JP2004146261A - Insulating coating conductive particulate and conductive connection structure - Google Patents

Insulating coating conductive particulate and conductive connection structure Download PDF

Info

Publication number
JP2004146261A
JP2004146261A JP2002311517A JP2002311517A JP2004146261A JP 2004146261 A JP2004146261 A JP 2004146261A JP 2002311517 A JP2002311517 A JP 2002311517A JP 2002311517 A JP2002311517 A JP 2002311517A JP 2004146261 A JP2004146261 A JP 2004146261A
Authority
JP
Japan
Prior art keywords
insulating
fine particles
particles
resin layer
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002311517A
Other languages
Japanese (ja)
Other versions
JP3869785B2 (en
Inventor
Yoshikazu Yoneda
米田 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002311517A priority Critical patent/JP3869785B2/en
Publication of JP2004146261A publication Critical patent/JP2004146261A/en
Application granted granted Critical
Publication of JP3869785B2 publication Critical patent/JP3869785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating coating conductive particulate which can prevent leak between adjoining electrodes and has a small connection resistance and is superior in connection reliability. <P>SOLUTION: This is an insulating coating conductive particulate which is made of a spherical core member particle having an average particle size of 1-20 μm, a conductive metal coating layer formed on the surface of the spherical core member particle, and an insulating resin layer formed on the surface of the conductive metal coating layer. The average coating ratio of the insulating resin layer is 5-60% and the standard deviation of the coating ratio of the insulating resin layer is 1-15%, and the insulating coating conductive particulate which has the insulating resin layer with an coating ratio of less than 8% is contained 1-10%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、隣接電極間のリークを防止することができ、かつ、接続抵抗値が低い、接続信頼性に優れる絶縁被覆導電性微粒子に関する。
【0002】
【従来の技術】
近年、液晶ディスプレイ、パーソナルコンピュータ、携帯通信機器等のエレクトロニクス製品において、半導体素子等の小型電機部品を基板に電気的に接続したり、基板同士を電気的に接続したりするために、いわゆる異方性導電材料が使用されている。なかでも、導電性微粒子をバインダー樹脂に混合した異方性導電接着剤が広く用いられている。
【0003】
異方性導電接着剤に用いられる導電性微粒子としては、有機基材粒子又は無機基材粒子の表面に金属メッキを施したものや金属粒子が用いられてきた。このような導電性微粒子は、例えば、特許文献1、特許文献2、特許文献3、特許文献4等に開示されている。
また、このような導電性微粒子をバインダー樹脂と混ぜ合わせてフィルム状又はペースト状にした異方性導電接着剤は、例えば、特許文献5、特許文献6、特許文献7、特許文献8等に開示されている。
【0004】
近年、電子機器や電子部品の小型化が加速し、基板等の配線がより微細になってきたため、導電性微粒子もこれに対応できるように微粒子化や粒子径精度の向上が要求されるようになってきた。しかし、高い粒子径精度のままで一定以上に粒子径を小さくすることは技術的に困難である。また、たとえそれが可能であったとしても、電気容量の問題から異方性導電接着剤に大量の導電性微粒子を混入する必要があり、隣接する導電性微粒子間にブリッジが発生し、電極間でのリークが発生しやすくなるという問題があった。
【0005】
これに対して、導電性微粒子の最外層に更に絶縁被覆を施すことにより、隣接する粒子同士の電気的絶縁性を確保しつつ、熱や圧力により接触する基板上の電極との間では電気的に接続できるという異方導電性を備えた絶縁被覆導電性微粒子が検討されている。しかしながら、電気的に接続するべき導電層の表面に絶縁層を設けることは、接続抵抗値の上昇や信頼性の低下、更には接続不良を発生させる要因となるという問題があった。
【0006】
【特許文献1】
特公平6−96771号公報
【特許文献2】
特開平4−36902号公報
【特許文献3】
特開平4−269720号公報
【特許文献4】
特開平3−257710号公報
【特許文献5】
特開昭63−231889号公報
【特許文献6】
特開平4−259766号公報
【特許文献7】
特開平3−291807号公報
【特許文献8】
特開平5−75250号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、隣接電極間のリークを防止することができ、かつ、接続抵抗値が低い、接続信頼性に優れる絶縁被覆導電性微粒子を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、平均粒径が1〜20μmの球状芯材粒子と、前記球状芯材粒子の表面に形成された導電性金属被膜層と、前記導電性金属被膜層の表面に形成された絶縁性樹脂層とからなる絶縁被覆導電性微粒子であって、絶縁性樹脂層の平均被覆率が5〜60%、絶縁性樹脂層の被覆率の標準偏差が1〜15%であり、かつ、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子を1〜10%含有する絶縁被覆導電性微粒子である。
以下に本発明を詳述する。
【0009】
本発明の絶縁被覆導電性微粒子は、平均粒径が1〜20μmの球状芯材粒子と、上記球状芯材粒子の表面に形成された導電性金属被膜層と、上記導電性金属被膜層の表面に形成された絶縁性樹脂層とからなる絶縁被覆導電性微粒子である。
上記球状芯材粒子としては特に限定されず、例えば、樹脂、金属、セラミック等からなるものが挙げられる。なかでも、樹脂からなる球状芯材粒子を用いれば、適度な弾性率、弾性変形性及び復元性が得られる他、樹脂の有する応力緩和効果により、本発明の絶縁被覆導電性微粒子によって導電接続された電極の接続部に温度変化等により応力がかかったときにも、その応力を緩和して接続信頼性を維持することができ好ましい。
【0010】
上記球状芯材粒子が樹脂からなる場合、上記樹脂としては特に限定されず、架橋性単量体、非架橋性単量体を重合してなる重合体等が挙げられる。
上記単量体としては特に限定されず、例えば、エチレングリコールジ(メタ)アクリレート等のポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、2,2−ビス[4−(メタクリロキシエトキシ)フェニル]プロパンジ(メタ)アクリレート等の2,2−ビス[4−(メタクリロキシポリエトキシ)フェニル]プロパンジ(メタ)アクリレート、2,2−水添ビス[4−(アクリロキシポリエトキシ)フェニル]プロパンジ(メタ)アクリレート、2,2−ビス[4−(アクリロキシエトキシポリプロポキシ)フェニル]プロパンジ(メタ)アクリレート;スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;アクリロニトリル等の不飽和ニトリル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル、エチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル誘導体;ブタジエン、イソプレン等の共役ジエン類;ジビニルベンゼン、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジアリルフタレート及びその異性体、トリアリルイソシアヌレート及びその誘導体、トリメチロールプロパントリ(メタ)アクリレート及びその誘導体、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらの単量体は、単独で用いられてもよく、2種以上が併用されてもよい。
【0011】
上記球状芯材粒子の形状としては基本的に球状であることが好ましいが、本発明の主旨を喪失しない範囲で、短繊維状、柱状等であってもよい。
接続する電極のピッチが小さい等、特に高精度が要求される用途に用いる場合には、上記球状芯材粒子のアスペクト比の好ましい上限は1.2である。1.2を超えると、粒子が不揃いとなるため、短径部分が電極に届かず接続不良の原因となることがある。より好ましい上限は1.2、更に好ましい上限は1.1、特に好ましい上限は1.05である。
また、この場合、上記球状芯材粒子のCV値の好ましい上限は10%である。10%を超えると、粒径が不揃いとなるため、小さい導電性微粒子が電極に届かず接続不良の原因となることがある。より好ましい下限は7%、更に好ましい下限は5%である。なお、 上記CV値は、下記式により求められる。
CV値(%)=(σ/Dn)×100
式中、σは粒径の標準偏差を表し、Dnは数平均粒径を表す。
【0012】
上記球状芯材粒子の平均粒子径の下限は1μm、上限は20μmである。1μm未満であると、絶縁性樹脂層の被覆率の制御が困難になり、また、導電接続する電極やバンプの精度の問題から導電接続が困難となり、20μmを超えると、本発明の絶縁被覆導電性微粒子の目的であるファインピッチの電極、バンプ等の導電接続に対応できなくなる。好ましい下限は1.5μm、好ましい上限は10μmであり、より好ましい下限は1.75μm、より好ましい上限は7μmである。
【0013】
上記絶縁被覆導電性微粒子では、上記球状芯材粒子の表面に導電性金属被膜層が形成されている。
上記導電性金属被膜層としては特に限定されず、例えば、ニッケル、金、銀、銅、コバルト、錫、インジウム、ITO等又はこれらを主成分とする合金等からなるものが挙げられる。上記導電性金属被膜層は、一層からなるものであっても、多層からなるものであってもよく、これらの金属は、単独で用いられてもよく、2種以上が併用されてもよい。これらの金属が2種以上併用される場合は、例えば、ニッケルを主体とする層を形成した後、更にその外層に金層を形成した場合には、より抵抗値を低減することができる。
【0014】
上記導電性金属被膜層の厚さとしては特に限定されないが、好ましい下限は200Å、好ましい上限は5000Åである。200Å未満であると、球状芯材微粒子にメッキ被膜の形成されていない部分が生じたり、また、抵抗が大きくなったりすることがあり、5000Åを超えると、導電性金属被膜層が硬くなり球状芯材粒子の変形に追従できず導電金属被膜が破壊されたり、芯材の変形を妨げるため接続電極を破壊したり接触面積が大きくならずに接続抵抗値が高くなったり接続不良が発生しやすくなったりすることがある。より好ましい下限は500Å、より好ましい上限は3500Å、更に好ましい下限は700Å、更に好ましい上限は2000Åである。
【0015】
上記導電性金属被膜層を形成する方法としては特に限定されず、無電解メッキ法や電解メッキ法等の従来公知の方法を用いることができる。
【0016】
上記絶縁被覆導電性微粒子では、導電性金属被膜層の表面に絶縁性樹脂層が形成されている。
上記絶縁性樹脂層としては、得られる絶縁被覆導電性微粒子の粒子間の絶縁性を確保でき、一定の圧力及び/又は加熱により容易にその絶縁性が崩壊するものであれば特に限定されず、上述の球状芯材粒子の場合と同様の樹脂からなるもの等が挙げられる。ただし、球状芯材粒子に比べて絶縁性樹脂層があまりに硬い場合には、絶縁性樹脂層の破壊よりも先に絶縁被覆導電性微粒子そのものが破壊してしまうことがあることから、絶縁性樹脂層としては未架橋又は比較的架橋度の低い樹脂を用いることが好ましい。
【0017】
上記絶縁性樹脂層は、1層であっても複数層からなるものであってもよい。例えば、単一又は複数の被膜状の層が形成されていてもよく、又は絶縁被覆性を有する粒状、球状、塊状、鱗片状その他形状の粒子が表面に付着されたもの、表面に化学修飾することにより形成されたものであってもよく、それらが組み合わされたものであってもよい。
【0018】
上記絶縁性樹脂層の厚さとしては特に限定されず、絶縁性を発揮できる厚みがあればよい。被覆する物質や形状にもよるが、通常、平均厚さの好ましい下限は5Å、好ましい上限は40000Åである。5Å未満であると、隣接粒子との絶縁性を充分に確保できないことがあり、40000Åを超えると、圧力や熱を加えても導電接続できないことがある。より好ましい下限は20Å、より好ましい上限は20000Å、更に好ましい下限は50Å、更に好ましい上限は1000Åである。ただし、上記絶縁性樹脂層の厚さは、有する突起の大きさにより最適値が大きく変化する。特に重要な点は、粒子間の絶縁性を保持できるだけの絶縁性樹脂層の厚さを設定することである。
【0019】
上記絶縁被覆層を形成する方法としては特に限定されず、例えば、導電性金属被膜層を形成した粒子の存在下で界面重合、懸濁重合、乳化重合等を行い、樹脂によりマイクロカプセル化する方法;樹脂溶液中へ導電性金属被膜層を形成した粒子を分散した後乾燥させるディッピング法;スプレードライ、ハイブリダイゼーションによる方法等の従来公知の方法を用いることができる。
【0020】
本発明の絶縁被覆導電性微粒子は、絶縁性樹脂層の平均被覆率が5〜60%、絶縁性樹脂層の被覆率の標準偏差が1〜15%であり、かつ、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子を1〜10%含有する。
本発明者らは、鋭意検討の結果、絶縁被覆導電性微粒子の表面に形成される絶縁性樹脂層の表面被覆率にある分布を持たせることによって高い接続信頼性を発現でき得ることを見出し、本発明を完成するに至った。
【0021】
本発明の絶縁被覆導電性微粒子に含まれる絶縁被覆導電性微粒子の上記絶縁性樹脂層の平均被覆率の下限は5%、上限は60%である。5%未満であると、隣接する絶縁被覆導電性微粒子間での絶縁性を確保できず、60%を超えると、充分な接続安定性が得られない。好ましい下限は10%、好ましい上限は45%、より好ましい下限は12%、より好ましい上限は35%である。
【0022】
本発明の絶縁被覆導電性微粒子に含まれる絶縁被覆導電性微粒子の上記絶縁性樹脂層の被覆率の標準偏差の下限は1%、上限は15%である。1%未満であると、接続抵抗値が上昇し、接続信頼性が低下し、15%を超えると、接続信頼性が低下する。好ましい下限は5%、好ましい上限は12%である。
【0023】
本発明の絶縁被覆導電性微粒子は、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子の含有率の下限が1%、上限が10%である。絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子は、ある確率で存在することによって低い接続抵抗値を実現する役割を有すると考えられる。絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子の含有率が1%未満であると、このような被覆率の低い絶縁被覆導電性微粒子を存在させる効果が得られず、接続抵抗値が上昇し接続信頼性が低下する。10%を超えると、絶縁性の低い粒子の存在比率が無視できなくなり、絶縁性が低下し隣接する導電性微粒子間にブリッジが発生し、電極間でのリークが発生しやすくなる。なお、ここで1〜10%とは、絶縁被覆導電性微粒子全体の粒子数に占める被覆率が8%に満たない絶縁被覆導電性微粒子の数量%を意味する。
絶縁性樹脂層の被覆率が6%未満の絶縁被覆導電性微粒子の含有率が3〜9%であることが好ましく、絶縁性樹脂層の被覆率が6%未満の絶縁被覆導電性微粒子の含有率1〜7%あることがより好ましい。
【0024】
このような絶縁性樹脂層の被覆率を満たす絶縁被覆導電性微粒子を得る方法としては、例えば、従来公知の方法により絶縁性樹脂層を設けた絶縁被覆導電性微粒子をブレンドする方法の他、絶縁性樹脂層の形成時に適度な剥離力が発生するような条件を併用することにより被覆率の低い絶縁被覆導電性微粒子を適量混入させる方法等が挙げられる。例えば、ディッピング法の場合、絶縁性樹脂層が形成された粒子を乾燥する際に凝集して塊状になったものを気流粉砕等により単粒子化する工程を行うが、この工程において絶縁性樹脂層が若干剥離されるような条件に設定することにより絶縁性樹脂層の被覆率を調整することができる。
【0025】
上記絶縁被覆導電性微粒子の10%圧縮変形におけるK値の好ましい下限は980N/mm、上限は9800N/mmである。980N/mm未満である
と、電極に絶縁被覆導電性微粒子が接する際に充分な接触圧が得られず絶縁性樹脂層を破壊して電極面と接触することができないことがあり、9800N/mmを超えると、電極を破壊したり、絶縁被覆導電性微粒子の変形が小さくなるため接触面積が小さくなり接続抵抗値が上昇したり接続不良が発生しやすくなる。より好ましい下限は1960N/mm、より好ましい上限は7840N/mm、より好ましい下限は2940N/mm、より好ましい上限は5880N/mmである。上記K値については、接続する電極の硬度や粒子径及び圧縮変形率により最適な範囲が大きく異なるため、最終的には実験により最適値を決定することが好ましい。
なお、上記10%圧縮変形におけるK値は、下記式により求められる。
K値(N/mm)=(3/√2)・F・S−3/2・R−1/2
式中、Fは20℃、10%圧縮変形における荷重値(N)を表し、Sは圧縮変位(mm)を表し、Rは半径(mm)を表す。
【0026】
本発明の絶縁被覆導電性微粒子は、バインダー樹脂等に分散して導電性接着剤や導電インクとして用いることができる他、フィルム状に成形し異方導電フィルムとしても使用できる。
本発明の絶縁被覆導電性微粒子を用いれば、対向する2つの電極を極めて高い接続信頼性で導電接続することができる。
対向する2つの電極が本発明の絶縁被覆導電性微粒子を用いて導電接続されてなる導電接続構造体もまた、本発明の1つである。
【0027】
本発明の導電接続構造体においては、接続する電極としてはITO、銅、金、錫等で形成されたものが挙げられ特に限定されないが、少なくとも一方の電極が、深さが0.05〜0.5μm、平均間隔が0.1〜5μmの凹凸を有する場合には、より低抵抗でありかつ高い接続信頼性を得ることができ好ましい。
【0028】
本発明の絶縁被覆導電性微粒子は、最外層である絶縁樹脂層の被覆率に適切な分布を設定することにより、横方向への高い絶縁性と、縦方向への接続抵抗値の低減とを高次元で両立したものである。本発明の絶縁被覆導電性微粒子を異方導電材料等の導電材料として使用すると、粒子同士の横方向の接触に対しては絶縁層が機能し隣接電極間の絶縁性を保持しているが、基板上等の電極間に保持された際、圧力及び/又は熱のかかる基板上の導電パターンと接する部分のみ絶縁性を破壊し導通させることによって高い接続特性を得ることができる。これにより、絶縁被覆導電性微粒子を高密度に配しても、意図しない横方向の絶縁性を保持したまま対向する基板上の高精細な導電パターン間を電気的に良好に接続することができる。
【0029】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0030】
(実施例1)
球状芯材粒子の表面に導電性金属被膜層が形成された粒子として「ミクロパール
AUL−704」(積水化学工業社製、平均粒子径4μm)を用いた。
「ミクロパール AUL−704」をポリビニルアルコール水溶液中に分散した後、乾燥し、単粒子化を行うことにより、絶縁被覆導電性微粒子を得た。
【0031】
(実施例2)
「ミクロパール AUL−704」(積水化学工業社製、平均粒子径4μm)と、平均径が約0.2μmのアクリル系共重合物からなる微粒子とを混合し、処理装置を用いてアクリル系共重合物からなる微粒子を「ミクロパール AUL−704」の表面に物理的に付着させることにより、絶縁被覆導電性微粒子を得た。
【0032】
(比較例1)
ポリビニルアルコール水溶液の濃度を高くした以外は実施例1と同様にして絶縁被覆導電性微粒子を得た。
【0033】
(比較例2〜5)
アクリル系共重合体微粒子:ミクロパールAUL−704の仕込み比率及び処理時間を変更した以外は実施例2と同様にして絶縁被覆導電性微粒子を得た。
【0034】
実施例1、2及び比較例1〜5で得られた絶縁被覆導電性微粒子について下記の方法により評価を行った。
結果を表1に示した。
【0035】
(1)絶縁性樹脂層の被覆状態の評価
実施例1及び比較例1で得られた絶縁被覆導電性微粒子については、200個の粒子について元素分析を行い、元素分布の像を得た。この像をもとに絶縁性樹脂層の被覆率、標準偏差を求め、更に8%未満の被覆率を有する粒子の割合を算出した。
実施例2及び比較例2〜5で得られた絶縁被覆導電性微粒子については、200個の粒子について走査型電子顕微鏡(SEM)を用いて粒子を撮影し、写真上で粒子中央部から2μm系内に付着した微粒子の投影面積を測定し、この像をもとに絶縁性樹脂層の被覆率、標準偏差を求め、更に8%未満の被覆率を有する粒子の割合を算出した。
【0036】
(2)接続抵抗値の測定
エポキシバインダー中に絶縁被覆導電性微粒子を25万個/mmになるように配合したものに変形量が30%になるようにスペーサーを配合し導電接着剤を得た。
得られた導電接着剤を200μm巾のパターンを有するITOガラス基板2枚の間にパターンが直交及び対向するようにして挟み、160℃×3分、加重294Nで加熱及び加圧し導電接続構造体を得た。
得られた導電接続構造体について4端子法で接続電気抵抗値を測定した。
【0037】
(3)絶縁性の評価
絶縁被覆導電性微粒子をエポキシバインダーに5000個/mmになるように分散し、30μmピッチの対向した櫛形パターンフィルム間に塗布し圧着した。このとき、対向部のパターンサイズは5×10mm、プレス荷重は40kgであった。
パターン間の抵抗をテスターで測定し以下の基準により評価した。
〇:抵抗値が10MΩ以上
×:抵抗値が10MΩ未満
【0038】
【表1】

Figure 2004146261
【0039】
【発明の効果】
本発明によれば、隣接電極間のリークを防止することができ、かつ、接続抵抗値が低い、接続信頼性に優れる絶縁被覆導電性微粒子を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to insulating coated conductive fine particles that can prevent leakage between adjacent electrodes, have low connection resistance, and have excellent connection reliability.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in electronic products such as liquid crystal displays, personal computers, and portable communication devices, so-called anisotropic devices have been used to electrically connect small electric components such as semiconductor elements to substrates and to electrically connect substrates to each other. Conductive material is used. Among them, anisotropic conductive adhesives in which conductive fine particles are mixed with a binder resin are widely used.
[0003]
As the conductive fine particles used for the anisotropic conductive adhesive, those obtained by applying metal plating to the surfaces of organic base particles or inorganic base particles and metal particles have been used. Such conductive fine particles are disclosed in, for example, Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, and the like.
Further, anisotropic conductive adhesives in which such conductive fine particles are mixed with a binder resin to form a film or paste are disclosed in, for example, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8, and the like. Have been.
[0004]
In recent years, the miniaturization of electronic devices and electronic components has been accelerated, and the wiring of substrates and the like has become finer. It has become. However, it is technically difficult to reduce the particle diameter beyond a certain level while maintaining high particle diameter accuracy. Even if this is possible, it is necessary to mix a large amount of conductive fine particles into the anisotropic conductive adhesive due to the problem of electric capacity, and a bridge is generated between adjacent conductive fine particles, causing a problem between electrodes. There is a problem that a leak is likely to occur.
[0005]
On the other hand, the outermost layer of the conductive fine particles is further provided with an insulating coating, so that electrical insulation between adjacent particles is ensured, and electrical contact between the electrodes on the substrate contacted by heat or pressure is maintained. Insulating coated conductive fine particles having anisotropic conductivity that can be connected to the substrate have been studied. However, providing an insulating layer on the surface of the conductive layer to be electrically connected has a problem that the connection resistance value is increased, the reliability is reduced, and a connection failure is caused.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 6-96771 [Patent Document 2]
JP-A-4-36902 [Patent document 3]
Japanese Patent Application Laid-Open No. 4-269720 [Patent Document 4]
JP-A-3-257710 [Patent Document 5]
JP-A-63-231889 [Patent Document 6]
Japanese Patent Application Laid-Open No. 4-259766 [Patent Document 7]
JP-A-3-291807 [Patent Document 8]
JP-A-5-75250
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has as its object to provide insulating coated conductive fine particles that can prevent leakage between adjacent electrodes, have low connection resistance, and have excellent connection reliability.
[0008]
[Means for Solving the Problems]
The present invention provides a spherical core particle having an average particle diameter of 1 to 20 μm, a conductive metal coating layer formed on the surface of the spherical core particle, and an insulating layer formed on the surface of the conductive metal coating layer. Insulating coated conductive fine particles comprising a resin layer, wherein the average covering rate of the insulating resin layer is 5 to 60%, the standard deviation of the covering rate of the insulating resin layer is 1 to 15%, and The insulating coated conductive fine particles contain 1 to 10% of the insulating coated conductive fine particles having a resin layer coverage of less than 8%.
Hereinafter, the present invention will be described in detail.
[0009]
The insulating coated conductive fine particles of the present invention have spherical core particles having an average particle diameter of 1 to 20 μm, a conductive metal coating layer formed on the surface of the spherical core particles, and a surface of the conductive metal coating layer. And an insulating resin layer formed on the substrate.
The spherical core material particles are not particularly limited, and examples thereof include those made of resin, metal, ceramic, and the like. Above all, if spherical core particles made of resin are used, appropriate elastic modulus, elastic deformation and resilience can be obtained, and due to the stress relaxation effect of the resin, conductive connection is achieved by the insulating coated conductive fine particles of the present invention. When stress is applied to the connection part of the electrodes due to a temperature change or the like, the stress can be relieved and connection reliability can be maintained, which is preferable.
[0010]
When the spherical core material particles are made of a resin, the resin is not particularly limited, and examples thereof include a polymer obtained by polymerizing a crosslinkable monomer and a non-crosslinkable monomer.
The monomer is not particularly limited. For example, polyethylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate such as propylene glycol di (meth) acrylate, polytetramethylene Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 2,2-bis [4- (methacryloxyethoxy) phenyl] propane di (meth) acrylate, etc. 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propanedi (meth) acrylate, 2,2-hydrogenated bis [4- (acryloxypolyethoxy) phenyl] propanedi (meth) acrylate, 2,2- Screw [4- (A Riloxyethoxypolypropoxy) phenyl] propanedi (meth) acrylate; styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene and chloromethylstyrene; vinyl chloride; vinyl acetate, vinyl propionate and the like. Vinyl esters; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene (Meth) acrylate derivatives such as glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate and cyclohexyl (meth) acrylate; conjugated dienes such as butadiene and isoprene Divinylbenzene, 1,6-hexanediol di (meth) acrylate, trimethylolpropanetri (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolpropanetetra (meth) acrylate, diallyl phthalate and isomers thereof; Triallyl isocyanurate and its derivatives, trimethylolpropane tri (meth) acrylate and its derivatives, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. These monomers may be used alone or in combination of two or more.
[0011]
The shape of the spherical core material particles is preferably basically spherical, but may be short fiber, column, or the like as long as the gist of the present invention is not lost.
When used in applications requiring particularly high precision, such as a small pitch of the connecting electrodes, a preferable upper limit of the aspect ratio of the spherical core particles is 1.2. If it exceeds 1.2, the particles are not uniform, and the short diameter portion may not reach the electrode, which may cause a connection failure. A more preferred upper limit is 1.2, a still more preferred upper limit is 1.1, and a particularly preferred upper limit is 1.05.
In this case, the preferable upper limit of the CV value of the spherical core material particles is 10%. If it exceeds 10%, since the particle diameters are not uniform, small conductive fine particles may not reach the electrodes, which may cause poor connection. A more preferred lower limit is 7%, and a still more preferred lower limit is 5%. In addition, the said CV value is calculated | required by the following formula.
CV value (%) = (σ / Dn) × 100
In the formula, σ represents the standard deviation of the particle size, and Dn represents the number average particle size.
[0012]
The lower limit of the average particle diameter of the spherical core material particles is 1 μm, and the upper limit is 20 μm. When the thickness is less than 1 μm, it becomes difficult to control the coverage of the insulating resin layer, and the conductive connection becomes difficult due to the problem of the accuracy of the electrodes and bumps to be conductively connected. It is impossible to cope with conductive connection of fine pitch electrodes, bumps, etc., which is the purpose of the conductive fine particles. A preferred lower limit is 1.5 μm, a preferred upper limit is 10 μm, a more preferred lower limit is 1.75 μm, and a more preferred upper limit is 7 μm.
[0013]
In the insulating coated conductive fine particles, a conductive metal coating layer is formed on the surface of the spherical core material particles.
The conductive metal film layer is not particularly limited, and examples thereof include nickel, gold, silver, copper, cobalt, tin, indium, ITO, and the like, and alloys containing these as main components. The conductive metal film layer may be composed of a single layer or a multilayer. These metals may be used alone or in combination of two or more. When two or more of these metals are used in combination, for example, if a layer mainly composed of nickel is formed and then a gold layer is further formed as an outer layer, the resistance value can be further reduced.
[0014]
The thickness of the conductive metal coating layer is not particularly limited, but a preferred lower limit is 200 ° and a preferred upper limit is 5000 °. If it is less than 200 °, a portion where the plating film is not formed on the spherical core material fine particles may be formed, or the resistance may be increased. If it exceeds 5000 °, the conductive metal coating layer becomes hard and the spherical core material becomes hard. Failure to follow the deformation of the material particles, the conductive metal coating is destroyed, the connection electrode is broken to prevent the deformation of the core material, the connection area is not increased, the connection resistance value is increased, and connection failures are more likely to occur. Sometimes. A more preferred lower limit is 500 °, a more preferred upper limit is 3500 °, a still more preferred lower limit is 700 °, and a still more preferred upper limit is 2000 °.
[0015]
The method for forming the conductive metal film layer is not particularly limited, and a conventionally known method such as an electroless plating method or an electrolytic plating method can be used.
[0016]
In the insulating coated conductive fine particles, an insulating resin layer is formed on the surface of the conductive metal coating layer.
The insulating resin layer is not particularly limited as long as the insulating property between the particles of the obtained insulating-coated conductive fine particles can be ensured, and the insulating property is easily collapsed by a certain pressure and / or heating. Examples thereof include those made of the same resin as in the case of the above-mentioned spherical core material particles. However, if the insulating resin layer is too hard compared to the spherical core particles, the insulating coating conductive fine particles themselves may be broken before the insulating resin layer is broken. It is preferable to use an uncrosslinked resin or a resin having a relatively low degree of crosslinking as the layer.
[0017]
The insulating resin layer may be a single layer or a plurality of layers. For example, a single or a plurality of coating-like layers may be formed, or granular, spherical, massive, scale-like or other shaped particles having an insulating coating property are attached to the surface, or the surface is chemically modified. Or a combination thereof.
[0018]
The thickness of the insulating resin layer is not particularly limited as long as the insulating resin layer has a thickness capable of exhibiting insulating properties. In general, the preferred lower limit of the average thickness is 5 ° and the preferred upper limit is 40000 °, although it depends on the material and shape to be coated. If it is less than 5 °, sufficient insulation between adjacent particles may not be ensured, and if it is more than 40000 °, conductive connection may not be obtained even when pressure or heat is applied. A more preferred lower limit is 20 °, a more preferred upper limit is 20,000 °, a still more preferred lower limit is 50 °, and a still more preferred upper limit is 1000 °. However, the optimum value of the thickness of the insulating resin layer greatly changes depending on the size of the protrusions. A particularly important point is to set the thickness of the insulating resin layer so as to maintain the insulating property between the particles.
[0019]
The method for forming the insulating coating layer is not particularly limited. For example, a method of performing interfacial polymerization, suspension polymerization, emulsion polymerization, or the like in the presence of particles having a conductive metal coating layer formed thereon, and microencapsulating with a resin. A dipping method of dispersing the particles having the conductive metal coating layer formed in the resin solution and drying the dispersion; a conventionally known method such as a spray drying method or a hybridization method can be used.
[0020]
The insulating coated conductive fine particles of the present invention have an average coverage of the insulating resin layer of 5 to 60%, a standard deviation of the insulating resin layer of 1 to 15%, and a coating of the insulating resin layer. Insulating conductive fine particles having a ratio of less than 8% are contained in an amount of 1 to 10%.
The present inventors have conducted intensive studies and found that high connection reliability can be exhibited by giving a certain distribution to the surface coverage of the insulating resin layer formed on the surface of the insulating coated conductive fine particles. The present invention has been completed.
[0021]
The lower limit of the average coverage of the insulating resin layer of the insulating coated conductive fine particles contained in the insulating coated conductive fine particles of the present invention is 5%, and the upper limit is 60%. If it is less than 5%, insulation between adjacent insulating coated conductive fine particles cannot be secured, and if it exceeds 60%, sufficient connection stability cannot be obtained. A preferred lower limit is 10%, a preferred upper limit is 45%, a more preferred lower limit is 12%, and a more preferred upper limit is 35%.
[0022]
The lower limit of the standard deviation of the coverage of the insulating resin layer of the insulating coated conductive fine particles contained in the insulating coated conductive fine particles of the present invention is 1%, and the upper limit is 15%. If it is less than 1%, the connection resistance value increases, and the connection reliability decreases. If it exceeds 15%, the connection reliability decreases. A preferred lower limit is 5% and a preferred upper limit is 12%.
[0023]
In the insulating coated conductive fine particles of the present invention, the lower limit of the content of the insulating coated conductive fine particles having an insulating resin layer coverage of less than 8% is 1% and the upper limit is 10%. It is considered that the insulating-coated conductive fine particles having a coverage of the insulating resin layer of less than 8% have a role of realizing a low connection resistance value by being present at a certain probability. When the content of the insulating coated conductive fine particles having a coverage of the insulating resin layer of less than 8% is less than 1%, the effect of the presence of the insulating coated conductive fine particles having such a low coverage cannot be obtained, The connection resistance increases and the connection reliability decreases. If it exceeds 10%, the abundance ratio of particles having low insulating property cannot be ignored, the insulating property is reduced, a bridge is generated between adjacent conductive fine particles, and leakage between electrodes is likely to occur. Here, 1 to 10% means the number% of the insulating coated conductive fine particles having a coverage of less than 8% in the total number of particles of the insulating coated conductive fine particles.
It is preferable that the content of the insulating coated conductive fine particles whose coverage of the insulating resin layer is less than 6% is 3 to 9%, and that the insulating resin layer contains less than 6% of the insulating coated conductive fine particles. More preferably, the ratio is 1 to 7%.
[0024]
Examples of a method for obtaining the insulating coated conductive fine particles satisfying the coverage of the insulating resin layer include, for example, a method of blending the insulating coated conductive fine particles provided with the insulating resin layer by a conventionally known method, and a method of insulating. A method in which an appropriate amount of insulating coated conductive fine particles having a low coverage is mixed by using conditions that generate an appropriate peeling force at the time of forming the conductive resin layer. For example, in the case of the dipping method, a step of agglomerating and agglomerating when drying the particles on which the insulating resin layer is formed into single particles by air current pulverization or the like is performed. Is set so that the resin is slightly peeled off, the coverage of the insulating resin layer can be adjusted.
[0025]
The preferable lower limit of the K value at 10% compression deformation of the insulating coated conductive fine particles is 980 N / mm 2 , and the upper limit is 9800 N / mm 2 . If it is less than 980 N / mm 2 , a sufficient contact pressure cannot be obtained when the insulating coated conductive fine particles come into contact with the electrode, and the insulating resin layer may be broken to make it impossible to contact the electrode surface. If it exceeds mm 2 , the electrode is destroyed, and the deformation of the insulating-coated conductive fine particles is reduced, so that the contact area is reduced and the connection resistance value is increased, and connection failure is liable to occur. A more preferred lower limit is 1960 N / mm 2 , a more preferred upper limit is 7840 N / mm 2 , a more preferred lower limit is 2940 N / mm 2 , and a more preferred upper limit is 5880 N / mm 2 . Since the optimum range of the K value varies greatly depending on the hardness, particle diameter, and compressive deformation ratio of the electrode to be connected, it is preferable to finally determine the optimum value by experiment.
The K value at the 10% compressive deformation is determined by the following equation.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
In the formula, F represents a load value (N) at 20 ° C. and 10% compression deformation, S represents a compression displacement (mm), and R represents a radius (mm).
[0026]
The insulating coated conductive fine particles of the present invention can be dispersed in a binder resin or the like and used as a conductive adhesive or conductive ink, or can be formed into a film and used as an anisotropic conductive film.
When the insulating coated conductive fine particles of the present invention are used, two opposing electrodes can be conductively connected with extremely high connection reliability.
A conductive connection structure in which two opposing electrodes are conductively connected using the insulating coated conductive fine particles of the present invention is also one of the present invention.
[0027]
In the conductive connection structure of the present invention, the electrodes to be connected include, but are not particularly limited to, those formed of ITO, copper, gold, tin, or the like, and at least one of the electrodes has a depth of 0.05 to 0. It is preferable to have irregularities of 0.5 μm and an average interval of 0.1 to 5 μm because lower resistance and higher connection reliability can be obtained.
[0028]
The insulating coated conductive fine particles of the present invention, by setting an appropriate distribution in the coverage of the insulating resin layer as the outermost layer, high insulation properties in the horizontal direction and a reduction in the connection resistance value in the vertical direction. It is both high-dimensional and compatible. When the insulating coated conductive fine particles of the present invention are used as a conductive material such as an anisotropic conductive material, an insulating layer functions for horizontal contact between particles and retains insulation between adjacent electrodes. When held between electrodes on a substrate or the like, a high connection characteristic can be obtained by breaking and insulating only the portion in contact with the conductive pattern on the substrate to which pressure and / or heat is applied. Thereby, even if the insulating-coated conductive fine particles are arranged at a high density, it is possible to electrically connect the high-definition conductive patterns on the opposing substrates with good electrical properties while maintaining unintended lateral insulating properties. .
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0030]
(Example 1)
“Micropearl AUL-704” (manufactured by Sekisui Chemical Co., Ltd., average particle diameter 4 μm) was used as a particle having a conductive metal coating layer formed on the surface of the spherical core material particles.
"Micropearl AUL-704" was dispersed in an aqueous solution of polyvinyl alcohol, dried, and then made into single particles to obtain insulating coated conductive fine particles.
[0031]
(Example 2)
“Micropearl AUL-704” (manufactured by Sekisui Chemical Co., Ltd., average particle diameter 4 μm) is mixed with fine particles made of an acrylic copolymer having an average diameter of about 0.2 μm, and the acrylic copolymer is mixed using a processing apparatus. Fine particles made of a polymer were physically attached to the surface of "Micropearl AUL-704" to obtain electrically conductive fine particles coated with insulation.
[0032]
(Comparative Example 1)
Insulating coated conductive fine particles were obtained in the same manner as in Example 1 except that the concentration of the aqueous polyvinyl alcohol solution was increased.
[0033]
(Comparative Examples 2 to 5)
Acrylic copolymer fine particles: Insulating coated conductive fine particles were obtained in the same manner as in Example 2 except that the charging ratio and the processing time of Micropearl AUL-704 were changed.
[0034]
The insulating coated conductive fine particles obtained in Examples 1 and 2 and Comparative Examples 1 to 5 were evaluated by the following method.
The results are shown in Table 1.
[0035]
(1) Evaluation of Covering State of Insulating Resin Layer Regarding the insulating coated conductive fine particles obtained in Example 1 and Comparative Example 1, 200 particles were subjected to elemental analysis to obtain an image of element distribution. Based on this image, the coverage and standard deviation of the insulating resin layer were determined, and the proportion of particles having a coverage of less than 8% was calculated.
With respect to the insulating coated conductive fine particles obtained in Example 2 and Comparative Examples 2 to 5, 200 particles were photographed using a scanning electron microscope (SEM), and 2 μm particles were taken from the center of the particle on the photograph. The projected area of the fine particles adhering to the inside was measured, and based on this image, the coverage and standard deviation of the insulating resin layer were obtained, and the ratio of particles having a coverage of less than 8% was calculated.
[0036]
(2) Measurement of connection resistance value A conductive adhesive is obtained by blending an insulating binder conductive fine particle in an epoxy binder at a concentration of 250,000 particles / mm 3 and a spacer so that the deformation amount is 30%. Was.
The obtained conductive adhesive is sandwiched between two ITO glass substrates having a pattern of 200 μm width so that the patterns are orthogonal and opposed to each other, and heated and pressed at 160 ° C. × 3 minutes with a load of 294N to form a conductive connection structure. Obtained.
With respect to the obtained conductive connection structure, a connection electric resistance value was measured by a four-terminal method.
[0037]
(3) Evaluation of Insulation The insulating coated conductive fine particles were dispersed in an epoxy binder at 5000 particles / mm 3 , applied between opposing comb-shaped pattern films having a pitch of 30 μm, and pressed. At this time, the pattern size of the facing portion was 5 × 10 mm, and the press load was 40 kg.
The resistance between patterns was measured with a tester and evaluated according to the following criteria.
〇: Resistance value is 10 MΩ or more. X: Resistance value is less than 10 MΩ.
[Table 1]
Figure 2004146261
[0039]
【The invention's effect】
According to the present invention, it is possible to provide insulating coated conductive fine particles that can prevent leakage between adjacent electrodes, have low connection resistance, and have excellent connection reliability.

Claims (5)

平均粒子径が1〜20μmの球状芯材粒子と、前記球状芯材粒子の表面に形成された導電性金属被膜層と、前記導電性金属被膜層の表面に形成された絶縁性樹脂層とからなる絶縁被覆導電性微粒子であって、
絶縁性樹脂層の平均被覆率が5〜60%、絶縁性樹脂層の被覆率の標準偏差が1〜15%であり、かつ、絶縁性樹脂層の被覆率が8%に満たない絶縁被覆導電性微粒子を1〜10%含有する
ことを特徴とする絶縁被覆導電性微粒子。
Spherical core particles having an average particle diameter of 1 to 20 μm, a conductive metal coating layer formed on the surface of the spherical core particles, and an insulating resin layer formed on the surface of the conductive metal coating layer. Insulating coated conductive fine particles comprising:
The average coverage of the insulating resin layer is 5 to 60%, the standard deviation of the coverage of the insulating resin layer is 1 to 15%, and the coverage of the insulating resin layer is less than 8%. Insulating coated conductive fine particles containing 1 to 10% of conductive fine particles.
球状芯材粒子は、樹脂からなることを特徴とする請求項1記載の絶縁被覆導電性微粒子。2. The insulating coated conductive fine particles according to claim 1, wherein the spherical core material particles are made of a resin. 絶縁被覆導電性微粒子の10%圧縮変形におけるK値が100〜1000kg/mmであることを特徴とする請求項1又は2記載の絶縁被覆導電性微粒子。Insulation coated conductive particles of claim 1 or 2, wherein the K value at 10% compressive deformation of the insulating coated conductive particles is 100 to 1000 / mm 2. 対向する2つの電極が請求項1、2又は3記載の絶縁被覆導電性微粒子を用いて導電接続されてなることを特徴とする導電接続構造体。A conductive connection structure, wherein two opposing electrodes are conductively connected using the insulating coated conductive fine particles according to claim 1. 少なくとも一方の電極は、深さが0.05〜0.5μm、平均間隔が0.1〜5μmの凹凸を有するものであることを特徴とする請求項4記載の導電接続構造体。The conductive connection structure according to claim 4, wherein at least one of the electrodes has irregularities with a depth of 0.05 to 0.5 m and an average interval of 0.1 to 5 m.
JP2002311517A 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure Expired - Lifetime JP3869785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311517A JP3869785B2 (en) 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311517A JP3869785B2 (en) 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure

Publications (2)

Publication Number Publication Date
JP2004146261A true JP2004146261A (en) 2004-05-20
JP3869785B2 JP3869785B2 (en) 2007-01-17

Family

ID=32456714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311517A Expired - Lifetime JP3869785B2 (en) 2002-10-25 2002-10-25 Insulating coating conductive fine particles and conductive connection structure

Country Status (1)

Country Link
JP (1) JP3869785B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035572A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2007258141A (en) * 2006-02-27 2007-10-04 Hitachi Chem Co Ltd Conductive particles, adhesive composition, circuit connection material and connection structure, as well as connection method of circuit member
WO2008004367A1 (en) * 2006-07-03 2008-01-10 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP2010086665A (en) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material, and connection structure
KR20150028224A (en) * 2012-07-03 2015-03-13 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313032A (en) 2018-06-26 2021-02-02 昭和电工材料株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035572A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP4598621B2 (en) * 2005-07-29 2010-12-15 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP2007258141A (en) * 2006-02-27 2007-10-04 Hitachi Chem Co Ltd Conductive particles, adhesive composition, circuit connection material and connection structure, as well as connection method of circuit member
WO2008004367A1 (en) * 2006-07-03 2008-01-10 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
KR101078157B1 (en) * 2006-07-03 2011-10-28 히다치 가세고교 가부시끼가이샤 Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP2010086665A (en) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material, and connection structure
KR20150028224A (en) * 2012-07-03 2015-03-13 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure
KR20150028764A (en) * 2012-07-03 2015-03-16 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure
KR102076066B1 (en) * 2012-07-03 2020-02-11 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure
KR102095826B1 (en) * 2012-07-03 2020-04-01 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure

Also Published As

Publication number Publication date
JP3869785B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
TW201903000A (en) Resin particles, conductive particles, conductive materials, adhesives, connection structures, and liquid crystal display elements
JP6114671B2 (en) Conductive particles for touch panel, conductive material for touch panel, and connection structure for touch panel
JP4852311B2 (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP2003234020A (en) Conductive minute particle
JP3869785B2 (en) Insulating coating conductive fine particles and conductive connection structure
KR20180059392A (en) Conductive particles, conductive material, and connection structure
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP2001155539A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connector
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
JP6637391B2 (en) Conductive particles, conductive material and connection structure
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP2022022293A (en) Conductive particle, conductive material, and connection structure
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
JP2000067647A (en) Insulating coating conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH11126516A (en) Anisotropic conductive adhesive and conductive connection structure
JP2000030526A (en) Conductive corpuscle, anisotropic conductive adhesive and conductive connection structural body
WO2023145664A1 (en) Conductive particles, conductive material, and connection structure
TWI768068B (en) Electroconductive particle, method for producing electroconductive particle, conductive material, and connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JPH03101007A (en) Anisotropic conductive film
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
WO2021020501A1 (en) Conductive particles and connection structure
JP5670133B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R151 Written notification of patent or utility model registration

Ref document number: 3869785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

EXPY Cancellation because of completion of term