive particles, the insulating fine particles are melted by frictional heat, or the insulating fine particles are deformed by impact, so that uniform coating is performed. Was difficult.
When conducting conductive connection using coated conductive particles, even if the particle size of the conductive particles is highly controlled, if the thickness of the insulating coating layer is not uniform, the pressure is fixed when fixing between the electrodes by heat or pressure. The connection resistance value is increased evenly.
In addition, in the methods described in Patent Documents 1 to 4, since the contact area between the insulating coating layer and the conductive particles is increased, when used in a device such as a liquid crystal element that is difficult to apply heat or pressure, insulation is performed. There was also a problem that the coating layer was difficult to remove and the connection resistance value increased.
特許文献5、6には、絶縁性微粒子を静電相互作用により導電性粒子の表面に弱く付着させた被覆導電性粒子が記載されている。特許文献5、6に記載された方法によれば、絶縁被覆層の厚さをある程度均一にすることができる。しかしながら、特許文献5、6に記載された被覆導電性粒子では、絶縁性微粒子と導電性粒子との結合力がファンデルワールス力や静電気力のみに起因するため、結合が非常に弱い。このため、被覆導電性粒子を、バインダー樹脂中に分散させる際や隣接する粒子との接触により絶縁性微粒子が剥がれ、充分な絶縁性が確保できないという問題があった。 Patent Documents 5 and 6 describe coated conductive particles in which insulating fine particles are weakly adhered to the surface of the conductive particles by electrostatic interaction. According to the methods described in Patent Documents 5 and 6, the thickness of the insulating coating layer can be made uniform to some extent. However, in the coated conductive particles described in Patent Documents 5 and 6, since the bonding force between the insulating fine particles and the conductive particles is caused only by van der Waals force or electrostatic force, the bonding is very weak. For this reason, there is a problem in that the insulating fine particles are peeled off when the coated conductive particles are dispersed in the binder resin or in contact with the adjacent particles, and sufficient insulation cannot be secured.
特許文献7には、金属表面を有する導電性粒子に、該金属表面に対して結合性を有する官能基を介して絶縁性微粒子を化学結合することにより、導電性粒子を絶縁性微粒子が単層で被覆した絶縁被覆導電性粒子が記載されている。特許文献7に記載された絶縁被覆導電性粒子は、絶縁被覆層の厚みが一定であり、かつ、バインダー樹脂中に分散させる際や隣接する粒子との接触によっても絶縁性微粒子が剥がれにくい。
しかしながら、近年では金属配線等のピッチが狭くなり、電極の面積が小さくなっており、、ファインピッチ仕様における接続信頼性を向上させるために、導電性粒子を洗浄したり分散したりする際に、従来よりも強いせん断力を加える等、極めて過酷な条件での前処理工程が必要とされるようになってきた。このような過酷な条件で前処理工程を行う場合には、特許文献7に記載された絶縁被覆導電性粒子であっても、絶縁性微粒子が剥離してしまうことがあった。
However, in recent years, the pitch of metal wiring and the like has become narrower, the area of the electrode has become smaller, and in order to improve the connection reliability in the fine pitch specification, when cleaning and dispersing conductive particles, A pretreatment process under extremely severe conditions such as applying a stronger shear force than before has been required. When the pretreatment process is performed under such severe conditions, the insulating fine particles may be peeled off even with the insulating coated conductive particles described in Patent Document 7.
本発明は、強いせん断力を加える過酷な条件の前処理工程を行なっても絶縁性微粒子が剥離しにくく、ファインピッチ仕様の微細な回路電極部材同士を接続したときに接続部分の充分に低い抵抗値と隣接する回路電極間の優れた絶縁性とを両立することができる絶縁被覆導電性粒子を提供することを目的とする。 The present invention makes it difficult for the insulating fine particles to be peeled off even when a pretreatment step under severe conditions in which a strong shearing force is applied, and the resistance of the connection portion is sufficiently low when connecting fine circuit electrode members of fine pitch specifications. An object of the present invention is to provide insulating coated conductive particles capable of satisfying both values and excellent insulation between adjacent circuit electrodes.
本発明は、表面が導電性を有する導電性粒子と、前記導電性粒子の表面に付着している絶縁性微粒子とを有する絶縁被覆導電性粒子であって、
前記絶縁性微粒子は、架橋性単量体に由来するポリマー成分を含有するコア粒子の表面が、架橋性単量体に由来するポリマー成分を含有する被膜層で被覆されており、
前記コア粒子の下記式(1)により定義される架橋度が7以上であり、かつ、前記コア粒子の下記式(1)により定義される架橋度が前記被膜層の下記式(1)により定義される架橋度より高い絶縁被覆導電性粒子である。
以下に本発明を詳述する。
The present invention is an insulating coated conductive particle having conductive particles having a conductive surface and insulating fine particles adhering to the surface of the conductive particles,
In the insulating fine particles, the surface of the core particle containing the polymer component derived from the crosslinkable monomer is coated with a coating layer containing the polymer component derived from the crosslinkable monomer,
The degree of cross-linking defined by the following formula (1) of the core particle is 7 or more, and the degree of cross-linking defined by the following formula (1) of the core particle is defined by the following formula (1) of the coating layer. Insulating coated conductive particles having a higher degree of crosslinking.
The present invention is described in detail below.
架橋度=架橋性単量体の重合性官能基数
×(架橋性単量体のモル数/全単量体のモル数)×100 (1)
Crosslinking degree = number of polymerizable functional groups of the crosslinkable monomer
X (number of moles of crosslinkable monomer / number of moles of all monomers) x 100 (1)
本発明者は、強いせん断力を加える過酷な条件の前処理工程を行なったときに絶縁性微粒子が剥離する原因が、溶剤分散時に絶縁性微粒子が大きく膨潤してしまい、必要以上に強いせん断力がかかってしまうためであることを見出した。絶縁性微粒子の膨潤を抑制するためには、絶縁性微粒子の架橋度を高くすることが考えられる。しかしながら、絶縁性微粒子の架橋度を高くすると、絶縁性微粒子が硬くなってしまい、導電性粒子と絶縁性微粒子との接触面積が小さくなってしまって、導電性粒子と絶縁性微粒子との固着力が弱くなってしまうことになる。
本発明者は、架橋度が高いコア粒子の表面が、架橋度が低い被膜層で被覆された絶縁性微粒子を用いることにより、強いせん断力を加える過酷な条件の前処理工程を行なっても絶縁性微粒子が剥離しにくく、ファインピッチ仕様の微細な回路電極部材同士を接続したときに接続部分の充分に低い抵抗値と隣接する回路電極間の優れた絶縁性とを両立することができることを見出し、本発明を完成した。
The present inventor found that the insulating fine particles peeled off when the pretreatment step under severe conditions for applying a strong shear force was performed. I found out that it took a long time. In order to suppress the swelling of the insulating fine particles, it is conceivable to increase the degree of crosslinking of the insulating fine particles. However, when the degree of crosslinking of the insulating fine particles is increased, the insulating fine particles become harder and the contact area between the conductive particles and the insulating fine particles becomes smaller, and the adhesion force between the conductive particles and the insulating fine particles is reduced. Will become weaker.
The present inventor uses the insulating fine particles in which the surface of the core particle having a high degree of crosslinking is coated with a coating layer having a low degree of crosslinking, so that the insulation can be performed even if a pretreatment step under severe conditions in which a strong shear force is applied. It is found that the conductive fine particles are difficult to peel off, and it is possible to achieve both a sufficiently low resistance value at the connection portion and excellent insulation between adjacent circuit electrodes when connecting fine circuit electrode members with fine pitch specifications. The present invention has been completed.
本発明の絶縁被覆導電性粒子は、表面が導電性を有する導電性粒子と、該導電性粒子の表面に付着している絶縁性微粒子とを有する。
上記導電性粒子は、表面が導電性を有する粒子であれば特に限定されず、例えば、導電性の金属粒子や、有機化合物又は無機化合物により形成された基材粒子の表面に蒸着、メッキ、塗布等により導電層が形成された粒子や、導電性の金属の微細粒子が絶縁性の基材粒子の表面に付着した粒子等が挙げられる。なかでも、樹脂により形成された基材粒子の表面に導電性の金属層が形成された導電性粒子は、本発明の絶縁被覆導電性粒子を異方性導電材料として用いたときに、電極間の圧着時に変形して接合面積が増加し接続安定性が向上することから好適である。
The insulating coated conductive particles of the present invention have conductive particles whose surfaces are conductive and insulating fine particles attached to the surfaces of the conductive particles.
The conductive particles are not particularly limited as long as the surfaces are conductive particles. For example, vapor deposition, plating, and coating are performed on the surface of conductive metal particles, or base particles formed of an organic compound or an inorganic compound. For example, particles in which a conductive layer is formed by the above, particles in which fine particles of conductive metal adhere to the surface of insulating base particles, and the like can be given. Among them, the conductive particles in which the conductive metal layer is formed on the surface of the substrate particles formed of the resin are formed between the electrodes when the insulating coated conductive particles of the present invention are used as an anisotropic conductive material. This is preferable because it is deformed during the pressure bonding and the bonding area is increased and the connection stability is improved.
上記基材粒子を構成する樹脂として、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィンや、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂や、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂等のフェノール樹脂や、メラミンホルムアルデヒド樹脂等のメラミン樹脂や、ベンゾグアナミンホルムアルデヒド樹脂等のベンゾグアナミン樹脂や、尿素ホルムアルデヒド樹脂、エポキシ樹脂、(不)飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン等が挙げられる。なかでも、エチレン性不飽和基を有する種々の重合性単量体を1種又は2種以上重合させることにより得られた樹脂を用いた場合、好適な硬さを得やすいことから好ましい。 Examples of the resin constituting the substrate particles include polyolefins such as polyethylene, polypropylene, polystyrene, polypropylene, polyisobutylene and polybutadiene, acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyalkylene terephthalate, polysulfone, polycarbonate, Phenolic resins such as polyamide and phenol formaldehyde resin, melamine resins such as melamine formaldehyde resin, benzoguanamine resins such as benzoguanamine formaldehyde resin, urea formaldehyde resin, epoxy resin, (un) saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide , Polyacetal, polyimide, polyamideimide, polyetheretherke Emissions, polyether sulfone, and the like. Especially, when using the resin obtained by polymerizing 1 type, or 2 or more types of various polymerizable monomers which have an ethylenically unsaturated group, it is preferable from having easy suitable hardness.
上記エチレン性不飽和基を有する重合性単量体は、非架橋性単量体でも架橋性単量体でもよい。
上記非架橋性単量体として、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン単量体や、(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体や、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート等のアルキル(メタ)アクリレート類や、2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類や、(メタ)アクリロニトリル等のニトリル含有単量体や、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類や、酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、フッ化ビニル、塩化ビニル、プロピオン酸ビニル等の酸ビニルエステル類や、エチレン、プロピレン、ブチレン、メチルペンテン、イソプレン、ブタジエン等の不飽和炭化水素等が挙げられる。
The polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer.
Examples of the non-crosslinkable monomer include styrene monomers such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene, (meth) acrylic acid, maleic acid, and maleic anhydride. Carboxyl group-containing monomers such as acids, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (Meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, etc. Oxygen atom-containing (meth) acrylates such as kill (meth) acrylates, 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, (meta ) Nitrile-containing monomers such as acrylonitrile, vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, vinyl fluoride, vinyl chloride, vinyl propionate, etc. Acid vinyl esters, and unsaturated hydrocarbons such as ethylene, propylene, butylene, methylpentene, isoprene, and butadiene.
上記架橋性単量体として、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の多官能(メタ)アクリレート類や、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等や、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体や、フタル酸等のジカルボン酸類や、ジアミン類や、ジアリルフタレート、ベンゾグアナミン、トリアリルイソシアネート等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipentaerythritol hexa. Multifunctional (meth) such as (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate Acrylates, triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallyl acrylamide, diallyl ether, etc. Silane-containing monomers such as γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, dicarboxylic acids such as phthalic acid, diamines, diallyl phthalate, benzoguanamine, triallyl isocyanate Etc.
上記基材粒子の平均粒子径の好ましい下限は0.5μm、好ましい上限は100μmである。上記基材粒子の平均粒子径が0.5μm未満であると、金属層を形成する際に凝集が生じやすく、凝集を起こした基材粒子を用いて製造される絶縁被覆導電性粒子は隣接する電極間のショートを引き起こすことがある。上記基材粒子の平均粒子径が100μmを超えると、得られる絶縁被覆導電性粒子の金属層が剥がれやすくなり信頼性が低下することがある。上記基材粒子の平均粒子径のより好ましい下限は1μm、より好ましい上限は20μmである。
なお、上記基材粒子の平均粒子径は光学顕微鏡、電子顕微鏡、コールタカウンター等を用いて計測した粒子径を統計的に処理して求めることができる。
The preferable lower limit of the average particle diameter of the substrate particles is 0.5 μm, and the preferable upper limit is 100 μm. When the average particle diameter of the substrate particles is less than 0.5 μm, aggregation is likely to occur when forming the metal layer, and the insulating coated conductive particles produced using the aggregated substrate particles are adjacent to each other. May cause short circuit between electrodes. When the average particle diameter of the substrate particles exceeds 100 μm, the metal layer of the obtained insulating coated conductive particles is likely to be peeled off, and the reliability may be lowered. The more preferable lower limit of the average particle diameter of the substrate particles is 1 μm, and the more preferable upper limit is 20 μm.
The average particle size of the substrate particles can be obtained by statistically processing the particle size measured using an optical microscope, an electron microscope, a coulter counter, or the like.
上記基材粒子の平均粒子径の変動係数は10%以下であることが好ましい。上記基材粒子の平均粒子径の変動係数が10%を超えると、得られる絶縁被覆導電性粒子を用いて相対向する電極間隔を任意に制御することが困難になる。なお、上記変動係数とは、粒子径分布から得られる標準偏差を平均粒子径で除して得られる数値の百分率(%)である。 The coefficient of variation of the average particle diameter of the substrate particles is preferably 10% or less. When the coefficient of variation of the average particle diameter of the substrate particles exceeds 10%, it becomes difficult to arbitrarily control the distance between the opposing electrodes using the obtained insulating coating conductive particles. The coefficient of variation is a percentage (%) of a numerical value obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size.
上記基材粒子の10%K値の好ましい下限は1000MPa、好ましい上限は15000MPaである。上記基材粒子の10%K値が1000MPa未満であると、圧縮変形させたときに基材粒子が破壊されることがあり、15000MPaを超えると、絶縁被覆導電性粒子が電極を傷つけることがある。上記基材粒子の10%K値のより好ましい下限は2000MPa、より好ましい上限は10000MPaである。
なお、上記10%K値は、微小圧縮試験器(例えば、島津製作所製PCT−200等)を用い、粒子を直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度2.6mN/秒、最大試験荷重10gの条件下で圧縮した場合の圧縮変位(mm)を測定し、下記式により求めることができる。
K値(N/mm2)=(3/√2)・F・S−3/2・R−1/2
F:粒子の10%圧縮変形における荷重値(N)
S:粒子の10%圧縮変形における圧縮変位(mm)
R:粒子の半径(mm)
The preferable lower limit of the 10% K value of the substrate particles is 1000 MPa, and the preferable upper limit is 15000 MPa. If the 10% K value of the substrate particles is less than 1000 MPa, the substrate particles may be destroyed when compressed and deformed, and if it exceeds 15000 MPa, the insulating coated conductive particles may damage the electrode. . The more preferable lower limit of the 10% K value of the substrate particles is 2000 MPa, and the more preferable upper limit is 10,000 MPa.
The above 10% K value is measured by using a micro compression tester (for example, PCT-200 manufactured by Shimadzu Corporation), with a smooth indenter end face of a diamond cylinder having a diameter of 50 μm, a compression speed of 2.6 mN / second, and a maximum. The compression displacement (mm) when compressed under the condition of a test load of 10 g can be measured and determined by the following formula.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of particles (N)
S: Compression displacement (mm) in 10% compression deformation of particles
R: radius of particle (mm)
10%K値が上記条件を満たす基材粒子を得るためには、基材粒子は、上述のエチレン性不飽和基を有する重合性単量体を重合させることにより得られた樹脂により形成されていることが好ましい。この場合、架橋性単量体と非架橋性単量体との合計に占める架橋性単量体の割合は少なくとも20重量%以上であることがより好ましい。 In order to obtain a base particle having a 10% K value satisfying the above conditions, the base particle is formed of a resin obtained by polymerizing the above polymerizable monomer having an ethylenically unsaturated group. Preferably it is. In this case, the proportion of the crosslinkable monomer in the total of the crosslinkable monomer and the non-crosslinkable monomer is more preferably at least 20% by weight.
上記基材粒子の回復率は20%以上であることが好ましい。上記基材粒子の回復率が20%未満であると、得られる絶縁被覆導電性粒子を圧縮した場合に変形しても元に戻らないため接続抵抗値が高くなることがある。上記基材粒子の回復率は、より好ましくは40%以上である。なお、上記回復率とは、粒子に9.8mNの荷重を負荷した後の粒子径の回復率を意味する。 The recovery rate of the substrate particles is preferably 20% or more. If the recovery rate of the base material particles is less than 20%, the resulting insulation coated conductive particles may not be restored to their original shape even when deformed, and the connection resistance value may increase. The recovery rate of the substrate particles is more preferably 40% or more. In addition, the said recovery rate means the recovery rate of the particle diameter after applying a 9.8 mN load to particle | grains.
上記金属として、導電性を有している金属であれば特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、錫、鉛、パラジウム、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等の金属や、ITO、ハンダ等の金属化合物が挙げられる。 The metal is not particularly limited as long as it has conductivity, for example, gold, silver, copper, platinum, zinc, iron, tin, lead, palladium, aluminum, cobalt, indium, nickel, chromium, Examples thereof include metals such as titanium, antimony, bismuth, germanium, cadmium, and silicon, and metal compounds such as ITO and solder.
上記金属層は、単層構造であってもよく、複数の層を有する積層構造であってもよい。積層構造の場合には、最外層は金層、パラジウム層、ニッケル層、又は、銅層であることが好ましく、金層、又は、パラジウム層であることがより好ましい。最外層を金層、又は、パラジウム層とすることにより、得られる絶縁被覆導電性粒子は、耐食性が高く接続抵抗値が低くなる。 The metal layer may have a single layer structure or a laminated structure having a plurality of layers. In the case of a laminated structure, the outermost layer is preferably a gold layer, a palladium layer, a nickel layer, or a copper layer, and more preferably a gold layer or a palladium layer. By making the outermost layer a gold layer or a palladium layer, the obtained insulating coated conductive particles have high corrosion resistance and low connection resistance.
上記樹脂により形成された基材粒子の表面に導電性の金属層を形成する方法は特に限定されず、例えば、物理的な金属蒸着法、化学的な無電解メッキ法等の公知の方法が挙げられる。なかでも、工程の簡便さから無電解メッキ法が好適である。
上記無電解メッキ法で形成できる金属層は、例えば、金層、銀層、銅層、プラチナ層、パラジウム層、ニッケル層、ロジウム層、ルテニウム層、コバルト層、錫層及びこれらの合金層等が挙げられる。本発明の絶縁被覆導電性粒子において、均一な金属層を高密度で形成できることから金属層が無電解ニッケルメッキによって形成されていることが好ましい。
The method for forming the conductive metal layer on the surface of the substrate particles formed of the resin is not particularly limited, and examples thereof include known methods such as physical metal vapor deposition and chemical electroless plating. It is done. Of these, the electroless plating method is preferred because of the simplicity of the process.
Examples of the metal layer that can be formed by the electroless plating method include a gold layer, a silver layer, a copper layer, a platinum layer, a palladium layer, a nickel layer, a rhodium layer, a ruthenium layer, a cobalt layer, a tin layer, and an alloy layer thereof. Can be mentioned. In the insulating coated conductive particles of the present invention, it is preferable that the metal layer is formed by electroless nickel plating because a uniform metal layer can be formed at a high density.
上記金属層の表面に、金層又はパラジウム層を形成してもよい。上記金属層の表面に金層又はパラジウム層を形成する方法は特に限定されず、例えば、無電解メッキ、置換メッキ、電気メッキ、スパッタリング等の既知の方法等が挙げられる。 A gold layer or a palladium layer may be formed on the surface of the metal layer. The method for forming the gold layer or the palladium layer on the surface of the metal layer is not particularly limited, and examples thereof include known methods such as electroless plating, displacement plating, electroplating, and sputtering.
上記金属層の厚みの好ましい下限は0.005μm、好ましい上限は1μmである。上記金属層の厚みが0.005μm未満であると、導電性が低下することがあり、1μmを超えると、得られる絶縁被覆導電性粒子の比重が高くなりすぎたり、絶縁被覆導電性粒子の硬さがもはや充分に変形できる硬度ではなくなったりすることがある。上記金属層の厚みのより好ましい下限は0.01μm、より好ましい上限は0.3μmである。
また、上記金属層の表面に金層又はパラジウム層を形成する場合、金層又はパラジウム層の厚みの好ましい下限は0.001μm、好ましい上限は0.5μmである。金層又はパラジウム層の厚みが0.001μm未満であると、均一に金層又はパラジウム層を形成することが困難になり、耐食性や接続抵抗値の向上効果が期待できないことがあり、0.5μmを超えると、その効果の割には高価である。金層又はパラジウム層の厚みのより好ましい下限は0.01μm、より好ましい上限は0.1μmである。
The preferable lower limit of the thickness of the metal layer is 0.005 μm, and the preferable upper limit is 1 μm. If the thickness of the metal layer is less than 0.005 μm, the conductivity may decrease. If the thickness exceeds 1 μm, the specific gravity of the obtained insulating coated conductive particles may be too high, or the insulating coated conductive particles may be hard. May no longer be hard enough to deform. The more preferable lower limit of the thickness of the metal layer is 0.01 μm, and the more preferable upper limit is 0.3 μm.
Moreover, when forming a gold layer or a palladium layer on the surface of the said metal layer, the minimum with the preferable thickness of a gold layer or a palladium layer is 0.001 micrometer, and a preferable upper limit is 0.5 micrometer. If the thickness of the gold layer or the palladium layer is less than 0.001 μm, it may be difficult to form the gold layer or the palladium layer uniformly, and the effect of improving the corrosion resistance and the connection resistance value may not be expected. Exceeding it is expensive for its effect. The more preferable lower limit of the thickness of the gold layer or the palladium layer is 0.01 μm, and the more preferable upper limit is 0.1 μm.
上記絶縁性微粒子は、架橋性単量体に由来するポリマー成分を含有するコア粒子の表面が、架橋性単量体に由来するポリマー成分を含有する被膜層で被覆されている。 In the insulating fine particles, the surface of the core particle containing the polymer component derived from the crosslinkable monomer is coated with a coating layer containing the polymer component derived from the crosslinkable monomer.
上記コア粒子の上記式(1)により定義される架橋度の下限は7である。上記コア粒子の架橋度が7未満であると、溶剤分散時の絶縁性微粒子の膨潤度が大きくなり、過酷条件での溶剤分散等の前処理工程において絶縁性微粒子に加わるせん断力が大きくなり、導電性粒子から絶縁性微粒子が剥離しやすくなる。上記コア粒子の架橋度の好ましい下限は12である。上記コア粒子の架橋度の好ましい上限は40である。上記コア粒子の架橋度が40を超えると、熱圧着時に絶縁性微粒子が排除されにくくなり、接続抵抗値が高くなることがある。 The lower limit of the degree of crosslinking defined by the above formula (1) of the core particles is 7. When the degree of crosslinking of the core particles is less than 7, the degree of swelling of the insulating fine particles at the time of solvent dispersion increases, and the shear force applied to the insulating fine particles in the pretreatment step such as solvent dispersion under severe conditions increases. Insulating fine particles easily peel off from the conductive particles. A preferred lower limit of the degree of crosslinking of the core particles is 12. A preferred upper limit of the degree of crosslinking of the core particles is 40. When the degree of cross-linking of the core particles exceeds 40, insulating fine particles are difficult to be removed during thermocompression bonding, and the connection resistance value may be increased.
上記コア粒子の上記式(1)により定義される架橋度は、上記被膜層の上記式(1)により定義される架橋度よりも高い。上記被膜層の架橋度が、コア粒子の架橋度以上であると、導電性粒子と絶縁性微粒子との接触面積が小さくなり、導電性粒子と絶縁性微粒子との固着力が低下してしまうことから、過酷条件での前処理工程において導電性粒子から絶縁性微粒子が剥離しやすくなる。 The degree of crosslinking defined by the formula (1) of the core particle is higher than the degree of crosslinking defined by the formula (1) of the coating layer. When the degree of cross-linking of the coating layer is equal to or higher than the degree of cross-linking of the core particles, the contact area between the conductive particles and the insulating fine particles decreases, and the adhesion between the conductive particles and the insulating fine particles decreases. Therefore, the insulating fine particles are easily separated from the conductive particles in the pretreatment step under severe conditions.
上記被覆層の上記式(1)により定義される架橋度の好ましい下限は2、好ましい上限は10である。上記被覆層の架橋度が2未満であると、溶剤分散時に被覆層が溶解したり、大きく膨潤することにより、過酷条件での前処理工程において絶縁性微粒子に加わるせん断力が大きくなったりするため、導電性粒子から絶縁性微粒子が剥離しやすくなることがある。また、絶縁性微粒子の変形が大きく、得られる絶縁被覆導電性粒子の被覆層の厚さが均一にならないことがある。上記被覆層の架橋度が10を超えると、導電性粒子と絶縁性微粒子との接触面積が小さくなって、導電性粒子と絶縁性微粒子との固着力が低下してしまうことがある。 The preferable lower limit of the degree of crosslinking defined by the above formula (1) of the coating layer is 2, and the preferable upper limit is 10. If the degree of crosslinking of the coating layer is less than 2, the coating layer dissolves or swells greatly when the solvent is dispersed, which increases the shear force applied to the insulating fine particles in the pretreatment step under severe conditions. Insulating fine particles may be easily peeled off from the conductive particles. In addition, the deformation of the insulating fine particles is large, and the thickness of the coating layer of the obtained insulating coated conductive particles may not be uniform. When the degree of cross-linking of the coating layer exceeds 10, the contact area between the conductive particles and the insulating fine particles becomes small, and the adhesion between the conductive particles and the insulating fine particles may be reduced.
上記被膜層の厚さは、絶縁性微粒子の粒子径の1/50〜1/4であることが好ましい。上記被膜層の厚さが絶縁性微粒子の粒子径の1/50より薄い場合、導電性粒子と絶縁性微粒子との接触面積が小さくなり、導電性粒子と絶縁性微粒子の固着力が低くなって、過酷条件での前処理工程において導電性粒子から絶縁性微粒子が剥離しやすくなることがある。上記被膜層の厚さが絶縁性微粒子の粒子径の1/4より厚い場合、溶剤分散時の膨潤度が大きくなりすぎて、過酷条件での前処理工程において絶縁性微粒子に加わるせん断力が大きくなり、導電性粒子から絶縁性微粒子が剥離しやすくなることがある。 The thickness of the coating layer is preferably 1/50 to 1/4 of the particle diameter of the insulating fine particles. When the thickness of the coating layer is thinner than 1/50 of the particle diameter of the insulating fine particles, the contact area between the conductive particles and the insulating fine particles becomes small, and the fixing force between the conductive particles and the insulating fine particles becomes low. The insulating fine particles may be easily peeled off from the conductive particles in the pretreatment step under severe conditions. When the thickness of the coating layer is thicker than 1/4 of the particle diameter of the insulating fine particles, the degree of swelling at the time of solvent dispersion becomes too large, and the shear force applied to the insulating fine particles in the pretreatment step under severe conditions is large. Therefore, the insulating fine particles may be easily separated from the conductive particles.
上記絶縁性微粒子の粒子径は、導電性粒子の粒子径及び絶縁被覆導電性粒子の用途によっても異なるが、上記導電性粒子の粒子径の1/10以下であることが好ましい。上記絶縁性微粒子の粒子径が上記導電性粒子の粒子径の1/10を超えると、絶縁性微粒子の粒子径が大きくなりすぎて、絶縁被覆する効果が期待できなくなる。また、上記絶縁性微粒子の粒子径が上記導電性粒子の粒子径の1/10以下である場合、ヘテロ凝集法により本発明の絶縁被覆導電性粒子を製造する際に、効率よく導電性粒子上に絶縁性微粒子を付着させることができる。 The particle diameter of the insulating fine particles varies depending on the particle diameter of the conductive particles and the application of the insulating coated conductive particles, but is preferably 1/10 or less of the particle diameter of the conductive particles. When the particle diameter of the insulating fine particles exceeds 1/10 of the particle diameter of the conductive particles, the particle diameter of the insulating fine particles becomes too large and the effect of insulating coating cannot be expected. In addition, when the particle diameter of the insulating fine particles is 1/10 or less of the particle diameter of the conductive particles, when the insulating coated conductive particles of the present invention are produced by the heteroaggregation method, Insulating fine particles can be adhered to the substrate.
本発明の絶縁被覆導電性粒子を異方性導電材料として用いる場合は、上記絶縁性微粒子の粒子径の好ましい下限は5nm、好ましい上限は1000nmである。上記絶縁性微粒子の粒子径が5nm未満であると、隣接する絶縁被覆導電性粒子間の距離が電子のホッピング距離より小さくなり、リークが起こりやすくなり、1000nmを超えると、熱圧着する際に必要な圧力や熱が大きくなりすぎることがある。上記絶縁性微粒子の粒子径のより好ましい下限は10nm、より好ましい上限は500nmである。 When the insulating coated conductive particles of the present invention are used as an anisotropic conductive material, the preferable lower limit of the particle diameter of the insulating fine particles is 5 nm, and the preferable upper limit is 1000 nm. When the particle diameter of the insulating fine particles is less than 5 nm, the distance between adjacent insulating coated conductive particles becomes smaller than the electron hopping distance, and leakage is likely to occur. When the particle diameter exceeds 1000 nm, it is necessary for thermocompression bonding. Excessive pressure and heat may be too high. The more preferable lower limit of the particle diameter of the insulating fine particles is 10 nm, and the more preferable upper limit is 500 nm.
本発明の絶縁被覆導電性粒子は、粒子径の異なる2種以上の絶縁性微粒子を併用してもよい。粒子径の異なる2種以上の絶縁性微粒子を併用することにより、大きな絶縁性微粒子により被覆された隙間に小さな絶縁性微粒子が入り込み、被覆密度を向上できる。この際、小さな絶縁性微粒子の粒子径は大きな絶縁性微粒子の粒子径の1/2以下であることが好ましく、また、小さな絶縁性微粒子の数は大きな絶縁性微粒子の数の1/4以下であることが好ましい。 The insulating coated conductive particles of the present invention may be used in combination with two or more kinds of insulating fine particles having different particle diameters. By using two or more types of insulating fine particles having different particle diameters in combination, small insulating fine particles enter the gaps covered with the large insulating fine particles, and the coating density can be improved. At this time, the particle diameter of the small insulating fine particles is preferably 1/2 or less of the particle diameter of the large insulating fine particles, and the number of small insulating fine particles is 1/4 or less of the number of large insulating fine particles. Preferably there is.
上記絶縁性微粒子の粒子径の変動係数は、20%以下であることが好ましい。上記絶縁性微粒子の粒子径の変動係数が20%を超えると、得られる絶縁被覆導電性粒子の被覆層の厚さが不均一となり、電極間で熱圧着する際に均一に圧力がかけにくくなり、接続抵抗値が高くなることがある。
上記絶縁性微粒子の粒子径分布は、導電性粒子を被覆する前は粒度分布計等で測定でき、被覆した後はSEM写真の画像解析等で測定できる。
The coefficient of variation of the particle diameter of the insulating fine particles is preferably 20% or less. If the coefficient of variation of the particle size of the insulating fine particles exceeds 20%, the thickness of the coating layer of the obtained insulating coated conductive particles becomes non-uniform, and it is difficult to apply pressure uniformly when thermocompression bonding between electrodes. The connection resistance value may increase.
The particle size distribution of the insulating fine particles can be measured by a particle size distribution meter or the like before coating the conductive particles, and can be measured by image analysis of an SEM photograph after coating.
上記絶縁性微粒子を製造する方法は特に限定されず、例えば、原料となる単量体、架橋剤及び重合開始剤を用いて懸濁重合等の従来公知の方法によりコア粒子を製造した後、引き続いて、原料となる単量体、架橋剤等を投入してコア粒子の表面に被覆層を形成させる方法等が挙げられる。
上記コア粒子及び被覆層を構成する樹脂の架橋度は、架橋性単量体の重合性官能基数、原料となる単量体全体に占める架橋性単量体の配合比等を選択することにより、容易に調整することができる。
The method for producing the insulating fine particles is not particularly limited. For example, the core particles are produced by a conventionally known method such as suspension polymerization using a raw material monomer, a crosslinking agent, and a polymerization initiator, and then subsequently. And a method of forming a coating layer on the surface of the core particles by introducing a monomer, a crosslinking agent, or the like as a raw material.
The degree of cross-linking of the resin constituting the core particles and the coating layer is determined by selecting the number of polymerizable functional groups of the cross-linkable monomer, the blending ratio of the cross-linkable monomer in the whole monomer as a raw material, and the like. It can be adjusted easily.
上記コア粒子及び被覆層を構成する樹脂の原料となる重合体として、非架橋性単量体、架橋性単量体いずれも用いることができる。これらの非架橋性単量体、架橋性単量体としては、上述のものを用いることができる。
なお、上記コア粒子及び被覆層を構成する樹脂が(メタ)アクリル樹脂である場合、架橋性単量体とは、(メタ)アクリル基を2個以上有する単量体を意味する。
Any non-crosslinkable monomer or crosslinkable monomer can be used as the polymer as a raw material for the resin constituting the core particles and the coating layer. As these non-crosslinkable monomers and crosslinkable monomers, those described above can be used.
In addition, when resin which comprises the said core particle and a coating layer is a (meth) acrylic resin, a crosslinkable monomer means the monomer which has two or more (meth) acryl groups.
上記コア粒子及び被覆層を構成する樹脂の原料となる重合体は、正電荷を有する重合性単量体を含有することが好ましい。正電荷を有する重合性単量体を用いることにより、上記絶縁性微粒子は、正電荷を有することとなる。このような正電荷を有する絶縁性微粒子はり、後述するヘテロ凝集法を用いて、導電性粒子との結合を行うことができる。また、上記絶縁性微粒子同士は静電反発することから、絶縁性微粒子同士が凝集することを抑制し、単層の被覆層を形成することができる。即ち、絶縁性微粒子が正に帯電している場合には、絶縁性微粒子は導電性粒子上に単層で付着する。また、このような正電荷がアンモニウム基又はスルホニウム基による場合には、後述する導電性粒子に対して結合性を有する官能基(A)として作用し、絶縁性微粒子が直接導電性粒子の表面の金属と化学結合を形成しやすくなる。 The polymer as a raw material for the resin constituting the core particles and the coating layer preferably contains a polymerizable monomer having a positive charge. By using a polymerizable monomer having a positive charge, the insulating fine particles have a positive charge. Such insulating fine particles having a positive charge can be bonded to the conductive particles using a heteroaggregation method described later. In addition, since the insulating fine particles repel each other, aggregation of the insulating fine particles can be suppressed, and a single coating layer can be formed. That is, when the insulating fine particles are positively charged, the insulating fine particles adhere to the conductive particles in a single layer. Further, when such a positive charge is due to an ammonium group or a sulfonium group, it acts as a functional group (A) having a binding property to the conductive particles described later, and the insulating fine particles directly adhere to the surface of the conductive particles. It becomes easier to form chemical bonds with metals.
上記正電荷を有する重合性単量体として、例えば、N,N−ジメチルアミノエチルメタクリレート、N,N−ジメチルアミノプロピルアクリルアミド、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド等のアンモニウム基含有モノマーや、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩等のスルホニウム基を有するモノマー等が挙げられる。 Examples of the positively charged polymerizable monomer include N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropyl acrylamide, N, N, N-trimethyl-N-2-methacryloyloxyethylammonium chloride, and the like. And a monomer having a sulfonium group such as phenyldimethylsulfonium methylsulfate methacrylate.
上記重合性開始剤として、従来公知の重合開始剤を用いることができる。なかでも、正電荷を有するラジカル開始剤を用いる場合には、得られる絶縁性微粒子に正電荷を付与することができる。
上記正電荷を有するラジカル開始剤として、例えば、2,2’−アゾビス{2−メチル−N−[2−(1−ヒドロキシ−ブチル)]−プロピオンアミド}、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス(2−アミジノプロパン)及びこれらの塩等が挙げられる。
As the polymerizable initiator, a conventionally known polymerization initiator can be used. In particular, when a radical initiator having a positive charge is used, a positive charge can be imparted to the resulting insulating fine particles.
Examples of the radical initiator having a positive charge include 2,2′-azobis {2-methyl-N- [2- (1-hydroxy-butyl)]-propionamide}, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis (2-amidinopropane) and salts thereof.
本発明の絶縁被覆導電性粒子では、上記導電性粒子の表面に上記絶縁性微粒子が付着している。
上記絶縁性微粒子は、上記導電性粒子を単層で被覆していることが好ましい。被覆層が単層であることにより、被覆層の厚さを均一にすることができる。
上記絶縁性微粒子は、上記導電性粒子に対して結合性を有する官能基(A)を介して化学結合することにより、上記導電性粒子の表面を部分的に被覆していることが好ましい。
In the insulating coated conductive particles of the present invention, the insulating fine particles are attached to the surface of the conductive particles.
The insulating fine particles preferably cover the conductive particles with a single layer. When the coating layer is a single layer, the thickness of the coating layer can be made uniform.
It is preferable that the insulating fine particles partially cover the surface of the conductive particles by chemically bonding via the functional group (A) having a binding property to the conductive particles.
上記官能基(A)として、金属とイオン結合、共有結合、配位結合ができる基であれば特に限定されず、例えば、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、燐酸基、ニトリル基等が挙げられる。なかでも、配位結合し得る官能基が好ましく、S原子、N原子、P原子を有する官能基が好適に用いられる。例えば、金属が金の場合には、金に対して配位結合を形成するS原子を有する官能基、特にチオール基、スルフィド基であることが好ましい。 The functional group (A) is not particularly limited as long as it is a group capable of forming an ionic bond, a covalent bond, or a coordinate bond with a metal. For example, a silane group, a silanol group, a carboxyl group, an amino group, an ammonium group, a nitro group, Examples include a hydroxyl group, a carbonyl group, a thiol group, a sulfonic acid group, a sulfonium group, a boric acid group, an oxazoline group, a pyrrolidone group, a phosphoric acid group, and a nitrile group. Of these, a functional group capable of coordinate bonding is preferable, and a functional group having an S atom, an N atom, or a P atom is preferably used. For example, when the metal is gold, it is preferably a functional group having an S atom that forms a coordinate bond with gold, particularly a thiol group or a sulfide group.
上記官能基(A)を用いて導電性粒子と絶縁性微粒子とを化学結合させる方法として特に限定されないが、例えば、1)官能基(A)を表面に有する絶縁性微粒子を導電性粒子の表面に結合する方法、2)官能基(A)と反応性官能基(B)とを有する化合物を導電性粒子の表面に導入し、その後一段階又は多段階の反応により反応性官能基(B)と絶縁性微粒子とを反応させて結合する方法等が挙げられる。 The method for chemically bonding the conductive particles and the insulating fine particles using the functional group (A) is not particularly limited. For example, 1) the insulating fine particles having the functional group (A) on the surface thereof are provided on the surface of the conductive particles. 2) A compound having a functional group (A) and a reactive functional group (B) is introduced onto the surface of the conductive particles, and then the reactive functional group (B) is reacted by one or more stages. And a method of reacting and bonding the insulating fine particles.
上記1)の方法において、官能基(A)を表面に有する絶縁性微粒子を作製する方法は特に限定されず、例えば、官能基(A)を有する重合性単量体を絶縁性微粒子の原料の1つとして用いる方法や、絶縁性微粒子の表面に化学結合により官能基(A)を導入する方法や、絶縁性微粒子の表面を化学処理し官能基(A)に改質する方法や、絶縁性微粒子の表面をプラズマ等で官能基(A)に改質する方法等が挙げられる。 In the method 1), the method for producing the insulating fine particles having the functional group (A) on the surface is not particularly limited. For example, a polymerizable monomer having the functional group (A) is used as a raw material for the insulating fine particles. A method used as one, a method of introducing a functional group (A) into the surface of the insulating fine particles by chemical bonding, a method of chemically treating the surface of the insulating fine particles to modify the functional group (A), an insulating property, Examples thereof include a method of modifying the surface of the fine particles into a functional group (A) with plasma or the like.
上記2)の方法として、例えば、同一分子内に官能基(A)とヒドロキシル基、カルボキシル基、アミノ基、エポキシ基、シリル基、シラノール基、イソシアネート基等の反応性官能基(B)とを有する化合物を導電性粒子と反応させ、次いで、反応性官能基(B)に共有結合できる官能基を表面に有する絶縁性微粒子を反応させる方法等が挙げられる。このような同一分子内に官能基(A)と反応性官能基(B)とを有する化合物として、例えば、2−アミノエタンチオール、p−アミノチオフェノール等が挙げられる。2−アミノエタンチオールを用いれば、導電性粒子の表面にSH基を介して2−アミノエタンチオールを結合させ、一方のアミノ基に例えば表面にエポキシ基やカルボキシル基等を有する絶縁性微粒子を反応させることにより、導電性粒子と絶縁性微粒子とを結合することができる。 As the method of 2), for example, a functional group (A) and a reactive functional group (B) such as a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a silyl group, a silanol group, and an isocyanate group are contained in the same molecule. Examples thereof include a method of reacting a compound having a functional group with conductive particles and then reacting insulating fine particles having a functional group covalently bonded to the reactive functional group (B) on the surface. Examples of such a compound having a functional group (A) and a reactive functional group (B) in the same molecule include 2-aminoethanethiol and p-aminothiophenol. If 2-aminoethanethiol is used, 2-aminoethanethiol is bonded to the surface of the conductive particle via an SH group, and an insulating fine particle having, for example, an epoxy group or a carboxyl group on the surface is reacted with one amino group. By doing so, it is possible to bond the conductive particles and the insulating fine particles.
上記絶縁性微粒子は、表面積の10〜20%が導電性粒子の表面と接触していることが好ましい。上記絶縁性微粒子と導電性粒子とが接触している表面積が10%未満であると、絶縁性微粒子と導電性粒子との固着力が弱く、過酷条件での前処理工程において絶縁性微粒子が剥離しやすくなることがあり、20%を超えると、絶縁性微粒子の変形が大きく、得られる絶縁被覆導電性粒子の被覆層の厚さが不均一となることがある。 The insulating fine particles preferably have 10 to 20% of the surface area in contact with the surface of the conductive particles. When the surface area where the insulating fine particles and the conductive particles are in contact is less than 10%, the adhesion between the insulating fine particles and the conductive particles is weak, and the insulating fine particles are peeled off in the pretreatment step under severe conditions. If it exceeds 20%, the deformation of the insulating fine particles is large, and the thickness of the coating layer of the obtained insulating coated conductive particles may be non-uniform.
上記絶縁性微粒子の被覆率、即ち導電性粒子の表面積全体に占める絶縁性微粒子により被覆されている部分の面積の好ましい下限は5%、好ましい上限は50%である。上記絶縁性微粒子の被覆率が5%未満であると、隣接する絶縁被覆導電性粒子同士の絶縁が不充分になることがある。上記絶縁性微粒子の被覆率が50%を超えると、異方性導電材料として使用したときに、絶縁性微粒子を排除して導通を確保するために熱や圧力を必要以上にかけなければならなくなったり、導電性粒子と電極の間の絶縁性微粒子を排除しきれず導通できなくなる危険性が高くなったりすることがある。 The preferable lower limit of the coverage of the insulating fine particles, that is, the area of the portion covered with the insulating fine particles in the entire surface area of the conductive particles is 5%, and the preferable upper limit is 50%. When the coverage of the insulating fine particles is less than 5%, insulation between adjacent insulating coated conductive particles may be insufficient. When the coverage of the insulating fine particles exceeds 50%, when used as an anisotropic conductive material, it may be necessary to apply heat or pressure more than necessary to eliminate the insulating fine particles and ensure conduction. In some cases, the insulating fine particles between the conductive particles and the electrodes cannot be excluded and there is a high risk that the conductive particles cannot be conducted.
本発明の絶縁被覆導電性粒子を製造する方法として、上記導電性粒子の表面に上記絶縁性微粒子を接触させ化学結合させる方法であれば特に限定されない。例えば、少なくとも、有機溶剤又は水中において、導電性粒子に絶縁性微粒子をファンデルワールス力又は静電相互作用により凝集させる工程1と、導電性粒子と絶縁性微粒子とを化学結合させる工程2とを有する方法等が挙げられる。 The method for producing the insulating coated conductive particles of the present invention is not particularly limited as long as the insulating fine particles are brought into contact with and chemically bonded to the surface of the conductive particles. For example, the step 1 of aggregating the insulating fine particles on the conductive particles by van der Waals force or electrostatic interaction, and the step 2 of chemically bonding the conductive particles and the insulating fine particles at least in an organic solvent or water. And the like.
上記工程1の凝集させる方法は、ヘテロ凝集法と呼ばれる方法である。ヘテロ凝集法を用いれば、溶媒効果により導電性粒子と絶縁性微粒子との間の化学反応が迅速かつ確実に起こるため、必要以上の圧力を必要とせず、また、系全体の温度の制御も容易であるため、絶縁性微粒子が熱により変形等しにくい。
上記工程1において用いる有機溶剤として、絶縁性微粒子を溶解しない有機溶剤であれば特に限定されない。
The method of aggregating in the step 1 is a method called heteroaggregation method. If the hetero-aggregation method is used, the chemical reaction between the conductive particles and the insulating fine particles takes place quickly and reliably due to the solvent effect, so there is no need for more pressure than necessary and the temperature of the entire system can be easily controlled. Therefore, the insulating fine particles are not easily deformed by heat.
The organic solvent used in step 1 is not particularly limited as long as it is an organic solvent that does not dissolve insulating fine particles.
本発明の絶縁被覆導電性粒子と、バインダー樹脂とを含有する異方性導電材料もまた、本発明の1つである。
本発明の異方性導電材料は、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤、異方性導電フィルム、異方性導電シート等が挙げられる。
An anisotropic conductive material containing the insulating coated conductive particles of the present invention and a binder resin is also one aspect of the present invention.
Examples of the anisotropic conductive material of the present invention include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, and anisotropic conductive sheet.
上記バインダー樹脂は特に限定されないが、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体、エラストマー等が挙げられる。
上記ビニル樹脂は特に限定されないが、酢酸ビニル樹脂、アクリル樹脂、スチレン樹脂等が挙げられる。上記熱可塑性樹脂は特に限定されないが、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体、ポリアミド樹脂等が挙げられる。上記硬化性樹脂は特に限定されないが、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。上記熱可塑性ブロック共重合体は特に限定されないが、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、スチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂、湿気硬化型樹脂であってもよい。
Although the said binder resin is not specifically limited, A vinyl resin, a thermoplastic resin, curable resin, a thermoplastic block copolymer, an elastomer, etc. are mentioned.
Although the said vinyl resin is not specifically limited, Vinyl acetate resin, an acrylic resin, a styrene resin etc. are mentioned. Although the said thermoplastic resin is not specifically limited, A polyolefin resin, an ethylene-vinyl acetate copolymer, a polyamide resin etc. are mentioned. Although the said curable resin is not specifically limited, An epoxy resin, a urethane resin, a polyimide resin, an unsaturated polyester resin etc. are mentioned. The thermoplastic block copolymer is not particularly limited, but styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer, styrene-isoprene. -Hydrogenated product of a styrene block copolymer. These resins may be used alone or in combination of two or more.
The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
本発明の異方性導電材料には、必要に応じて、例えば、増量剤、可塑剤、粘接着性向上剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤が添加されてもよい。 The anisotropic conductive material of the present invention includes, for example, a bulking agent, a plasticizer, an adhesive improver, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, if necessary. Various additives such as a flame retardant and an organic solvent may be added.
本発明の異方性導電材料を製造する方法は特に限定されず、例えば、上記バインダー樹脂中に本発明の絶縁被覆導電性粒子を添加し、均一に混合して分散させ、異方性導電ペースト、異方性導電インク、異方性導電粘着剤等とする方法が挙げられる。また、本発明の異方性導電材料を製造する方法として、上記バインダー樹脂中に本発明の絶縁被覆導電性粒子を添加し、均一に分散させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定の厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、異方性導電フィルム、異方性導電シート等とする方法も挙げられる。なお、異方性導電材料の種類に対応して、適宜の製造方法を選択することができる。
また、上記バインダー樹脂と、本発明の絶縁被覆導電性粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the insulating coating conductive particles of the present invention are added to the binder resin, and the mixture is uniformly mixed and dispersed. , Anisotropic conductive ink, anisotropic conductive adhesive, and the like. In addition, as a method for producing the anisotropic conductive material of the present invention, the insulating coated conductive particles of the present invention are added to the binder resin and dispersed uniformly or dissolved by heating to release paper or release paper. A method of applying an anisotropic conductive film, an anisotropic conductive sheet, etc. by coating the release treatment surface of a release material such as a mold film so as to have a predetermined thickness and drying or cooling as necessary. Also mentioned. An appropriate manufacturing method can be selected in accordance with the type of anisotropic conductive material.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing the said binder resin and the insulation coating electroconductive particle of this invention.
本発明の異方性導電材料を用いて、第1の回路基板と第2の回路基板とが導電接続されている接続構造体もまた、本発明の1つである。
本発明の接続構造体は、一対の回路基板間に、本発明の異方性導電材料を充填することにより、一対の回路基板間を導電接続させている。
A connection structure in which the first circuit board and the second circuit board are conductively connected using the anisotropic conductive material of the present invention is also one aspect of the present invention.
In the connection structure of the present invention, the anisotropic conductive material of the present invention is filled between the pair of circuit boards, thereby electrically connecting the pair of circuit boards.
本発明によれば、強いせん断力を加える過酷な条件の前処理工程を行なっても絶縁性微粒子が剥離しにくく、ファインピッチ仕様の微細な回路電極部材同士を接続したときに接続部分の充分に低い抵抗値と隣接する回路電極間の優れた絶縁性とを両立することができる絶縁被覆導電性粒子を提供することができる。 According to the present invention, the insulating fine particles are difficult to peel off even if a pretreatment step under severe conditions in which a strong shearing force is applied, and when the fine circuit electrode members with fine pitch specifications are connected to each other, the connection portion is sufficiently formed. Insulating coated conductive particles that can achieve both a low resistance value and excellent insulation between adjacent circuit electrodes can be provided.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(1)導電性粒子の作製
基材粒子として平均粒子径3μmのテトラメチロールメタンテトラアクリレート−ジビニルベンゼン共重合樹脂粒子(テトラメチロールメタンテトラアクリレート50重量%:ジビニルベンゼン50重量%)を、センシタイジング、アクチベイチングを行い樹脂粒子表面にPd核を生成させ、無電解メッキの触媒核とした。次に、加温した無電解Niメッキ浴に樹脂粒子を浸漬し、Niメッキ層を形成した。次に、無電解置換金メッキを行い、導電性粒子を得た。
得られた導電性粒子のNiメッキ厚みは90nmであり、金メッキ厚みは30nmであった。
Example 1
(1) Production of conductive particles Sensitizing tetramethylolmethanetetraacrylate-divinylbenzene copolymer resin particles (tetramethylolmethanetetraacrylate 50% by weight: divinylbenzene 50% by weight) having an average particle diameter of 3 μm as base particles. Then, activating was performed to generate Pd nuclei on the surface of the resin particles, thereby forming electroless plating catalyst nuclei. Next, resin particles were immersed in a heated electroless Ni plating bath to form a Ni plating layer. Next, electroless substitution gold plating was performed to obtain conductive particles.
The obtained conductive particles had a Ni plating thickness of 90 nm and a gold plating thickness of 30 nm.
(2)絶縁性微粒子の作製
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸メチル60mmol、メタクリル酸グリシジル6.7mmol、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩0.003mmol、4官能の架橋性単量体であるテトラメチロールメタンテトラメタクリレート2mmol、及び、開始剤として2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.005mmolを含む組成物を、固形分率が5重量%となるように蒸留水に秤取した。その後、200rpmで攪拌しながら、窒素雰囲気下60℃で重合を開始した。重合開始から2時間後、得られた粒子を蒸留水で洗浄することにより、コア粒子を作製した。
(2) Production of insulating fine particles A 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a condenser tube, and a temperature probe was charged with 60 mmol methyl methacrylate, 6.7 mmol glycidyl methacrylate, and phenyl methacrylate. 0.003 mmol of dimethylsulfonium methylsulfate, 2 mmol of tetramethylolmethane tetramethacrylate which is a tetrafunctional crosslinkable monomer, and 2,2′-azobis {2- [N- (2-carboxyethyl) amidino as an initiator ] A composition containing 0.005 mmol of propane was weighed in distilled water so that the solid content was 5% by weight. Thereafter, polymerization was started at 60 ° C. in a nitrogen atmosphere while stirring at 200 rpm. Two hours after the start of polymerization, the obtained particles were washed with distilled water to prepare core particles.
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸メチル30mmol、メタクリル酸グリシジル3.3mmol、2官能の架橋性単量体であるジメタクリル酸エチレングリコール1mmol、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩0.003mmol、及び、開始剤として2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.005mmolを含む組成物を、固形分率が5重量%となるように蒸留水に秤取し、さらに得られたコア粒子全量を蒸留水に添加した。その後、200rpmで攪拌しながら、窒素雰囲気下60℃で重合を開始した。重合開始から6時間後、得られた粒子を蒸留水で洗浄し、凍結乾燥して、絶縁性微粒子を作製した。
得られた絶縁性微粒子の平均粒子径は300nm、粒子径の変動係数は10%であった。
A 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a condenser tube, and a temperature probe was added to 30 ml of methyl methacrylate, 3.3 mmol of glycidyl methacrylate, and a difunctional crosslinkable monomer. Contains 1 mmol of ethylene glycol methacrylate, 0.003 mmol of phenyldimethylsulfonium methylsulfate methacrylate, and 0.005 mmol of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} as an initiator. The composition was weighed in distilled water so that the solid content was 5% by weight, and the total amount of the obtained core particles was added to distilled water. Thereafter, polymerization was started at 60 ° C. in a nitrogen atmosphere while stirring at 200 rpm. Six hours after the start of polymerization, the obtained particles were washed with distilled water and freeze-dried to produce insulating fine particles.
The average particle diameter of the obtained insulating fine particles was 300 nm, and the coefficient of variation of the particle diameter was 10%.
(3)絶縁被覆導電性粒子の作製
得られた絶縁性微粒子10gを蒸留水に分散させ、絶縁性微粒子の10重量%水分散液を得た。導電性粒子10gを蒸留水500mLに分散させ、絶縁性微粒子の10重量%水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターで濾過し、更にメタノールで洗浄した後、乾燥して、絶縁被覆導電性粒子を得た。
(3) Preparation of insulating coated conductive particles 10 g of the obtained insulating fine particles were dispersed in distilled water to obtain a 10 wt% aqueous dispersion of insulating fine particles. 10 g of conductive particles were dispersed in 500 mL of distilled water, 4 g of a 10 wt% aqueous dispersion of insulating fine particles was added, and the mixture was stirred at room temperature for 6 hours. The mixture was filtered through a 3 μm mesh filter, further washed with methanol, and then dried to obtain insulating coated conductive particles.
(4)異方性導電材料の作製
トルエン100重量部に絶縁被覆導電性粒子5重量部を添加し、超音波ホモジナイザーで30min分散させた後に、3μmのメッシュフィルターで濾過して、分散後の絶縁被覆導電性粒子を得た。分散後の絶縁被覆導電性粒子5重量部をトルエン100重量部に分散させ、絶縁被覆導電性粒子分散液を得た。
(4) Production of anisotropic conductive material Add 5 parts by weight of insulating coated conductive particles to 100 parts by weight of toluene, disperse with an ultrasonic homogenizer for 30 min, and then filter with a 3 μm mesh filter to insulate after dispersion. Coated conductive particles were obtained. 5 parts by weight of the insulating coated conductive particles after dispersion were dispersed in 100 parts by weight of toluene to obtain an insulating coated conductive particle dispersion.
バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)に絶縁被覆導電性粒子分散液を添加し、遊星式攪拌機を用いて充分に分散混合させた後、離型フィルム上に乾燥後の厚みが7μmとなるように一定の厚みで塗布した。その後、トルエンを揮発させ、絶縁被覆導電性粒子を含有する接着性フィルムを得た。
得られた絶縁被覆導電性粒子を含有する接着性フィルムに絶縁被覆導電性粒子を含有しない接着性フィルムを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
なお、絶縁被覆導電性粒子の添加量は、異方性導電フィルム中の含有量が30万個/cm2となるように設定した。
Insulating coated conductive particle dispersion is added to epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.) as a binder resin, sufficiently dispersed and mixed using a planetary stirrer, and then dried on a release film. It was applied at a constant thickness so that the subsequent thickness was 7 μm. Thereafter, toluene was volatilized to obtain an adhesive film containing insulating coated conductive particles.
An anisotropic conductive film having a two-layer structure having a thickness of 17 μm is obtained by laminating an adhesive film containing no insulating coating conductive particles at room temperature on the resulting adhesive film containing insulating coating conductive particles. It was.
In addition, the addition amount of the insulating coating conductive particles was set so that the content in the anisotropic conductive film was 300,000 pieces / cm 2 .
(比較例1)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸メチル90mmol、メタクリル酸グリシジル10mmol、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩0.003mmol、2官能の架橋性単量体であるジメタクリル酸エチレングリコール1mmol、及び、開始剤として2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.005mmolを含有する組成物を固形分率が5重量%となるように蒸留水に秤取した。その後、200rpmで攪拌しながら、窒素雰囲気下60℃で6時間重合した。反応終了後、凍結乾燥して、絶縁性微粒子を得た。
得られた絶縁性微粒子の平均粒子径は300nm、粒子径の変動係数は10%であった。
(Comparative Example 1)
A 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, condenser, and temperature probe was charged with 90 mmol methyl methacrylate, 10 mmol glycidyl methacrylate, and phenyldimethylsulfonium methyl sulfate 0.003 mmol, 2 A composition containing 1 mmol of ethylene glycol dimethacrylate which is a functional crosslinkable monomer and 0.005 mmol of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} as an initiator The product was weighed into distilled water so that the solid content was 5% by weight. Then, it superposed | polymerized at 60 degreeC by nitrogen atmosphere for 6 hours, stirring at 200 rpm. After completion of the reaction, it was freeze-dried to obtain insulating fine particles.
The average particle diameter of the obtained insulating fine particles was 300 nm, and the coefficient of variation of the particle diameter was 10%.
得られた絶縁性微粒子を用いた以外は実施例1と同様にして、絶縁被覆導電性粒子及び異方性導電材料を製造した。 Insulating coated conductive particles and anisotropic conductive material were produced in the same manner as in Example 1 except that the obtained insulating fine particles were used.
(比較例2)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸メチル60mmol、メタクリル酸グリシジル6.7mmol、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩0.003mmol、4官能の架橋性単量体であるテトラメチロールメタンテトラメタクリレート2mmol、及び、開始剤として2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.005mmolを含有する組成物を最終固形分率が5重量%となるように蒸留水に秤取した。その後、200rpmで攪拌しながら、窒素雰囲気下60℃で重合を開始した。重合開始から2時間後、得られた粒子を蒸留水で洗浄することにより、コア粒子を作製した。
(Comparative Example 2)
A 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, condenser, temperature probe, methyl methacrylate 60 mmol, glycidyl methacrylate 6.7 mmol, phenyldimethylsulfonium methyl sulfate 0.003 mmol Contains 2 mmol of tetramethylol methane tetramethacrylate, a tetrafunctional crosslinkable monomer, and 0.005 mmol of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} as an initiator The composition was weighed in distilled water so that the final solid content was 5% by weight. Thereafter, polymerization was started at 60 ° C. in a nitrogen atmosphere while stirring at 200 rpm. Two hours after the start of polymerization, the obtained particles were washed with distilled water to prepare core particles.
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた1000mLセパラブルフラスコに、メタクリル酸メチル30mmol、メタクリル酸グリシジル3.3mmol、メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩0.003mmol、及び、開始剤として2,2’−アゾビス{2−[N−(2−カルボキシエチル)アミジノ]プロパン}0.005mmolを含む組成物を、固形分率が5重量%となるように蒸留水に秤取し、さらに得られたコア粒子全量を蒸留水に添加した。その後、200rpmで攪拌しながら、窒素雰囲気下60℃で重合を開始した。重合開始から6時間後、得られた粒子を蒸留水で洗浄し、凍結乾燥して、絶縁性微粒子を作製した。
得られた絶縁性微粒子の平均粒子径は300nm、粒子径の変動係数は10%であった。
A 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, condenser, temperature probe, methyl methacrylate 30 mmol, glycidyl methacrylate 3.3 mmol, and phenyldimethylsulfonium methyl sulfate 0.003 mmol And a composition containing 0.002 mmol of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} as an initiator in distilled water so that the solid content is 5% by weight. The total amount of the obtained core particles was added to distilled water. Thereafter, polymerization was started at 60 ° C. in a nitrogen atmosphere while stirring at 200 rpm. Six hours after the start of polymerization, the obtained particles were washed with distilled water and freeze-dried to produce insulating fine particles.
The average particle diameter of the obtained insulating fine particles was 300 nm, and the coefficient of variation of the particle diameter was 10%.
得られた絶縁性微粒子を用いた以外は実施例1と同様にして、絶縁被覆導電性粒子及び異方性導電材料を製造した。 Insulating coated conductive particles and anisotropic conductive material were produced in the same manner as in Example 1 except that the obtained insulating fine particles were used.
(評価)
実施例1及び比較例1、2で得た絶縁被覆導電性粒子及び異方性導電材料について、以下の方法で評価を行った。
結果を表1に示した。
(Evaluation)
The insulating coated conductive particles and anisotropic conductive materials obtained in Example 1 and Comparative Examples 1 and 2 were evaluated by the following methods.
The results are shown in Table 1.
(1)絶縁性微粒子の剥離試験
任意の50個の絶縁被覆導電性粒子を、作製の直後に走査型電子顕微鏡(SEM)を用いて観察した。また、異方性導電材料作製中に絶縁被覆導電性微粒子分散液を調製した後にも任意の50個の絶縁被覆導電性粒子を、SEMを用いて観察した。これらのSEMによる観察の結果より、絶縁被覆導電性粒子作製直後の絶縁性微粒子の被覆数と、分散液調整後の絶縁性微粒子の被覆数とを比較した。絶縁被覆導電性粒子作製直後の絶縁性微粒子の被覆数に対する分散液調整後の絶縁性微粒子の被覆数の割合が80%以上であった場合を「○」と、50%以上80%未満であった場合を「△」と、50%未満であった場合を「×」と評価した。なお、SEM観察において、観察された絶縁性微粒子の総数を被覆数とした。
(1) Peeling test of insulating fine particles Arbitrary 50 insulating coated conductive particles were observed using a scanning electron microscope (SEM) immediately after the production. Further, even after preparing the insulating coating conductive fine particle dispersion during the production of the anisotropic conductive material, arbitrary 50 insulating coating conductive particles were observed using SEM. From the results of these SEM observations, the number of insulating fine particles coated immediately after the production of the insulating coated conductive particles was compared with the number of insulating fine particles coated after the dispersion was adjusted. When the ratio of the coating number of the insulating fine particles after the dispersion adjustment was 80% or more with respect to the coating number of the insulating fine particles immediately after the production of the insulating coated conductive particles was 80% or more, it was “◯”, and was 50% or more and less than 80%. The case where it was less than 50% was evaluated as “X”. In SEM observation, the total number of insulating fine particles observed was defined as the coating number.
(2)隣接電極間の絶縁性試験
4×18mmの大きさに切断した異方性導電フィルムを、図1に示した櫛型パターン(ライン本数800本、重なり部の長さ1mm、ライン幅10μm、ライン間隔10μm、ライン高さ15μm)を有するシリコンウエハ基板上に貼り付け、2×12.5mmの厚さ1mmの平板ガラスで挟み、20Nの加圧下、150℃で30分間加熱(条件1)及び200Nの加圧下、200℃で30秒間加熱(条件2)で熱圧着を行った後、隣接する電極間の抵抗値を測定した。20回試験を行ったなかで、抵抗値が108Ω以上であった回数が16回以上であった場合を「○」と、10回以上16回未満であった場合を「△」と、10回未満であった場合を「×」と評価した。
(2) Insulation test between adjacent electrodes An anisotropic conductive film cut to a size of 4 × 18 mm was formed from the comb-shaped pattern shown in FIG. 1 (800 lines, overlapping portion length 1 mm, line width 10 μm). A silicon wafer substrate having a line interval of 10 μm and a line height of 15 μm), sandwiched between 2 × 12.5 mm flat glass with a thickness of 1 mm, and heated at 150 ° C. for 30 minutes under a pressure of 20 N (Condition 1) Then, after thermocompression bonding was performed by heating at 200 ° C. for 30 seconds (condition 2) under a pressure of 200 N, the resistance value between adjacent electrodes was measured. Among the tests conducted 20 times, the case where the resistance value was 10 8 Ω or more was 16 times or more, “◯”, and the case where the resistance value was 10 times or more and less than 16 times was “△”, 10 The case where it was less than times was evaluated as “×”.
(3)上下導通試験
ITO電極(幅100μm、高さ0.2μm、長さ2cm)を有したガラス基板(幅1cm、長さ2.5cm)の一方に、異方性導電フィルムを5×5mmに切断し、ほぼ中央部に貼り付けた後、同じITO電極を有したガラス基板を互いの電極が重なるように位置合わせを行って貼り付けた。ガラス基板の接合部を20Nの加圧下、150℃で30分間加熱(条件1)及び200Nの加圧下、200℃で30秒間加熱(条件2)により熱圧着した後、4端子法により抵抗値を測定した。20回試験を行ったなかで、抵抗値が5Ω以下であった回数が16回以上であった場合を「○」と、10回以上16回未満であった場合を「△」と、10回未満であった場合を「×」と評価した。
(3) Vertical conduction test One side of a glass substrate (width 1 cm, length 2.5 cm) having an ITO electrode (width 100 μm, height 0.2 μm, length 2 cm) is provided with an anisotropic conductive film 5 × 5 mm. The glass substrate having the same ITO electrode was aligned and pasted so that the electrodes overlap each other. The glass substrate bonding part was thermocompression-bonded by heating at 150 ° C. for 30 minutes under 20N pressure (condition 1) and by heating at 200N for 30 seconds at 200 ° C (condition 2). It was measured. When the number of times that the resistance value was 5Ω or less was 16 times or more in the 20 times of the test, “◯” when the number of times the resistance value was 10 times or less and “△” when the number was 10 times or less and less than 10 times Was evaluated as “×”.
本発明によれば、強いせん断力を加える過酷な条件の前処理工程を行なっても絶縁性微粒子が剥離しにくく、ファインピッチ仕様の微細な回路電極部材同士を接続したときに接続部分の充分に低い抵抗値と隣接する回路電極間の優れた絶縁性とを両立することができる絶縁被覆導電性粒子を提供することができる。 According to the present invention, the insulating fine particles are difficult to peel off even if a pretreatment step under severe conditions in which a strong shearing force is applied, and when the fine circuit electrode members with fine pitch specifications are connected to each other, the connection portion is sufficiently formed. Insulating coated conductive particles that can achieve both a low resistance value and excellent insulation between adjacent circuit electrodes can be provided.
Claims (4)
前記絶縁性微粒子は、架橋性単量体に由来するポリマー成分を含有するコア粒子の表面が、架橋性単量体に由来するポリマー成分を含有する被膜層で被覆されており、
前記コア粒子の下記式(1)により定義される架橋度が7以上であり、かつ、前記コア粒子の下記式(1)により定義される架橋度が前記被膜層の下記式(1)により定義される架橋度より高い
ことを特徴とする絶縁被覆導電性粒子。
架橋度=架橋性単量体の重合性官能基数
×(架橋性単量体のモル数/全単量体のモル数)×100 (1) The surface of the conductive particles is partially covered by chemically bonding to the conductive particles having a conductive surface through the functional group (A) having a binding property to the conductive particles. Insulating coated conductive particles having insulating fine particles,
In the insulating fine particles, the surface of the core particle containing the polymer component derived from the crosslinkable monomer is coated with a coating layer containing the polymer component derived from the crosslinkable monomer,
The degree of cross-linking defined by the following formula (1) of the core particle is 7 or more, and the degree of cross-linking defined by the following formula (1) of the core particle is defined by the following formula (1) of the coating layer. Insulating coated conductive particles characterized in that the degree of cross-linking is higher.
Crosslinking degree = number of polymerizable functional groups of the crosslinkable monomer
X (number of moles of crosslinkable monomer / number of moles of all monomers) x 100 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008251055A JP5368760B2 (en) | 2008-09-29 | 2008-09-29 | Insulating coating conductive particles, anisotropic conductive material, and connection structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008251055A JP5368760B2 (en) | 2008-09-29 | 2008-09-29 | Insulating coating conductive particles, anisotropic conductive material, and connection structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010086665A JP2010086665A (en) | 2010-04-15 |
JP5368760B2 true JP5368760B2 (en) | 2013-12-18 |
Family
ID=42250444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008251055A Active JP5368760B2 (en) | 2008-09-29 | 2008-09-29 | Insulating coating conductive particles, anisotropic conductive material, and connection structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5368760B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5548053B2 (en) * | 2010-07-02 | 2014-07-16 | 積水化学工業株式会社 | Conductive particles with insulating particles, method for producing conductive particles with insulating particles, anisotropic conductive material, and connection structure |
JP5498907B2 (en) * | 2010-09-29 | 2014-05-21 | 株式会社日本触媒 | Resin particles, insulated conductive particles and anisotropic conductive materials using the same |
JP5653737B2 (en) * | 2010-12-08 | 2015-01-14 | 株式会社日本触媒 | Resin particles, insulated conductive particles and anisotropic conductive materials using the same |
JP2012142247A (en) * | 2011-01-06 | 2012-07-26 | Sekisui Chem Co Ltd | Anisotropic conductive material and connection structure |
JP5672022B2 (en) * | 2011-01-25 | 2015-02-18 | 日立化成株式会社 | Insulating coated conductive particles, anisotropic conductive material, and connection structure |
JP6480660B2 (en) * | 2012-07-03 | 2019-03-13 | 積水化学工業株式会社 | Method for producing conductive particles with insulating particles, method for producing conductive material, and method for producing connection structure |
JP6212369B2 (en) * | 2012-12-05 | 2017-10-11 | 積水化学工業株式会社 | Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure |
CN104838449B (en) | 2012-12-07 | 2018-06-15 | 3M创新有限公司 | Conductive articles |
WO2019194133A1 (en) * | 2018-04-04 | 2019-10-10 | 積水化学工業株式会社 | Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure |
JP7284703B2 (en) * | 2018-04-04 | 2023-05-31 | 積水化学工業株式会社 | Conductive particles with insulating particles, conductive materials and connection structures |
JP7312109B2 (en) * | 2018-04-04 | 2023-07-20 | 積水化学工業株式会社 | Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW557237B (en) * | 2001-09-14 | 2003-10-11 | Sekisui Chemical Co Ltd | Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure |
JP3869785B2 (en) * | 2002-10-25 | 2007-01-17 | 積水化学工業株式会社 | Insulating coating conductive fine particles and conductive connection structure |
JP4387175B2 (en) * | 2003-07-07 | 2009-12-16 | 積水化学工業株式会社 | Coated conductive particles, anisotropic conductive material, and conductive connection structure |
JP4539813B2 (en) * | 2003-08-19 | 2010-09-08 | ソニーケミカル&インフォメーションデバイス株式会社 | Insulation coated conductive particles |
JP4686120B2 (en) * | 2003-11-11 | 2011-05-18 | 積水化学工業株式会社 | Coated conductive particles, anisotropic conductive material, and conductive connection structure |
JP4313664B2 (en) * | 2003-12-11 | 2009-08-12 | 積水化学工業株式会社 | Protruding conductive particles, coated conductive particles, and anisotropic conductive material |
-
2008
- 2008-09-29 JP JP2008251055A patent/JP5368760B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010086665A (en) | 2010-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5368760B2 (en) | Insulating coating conductive particles, anisotropic conductive material, and connection structure | |
JP4773685B2 (en) | Coated conductive fine particles, method for producing coated conductive fine particles, anisotropic conductive material, and conductive connection structure | |
JP4387175B2 (en) | Coated conductive particles, anisotropic conductive material, and conductive connection structure | |
JP4563110B2 (en) | Method for producing conductive fine particles | |
JP4686120B2 (en) | Coated conductive particles, anisotropic conductive material, and conductive connection structure | |
JP6165626B2 (en) | Conductive particles, conductive materials, and connection structures | |
JP5395482B2 (en) | Coated conductive fine particles, anisotropic conductive material, and conductive connection structure | |
WO2014007237A1 (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
JP2019173015A (en) | Base particle, conductive particle, conductive material, and connection structure | |
TW201841170A (en) | Conductive particles, conductive material, and connection structure | |
JP6165625B2 (en) | Conductive particles, conductive materials, and connection structures | |
JP6151990B2 (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
JP4391836B2 (en) | Coated conductive particles, anisotropic conductive material, and conductive connection structure | |
TWI719054B (en) | Method for manufacturing connection structure, conductive particles, conductive film, and connection structure | |
JP6577723B2 (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
WO2021193911A1 (en) | Resin particles, electrically conductive particles, electrically conductive material, and connection structure | |
JP2006107881A (en) | Conductive fine particle and anisotropic conductive material | |
JP7235611B2 (en) | Conductive materials and connecting structures | |
WO2022239776A1 (en) | Conductive particles, conductive material, and connection structure | |
JP7312108B2 (en) | Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure | |
JP7312109B2 (en) | Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure | |
JP7271543B2 (en) | Conductive particles with insulating particles, conductive materials and connection structures | |
JP6066734B2 (en) | Conductive particles, conductive materials, and connection structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130514 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130913 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5368760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |