JP3869785B2 - Insulating coating conductive fine particles and conductive connection structure - Google Patents

Insulating coating conductive fine particles and conductive connection structure Download PDF

Info

Publication number
JP3869785B2
JP3869785B2 JP2002311517A JP2002311517A JP3869785B2 JP 3869785 B2 JP3869785 B2 JP 3869785B2 JP 2002311517 A JP2002311517 A JP 2002311517A JP 2002311517 A JP2002311517 A JP 2002311517A JP 3869785 B2 JP3869785 B2 JP 3869785B2
Authority
JP
Japan
Prior art keywords
fine particles
insulating
conductive fine
particles
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002311517A
Other languages
Japanese (ja)
Other versions
JP2004146261A (en
Inventor
義和 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002311517A priority Critical patent/JP3869785B2/en
Publication of JP2004146261A publication Critical patent/JP2004146261A/en
Application granted granted Critical
Publication of JP3869785B2 publication Critical patent/JP3869785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、隣接電極間のリークを防止することができ、かつ、接続抵抗値が低い、接続信頼性に優れる絶縁被覆導電性微粒子に関する。
【0002】
【従来の技術】
近年、液晶ディスプレイ、パーソナルコンピュータ、携帯通信機器等のエレクトロニクス製品において、半導体素子等の小型電機部品を基板に電気的に接続したり、基板同士を電気的に接続したりするために、いわゆる異方性導電材料が使用されている。なかでも、導電性微粒子をバインダー樹脂に混合した異方性導電接着剤が広く用いられている。
【0003】
異方性導電接着剤に用いられる導電性微粒子としては、有機基材粒子又は無機基材粒子の表面に金属メッキを施したものや金属粒子が用いられてきた。このような導電性微粒子は、例えば、特許文献1、特許文献2、特許文献3、特許文献4等に開示されている。
また、このような導電性微粒子をバインダー樹脂と混ぜ合わせてフィルム状又はペースト状にした異方性導電接着剤は、例えば、特許文献5、特許文献6、特許文献7、特許文献8等に開示されている。
【0004】
近年、電子機器や電子部品の小型化が加速し、基板等の配線がより微細になってきたため、導電性微粒子もこれに対応できるように微粒子化や粒子径精度の向上が要求されるようになってきた。しかし、高い粒子径精度のままで一定以上に粒子径を小さくすることは技術的に困難である。また、たとえそれが可能であったとしても、電気容量の問題から異方性導電接着剤に大量の導電性微粒子を混入する必要があり、隣接する導電性微粒子間にブリッジが発生し、電極間でのリークが発生しやすくなるという問題があった。
【0005】
これに対して、導電性微粒子の最外層に更に絶縁被覆を施すことにより、隣接する粒子同士の電気的絶縁性を確保しつつ、熱や圧力により接触する基板上の電極との間では電気的に接続できるという異方導電性を備えた絶縁被覆導電性微粒子が検討されている。しかしながら、電気的に接続するべき導電層の表面に絶縁層を設けることは、接続抵抗値の上昇や信頼性の低下、更には接続不良を発生させる要因となるという問題があった。
【0006】
【特許文献1】
特公平6−96771号公報
【特許文献2】
特開平4−36902号公報
【特許文献3】
特開平4−269720号公報
【特許文献4】
特開平3−257710号公報
【特許文献5】
特開昭63−231889号公報
【特許文献6】
特開平4−259766号公報
【特許文献7】
特開平3−291807号公報
【特許文献8】
特開平5−75250号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、隣接電極間のリークを防止することができ、かつ、接続抵抗値が低い、接続信頼性に優れる絶縁被覆導電性微粒子を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、平均粒径が1〜20μmの球状芯材粒子と、前記球状芯材粒子の表面に形成された導電性金属被膜層と、前記導電性金属被膜層の表面に形成された絶縁性樹脂層とからなる絶縁被覆導電性微粒子であって、絶縁性樹脂層の平均被覆率が5〜60%、絶縁性樹脂層の被覆率の標準偏差が1〜15%であり、かつ、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子を1〜10%含有する絶縁被覆導電性微粒子である。
以下に本発明を詳述する。
【0009】
本発明の絶縁被覆導電性微粒子は、平均粒径が1〜20μmの球状芯材粒子と、
上記球状芯材粒子の表面に形成された導電性金属被膜層と、上記導電性金属被膜層の表面に形成された絶縁性樹脂層とからなる絶縁被覆導電性微粒子である。
上記球状芯材粒子としては特に限定されず、例えば、樹脂、金属、セラミック等からなるものが挙げられる。なかでも、樹脂からなる球状芯材粒子を用いれば、
適度な弾性率、弾性変形性及び復元性が得られる他、樹脂の有する応力緩和効果により、本発明の絶縁被覆導電性微粒子によって導電接続された電極の接続部に温度変化等により応力がかかったときにも、その応力を緩和して接続信頼性を維持することができ好ましい。
【0010】
上記球状芯材粒子が樹脂からなる場合、上記樹脂としては特に限定されず、架橋性単量体、非架橋性単量体を重合してなる重合体等が挙げられる。
上記単量体としては特に限定されず、例えば、エチレングリコールジ(メタ)アクリレート等のポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、2,2−ビス[4−(メタクリロキシエトキシ)フェニル]プロパンジ(メタ)アクリレート等の2,2−ビス[4−(メタクリロキシポリエトキシ)フェニル]プロパンジ(メタ)アクリレート、2,2−水添ビス[4−(アクリロキシポリエトキシ)フェニル]プロパンジ(メタ)アクリレート、2,2−ビス[4−(アクリロキシエトキシポリプロポキシ)フェニル]プロパンジ(メタ)アクリレート;スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;アクリロニトリル等の不飽和ニトリル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル、エチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル誘導体;ブタジエン、イソプレン等の共役ジエン類;ジビニルベンゼン、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジアリルフタレート及びその異性体、トリアリルイソシアヌレート及びその誘導体、トリメチロールプロパントリ(メタ)アクリレート及びその誘導体、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらの単量体は、単独で用いられてもよく、2種以上が併用されてもよい。
【0011】
上記球状芯材粒子の形状としては基本的に球状であることが好ましいが、本発明の主旨を喪失しない範囲で、短繊維状、柱状等であってもよい。
接続する電極のピッチが小さい等、特に高精度が要求される用途に用いる場合には、上記球状芯材粒子のアスペクト比の好ましい上限は1.2である。1.2を超えると、粒子が不揃いとなるため、短径部分が電極に届かず接続不良の原因となることがある。より好ましい上限は1.2、更に好ましい上限は1.1、特に好ましい上限は1.05である。
また、この場合、上記球状芯材粒子のCV値の好ましい上限は10%である。10%を超えると、粒径が不揃いとなるため、小さい導電性微粒子が電極に届かず接続不良の原因となることがある。より好ましい下限は7%、更に好ましい下限は5%である。なお、 上記CV値は、下記式により求められる。
CV値(%)=(σ/Dn)×100
式中、σは粒径の標準偏差を表し、Dnは数平均粒径を表す。
【0012】
上記球状芯材粒子の平均粒子径の下限は1μm、上限は20μmである。1μm未満であると、絶縁性樹脂層の被覆率の制御が困難になり、また、導電接続する電極やバンプの精度の問題から導電接続が困難となり、20μmを超えると、本発明の絶縁被覆導電性微粒子の目的であるファインピッチの電極、バンプ等の導電接続に対応できなくなる。好ましい下限は1.5μm、好ましい上限は10μmであり、より好ましい下限は1.75μm、より好ましい上限は7μmである。
【0013】
上記絶縁被覆導電性微粒子では、上記球状芯材粒子の表面に導電性金属被膜層が形成されている。
上記導電性金属被膜層としては特に限定されず、例えば、ニッケル、金、銀、銅、コバルト、錫、インジウム、ITO等又はこれらを主成分とする合金等からなるものが挙げられる。上記導電性金属被膜層は、一層からなるものであっても、多層からなるものであってもよく、これらの金属は、単独で用いられてもよく、2種以上が併用されてもよい。これらの金属が2種以上併用される場合は、例えば、ニッケルを主体とする層を形成した後、更にその外層に金層を形成した場合には、より抵抗値を低減することができる。
【0014】
上記導電性金属被膜層の厚さとしては特に限定されないが、好ましい下限は200Å、好ましい上限は5000Åである。200Å未満であると、球状芯材微粒子にメッキ被膜の形成されていない部分が生じたり、また、抵抗が大きくなったりすることがあり、5000Åを超えると、導電性金属被膜層が硬くなり球状芯材粒子の変形に追従できず導電金属被膜が破壊されたり、芯材の変形を妨げるため接続電極を破壊したり接触面積が大きくならずに接続抵抗値が高くなったり接続不良が発生しやすくなったりすることがある。より好ましい下限は500Å、より好ましい上限は3500Å、更に好ましい下限は700Å、更に好ましい上限は2000Åである。
【0015】
上記導電性金属被膜層を形成する方法としては特に限定されず、無電解メッキ法や電解メッキ法等の従来公知の方法を用いることができる。
【0016】
上記絶縁被覆導電性微粒子では、導電性金属被膜層の表面に絶縁性樹脂層が形成されている。
上記絶縁性樹脂層としては、得られる絶縁被覆導電性微粒子の粒子間の絶縁性を確保でき、一定の圧力及び/又は加熱により容易にその絶縁性が崩壊するものであれば特に限定されず、上述の球状芯材粒子の場合と同様の樹脂からなるもの等が挙げられる。ただし、球状芯材粒子に比べて絶縁性樹脂層があまりに硬い場合には、絶縁性樹脂層の破壊よりも先に絶縁被覆導電性微粒子そのものが破壊してしまうことがあることから、絶縁性樹脂層としては未架橋又は比較的架橋度の低い樹脂を用いることが好ましい。
【0017】
上記絶縁性樹脂層は、1層であっても複数層からなるものであってもよい。例えば、単一又は複数の被膜状の層が形成されていてもよく、又は絶縁被覆性を有する粒状、球状、塊状、鱗片状その他形状の粒子が表面に付着されたもの、表面に化学修飾することにより形成されたものであってもよく、それらが組み合わされたものであってもよい。
【0018】
上記絶縁性樹脂層の厚さとしては特に限定されず、絶縁性を発揮できる厚みがあればよい。被覆する物質や形状にもよるが、通常、平均厚さの好ましい下限は5Å、好ましい上限は40000Åである。5Å未満であると、隣接粒子との絶縁性を充分に確保できないことがあり、40000Åを超えると、圧力や熱を加えても導電接続できないことがある。より好ましい下限は20Å、より好ましい上限は20000Å、更に好ましい下限は50Å、更に好ましい上限は1000Åである。ただし、上記絶縁性樹脂層の厚さは、有する突起の大きさにより最適値が大きく変化する。特に重要な点は、粒子間の絶縁性を保持できるだけの絶縁性樹脂層の厚さを設定することである。
【0019】
上記絶縁被覆層を形成する方法としては特に限定されず、例えば、導電性金属被膜層を形成した粒子の存在下で界面重合、懸濁重合、乳化重合等を行い、樹脂によりマイクロカプセル化する方法;樹脂溶液中へ導電性金属被膜層を形成した粒子を分散した後乾燥させるディッピング法;スプレードライ、ハイブリダイゼーションによる方法等の従来公知の方法を用いることができる。
【0020】
本発明の絶縁被覆導電性微粒子は、絶縁性樹脂層の平均被覆率が5〜60%、絶縁性樹脂層の被覆率の標準偏差が1〜15%であり、かつ、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子を1〜10%含有する。
本発明者らは、鋭意検討の結果、絶縁被覆導電性微粒子の表面に形成される絶縁性樹脂層の表面被覆率にある分布を持たせることによって高い接続信頼性を発現でき得ることを見出し、本発明を完成するに至った。
【0021】
本発明の絶縁被覆導電性微粒子に含まれる絶縁被覆導電性微粒子の上記絶縁性樹脂層の平均被覆率の下限は5%、上限は60%である。5%未満であると、隣接する絶縁被覆導電性微粒子間での絶縁性を確保できず、60%を超えると、充分な接続安定性が得られない。好ましい下限は10%、好ましい上限は45%、より好ましい下限は12%、より好ましい上限は35%である。
【0022】
本発明の絶縁被覆導電性微粒子に含まれる絶縁被覆導電性微粒子の上記絶縁性樹脂層の被覆率の標準偏差の下限は1%、上限は15%である。1%未満であると、接続抵抗値が上昇し、接続信頼性が低下し、15%を超えると、接続信頼性が低下する。好ましい下限は5%、好ましい上限は12%である。
【0023】
本発明の絶縁被覆導電性微粒子は、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子の含有率の下限が1%、上限が10%である。絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子は、ある確率で存在することによって低い接続抵抗値を実現する役割を有すると考えられる。絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子の含有率が1%未満であると、このような被覆率の低い絶縁被覆導電性微粒子を存在させる効果が得られず、接続抵抗値が上昇し接続信頼性が低下する。10%を超えると、絶縁性の低い粒子の存在比率が無視できなくなり、絶縁性が低下し隣接する導電性微粒子間にブリッジが発生し、電極間でのリークが発生しやすくなる。なお、ここで1〜10%とは、絶縁被覆導電性微粒子全体の粒子数に占める被覆率が8%に満たない絶縁被覆導電性微粒子の数量%を意味する。
絶縁性樹脂層の被覆率が6%未満の絶縁被覆導電性微粒子の含有率が3〜9%であることが好ましく、絶縁性樹脂層の被覆率が6%未満の絶縁被覆導電性微粒子の含有率1〜7%あることがより好ましい。
【0024】
このような絶縁性樹脂層の被覆率を満たす絶縁被覆導電性微粒子を得る方法としては、例えば、従来公知の方法により絶縁性樹脂層を設けた絶縁被覆導電性微粒子をブレンドする方法の他、絶縁性樹脂層の形成時に適度な剥離力が発生するような条件を併用することにより被覆率の低い絶縁被覆導電性微粒子を適量混入させる方法等が挙げられる。例えば、ディッピング法の場合、絶縁性樹脂層が形成された粒子を乾燥する際に凝集して塊状になったものを気流粉砕等により単粒子化する工程を行うが、この工程において絶縁性樹脂層が若干剥離されるような条件に設定することにより絶縁性樹脂層の被覆率を調整することができる。
【0025】
上記絶縁被覆導電性微粒子の10%圧縮変形におけるK値の好ましい下限は980N/mm2、上限は9800N/mm2である。980N/mm2未満であると、電極に絶縁被覆導電性微粒子が接する際に充分な接触圧が得られず絶縁性樹脂層を破壊して電極面と接触することができないことがあり、9800N/mm2を超えると、電極を破壊したり、絶縁被覆導電性微粒子の変形が小さくなるため接触面積が小さくなり接続抵抗値が上昇したり接続不良が発生しやすくなる。
より好ましい下限は1960N/mm2、より好ましい上限は7840N/mm2、より好ましい下限は2940N/mm2、より好ましい上限は5880N/mm2である。上記K値については、接続する電極の硬度や粒子径及び圧縮変形率により最適な範囲が大きく異なるため、最終的には実験により最適値を決定することが好ましい。
なお、上記10%圧縮変形におけるK値は、下記式により求められる。
K値(N/mm2)=(3/√2)・F・S-3/2・R-1/2
式中、Fは20℃、10%圧縮変形における荷重値(N)を表し、Sは圧縮変位(mm)を表し、Rは半径(mm)を表す。
【0026】
本発明の絶縁被覆導電性微粒子は、バインダー樹脂等に分散して導電性接着剤や導電インクとして用いることができる他、フィルム状に成形し異方導電フィルムとしても使用できる。
本発明の絶縁被覆導電性微粒子を用いれば、対向する2つの電極を極めて高い接続信頼性で導電接続することができる。
対向する2つの電極が本発明の絶縁被覆導電性微粒子を用いて導電接続されてなる導電接続構造体もまた、本発明の1つである。
【0027】
本発明の導電接続構造体においては、接続する電極としてはITO、銅、金、錫等で形成されたものが挙げられ特に限定されないが、少なくとも一方の電極が、深さが0.05〜0.5μm、平均間隔が0.1〜5μmの凹凸を有する場合には、より低抵抗でありかつ高い接続信頼性を得ることができ好ましい。
【0028】
本発明の絶縁被覆導電性微粒子は、最外層である絶縁樹脂層の被覆率に適切な分布を設定することにより、横方向への高い絶縁性と、縦方向への接続抵抗値の低減とを高次元で両立したものである。本発明の絶縁被覆導電性微粒子を異方導電材料等の導電材料として使用すると、粒子同士の横方向の接触に対しては絶縁層が機能し隣接電極間の絶縁性を保持しているが、基板上等の電極間に保持された際、圧力及び/又は熱のかかる基板上の導電パターンと接する部分のみ絶縁性を破壊し導通させることによって高い接続特性を得ることができる。これにより、絶縁被覆導電性微粒子を高密度に配しても、意図しない横方向の絶縁性を保持したまま対向する基板上の高精細な導電パターン間を電気的に良好に接続することができる。
【0029】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0030】
(実施例1)
球状芯材粒子の表面に導電性金属被膜層が形成された粒子として「ミクロパールAUL−704」(積水化学工業社製、平均粒子径4μm)を用いた。
「ミクロパール AUL−704」をポリビニルアルコール水溶液中に分散した後、乾燥し、単粒子化を行うことにより、絶縁被覆導電性微粒子を得た。
【0031】
(実施例2)
「ミクロパール AUL−704」(積水化学工業社製、平均粒子径4μm)と、平均径が約0.2μmのアクリル系共重合物からなる微粒子とを混合し、処理装置を用いてアクリル系共重合物からなる微粒子を「ミクロパール AUL−704」の表面に物理的に付着させることにより、絶縁被覆導電性微粒子を得た。
【0032】
(比較例1)
ポリビニルアルコール水溶液の濃度を高くした以外は実施例1と同様にして絶縁被覆導電性微粒子を得た。
【0033】
(比較例2〜5)
アクリル系共重合体微粒子:ミクロパールAUL−704の仕込み比率及び処理時間を変更した以外は実施例2と同様にして絶縁被覆導電性微粒子を得た。
【0034】
実施例1、2及び比較例1〜5で得られた絶縁被覆導電性微粒子について下記の方法により評価を行った。
結果を表1に示した。
【0035】
(1)絶縁性樹脂層の被覆状態の評価
実施例1及び比較例1で得られた絶縁被覆導電性微粒子については、200個の粒子について元素分析を行い、元素分布の像を得た。この像をもとに絶縁性樹脂層の被覆率、標準偏差を求め、更に8%未満の被覆率を有する粒子の割合を算出した。
実施例2及び比較例2〜5で得られた絶縁被覆導電性微粒子については、200個の粒子について走査型電子顕微鏡(SEM)を用いて粒子を撮影し、写真上で粒子中央部から2μm系内に付着した微粒子の投影面積を測定し、この像をもとに絶縁性樹脂層の被覆率、標準偏差を求め、更に8%未満の被覆率を有する粒子の割合を算出した。
【0036】
(2)接続抵抗値の測定
エポキシバインダー中に絶縁被覆導電性微粒子を25万個/mm3になるように配合したものに変形量が30%になるようにスペーサーを配合し導電接着剤を得た。
得られた導電接着剤を200μm巾のパターンを有するITOガラス基板2枚の間にパターンが直交及び対向するようにして挟み、160℃×3分、加重294Nで加熱及び加圧し導電接続構造体を得た。
得られた導電接続構造体について4端子法で接続電気抵抗値を測定した。
【0037】
(3)絶縁性の評価
絶縁被覆導電性微粒子をエポキシバインダーに5000個/mm3になるように分散し、30μmピッチの対向した櫛形パターンフィルム間に塗布し圧着した。
このとき、対向部のパターンサイズは5×10mm、プレス荷重は40kgであった。
パターン間の抵抗をテスターで測定し以下の基準により評価した。
〇:抵抗値が10MΩ以上
×:抵抗値が10MΩ未満
【0038】
【表1】

Figure 0003869785
【0039】
【発明の効果】
本発明によれば、隣接電極間のリークを防止することができ、かつ、接続抵抗値が低い、接続信頼性に優れる絶縁被覆導電性微粒子を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to insulating coated conductive fine particles that can prevent leakage between adjacent electrodes and have a low connection resistance value and excellent connection reliability.
[0002]
[Prior art]
In recent years, in electronic products such as liquid crystal displays, personal computers, and portable communication devices, so-called anisotropic methods are used to electrically connect small electrical components such as semiconductor elements to substrates or to electrically connect substrates to each other. Conductive material is used. Among these, anisotropic conductive adhesives in which conductive fine particles are mixed with a binder resin are widely used.
[0003]
As the conductive fine particles used in the anisotropic conductive adhesive, those obtained by subjecting the surface of organic base particles or inorganic base particles to metal plating or metal particles have been used. Such conductive fine particles are disclosed in, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4.
In addition, anisotropic conductive adhesives in which such conductive fine particles are mixed with a binder resin to form a film or paste are disclosed in, for example, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8, and the like. Has been.
[0004]
In recent years, the downsizing of electronic equipment and electronic components has accelerated, and wiring on substrates and the like has become finer. Therefore, it is required that fine particles and improved particle size accuracy are required so that conductive fine particles can also cope with this. It has become. However, it is technically difficult to reduce the particle size beyond a certain level while maintaining high particle size accuracy. Moreover, even if it is possible, it is necessary to mix a large amount of conductive fine particles into the anisotropic conductive adhesive due to the problem of electric capacity, and a bridge is generated between adjacent conductive fine particles. There has been a problem that leaks are likely to occur.
[0005]
On the other hand, by further applying an insulating coating to the outermost layer of the conductive fine particles, it is possible to ensure electrical insulation between adjacent particles, while maintaining electrical insulation between the electrodes on the substrate that are in contact with heat or pressure. Insulating coated conductive fine particles having anisotropic conductivity that can be connected to the substrate have been studied. However, the provision of the insulating layer on the surface of the conductive layer to be electrically connected has a problem that it causes an increase in connection resistance value, a decrease in reliability, and further causes a connection failure.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 6-96771 [Patent Document 2]
JP-A-4-36902 [Patent Document 3]
JP-A-4-269720 [Patent Document 4]
JP-A-3-257710 [Patent Document 5]
Japanese Patent Laid-Open No. 63-231889 [Patent Document 6]
JP-A-4-259766 [Patent Document 7]
JP-A-3-291807 [Patent Document 8]
Japanese Patent Laid-Open No. 5-75250 [0007]
[Problems to be solved by the invention]
An object of the present invention is to provide insulating coated conductive fine particles that can prevent leakage between adjacent electrodes, have a low connection resistance value, and have excellent connection reliability.
[0008]
[Means for Solving the Problems]
The present invention relates to spherical core particles having an average particle diameter of 1 to 20 μm, a conductive metal coating layer formed on the surface of the spherical core particles, and an insulating property formed on the surface of the conductive metal coating layer. Insulating coating conductive fine particles comprising a resin layer, the average coverage of the insulating resin layer is 5 to 60%, the standard deviation of the coverage of the insulating resin layer is 1 to 15%, and the insulating properties Insulating coated conductive fine particles containing 1 to 10% of insulating coated conductive fine particles having a resin layer coverage of less than 8%.
The present invention is described in detail below.
[0009]
The insulating coated conductive fine particles of the present invention are spherical core particles having an average particle size of 1 to 20 μm,
Insulating coated conductive fine particles comprising a conductive metal coating layer formed on the surface of the spherical core particle and an insulating resin layer formed on the surface of the conductive metal coating layer.
The spherical core particles are not particularly limited, and examples thereof include those made of resin, metal, ceramic, and the like. Above all, if spherical core particles made of resin are used,
In addition to obtaining an appropriate elastic modulus, elastic deformability, and resilience, the stress relaxation effect of the resin resulted in stress applied to the connection part of the electrode conductively connected by the insulating coated conductive fine particles of the present invention due to temperature change or the like. Sometimes, it is preferable because the stress can be relaxed and the connection reliability can be maintained.
[0010]
When the spherical core particles are made of a resin, the resin is not particularly limited, and examples thereof include a polymer obtained by polymerizing a crosslinkable monomer and a non-crosslinkable monomer.
The monomer is not particularly limited. For example, polyethylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate such as propylene glycol di (meth) acrylate, polytetramethylene Such as glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 2,2-bis [4- (methacryloxyethoxy) phenyl] propane di (meth) acrylate, etc. 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propanedi (meth) acrylate, 2,2-hydrogenated bis [4- (acryloxypolyethoxy) phenyl] propanedi (meth) acrylate, 2,2- Screw [4- (A Ryloxyethoxypolypropoxy) phenyl] propane di (meth) acrylate; styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene; vinyl chloride; vinyl acetate, vinyl propionate, etc. Vinyl esters; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene (Meth) acrylic acid ester derivatives such as glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate and cyclohexyl (meth) acrylate; conjugated dienes such as butadiene and isoprene Divinylbenzene, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, diallyl phthalate and isomers thereof; Examples include triallyl isocyanurate and derivatives thereof, trimethylolpropane tri (meth) acrylate and derivatives thereof, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. These monomers may be used independently and 2 or more types may be used together.
[0011]
The shape of the spherical core particles is preferably basically spherical, but may be short fiber, columnar or the like as long as the gist of the present invention is not lost.
When used for applications that require particularly high precision, such as when the pitch of electrodes to be connected is small, the preferred upper limit of the aspect ratio of the spherical core particles is 1.2. When the ratio exceeds 1.2, the particles are uneven, and the short diameter portion may not reach the electrode, which may cause connection failure. A more preferred upper limit is 1.2, a still more preferred upper limit is 1.1, and a particularly preferred upper limit is 1.05.
In this case, the preferable upper limit of the CV value of the spherical core particles is 10%. If it exceeds 10%, the particle size becomes uneven, so that small conductive fine particles do not reach the electrode and may cause poor connection. A more preferred lower limit is 7%, and a more preferred lower limit is 5%. The CV value is obtained by the following formula.
CV value (%) = (σ / Dn) × 100
In the formula, σ represents the standard deviation of the particle diameter, and Dn represents the number average particle diameter.
[0012]
The lower limit of the average particle diameter of the spherical core particles is 1 μm, and the upper limit is 20 μm. If the thickness is less than 1 μm, it becomes difficult to control the coverage of the insulating resin layer, and conductive connection becomes difficult due to the problem of the accuracy of electrodes and bumps to be conductively connected. The conductive connection of fine pitch electrodes, bumps, etc., which is the purpose of the conductive fine particles, becomes impossible. A preferred lower limit is 1.5 μm, a preferred upper limit is 10 μm, a more preferred lower limit is 1.75 μm, and a more preferred upper limit is 7 μm.
[0013]
In the insulating coated conductive fine particles, a conductive metal coating layer is formed on the surface of the spherical core particles.
The conductive metal coating layer is not particularly limited, and examples thereof include those made of nickel, gold, silver, copper, cobalt, tin, indium, ITO, or the like, or an alloy containing these as a main component. The conductive metal coating layer may be composed of a single layer or a multilayer, and these metals may be used alone or in combination of two or more. When two or more of these metals are used in combination, for example, after forming a layer mainly composed of nickel and further forming a gold layer on the outer layer, the resistance value can be further reduced.
[0014]
The thickness of the conductive metal coating layer is not particularly limited, but a preferable lower limit is 200 mm and a preferable upper limit is 5000 mm. If the thickness is less than 200 mm, a portion in which the spherical coating material is not formed on the spherical core material may be formed or the resistance may increase. If the thickness exceeds 5000 mm, the conductive metal film layer becomes hard and the spherical core is hardened. The conductive metal film cannot be tracked due to the deformation of the material particles, or the connection electrode is destroyed and the contact area is not increased and the connection resistance value is increased or the connection failure is likely to occur because the deformation of the core material is prevented. Sometimes. A more preferred lower limit is 500Å, a more preferred upper limit is 3500Å, a still more preferred lower limit is 700Å, and a still more preferred upper limit is 2000Å.
[0015]
The method for forming the conductive metal coating layer is not particularly limited, and a conventionally known method such as an electroless plating method or an electrolytic plating method can be used.
[0016]
In the insulating coated conductive fine particles, an insulating resin layer is formed on the surface of the conductive metal coating layer.
The insulating resin layer is not particularly limited as long as the insulating property between the particles of the obtained insulating coated conductive fine particles can be ensured, and the insulating property is easily collapsed by a certain pressure and / or heating. The thing etc. which consist of resin similar to the case of the above-mentioned spherical core particle are mentioned. However, if the insulating resin layer is too hard compared to the spherical core particles, the insulating coated conductive fine particles themselves may be destroyed before the insulating resin layer is destroyed. As the layer, it is preferable to use an uncrosslinked or relatively low degree of crosslinking resin.
[0017]
The insulating resin layer may be a single layer or a plurality of layers. For example, a single or a plurality of film-like layers may be formed, or particles having an insulating coating property, particles, spheres, lumps, scales or other shapes attached to the surface, or chemically modified on the surface It may be formed by these, or may be a combination thereof.
[0018]
The thickness of the insulating resin layer is not particularly limited as long as it has a thickness capable of exhibiting insulating properties. Although it depends on the substance to be coated and the shape, the preferable lower limit of the average thickness is usually 5 mm and the preferable upper limit is 40000 mm. When the thickness is less than 5 mm, sufficient insulation with adjacent particles may not be ensured. When the thickness exceeds 40000 mm, conductive connection may not be achieved even when pressure or heat is applied. A more preferable lower limit is 20 Å, a more preferable upper limit is 20000 Å, a still more preferable lower limit is 50 Å, and a still more preferable upper limit is 1000 Å. However, the optimum value of the thickness of the insulating resin layer varies greatly depending on the size of the protrusions. A particularly important point is to set the thickness of the insulating resin layer that can maintain the insulating property between the particles.
[0019]
The method for forming the insulating coating layer is not particularly limited. For example, a method of microencapsulating with a resin by performing interfacial polymerization, suspension polymerization, emulsion polymerization, etc. in the presence of particles having a conductive metal coating layer formed. A conventionally known method such as a dipping method in which particles having a conductive metal coating layer formed in a resin solution are dispersed and then dried; a spray drying method, a hybridization method, or the like can be used.
[0020]
The insulating coated conductive fine particles of the present invention have an average coverage of the insulating resin layer of 5 to 60%, a standard deviation of the coverage of the insulating resin layer of 1 to 15%, and a coating of the insulating resin layer. 1-10% of insulating coated conductive fine particles having a rate of less than 8% are contained.
As a result of intensive studies, the present inventors have found that high connection reliability can be expressed by having a distribution in the surface coverage of the insulating resin layer formed on the surface of the insulating coating conductive fine particles, The present invention has been completed.
[0021]
The lower limit of the average coverage of the insulating resin layer of the insulating coated conductive fine particles contained in the insulating coated conductive fine particles of the present invention is 5%, and the upper limit is 60%. If it is less than 5%, insulation between adjacent insulating coating conductive fine particles cannot be secured, and if it exceeds 60%, sufficient connection stability cannot be obtained. A preferred lower limit is 10%, a preferred upper limit is 45%, a more preferred lower limit is 12%, and a more preferred upper limit is 35%.
[0022]
The lower limit of the standard deviation of the coverage of the insulating resin layer of the insulating coated conductive fine particles contained in the insulating coated conductive fine particles of the present invention is 1%, and the upper limit is 15%. If it is less than 1%, the connection resistance value increases and the connection reliability decreases, and if it exceeds 15%, the connection reliability decreases. A preferred lower limit is 5% and a preferred upper limit is 12%.
[0023]
In the insulating coated conductive fine particles of the present invention, the lower limit of the content of the insulating coated conductive fine particles whose covering ratio of the insulating resin layer is less than 8% is 1%, and the upper limit is 10%. It is considered that the insulating coated conductive fine particles whose covering ratio of the insulating resin layer is less than 8% have a role of realizing a low connection resistance value by being present at a certain probability. When the content of the insulating coating conductive fine particles with a coverage of the insulating resin layer of less than 8% is less than 1%, the effect of causing the presence of the insulating coating conductive fine particles with such a low coverage cannot be obtained. Connection resistance increases and connection reliability decreases. If it exceeds 10%, the abundance ratio of the particles having low insulating properties cannot be ignored, the insulating properties are lowered, bridges are formed between the adjacent conductive fine particles, and leakage between the electrodes tends to occur. Here, 1 to 10% means the number% of the insulating coated conductive fine particles whose covering ratio to the total number of particles of the insulating coated conductive fine particles is less than 8%.
It is preferable that the content of the insulating coated conductive fine particles with a coverage of the insulating resin layer of less than 6% is 3 to 9%, and the content of the insulating coated conductive fine particles with a coverage of the insulating resin layer of less than 6%. More preferably, the rate is 1 to 7%.
[0024]
Examples of a method for obtaining insulating coated conductive fine particles satisfying such a covering ratio of the insulating resin layer include, for example, a method of blending insulating coated conductive fine particles provided with an insulating resin layer by a conventionally known method, as well as insulation. For example, there may be mentioned a method of mixing an appropriate amount of insulating coated conductive fine particles having a low coverage by using a condition such that an appropriate peeling force is generated when forming the conductive resin layer. For example, in the case of the dipping method, when the particles on which the insulating resin layer is formed are dried, a process of agglomerating and forming a lump into a single particle by airflow pulverization or the like is performed. In this process, the insulating resin layer By setting the conditions such that the film is peeled slightly, the coverage of the insulating resin layer can be adjusted.
[0025]
The preferable lower limit of the K value in 10% compression deformation of the insulating coated conductive fine particles is 980 N / mm 2 , and the upper limit is 9800 N / mm 2 . If it is less than 980 N / mm 2 , a sufficient contact pressure may not be obtained when the insulating coated conductive fine particles are in contact with the electrode, and the insulating resin layer may not be destroyed and contact with the electrode surface. If it exceeds 2 mm, the electrode is broken or the deformation of the insulating coated conductive fine particles is reduced, so that the contact area is reduced, the connection resistance value is increased, and connection failure is liable to occur.
A more preferred lower limit is 1960 N / mm 2 , a more preferred upper limit is 7840 N / mm 2 , a more preferred lower limit is 2940 N / mm 2 , and a more preferred upper limit is 5880 N / mm 2 . As for the K value, since the optimum range varies greatly depending on the hardness, particle diameter, and compression deformation rate of the electrode to be connected, it is preferable to finally determine the optimum value by experiment.
In addition, K value in the said 10% compression deformation is calculated | required by a following formula.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
In the formula, F represents a load value (N) at 20 ° C. and 10% compression deformation, S represents a compression displacement (mm), and R represents a radius (mm).
[0026]
The insulating coated conductive fine particles of the present invention can be dispersed in a binder resin or the like and used as a conductive adhesive or conductive ink, or can be formed into a film and used as an anisotropic conductive film.
If the insulating coating conductive fine particles of the present invention are used, two opposing electrodes can be conductively connected with extremely high connection reliability.
A conductive connection structure in which two opposing electrodes are conductively connected using the insulating coated conductive fine particles of the present invention is also one aspect of the present invention.
[0027]
In the conductive connection structure of the present invention, the electrodes to be connected include those formed of ITO, copper, gold, tin and the like, and are not particularly limited. However, at least one of the electrodes has a depth of 0.05 to 0. When it has unevenness of 0.5 μm and an average interval of 0.1 to 5 μm, it is preferable because it has lower resistance and high connection reliability.
[0028]
The insulating coated conductive fine particles of the present invention have a high distribution in the horizontal direction and a reduction in the connection resistance value in the vertical direction by setting an appropriate distribution in the coverage of the insulating resin layer that is the outermost layer. It is a high dimension and compatible. When the insulating coated conductive fine particles of the present invention are used as a conductive material such as an anisotropic conductive material, the insulating layer functions for the contact between the particles in the lateral direction and maintains the insulation between adjacent electrodes. When held between electrodes on the substrate or the like, high connection characteristics can be obtained by breaking and conducting the insulating property only at the portion in contact with the conductive pattern on the substrate where pressure and / or heat is applied. As a result, even if the insulating coated conductive fine particles are arranged at a high density, it is possible to electrically connect between the high-definition conductive patterns on the opposing substrates while maintaining unintended lateral insulation. .
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0030]
Example 1
“Micropearl AUL-704” (manufactured by Sekisui Chemical Co., Ltd., average particle size of 4 μm) was used as particles having a conductive metal coating layer formed on the surface of spherical core particles.
After “Micropearl AUL-704” was dispersed in an aqueous polyvinyl alcohol solution, it was dried and made into single particles to obtain insulating coated conductive fine particles.
[0031]
(Example 2)
“Micropearl AUL-704” (manufactured by Sekisui Chemical Co., Ltd., average particle diameter of 4 μm) and fine particles made of an acrylic copolymer having an average diameter of about 0.2 μm are mixed, and acrylic copolymer is used using a processing apparatus. Insulating coated conductive fine particles were obtained by physically attaching the fine particles made of the polymer to the surface of “Micropearl AUL-704”.
[0032]
(Comparative Example 1)
Insulating coated conductive fine particles were obtained in the same manner as in Example 1 except that the concentration of the polyvinyl alcohol aqueous solution was increased.
[0033]
(Comparative Examples 2 to 5)
Insulation-coated conductive fine particles were obtained in the same manner as in Example 2 except that the charging ratio and treatment time of acrylic copolymer fine particles: micropearl AUL-704 were changed.
[0034]
The insulation coated conductive fine particles obtained in Examples 1 and 2 and Comparative Examples 1 to 5 were evaluated by the following methods.
The results are shown in Table 1.
[0035]
(1) Evaluation of coating state of insulating resin layer With respect to the insulating coated conductive fine particles obtained in Example 1 and Comparative Example 1, elemental analysis was performed on 200 particles to obtain an image of element distribution. Based on this image, the coverage and standard deviation of the insulating resin layer were determined, and the ratio of particles having a coverage of less than 8% was calculated.
As for the insulating coated conductive fine particles obtained in Example 2 and Comparative Examples 2 to 5, 200 particles were photographed using a scanning electron microscope (SEM), and 2 μm system from the center of the particles on the photograph. The projected area of the fine particles adhering inside was measured, and based on this image, the coverage and standard deviation of the insulating resin layer were obtained, and the proportion of particles having a coverage of less than 8% was calculated.
[0036]
(2) Measurement of connection resistance value A conductive adhesive was obtained by blending a spacer with an insulation coating conductive fine particle of 250,000 particles / mm 3 in an epoxy binder so that the deformation amount was 30%. It was.
The obtained conductive adhesive was sandwiched between two ITO glass substrates having a 200 μm wide pattern so that the patterns were orthogonal and opposed to each other, and heated and pressurized at 160 ° C. for 3 minutes with a weight of 294 N to form a conductive connection structure. Obtained.
About the obtained conductive connection structure, the connection electrical resistance value was measured by the 4-terminal method.
[0037]
(3) Insulation evaluation Insulating coated conductive fine particles were dispersed in an epoxy binder at 5000 particles / mm 3 , applied between 30 μm pitch opposing comb pattern films, and pressure bonded.
At this time, the pattern size of the facing portion was 5 × 10 mm, and the press load was 40 kg.
The resistance between patterns was measured with a tester and evaluated according to the following criteria.
○: Resistance value is 10 MΩ or more ×: Resistance value is less than 10 MΩ
[Table 1]
Figure 0003869785
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the insulation coating electroconductive fine particles which can prevent the leak between adjacent electrodes, and are excellent in connection reliability with a low connection resistance value can be provided.

Claims (2)

平均粒子径が1〜20μmの球状芯材粒子と、前記球状芯材粒子の表面に形成された導電性金属被膜層と、前記導電性金属被膜層の表面に形成された絶縁性樹脂層とからなる絶縁被覆導電性微粒子であって、
絶縁性樹脂層の平均被覆率が10〜45%、絶縁性樹脂層の被覆率の標準偏差が1〜15%であり、かつ、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子を1〜10%含有する
ことを特徴とする絶縁被覆導電性微粒子。
From spherical core particles having an average particle diameter of 1 to 20 μm, a conductive metal coating layer formed on the surface of the spherical core particles, and an insulating resin layer formed on the surface of the conductive metal coating layer Insulating coating conductive fine particles,
Insulation coating conductivity in which the average coverage of the insulating resin layer is 10 to 45% , the standard deviation of the coverage of the insulating resin layer is 1 to 15%, and the coverage of the insulating resin layer is less than 8% Insulating coated conductive fine particles characterized by containing 1 to 10% of conductive fine particles.
球状芯材粒子は、樹脂からなることを特徴とする請求項1記載の絶縁被覆導電性微粒子。  The insulating coated conductive fine particles according to claim 1, wherein the spherical core material particles are made of a resin.
JP2002311517A 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure Expired - Lifetime JP3869785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311517A JP3869785B2 (en) 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311517A JP3869785B2 (en) 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure

Publications (2)

Publication Number Publication Date
JP2004146261A JP2004146261A (en) 2004-05-20
JP3869785B2 true JP3869785B2 (en) 2007-01-17

Family

ID=32456714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311517A Expired - Lifetime JP3869785B2 (en) 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure

Country Status (1)

Country Link
JP (1) JP3869785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021544A (en) 2018-06-26 2021-02-26 쇼와덴코머티리얼즈가부시끼가이샤 Anisotropic conductive film, manufacturing method thereof, and manufacturing method of connection structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598621B2 (en) * 2005-07-29 2010-12-15 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP4967482B2 (en) * 2006-02-27 2012-07-04 日立化成工業株式会社 Conductive particles, adhesive composition and circuit connecting material
US20100065311A1 (en) * 2006-07-03 2010-03-18 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP5368760B2 (en) * 2008-09-29 2013-12-18 積水化学工業株式会社 Insulating coating conductive particles, anisotropic conductive material, and connection structure
KR102076066B1 (en) * 2012-07-03 2020-02-11 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021544A (en) 2018-06-26 2021-02-26 쇼와덴코머티리얼즈가부시끼가이샤 Anisotropic conductive film, manufacturing method thereof, and manufacturing method of connection structure

Also Published As

Publication number Publication date
JP2004146261A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
KR100710103B1 (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
TWI766040B (en) Resin particles, conductive particles, conductive materials, adhesives, connection structures, and liquid crystal display elements
JP6114671B2 (en) Conductive particles for touch panel, conductive material for touch panel, and connection structure for touch panel
JP3869785B2 (en) Insulating coating conductive fine particles and conductive connection structure
JP7000372B2 (en) Base particles, conductive particles, conductive materials and connecting structures
JP2003234020A (en) Conductive minute particle
KR20180059392A (en) Conductive particles, conductive material, and connection structure
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
JP2001155539A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connector
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP5996806B2 (en) Conductive particles, conductive materials, and connection structures
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JP2000067647A (en) Insulating coating conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
TWI774675B (en) Conductive material, connecting structure, and manufacturing method of connecting structure
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP2005327510A (en) Conductive fine particle and anisotropic conductive material
WO2023145664A1 (en) Conductive particles, conductive material, and connection structure
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
TWI768068B (en) Electroconductive particle, method for producing electroconductive particle, conductive material, and connection structure
JP6457743B2 (en) Connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
WO2021020501A1 (en) Conductive particles and connection structure
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
KR20100007035A (en) Manufacturing method of anistropic conductive film and anistropic conductive film manufactured thereby
JP6798771B2 (en) Method for manufacturing conductive particles, method for manufacturing conductive material, and method for manufacturing connecting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R151 Written notification of patent or utility model registration

Ref document number: 3869785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

EXPY Cancellation because of completion of term