JP5670133B2 - Resin particles, insulated conductive particles and anisotropic conductive materials using the same - Google Patents

Resin particles, insulated conductive particles and anisotropic conductive materials using the same Download PDF

Info

Publication number
JP5670133B2
JP5670133B2 JP2010209312A JP2010209312A JP5670133B2 JP 5670133 B2 JP5670133 B2 JP 5670133B2 JP 2010209312 A JP2010209312 A JP 2010209312A JP 2010209312 A JP2010209312 A JP 2010209312A JP 5670133 B2 JP5670133 B2 JP 5670133B2
Authority
JP
Japan
Prior art keywords
particles
resin
conductive particles
conductive
insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010209312A
Other languages
Japanese (ja)
Other versions
JP2012062435A (en
Inventor
佐々木 令晋
令晋 佐々木
修二 清水
修二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010209312A priority Critical patent/JP5670133B2/en
Publication of JP2012062435A publication Critical patent/JP2012062435A/en
Application granted granted Critical
Publication of JP5670133B2 publication Critical patent/JP5670133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば異方性導電フィルム(ACF)や異方性導電ペースト(ACP)などの異方性導電材料として電気的接続に用いた際に良好な接続信頼性(横導通の抑制など)を発揮する絶縁化導電性粒子を与えうる絶縁用の樹脂粒子に関するものである。   The present invention has good connection reliability (such as suppression of lateral conduction) when used for electrical connection as an anisotropic conductive material such as anisotropic conductive film (ACF) or anisotropic conductive paste (ACP). The present invention relates to insulating resin particles that can provide insulated conductive particles that exhibit the above.

従来、液晶ディスプレイやプラズマディスプレイなどのガラス基板やプリント配線基板に実装部品を電気的に接続する場合などに、異方性導電フィルム(ACF)や異方性導電ペースト(ACP)などの異方性導電材料が使用されている。かかる異方性導電材料は、一般に導電性粒子をバインダー樹脂中で分散させてフィルム状やペースト状にすることにより得られ、その際用いられる導電性粒子としては、基材粒子の表面を導電性金属層で被覆した粒子や金属粒子などが汎用されていた。ところが近年、電子機器や電子部品の小型化などに伴い、接続対象となる接続端子のパターンが微細化して隣接するパターン間が狭ピッチになり、本来は絶縁されるべきパターン間に導通(いわゆる横導通)が生じてしまうという問題が起こるようになった。   Conventionally, an anisotropic conductive film (ACF) or anisotropic conductive paste (ACP) or the like is used when a mounting component is electrically connected to a glass substrate or printed wiring board such as a liquid crystal display or a plasma display. Conductive material is used. Such an anisotropic conductive material is generally obtained by dispersing conductive particles in a binder resin to form a film or a paste. Particles coated with a metal layer, metal particles, and the like have been widely used. However, in recent years, with the miniaturization of electronic devices and electronic components, the pattern of connection terminals to be connected has become finer so that adjacent patterns have a narrow pitch, and conduction (so-called lateral) between patterns that should originally be insulated. The problem of continuity) occurs.

そこで、この問題を回避するべく、異方性導電材料に使用する導電性粒子の導電性金属層表面に絶縁層を設けることが提案されている。例えば、特許文献1には、導電性粒子の表面を、特定のゲル分率を有する絶縁性ゲル状樹脂からなる絶縁性樹脂層で被覆した絶縁被覆導電性粒子(絶縁化導電性粒子)が記載されている。また特許文献2には、表面が金属からなる粒子を絶縁粒子で被覆した絶縁被覆導電性粒子(絶縁化導電性粒子)であって、前記金属と前記絶縁粒子とが結合性を有する官能基を介して化学結合してなる粒子が記載されている。さらに特許文献3では、平均粒子径、アスペクト比、CV値が特定範囲である導電性微粒子の表面に、特定の厚さの絶縁性樹脂からなる被覆層が形成された絶縁被覆導電性粒子(絶縁化導電性粒子)が記載されている。   In order to avoid this problem, it has been proposed to provide an insulating layer on the surface of the conductive metal layer of the conductive particles used for the anisotropic conductive material. For example, Patent Document 1 describes insulating coated conductive particles (insulated conductive particles) in which the surface of conductive particles is coated with an insulating resin layer made of an insulating gel-like resin having a specific gel fraction. Has been. Further, Patent Document 2 discloses insulating coated conductive particles (insulated conductive particles) in which particles made of metal are coated with insulating particles, and a functional group having binding properties between the metal and the insulating particles. Particles that are chemically bonded to each other are described. Further, in Patent Document 3, insulating coated conductive particles (insulating) in which a coating layer made of an insulating resin having a specific thickness is formed on the surface of conductive fine particles whose average particle diameter, aspect ratio, and CV value are in a specific range. Electroconductive particles).

特開2001−195921号公報Japanese Patent Laid-Open No. 2001-195921 国際公開第2003/025955号International Publication No. 2003/025955 特開2000−100249号公報Japanese Patent Laid-Open No. 2000-100239

しかしながら、特許文献1〜3で開示された絶縁被覆導電性粒子では、異方性導電材料を作製するべくバインダー樹脂に分散させる際に、粒子同士が凝集しやすくなることがあった。このようにバインダー樹脂中での分散性が悪いと、結果として得られた異方性導電材料を用いて電気的接続を行った際に、やはり横導通が生じることがあった。   However, in the insulating coated conductive particles disclosed in Patent Documents 1 to 3, when dispersed in a binder resin to produce an anisotropic conductive material, the particles may easily aggregate. Thus, when the dispersibility in a binder resin is bad, when electrical connection was performed using the anisotropic conductive material obtained as a result, a lateral conduction might occur again.

そこで、本発明は、絶縁化導電性粒子をバインダー樹脂に分散させてなる異方性導電材料により電気的接続を行うにあたり、絶縁化導電性粒子のバインダー樹脂中での凝集を抑制して充分な分散性を発現させ、異方性導電材料として電気的接続に供したときに対向する電極間の導通は良好に保ちつつ横導通を確実に抑制することを目的とし、当該目的を達成できる絶縁化導電性粒子を与えうる絶縁用の樹脂粒子を提供することを課題とする。また本発明は、かかる樹脂粒子を用いて上記目的を達成しうる絶縁化導電性粒子および異方性導電材料を提供することも課題とする。   Therefore, the present invention is sufficient to suppress the aggregation of the insulated conductive particles in the binder resin when electrically connecting with the anisotropic conductive material in which the insulated conductive particles are dispersed in the binder resin. Insulation that can achieve this purpose with the aim of developing the dispersibility and reliably suppressing lateral conduction while maintaining good conduction between opposing electrodes when subjected to electrical connection as an anisotropic conductive material It is an object of the present invention to provide insulating resin particles capable of providing conductive particles. Another object of the present invention is to provide insulated conductive particles and anisotropic conductive material that can achieve the above-described object using such resin particles.

本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、導電性粒子を絶縁するための樹脂粒子を構成する単量体組成物として(メタ)アクリル酸メチルとジビニルベンゼンとの組み合わせを採用することにより、当該樹脂粒子で絶縁された絶縁化導電性粒子がバインダー樹脂中で凝集することなく良好な分散性を発現するものとなることを見出し、かかる絶縁化導電性粒子を用いた異方性導電材料にて電気的接続を行うと、対向する電極間の導通を良好に保ちつつ横導通は確実に抑制できることを確認し、本発明を完成した。   The present inventors have intensively studied to solve the above problems. As a result, by adopting a combination of methyl (meth) acrylate and divinylbenzene as a monomer composition constituting the resin particles for insulating the conductive particles, the insulated conductive material insulated by the resin particles When the conductive particles are found to exhibit good dispersibility without agglomerating in the binder resin and are electrically connected with an anisotropic conductive material using such insulated conductive particles, they face each other. It was confirmed that lateral conduction could be reliably suppressed while maintaining good conduction between the electrodes, and the present invention was completed.

すなわち、本発明に係る樹脂粒子は、導電性粒子の表面に存在して該導電性粒子を絶縁化するための樹脂粒子であって、(メタ)アクリル酸メチルとジビニルベンゼンとを含む単量体組成物を重合させた(メタ)アクリル系架橋粒子重合体からなることを特徴とする。
本発明の樹脂粒子においては、前記単量体組成中に占めるジビニルベンゼンの含有割合が4質量%以上であることが好ましく、その平均粒子径は500nm以下であることが好ましい。また、本発明の樹脂粒子である(メタ)アクリル系架橋粒子重合体を得る際の重合には、乳化重合法を採用することが好ましく、さらにその乳化重合には、レドックス系重合開始剤を用いることが好ましく、アニオン系乳化剤を用いることが好ましい。
That is, the resin particles according to the present invention are resin particles that are present on the surfaces of the conductive particles to insulate the conductive particles, and are monomers containing methyl (meth) acrylate and divinylbenzene. It consists of a (meth) acrylic crosslinked particle polymer obtained by polymerizing the composition.
In the resin particles of the present invention, the content ratio of divinylbenzene in the monomer composition is preferably 4% by mass or more, and the average particle diameter is preferably 500 nm or less. Moreover, it is preferable to employ | adopt an emulsion polymerization method for superposition | polymerization at the time of obtaining the (meth) acrylic crosslinked particle polymer which is the resin particle of this invention, and also uses a redox type polymerization initiator for the emulsion polymerization. It is preferable to use an anionic emulsifier.

本発明に係る絶縁化導電性粒子は、導電性粒子の表面の少なくとも一部に前記本発明の樹脂粒子が存在してなることを特徴とする。
本発明に係る異方性導電材料は、前記本発明にかかる絶縁化導電性粒子がバインダー樹脂に分散してなることを特徴とする。
The insulated conductive particles according to the present invention are characterized in that the resin particles of the present invention are present on at least a part of the surface of the conductive particles.
The anisotropic conductive material according to the present invention is characterized in that the insulated conductive particles according to the present invention are dispersed in a binder resin.

本発明によれば、所定の単量体から得られる樹脂粒子を用いて導電性粒子を絶縁するため、絶縁化導電性粒子のバインダー樹脂中での凝集を抑制して充分な分散性を発現させ、異方性導電材料として電気的接続に供したときに対向する電極間の導通は良好に保ちつつ横導通を確実に抑制することができる、という効果を奏する。   According to the present invention, since the conductive particles are insulated using resin particles obtained from a predetermined monomer, aggregation of the insulated conductive particles in the binder resin is suppressed and sufficient dispersibility is expressed. In addition, when subjected to electrical connection as an anisotropic conductive material, there is an effect that it is possible to reliably suppress lateral conduction while maintaining good conduction between opposing electrodes.

(樹脂粒子)
本発明の樹脂粒子は、導電性粒子を絶縁するために用いられるものであり、(メタ)アクリル酸メチルとジビニルベンゼンとを必須とする単量体組成物を重合させた(メタ)アクリル系架橋粒子重合体からなる。なお、本発明において「(メタ)アクリル酸メチル」とはアクリル酸メチルおよび/またはメタクリル酸メチルを意味する。(メタ)アクリル酸メチルとしてはメタクリル酸メチルが好ましい。
(Resin particles)
The resin particle of the present invention is used to insulate conductive particles, and is a (meth) acrylic cross-linkage obtained by polymerizing a monomer composition essentially comprising methyl (meth) acrylate and divinylbenzene. It consists of a particle polymer. In the present invention, “methyl (meth) acrylate” means methyl acrylate and / or methyl methacrylate. As methyl (meth) acrylate, methyl methacrylate is preferable.

(メタ)アクリル系架橋粒子重合体を構成する単量体組成物において(メタ)アクリル酸メチルとジビニルベンゼンとの比率(質量比)は、(メタ)アクリル酸メチル/ジビニルベンゼンの値が49以下であるのが好ましく、より好ましくは12以下、さらに好ましくは6以下であり、1.0以上であるのが好ましく、より好ましくは1.5以上、さらに好ましくは2.0以上である。(メタ)アクリル酸メチル/ジビニルベンゼンの値が前記範囲よりも大きいと、絶縁化導電性粒子の凝集抑制効果が不充分になる傾向がある。(メタ)アクリル酸メチル/ジビニルベンゼンの値が前記範囲よりも小さいと、導電性粒子に対する樹脂粒子の付着性が低下する虞がある。   In the monomer composition constituting the (meth) acrylic crosslinked polymer, the ratio (mass ratio) of methyl (meth) acrylate to divinylbenzene is (methyl) methacrylate / divinylbenzene of 49 or less. More preferably, it is 12 or less, More preferably, it is 6 or less, It is preferable that it is 1.0 or more, More preferably, it is 1.5 or more, More preferably, it is 2.0 or more. If the value of (meth) methyl acrylate / divinylbenzene is larger than the above range, the effect of suppressing aggregation of the insulated conductive particles tends to be insufficient. If the value of (meth) methyl acrylate / divinylbenzene is smaller than the above range, the adhesion of the resin particles to the conductive particles may be reduced.

前記単量体組成物における必須単量体である(メタ)アクリル酸メチルおよびジビニルベンゼンの合計量は、全単量体組成物中70質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上、最も好ましくは100質量%である。(メタ)アクリル酸メチルおよびジビニルベンゼンの合計量が前記範囲よりも少ないと、絶縁化導電性粒子の凝集抑制効果が不充分になる傾向がある。   The total amount of methyl (meth) acrylate and divinylbenzene, which are essential monomers in the monomer composition, is 70% by mass or more, preferably 80% by mass or more, more preferably 90%, based on the total monomer composition. % By mass or more, most preferably 100% by mass. When the total amount of methyl (meth) acrylate and divinylbenzene is less than the above range, the effect of suppressing aggregation of the insulated conductive particles tends to be insufficient.

(メタ)アクリル系架橋粒子重合体を構成する単量体組成物は、(メタ)アクリル酸メチルとジビニルベンゼンのほかに、重合性二重結合を1個もしくは2個以上有するその他の重合性単量体を含んでいてもよい。その他の重合性単量体としては、以下のものが挙げられる。   In addition to methyl (meth) acrylate and divinylbenzene, the monomer composition constituting the (meth) acrylic crosslinked particle polymer is composed of other polymerizable monomers having one or more polymerizable double bonds. It may contain a mer. Examples of other polymerizable monomers include the following.

すなわち、重合性二重結合を1個有する重合性単量体としては、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−フェノキシエチル、(メタ)アクリル酸3−フェニルプロピルなどのアルキル基の炭素数が1〜18である(メタ)アクリル酸エステル;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸、(メタ)アクリル酸グリシジル;などの(メタ)アクリル系単量体が挙げられる。また重合性二重結合を1個有する重合性単量体として、スチレン、α−メチルスチレン、パラメチルスチレン、イソプロペニルスチレン、クロルスチレンなどのスチレン類;アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリルなどの不飽和ニトリル類;イタコン酸、マレイン酸、フマル酸またはそれらの半エステル化合物;ビニルトルエン;アリルグリシジルエーテルなどのエポキシ基含有単量体;なども挙げられる。   That is, as a polymerizable monomer having one polymerizable double bond, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ( Alkyl groups such as decyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 3-phenylpropyl (meth) acrylate (Meth) acrylic acid ester having 1 to 18 carbon atoms; hydroxyethyl (meth) acrylate; ) Acrylic acid hydroxypropyl, (meth) acrylic acid, glycidyl (meth) acrylate; (meth) acrylic monomers, and the like. Moreover, as a polymerizable monomer having one polymerizable double bond, styrenes such as styrene, α-methylstyrene, paramethylstyrene, isopropenylstyrene, chlorostyrene; acrylonitrile, methacrylonitrile, ethacrylonitrile, phenyl Examples thereof also include unsaturated nitriles such as acrylonitrile; itaconic acid, maleic acid, fumaric acid or half-ester compounds thereof; vinyl toluene; and epoxy group-containing monomers such as allyl glycidyl ether.

重合性二重結合を2個以上有する重合性単量体としては、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ヘキサンジオール、トリアクリル酸ペンタエリスリトール、トリアクリル酸トリメチロールプロパン、テトラアクリル酸テトラメチロールメタン、トリメタクリル酸トリメチロールプロパン、フタル酸ジアリル、シアン酸トリアリルなどが挙げられる。その他の重合性単量体は1種のみであってもよいし2種以上であってもよい。
なお、(メタ)アクリル系架橋粒子重合体を構成する単量体組成物が上述したその他の重合性単量体をも含有する場合、それらの合計含有量は、必須単量体である(メタ)アクリル酸メチルおよびジビニルベンゼンの合計量が前記範囲になるようにするのがよい。
Examples of the polymerizable monomer having two or more polymerizable double bonds include ethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, tetra Examples include tetramethylol acrylate, trimethylol propane trimethacrylate, diallyl phthalate, and triallyl cyanate. The other polymerizable monomer may be only one kind or two or more kinds.
In addition, when the monomer composition which comprises a (meth) acrylic crosslinked particle polymer also contains the other polymerizable monomer mentioned above, those total content is an essential monomer (meta ) The total amount of methyl acrylate and divinylbenzene should be within the above range.

前記単量体組成物中に占めるジビニルベンゼンの含有割合は4質量%以上であることが好ましい。より好ましくは前記単量体成分中に占めるジビニルベンゼンの含有割合は8質量%以上であり、さらに好ましくは14質量%以上である。単量体組成中に占めるジビニルベンゼンの割合が多いほど、絶縁化導電性粒子の凝集を抑制し易くなる。ただし単量体組成中に占めるジビニルベンゼンの含有割合があまりに多すぎると、導電性粒子に対する樹脂粒子の付着性が低下する懸念が生じるので、ジビニルベンゼンの含有割合は、50質量%以下であるのが好ましく、40質量%以下がより好ましく、35質量%以下がさらに好ましい。   The content ratio of divinylbenzene in the monomer composition is preferably 4% by mass or more. More preferably, the content ratio of divinylbenzene in the monomer component is 8% by mass or more, and more preferably 14% by mass or more. The greater the proportion of divinylbenzene in the monomer composition, the easier it is to suppress the aggregation of insulated conductive particles. However, if the content ratio of divinylbenzene in the monomer composition is too large, there is a concern that the adhesion of the resin particles to the conductive particles may be reduced, so the content ratio of divinylbenzene is 50% by mass or less. Is preferable, 40 mass% or less is more preferable, and 35 mass% or less is further more preferable.

本発明の樹脂粒子の平均粒子径は、500nm以下であることが好ましい。より好ましくは350nm以下、さらに好ましくは250nm以下、特に好ましくは180nm以下である。導電性粒子の粒子径が小さいほど、そのままでは凝集し易くなるため、本発明の樹脂粒子を用いて凝集を抑制する必要性が高くなる。粒子径の小さい導電性粒子の表面に存在させるには、樹脂粒子の粒子径も前記範囲のように小さいことが好ましい。一方、樹脂粒子の平均粒子径があまりに小さすぎると、絶縁化導電性粒子として用いた場合に隣接する電極間の横導通の抑制が不十分となる虞があるので、樹脂粒子の平均粒子径は10nm以上が好ましく、30nm以上がより好ましく、50nm以上がさらに好ましい。   The average particle size of the resin particles of the present invention is preferably 500 nm or less. More preferably, it is 350 nm or less, More preferably, it is 250 nm or less, Most preferably, it is 180 nm or less. The smaller the particle diameter of the conductive particles, the easier it is to agglomerate as it is, and therefore the need to suppress aggregation using the resin particles of the present invention increases. In order to make it exist on the surface of the electroconductive particle with a small particle diameter, it is preferable that the particle diameter of the resin particle is also small like the said range. On the other hand, if the average particle size of the resin particles is too small, there is a risk that the suppression of lateral conduction between adjacent electrodes when used as insulated conductive particles may be insufficient. 10 nm or more is preferable, 30 nm or more is more preferable, and 50 nm or more is more preferable.

なお、本発明における樹脂粒子の平均粒子径は、動的光散乱法により測定される体積平均粒子径を意味するものである。   In addition, the average particle diameter of the resin particle in this invention means the volume average particle diameter measured by a dynamic light scattering method.

本発明の樹脂粒子の体積平均粒子径は、絶縁対象とする導電性粒子の個数平均粒子径の0.005倍以上であるのが好ましく、より好ましくは0.01倍以上、さらに好ましくは0.03倍以上であり、絶縁対象とする導電性粒子の個数平均粒子径の0.3倍以下であるのが好ましく、より好ましくは0.1倍以下、さらに好ましくは0.08倍以下である。導電性粒子に対する樹脂粒子の大きさ(平均粒子径)が前記範囲であれば、効率よく凝集抑制効果を発揮できる。   The volume average particle diameter of the resin particles of the present invention is preferably 0.005 times or more, more preferably 0.01 times or more, and still more preferably 0.005 times or more the number average particle diameter of conductive particles to be insulated. It is preferably not less than 03 times and not more than 0.3 times the number average particle diameter of the conductive particles to be insulated, more preferably not more than 0.1 times, and further preferably not more than 0.08 times. When the size (average particle diameter) of the resin particles with respect to the conductive particles is within the above range, the aggregation suppressing effect can be exhibited efficiently.

本発明の樹脂粒子の粒子径における変動係数(CV値)は、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、最も好ましくは20%以下である。なお、粒子径の変動係数とは、動的光散乱法により測定される体積平均粒子径と、粒子径の標準偏差とを下記式に当てはめて求められる値である。
粒子径の変動係数(%)=100×(粒子径の標準偏差/体積平均粒子径)
The coefficient of variation (CV value) in the particle diameter of the resin particles of the present invention is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, and most preferably 20% or less. The variation coefficient of the particle diameter is a value obtained by applying the volume average particle diameter measured by the dynamic light scattering method and the standard deviation of the particle diameter to the following formula.
Variation coefficient of particle diameter (%) = 100 × (standard deviation of particle diameter / volume average particle diameter)

(メタ)アクリル系架橋粒子重合体を得る際の重合には乳化重合法を採用することが、粒子径の小さい(具体的には 1μm以下)粒子が得られやすい点で好ましい。以下、(メタ)アクリル系架橋粒子重合体を得る際の重合方法として特に好ましい乳化重合の態様を説明する。   It is preferable to employ an emulsion polymerization method for the polymerization for obtaining the (meth) acrylic crosslinked particle polymer because a particle having a small particle diameter (specifically, 1 μm or less) can be easily obtained. Hereinafter, a particularly preferable embodiment of emulsion polymerization will be described as a polymerization method for obtaining a (meth) acrylic crosslinked particle polymer.

好ましい乳化重合の態様は、前記単量体組成物を重合開始剤と界面活性剤(乳化剤)の存在下で乳化重合する重合工程と、該重合工程の後さらに界面活性剤を添加して熟成する熟成工程とを含む。乳化重合は、通常水性分散媒中で行う。   A preferred embodiment of the emulsion polymerization is a polymerization step in which the monomer composition is emulsion-polymerized in the presence of a polymerization initiator and a surfactant (emulsifier), and after the polymerization step, a surfactant is further added and ripened. Aging process. Emulsion polymerization is usually performed in an aqueous dispersion medium.

前記乳化重合に用いる重合開始剤としては、過酸化水素水と、アスコルビン酸、酒石酸およびソルビン酸からなる群より選ばれる少なくとも1種類の還元剤とを組合せてなるレドックス系重合開始剤を用いることが好ましい。これにより、粒子径が小さく、かつ粒度分布の狭い粒子重合体を得ることができる。重合開始剤の添加方法としては、過酸化水素水と還元剤とをそれぞれ水溶液とした後、該水溶液を連続的もしくは断続的に反応容器内に添加してもよく、また、過酸化水素水の全量を反応容器内に前もって添加しておき還元剤を連続的に添加してもよい。   As the polymerization initiator used in the emulsion polymerization, a redox polymerization initiator formed by combining a hydrogen peroxide solution and at least one reducing agent selected from the group consisting of ascorbic acid, tartaric acid and sorbic acid may be used. preferable. Thereby, a particle polymer having a small particle size and a narrow particle size distribution can be obtained. As a method for adding the polymerization initiator, the aqueous hydrogen peroxide solution and the reducing agent may be made into aqueous solutions, respectively, and then the aqueous solution may be continuously or intermittently added to the reaction vessel. The total amount may be added in advance to the reaction vessel and the reducing agent may be added continuously.

前記重合工程で使用される界面活性剤としては、アニオン系乳化剤が好ましい。これにより、粒子径が小さく、かつ粒度分布の狭い粒子重合体を得ることができる。アニオン系乳化剤としては、例えば、ラウリルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられ、これらの中でも特に、ドデシルベンゼンスルホン酸ナトリウムが好ましい。重合工程において用いる界面活性剤の量としては、単量体組成物100質量部に対して、0.05〜10質量部が好ましく、0.1〜7質量部がさらに好ましい。   As the surfactant used in the polymerization step, an anionic emulsifier is preferable. Thereby, a particle polymer having a small particle size and a narrow particle size distribution can be obtained. Examples of the anionic emulsifier include sodium lauryl sulfonate and sodium dodecyl benzene sulfonate. Among these, sodium dodecyl benzene sulfonate is particularly preferable. The amount of the surfactant used in the polymerization step is preferably 0.05 to 10 parts by mass and more preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the monomer composition.

前記重合工程における乳化重合は、公知の乳化重合法で行えばよく、例えばモノマー滴下法、プレエマルジョン法、一括仕込み重合法などを採用することができるが、粒度分布の狭い架橋粒子重合体を得るうえでは、モノマー滴下法を採用するのが好ましい。単量体組成物、重合開始剤、界面活性剤の仕込み方法などは、特に制限はなく、適宜設定すればよいが、好ましくは、予め単量体組成物全量の5質量%以上と重合開始剤の一部と界面活性剤とからなる重合用混合液を用いて乳化重合を開始した後、残りの単量体組成物および重合開始剤を別々にあるいは混合して滴下するのがよい。前記重合工程における重合温度としては、30〜90℃が好ましい。重合時間は、単量体組成物の仕込み量と反応液中の残存量とから求められる反応率に応じて適宜設定すればよいが、通常1〜12時間、好ましくは2〜8時間程度である。   The emulsion polymerization in the polymerization step may be carried out by a known emulsion polymerization method. For example, a monomer dropping method, a pre-emulsion method, a batch charging polymerization method, etc. can be adopted, and a crosslinked particle polymer having a narrow particle size distribution is obtained. In addition, it is preferable to employ a monomer dropping method. There are no particular restrictions on the monomer composition, the polymerization initiator, the method of charging the surfactant, and the like, which may be set as appropriate. Preferably, the polymerization initiator is preliminarily 5% by mass or more of the total amount of the monomer composition. After the emulsion polymerization is started using a polymerization mixture composed of a part of the surfactant and a surfactant, the remaining monomer composition and the polymerization initiator are preferably added separately or mixed and added dropwise. The polymerization temperature in the polymerization step is preferably 30 to 90 ° C. The polymerization time may be appropriately set according to the reaction rate determined from the charged amount of the monomer composition and the remaining amount in the reaction solution, but is usually about 1 to 12 hours, preferably about 2 to 8 hours. .

前記熟成工程は、重合工程の後で、未反応の単量体組成物を減少させたり、または、乳化重合で得られた粒子重合体を含む分散液を安定化させたりする目的で行われる。このとき界面活性剤を添加することにより、熟成時の架橋粒子重合体の凝集を防止することができる。熟成工程で使用される界面活性剤としては、前記重合工程で例示した界面活性剤(好ましくはアニオン系乳化剤)を用いることができ、特に好ましくは、重合工程で使用したものと同じ界面活性剤を使うことがよいが、例えば、ポリオキシエチレンアルキルエーテルなどのノニオン性界面活性剤を用いることも可能である。熟成工程で用いる界面活性剤の量としては、乳化重合で使用した単量体組成物100質量部に対して、0.05〜10質量部が好ましく、0.1〜7質量部がより好ましい。   The aging step is performed after the polymerization step for the purpose of reducing the unreacted monomer composition or stabilizing the dispersion containing the particle polymer obtained by emulsion polymerization. At this time, by adding a surfactant, it is possible to prevent aggregation of the crosslinked particle polymer during aging. As the surfactant used in the aging step, the surfactant exemplified in the polymerization step (preferably an anionic emulsifier) can be used, and particularly preferably, the same surfactant as that used in the polymerization step is used. It is preferable to use a nonionic surfactant such as polyoxyethylene alkyl ether, for example. The amount of the surfactant used in the aging step is preferably 0.05 to 10 parts by mass and more preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the monomer composition used in the emulsion polymerization.

前記熟成工程における熟成温度としては、50〜90℃が好ましく、70〜85℃がより好ましい。熟成温度を前記範囲内とすることにより、粒子の凝集を抑えながら、未反応の単量体組成物の量を減少させることができる。熟成時間は、単量体組成物の仕込み量と反応液中の残存量とから求められる反応率に応じて適宜設定すればよいが、通常1〜12時間、好ましくは2〜8時間程度である。   The aging temperature in the aging step is preferably 50 to 90 ° C, more preferably 70 to 85 ° C. By setting the aging temperature within the above range, the amount of the unreacted monomer composition can be reduced while suppressing the aggregation of particles. The aging time may be appropriately set according to the reaction rate determined from the charged amount of the monomer composition and the remaining amount in the reaction solution, but is usually about 1 to 12 hours, preferably about 2 to 8 hours. .

(絶縁化導電性粒子)
本発明の絶縁化導電性粒子は、導電性粒子の表面の少なくとも一部に前記本発明の樹脂粒子が存在してなるものである。これにより、バインダー樹脂中での凝集が抑制されて充分な分散性を発現し得るものとなり、その結果、異方性導電材料として電気的接続に供したときに対向する電極間の導通は良好に保ちつつ横導通を確実に抑制することができる。
まず、導電性粒子について説明する。
前記導電性粒子は、金属粒子であってもよく、基材粒子と該基材粒子表面の少なくとも一部を被覆する導電性金属層とから構成される複合粒子であってもよい。好ましくは後者の複合粒子であるのがよい。
(Insulated conductive particles)
The insulated conductive particles of the present invention are those in which the resin particles of the present invention are present on at least a part of the surface of the conductive particles. As a result, aggregation in the binder resin can be suppressed and sufficient dispersibility can be exhibited, and as a result, conduction between the opposing electrodes is good when subjected to electrical connection as an anisotropic conductive material. Lateral conduction can be reliably suppressed while maintaining.
First, the conductive particles will be described.
The conductive particles may be metal particles, or composite particles composed of base particles and a conductive metal layer covering at least a part of the surface of the base particles. The latter composite particles are preferred.

前記金属粒子としては、例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ニッケル、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム、ニッケル−リン、ニッケル−ホウ素などの金属や金属化合物、および、これらの合金などからなる粒子が挙げられる。これらの中でも、導電性に優れ、工業的に安価である点で、金、銀、銅、ニッケルから選ばれる金属の粒子が好ましい。
前記金属粒子の形状は特に限定されるものではなく、例えば、球状、回転楕円体状、金平糖状、薄板状、針状、まゆ状などのいずれでも良いが、球状が好ましく、特に真球状が好ましい。
Examples of the metal particles include gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, nickel, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt, indium, nickel-phosphorus, nickel- Examples thereof include particles made of metals such as boron, metal compounds, and alloys thereof. Among these, metal particles selected from gold, silver, copper, and nickel are preferable in that they are excellent in conductivity and industrially inexpensive.
The shape of the metal particles is not particularly limited, and may be any of a spherical shape, a spheroid shape, a confetti shape, a thin plate shape, a needle shape, an eyebrow shape, etc., but a spherical shape is preferable, and a true spherical shape is particularly preferable. .

前記複合粒子に用いる基材粒子としては、特に制限はなく、汎用されているものを用いることができる。基材粒子の材料としては、例えば、シリカなどの無機材料;シリコーン樹脂(ポリメチルシルセスキオキサン、ポリフェニルシルセスキオキサン)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリブタジエンなど)、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、ポリスルホン、ポリカーボネート、フェノール樹脂、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、尿素樹脂などの有機材料;無機質成分であるポリシロキサン(好ましくは、(メタ)アクリロキシ基含有シリコーン化合物を含む無機化合物原料を加水分解・縮合して得られるポリシロキサン)と有機質成分であるビニル系重合体とが任意の適切な形態(例えば、一方が他方に分散している形態、一方をコア粒子とし他方がシェル層であるコア・シェル形態、両者が分子レベルで複合または混合されている形態など)で複合したものである有機無機複合材料;などが挙げられる。これらの中でも、適度な弾性率や回復特性を有する点で、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、有機無機複合材料が好ましい。特に、有機無機複合材料としては、特開2003−183337号公報や特開平8−81561号公報などに記載されているものが好ましく用いられる。   There is no restriction | limiting in particular as base particle used for the said composite particle, What is used widely can be used. Examples of the material of the base particle include inorganic materials such as silica; silicone resin (polymethylsilsesquioxane, polyphenylsilsesquioxane), polyolefin resin (polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, poly Tetrafluoroethylene, polybutadiene, etc.), vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin, etc.), polysulfone, polycarbonate, phenolic resin, amino resin (melamine resin, melamine-benzoguanamine resin, Organic materials such as benzoguanamine resins) and urea resins; polysiloxanes obtained by hydrolysis / condensation of inorganic compounds such as polysiloxanes (preferably (meth) acryloxy group-containing silicone compounds) ) And an organic component vinyl polymer in any appropriate form (for example, one is dispersed in the other, one is a core particle and the other is a shell layer, the other is a shell / shell form, both at the molecular level) Or a mixed or mixed form of the organic-inorganic composite material. Among these, vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin, etc.), amino resin (melamine resin, melamine-benzoguanamine resin) in terms of having an appropriate elastic modulus and recovery characteristics. Benzoguanamine resin, etc.) and organic-inorganic composite materials are preferred. In particular, as the organic-inorganic composite material, those described in JP-A No. 2003-183337 and JP-A No. 8-81561 are preferably used.

前記複合粒子に用いる基材粒子の粒子径は、個数平均粒子径で0.5μm以上、10.0μm以下であることが好ましい。平均粒子径が小さすぎると、無電解めっきなどで導電性金属層を被覆する際に、粒子が凝集し易くなり、均一な導電性金属層を形成できない虞がある。一方、平均粒子径が大きすぎると、隣接する電極間の間隔が狭い場合には適用しにくいなど適用用途が限られて、工業上の利用分野が少なくなる傾向がある。基材粒子の平均粒子径は、より好ましくは1.0μm以上、5.0μm以下であり、さらに好ましくは1.2μm以上、3.0μm以下であり、最も好ましくは1.5μm以上、2.7μm以下である。
なお、個数平均粒子径は、具体的には、コールター原理を利用した精密粒度分布測定装置(例えば、ベックマンコールター(株)製「コールターマルチサイザーIII型」)により測定される個数基準の値とする。
The particle diameter of the base particles used for the composite particles is preferably 0.5 μm or more and 10.0 μm or less in number average particle diameter. If the average particle size is too small, the particles tend to aggregate when the conductive metal layer is coated by electroless plating or the like, and there is a possibility that a uniform conductive metal layer cannot be formed. On the other hand, if the average particle size is too large, the application uses are limited, such as difficulty in application when the interval between adjacent electrodes is narrow, and there is a tendency that the industrial application fields are reduced. The average particle diameter of the substrate particles is more preferably 1.0 μm or more and 5.0 μm or less, further preferably 1.2 μm or more and 3.0 μm or less, and most preferably 1.5 μm or more and 2.7 μm. It is as follows.
The number average particle diameter is specifically a number-based value measured by a precision particle size distribution measuring apparatus using the Coulter principle (for example, “Coulter Multisizer III type” manufactured by Beckman Coulter, Inc.). .

前記複合粒子に用いる基材粒子の粒子径における変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下、最も好ましくは4%以下である。なお、粒子径の変動係数とは、コールター原理を利用した精密粒度分布測定装置により測定される粒子の平均粒子径と、粒子の粒子径の標準偏差とを下記式に当てはめて求められる値である。
粒子径の変動係数(%)=100×(粒子径の標準偏差/個数平均粒子径)
The coefficient of variation (CV value) in the particle diameter of the base particles used for the composite particles is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less, and most preferably 4% or less. The coefficient of variation of the particle diameter is a value obtained by applying the following equation to the average particle diameter of the particles measured by a precision particle size distribution measuring apparatus using the Coulter principle and the standard deviation of the particle diameter of the particles. .
Coefficient of variation of particle diameter (%) = 100 × (standard deviation of particle diameter / number average particle diameter)

前記複合粒子に用いる基材粒子の形状は特に限定されるものではなく、例えば、球状、回転楕円体状、金平糖状、薄板状、針状、まゆ状などのいずれでも良いが、球状が好ましく、特に真球状が好ましい。   The shape of the base particles used for the composite particles is not particularly limited, and may be any of, for example, a spherical shape, a spheroid shape, a confetti shape, a thin plate shape, a needle shape, an eyebrows shape, and a spherical shape is preferable. A true spherical shape is particularly preferable.

前記導電性金属層を構成する金属は、導電性を持つ化合物であればよく特に限定されない。例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ニッケル、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム、ニッケル−リン、ニッケル−ホウ素などの金属や金属化合物、および、これらの合金などが挙げられる。これらの中でも、導電性に優れ、工業的に安価である点で、金、銀、銅、ニッケルが好ましい。また、導電性金属層は、単層でもよいし複層であってもよく、複層の場合には、例えば、ニッケル−金、ニッケル−パラジウム、ニッケル−パラジウム−金、ニッケル−銀などが好ましく挙げられる。   The metal constituting the conductive metal layer is not particularly limited as long as it is a conductive compound. For example, metals and metals such as gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, nickel, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt, indium, nickel-phosphorus, nickel-boron Examples thereof include compounds and alloys thereof. Among these, gold, silver, copper, and nickel are preferable because they are excellent in conductivity and industrially inexpensive. Further, the conductive metal layer may be a single layer or multiple layers. In the case of multiple layers, for example, nickel-gold, nickel-palladium, nickel-palladium-gold, nickel-silver and the like are preferable. Can be mentioned.

前記導電性金属層の厚みは、特に制限されないが、好ましくは10〜500nm、より好ましくは20〜400nm、さらに好ましくは50〜300nmである。導電性金属層の厚みが10nm未満であると、絶縁化導電性粒子としたときに安定した電気的接続を発現し難くなるおそれがある。導電性金属層の厚みが500nmを超えると、導電性粒子としたときの表面の硬度が高くなりすぎ、回復率などの機械的特性が低下するおそれがある。   The thickness of the conductive metal layer is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm. When the thickness of the conductive metal layer is less than 10 nm, there is a possibility that stable electrical connection is difficult to be obtained when insulating conductive particles are used. When the thickness of the conductive metal layer exceeds 500 nm, the surface hardness of the conductive particles becomes too high, and the mechanical properties such as the recovery rate may decrease.

前記複合粒子における導電性金属層は、基材粒子表面の少なくとも一部を被覆していればよいが、導電性金属層の表面には、実質的な割れや、導電性金属層が形成されていない面が存在しないことが好ましい。ここで、「実質的な割れや、導電性金属層が形成されていない面」とは、電子顕微鏡(倍率2000倍)を用いて任意の10000個の導電性粒子の表面を観察したときに、導電性金属層の割れまたは基材粒子表面の露出が認められる割合が全体の5%以下であることを意味する。   The conductive metal layer in the composite particles only needs to cover at least a part of the surface of the base particle, but the surface of the conductive metal layer has substantial cracks or a conductive metal layer formed. It is preferred that no surface is present. Here, “substantially cracked or a surface on which no conductive metal layer is formed” means that when the surface of any 10,000 conductive particles is observed using an electron microscope (magnification 2000 times), It means that the ratio at which cracking of the conductive metal layer or exposure of the surface of the base material particles is observed is 5% or less.

前記基材粒子の表面に導電性金属層を被覆する方法は、特に限定されず、従来公知の方法、例えば、無電解めっき法、電解めっき法などのめっきを施す方法;金属微粉を単独でもしくはバインダーに混ぜ合わせたペースト状で基材粒子にコーティングする方法;真空蒸着、イオンプレーティング、イオンスパッタリングなどの物理的蒸着方法;などを採用すればよい。これらの中でも特に無電解めっき法が、大掛かりな装置を必要とせず容易に導電性金属層を形成できる点で好ましい。   The method of coating the surface of the substrate particles with the conductive metal layer is not particularly limited, and a conventionally known method, for example, a method of performing plating such as an electroless plating method or an electrolytic plating method; A method of coating the base particles with a paste mixed with a binder; a physical vapor deposition method such as vacuum deposition, ion plating, ion sputtering, etc. may be employed. Among these, the electroless plating method is particularly preferable in that a conductive metal layer can be easily formed without requiring a large-scale apparatus.

前記無電解めっき法では、まず基材粒子の表面に、次に行う無電解めっき処理の基点となる触媒層を形成する。触媒層を形成する方法としては、例えば、二塩化パラジウムと二塩化スズとを含む溶液を触媒化試薬とし、これに基材粒子を浸漬することにより基材粒子表面に触媒金属を吸着させ、その後、硫酸や塩酸などの酸や水酸化ナトリウムなどのアルカリ溶液で前記パラジウムイオンを還元することにより、基材粒子表面にパラジウムを析出させる方法(キャタリスト−アクセレレーション法)や、基材粒子を二塩化スズと接触させることによりスズイオンを基材粒子表面に吸着させた後、二塩化パラジウム溶液に浸漬させることにより、基材粒子表面にパラジウムを析出させる方法(センシタイジング−アクチベーション法)などが挙げられる。   In the electroless plating method, first, a catalyst layer is formed on the surface of the base particle as a base point for the next electroless plating treatment. As a method for forming the catalyst layer, for example, a solution containing palladium dichloride and tin dichloride is used as a catalyst reagent, and the catalyst particles are adsorbed on the surface of the substrate particles by immersing the substrate particles in the solution. In addition, by reducing the palladium ions with an alkali solution such as sulfuric acid or hydrochloric acid or an alkali solution such as sodium hydroxide, a method of depositing palladium on the surface of the substrate particles (catalyst-acceleration method), A method (sensitizing-activation method) in which palladium is deposited on the surface of the substrate particles by adsorbing tin ions on the surface of the substrate particles by contacting with tin dichloride and then dipping in a palladium dichloride solution. Can be mentioned.

前記無電解めっき法では、続いて、触媒層を形成した基材粒子表面に、無電解めっき処理を施して導電性金属層を形成する。無電解めっき処理は、還元剤と所望の導電性金属塩を溶解しためっき液中に触媒層を形成した基材粒子を浸漬することにより、触媒を起点として、めっき液中の金属イオンを還元剤で還元し、基材粒子表面に所望の金属を析出させて、導電性金属層を形成するものである。無電解めっき液に含有させる導電性金属塩としては、導電性金属層を構成する金属として先に例示した金属の塩化物、硫酸塩、酢酸塩などが挙げられる。
前記無電解めっき処理は、必要に応じて繰返し行ってもよい。例えば金属種の異なる無電解めっき液を用いて無電解めっき処理を繰返すことにより、基材粒子の表面に異種金属を幾層にも被覆できる。具体的には、基材粒子にニッケルめっきを施してニッケル被覆粒子を得た後、該ニッケル被覆粒子をさらに無電解金めっき液に投入して金置換めっきを行うことにより、最外層が金層で覆われ、その内側にニッケル層を有する導電性粒子が得られる。
In the electroless plating method, subsequently, the surface of the substrate particles on which the catalyst layer is formed is subjected to an electroless plating treatment to form a conductive metal layer. The electroless plating treatment involves immersing the base material particles on which the catalyst layer is formed in a plating solution in which a reducing agent and a desired conductive metal salt are dissolved, thereby starting metal ions in the plating solution from the catalyst. And a desired metal is deposited on the surface of the substrate particles to form a conductive metal layer. Examples of the conductive metal salt contained in the electroless plating solution include chlorides, sulfates, acetates, and the like of the metals exemplified above as the metal constituting the conductive metal layer.
The electroless plating treatment may be repeated as necessary. For example, by repeating the electroless plating process using electroless plating solutions having different metal types, the surface of the substrate particles can be coated with several layers of different metals. Specifically, after nickel plating is performed on the substrate particles to obtain nickel-coated particles, the outermost layer is a gold layer by adding the nickel-coated particles to an electroless gold plating solution and performing gold displacement plating. The electroconductive particle which is covered with and has a nickel layer inside is obtained.

以上のようにして得られた導電性粒子の平均粒子径は、11μm以下であることが好ましく、より好ましくは6.0μm以下であり、さらに好ましくは4.0μm以下であり、特に好ましくは2.8μm以下である。上述したように導電性粒子の粒子径が前記範囲の如く小さいほど、そのままでは凝集し易くなるため、本発明の樹脂粒子を用いて凝集を抑制する必要性が高まる。導電性粒子の平均粒子径は、好ましくは1.1μm以上、より好ましくは1.3μm以上、さらに好ましくは1.6μm以上である。
なお、本発明における導電性粒子の平均粒子径は、フロー式粒子像解析装置(例えば、シスメックス社製「FPIA−3000」)により測定される個数平均粒子径を意味するものである。
The average particle size of the conductive particles obtained as described above is preferably 11 μm or less, more preferably 6.0 μm or less, still more preferably 4.0 μm or less, and particularly preferably 2. 8 μm or less. As described above, the smaller the particle diameter of the conductive particles is in the above range, the easier it is to agglomerate as it is. Therefore, the necessity to suppress aggregation using the resin particles of the present invention increases. The average particle diameter of the conductive particles is preferably 1.1 μm or more, more preferably 1.3 μm or more, and further preferably 1.6 μm or more.
In addition, the average particle diameter of the electroconductive particle in this invention means the number average particle diameter measured by a flow type particle image analyzer (for example, "FPIA-3000" by Sysmex Corporation).

導電性粒子の表面に上述した本発明の樹脂粒子を固定する方法としては、従来公知の被覆方法を採用することができる。例えば、無電解めっき処理後の導電性粒子と本発明の樹脂粒子とを有機溶媒あるいは水性媒体などの液体中に分散させた後、スプレードライを行う方法;有機溶媒あるいは水性媒体などの液体中で導電性粒子の表面に樹脂粒子を付着させた後、導電性粒子と樹脂粒子を化学結合させる方法;導電性粒子の粉体と樹脂粒子の粉体の共存下で高速撹拌機による撹拌やハイブリダイゼーション処理を行う方法;などが挙げられる。   As a method for fixing the above-described resin particles of the present invention on the surface of the conductive particles, a conventionally known coating method can be employed. For example, a method in which conductive particles after electroless plating treatment and the resin particles of the present invention are dispersed in a liquid such as an organic solvent or an aqueous medium and then spray-dried; in a liquid such as an organic solvent or an aqueous medium Method of attaching resin particles to the surface of conductive particles and then chemically bonding the conductive particles and resin particles; stirring and hybridization using a high-speed stirrer in the presence of conductive powder and resin particle powder And the like.

樹脂粒子は導電性粒子の表面の少なくとも一部に存在していればよく、導電性粒子の全表面に占める樹脂粒子の存在比率(換言すれば、樹脂粒子による導電性粒子の被覆率)は、好ましくは1%以上70%以下、より好ましくは5%以上60%以下、さらに好ましくは10%以上50%以下である。樹脂粒子による導電性粒子の被覆率が前記範囲であることにより、充分な導通性を確保しつつ、隣接する絶縁化導電性粒子間を確実に絶縁することができる。なお、上記被覆率は、例えば電子顕微鏡(倍率5000倍)を用いて任意の100個の絶縁化導電性粒子の表面を観察したときに、絶縁化導電性粒子の正投影面における樹脂粒子の被覆されている部分と樹脂粒子の被覆されていない部分の面積比率を測定することにより評価できる。   The resin particles only need to be present on at least part of the surface of the conductive particles, and the abundance ratio of the resin particles in the entire surface of the conductive particles (in other words, the coverage of the conductive particles by the resin particles) is: Preferably they are 1% or more and 70% or less, More preferably, they are 5% or more and 60% or less, More preferably, they are 10% or more and 50% or less. When the coverage of the conductive particles by the resin particles is within the above range, it is possible to reliably insulate adjacent insulated conductive particles while ensuring sufficient electrical conductivity. In addition, the said coverage is the coating | cover of the resin particle in the orthographic projection surface of insulated conductive particles, when the surface of arbitrary 100 insulated conductive particles is observed using an electron microscope (5000 times magnification), for example It can be evaluated by measuring the area ratio of the portion that is not covered with the resin particles.

(異方性導電材料)
本発明の異方性導電材料は、前記本発明の絶縁化導電性粒子がバインダー樹脂に分散してなるものである。異方性導電材料の形態としては、特に制限されないが、例えば、異方性導電フィルム、異方性導電ペースト、異方性導電接着剤、異方性導電インクなど、相対向する基材間や電極端子間に設けることで電気的な接続を可能にするものが挙げられる。また、本発明の異方性導電材料には、導通スペーサーおよびその組成物などの液晶表示素子用導通材料も包含される。
(Anisotropic conductive material)
The anisotropic conductive material of the present invention is obtained by dispersing the insulated conductive particles of the present invention in a binder resin. The form of the anisotropic conductive material is not particularly limited. For example, the anisotropic conductive film, the anisotropic conductive paste, the anisotropic conductive adhesive, the anisotropic conductive ink, or the like between the opposing substrates or The thing which enables an electrical connection by providing between electrode terminals is mentioned. The anisotropic conductive material of the present invention also includes a conductive material for liquid crystal display elements such as a conductive spacer and its composition.

前記バインダー樹脂としては、特に制限はなく、従来公知のバインダー樹脂を用いることができる。例えば、(メタ)アクリレート樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体などの熱可塑性樹脂;グリシジル基を有するモノマーやオリゴマー及びイソシアネートなどの硬化剤との反応により得られる硬化性樹脂組成物などの光や熱による硬化性樹脂組成物;などが挙げられる。   There is no restriction | limiting in particular as said binder resin, A conventionally well-known binder resin can be used. For example, thermoplastic resins such as (meth) acrylate resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers; curable resin compositions obtained by reaction with curing agents such as monomers and oligomers having glycidyl groups and isocyanates Examples thereof include curable resin compositions by light and heat.

異方性導電フィルムは、例えば、本発明の絶縁化導電性粒子とバインダー樹脂などを含むフィルム形成用組成物に溶媒を加えて液状にし、この液をポリエチレンテレフタレート製などのフィルム上に塗布した後、溶媒を蒸発させることにより得ることができる。得られた異方性導電フィルムは、例えば、電極上に配置され、この異方性導電フィルム上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   For example, the anisotropic conductive film is made into a liquid by adding a solvent to the film-forming composition containing the insulated conductive particles of the present invention and a binder resin, and this liquid is applied on a film made of polyethylene terephthalate or the like. It can be obtained by evaporating the solvent. The obtained anisotropic conductive film is disposed on electrodes, for example, and is used for connection between the electrodes by superposing a counter electrode on the anisotropic conductive film and heating and compressing it.

異方性導電ペーストは、例えば、本発明の絶縁化導電性粒子とバインダー樹脂などを含む樹脂組成物をペースト状にすることにより得られる。得られた異方性導電ペーストは、例えば、適当なディスペンサーに入れられ、接続すべき電極上に所望の厚さで塗工され、塗工された異方性導電ペースト上に対向電極を重ね合わせ、加熱しながら加圧して樹脂を硬化させることにより、電極間の接続に使用される。   An anisotropic conductive paste is obtained by making the resin composition containing the insulated conductive particle of this invention, binder resin, etc. into paste form, for example. The obtained anisotropic conductive paste is placed in, for example, a suitable dispenser, applied on the electrode to be connected with a desired thickness, and the counter electrode is superimposed on the coated anisotropic conductive paste. It is used for connection between electrodes by curing the resin by applying pressure while heating.

異方性導電接着剤は、例えば、本発明の絶縁化導電性粒子とバインダー樹脂などを含む樹脂組成物を所望の粘度に調整することにより得られる。得られた異方性導電接着剤は、異方性導電ペーストと同様、電極上に所望の厚さで塗工した後、対向電極を重ね合わせ、両者を接着することにより電極間の接続に使用される。   The anisotropic conductive adhesive is obtained, for example, by adjusting a resin composition containing the insulated conductive particles of the present invention and a binder resin to a desired viscosity. The obtained anisotropic conductive adhesive is used to connect between electrodes by coating the electrodes with a desired thickness, then overlaying the counter electrodes and bonding them together, as with the anisotropic conductive paste. Is done.

異方性導電インクは、例えば、本発明の絶縁化導電性粒子とバインダー樹脂などを含む樹脂組成物に溶媒を加えて印刷に適した粘度に調整することにより得られる。得られた異方性導電インクは、例えば、接着すべき電極上にスクリーン印刷し、溶媒を蒸発させた後、異方性導電インクによる印刷面に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive ink can be obtained, for example, by adding a solvent to the resin composition containing the insulated conductive particles of the present invention and a binder resin to adjust the viscosity to be suitable for printing. The obtained anisotropic conductive ink is obtained by, for example, screen-printing on the electrode to be bonded, evaporating the solvent, superimposing the counter electrode on the printing surface with the anisotropic conductive ink, and heating and compressing the electrode. Used for connection between.

本発明の異方性導電材料において、本発明の絶縁化導電性粒子の含有量は、用途に応じて適宜決定すればよいが、例えば、異方導電性材料の全量に対して2〜70体積%が好ましい。より好ましくは5体積%以上、さらに好ましくは10体積%以上であり、より好ましくは50体積%以下、さらに好ましくは40体積%以下である。絶縁化導電性粒子の含有量が少なすぎると、充分な電気的導通が得られ難い場合があり、一方、絶縁化導電性粒子の含有量が多すぎると、粒子同士が接触してしまい、異方性導電材料としての機能が発揮され難い場合がある。   In the anisotropic conductive material of the present invention, the content of the insulated conductive particles of the present invention may be appropriately determined according to the application, for example, 2 to 70 volumes with respect to the total amount of the anisotropic conductive material. % Is preferred. More preferably, it is 5 volume% or more, More preferably, it is 10 volume% or more, More preferably, it is 50 volume% or less, More preferably, it is 40 volume% or less. If the content of insulated conductive particles is too small, it may be difficult to obtain sufficient electrical continuity. On the other hand, if the content of insulated conductive particles is too large, the particles may come into contact with each other, resulting in a difference. In some cases, the function as an anisotropic conductive material is difficult to be exhibited.

本発明の異方性導電材料におけるフィルム膜厚、ペーストや接着剤の塗工膜厚、印刷膜厚などについては、使用する本発明の絶縁化導電性粒子の粒子径と、接続すべき電極の仕様とを考慮し、接続すべき電極間に絶縁化導電性粒子が狭持され、且つ接続すべき電極が形成された接合基板同士の空隙がバインダー樹脂層により充分に満たされるように、適宜設定することが好ましい。   About the film thickness in the anisotropic conductive material of the present invention, the coating thickness of the paste or adhesive, the printed film thickness, etc., the particle diameter of the insulated conductive particles of the present invention to be used and the electrode to be connected Considering the specifications, the insulating conductive particles are sandwiched between the electrodes to be connected, and appropriately set so that the gap between the bonding substrates on which the electrodes to be connected are formed is sufficiently filled with the binder resin layer It is preferable to do.

本発明の異方性導電材料を用いて接続部位間を電気的に接続する際の接続方法は、特に制限されない。例えば、接続時の温度は、好ましくは190℃以下、より好ましくは170℃以下、さらに好ましくは150℃以下であり、好ましくは80℃以上、より好ましくは100℃以上、さらに好ましくは120℃以上である。接続時の圧力は、通常1〜100MPaである。接続時間(熱および圧を付加する時間)は、温度や圧力に応じて適宜設定すればよいが、通常10秒〜3600秒である。   There is no particular limitation on the connection method when the connection parts are electrically connected using the anisotropic conductive material of the present invention. For example, the temperature at the time of connection is preferably 190 ° C. or lower, more preferably 170 ° C. or lower, further preferably 150 ° C. or lower, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher. is there. The pressure at the time of connection is usually 1 to 100 MPa. The connection time (time for applying heat and pressure) may be appropriately set according to temperature and pressure, but is usually 10 seconds to 3600 seconds.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
なお、以下においては、特に断りのない限り、「部」は「質量部」を意味する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
In the following description, “part” means “part by mass” unless otherwise specified.

(実施例1)
[樹脂粒子の作製]
攪拌機、温度計および冷却機を備えたステンレス製の反応釜に、脱イオン水820部およびドデシルベンゼンスルホン酸ナトリウム0.8部(有効成分60質量%;以下「DBSNa」と称する)を加え、内温を75℃まで昇温し、同温度に保った。
他方、上記反応釜とは異なる容器で、メタクリル酸メチル(以下「MMA」と称する)140部とジビニルベンゼン(有効成分81質量%;以下「DVB」と称する)60部とを混合して、単量体組成物200部を調製した。
Example 1
[Production of resin particles]
To a stainless steel reaction kettle equipped with a stirrer, a thermometer and a cooler, 820 parts of deionized water and 0.8 part of sodium dodecylbenzenesulfonate (active ingredient 60% by mass; hereinafter referred to as “DBSNa”) were added. The temperature was raised to 75 ° C. and kept at the same temperature.
On the other hand, in a container different from the reaction kettle, 140 parts of methyl methacrylate (hereinafter referred to as “MMA”) and 60 parts of divinylbenzene (81% by mass of active ingredient; hereinafter referred to as “DVB”) are mixed. 200 parts of the monomer composition was prepared.

上記反応釜内を窒素ガスで置換した後、上記単量体組成物20部(単量体組成物全量の10質量%)、0.4質量%過酸化水素水50部、および0.4質量%L−アスコルビン酸水溶液50部を上記反応釜内に添加して、初期重合反応を行った。
次いで、上記単量体組成物の残部(単量体組成物全量の90質量%)180部、0.4質量%過酸化水素水450部、および0.4質量%L−アスコルビン酸水溶液450部を、各々異なる投入口より反応釜へ6時間かけて均一に滴下した。その後、内温を90℃まで昇温し、同温度で6時間保持して熟成した後、反応溶液を冷却して、樹脂粒子(1)が分散した樹脂粒子分散液(1)を得た。この分散液中の樹脂粒子(1)の粒子径について、動的光散乱粒度分布測定装置(ピーエスエスジャパン社製「NICOMP380」)で測定したところ、体積平均粒子径は158nm、変動係数は11%であった。
After replacing the inside of the reaction kettle with nitrogen gas, 20 parts of the monomer composition (10% by mass of the total amount of the monomer composition), 50 parts of 0.4% by mass hydrogen peroxide, and 0.4% by mass An initial polymerization reaction was carried out by adding 50 parts of a% L-ascorbic acid aqueous solution to the reaction kettle.
Next, 180 parts of the remaining monomer composition (90% by mass of the total amount of the monomer composition), 450 parts by mass of 0.4% by mass hydrogen peroxide, and 450 parts by mass of 0.4% by mass L-ascorbic acid aqueous solution Were dripped uniformly into the reaction kettle over 6 hours from different inlets. Thereafter, the internal temperature was raised to 90 ° C. and held at the same temperature for 6 hours for aging, and then the reaction solution was cooled to obtain a resin particle dispersion (1) in which the resin particles (1) were dispersed. The particle size of the resin particles (1) in this dispersion was measured with a dynamic light scattering particle size distribution measuring device (“NICOMP380” manufactured by PS Japan). The volume average particle size was 158 nm, and the variation coefficient was 11%. Met.

[導電性粒子の作製]
冷却管、温度計、滴下口を備えた四つ口フラスコに、界面活性剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製「ハイテノール(登録商標)NF−08」)2部を脱イオン水に溶解した水溶液150部を仕込んだ。次いで、予め調整しておいたDVB45部、1,6−ヘキサンジオールジアクリレート50部およびメタクリル酸5部からなる混合物と、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製「V−65」)2部とを添加し、乳化分散させて、懸濁液を調製した。得られた懸濁液に、さらに脱イオン水250部を加え、窒素雰囲気下で65℃まで昇温させて、同温度で2時間保持して、ラジカル重合を行った。
[Preparation of conductive particles]
Polyoxyethylene styrenated phenyl ether sulfate ammonium salt (Daiichi Kogyo Seiyaku "Hitenol (registered trademark) NF-08") as a surfactant in a four-necked flask equipped with a condenser, thermometer, and dripping port ) 150 parts of an aqueous solution prepared by dissolving 2 parts in deionized water. Subsequently, a mixture of 45 parts of DVB prepared in advance, 50 parts of 1,6-hexanediol diacrylate and 5 parts of methacrylic acid, and 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator 2 parts (“V-65” manufactured by Wako Pure Chemical Industries, Ltd.) were added and emulsified and dispersed to prepare a suspension. To the obtained suspension, 250 parts of deionized water was further added, the temperature was raised to 65 ° C. under a nitrogen atmosphere, and the mixture was held at the same temperature for 2 hours to perform radical polymerization.

次に、ラジカル重合で得られた乳濁液を固液分離し、得られたケーキを脱イオン水で洗浄し、続いてメタノールで洗浄し、さらに分級操作を行った後、窒素雰囲気下120℃で2時間真空乾燥して、ビニル重合体粒子を得た。この重合体粒子の粒子径を粒度分布測定装置(ベックマンコールター社製「コールターマルチサイザーIII型」)により測定したところ、個数平均粒子径は2.5μm、変動係数は3.9%であった。   Next, the emulsion obtained by radical polymerization is subjected to solid-liquid separation, and the obtained cake is washed with deionized water, subsequently washed with methanol, and further subjected to a classification operation, followed by 120 ° C. in a nitrogen atmosphere. And vacuum drying for 2 hours to obtain vinyl polymer particles. When the particle size of the polymer particles was measured with a particle size distribution analyzer (“Coulter Multisizer III type” manufactured by Beckman Coulter, Inc.), the number average particle size was 2.5 μm and the variation coefficient was 3.9%.

上記重合体粒子を基材粒子として、該基材粒子に二塩化スズ(SnCl)溶液によるセンシタイジングを施し、続いて二塩化パラジウム(PdCl)溶液によるアクチベーションを行い、基材粒子表面にPd核を形成した。このようにしてPd核を形成した粒子を無電解ニッケルめっき浴に浸漬することにより粒子表面にNiめっきを施し、次いで、得られた粒子のニッケル層表面にさらに置換めっきにより金めっきを施して、金属層の膜厚が0.1μmであり、個数平均粒子径が2.7μmである導電性粒子(1)を得た。 Using the polymer particles as base particles, the base particles are sensitized with a tin dichloride (SnCl 2 ) solution and subsequently activated with a palladium dichloride (PdCl 2 ) solution. Pd nuclei were formed. By soaking the particles in which the Pd nuclei are formed in an electroless nickel plating bath, Ni particles are applied to the surface of the particles, and then the nickel layer surface of the obtained particles is further subjected to gold plating by displacement plating, Conductive particles (1) having a metal layer thickness of 0.1 μm and a number average particle diameter of 2.7 μm were obtained.

なお、本明細書の実施例において、導電性粒子の個数平均粒子径、金属層の膜厚は、以下のようにして測定し算出した。
導電性粒子の個数平均粒子径:フロー式粒子像解析装置(シスメックス社製「FPIA−3000」)により測定し、個数基準の平均粒子径を導電性粒子の個数平均粒子径とした。
金属層の膜厚:基材粒子に用いる重合体粒子の個数平均粒子径を上述のフロー式粒子像解析装置により測定し、得られた個数平均粒子径と上述の測定により得られた導電性粒子の個数平均粒子径との差分の1/2を金属層の膜厚とした。
In the examples of the present specification, the number average particle diameter of the conductive particles and the film thickness of the metal layer were measured and calculated as follows.
Number average particle diameter of conductive particles: measured by a flow type particle image analyzer (“FPIA-3000” manufactured by Sysmex Corporation), and the average particle diameter based on the number was defined as the number average particle diameter of the conductive particles.
Film thickness of the metal layer: The number average particle diameter of the polymer particles used for the base particles is measured by the above flow type particle image analyzer, and the obtained number average particle diameter and the conductive particles obtained by the above measurement 1/2 of the difference from the number average particle diameter was taken as the film thickness of the metal layer.

[絶縁化導電性粒子の作製]
樹脂粒子分散液(1)を、粒子濃度が5.0質量%になるように脱イオン水で希釈した。得られた樹脂粒子分散液100部に導電性粒子(1)50部を加え、均一に分散させた後、エバポレーターで水を留去して、導電性粒子の表面を樹脂粒子で被覆した絶縁化導電性粒子(1)を得た。
[Preparation of insulated conductive particles]
The resin particle dispersion (1) was diluted with deionized water so that the particle concentration was 5.0% by mass. After adding 50 parts of conductive particles (1) to 100 parts of the obtained resin particle dispersion and dispersing uniformly, water is distilled off with an evaporator, and the surface of the conductive particles is covered with resin particles. Conductive particles (1) were obtained.

[異方性導電材料の作製]
絶縁被覆導電性微粒子(1)20部、バインダー樹脂としてエポキシ樹脂(ジャパンエポキシレジン社製「YL980」)65部、エポキシ硬化剤(旭化成社製「ノバキュア(登録商標)HX3941HP」)35部、および1mmφのジルコニアビーズ200部を混合し、30分間ビーズミル分散を行い、異方性導電材料として異方性導電接着剤(1)を得た。
[Production of anisotropic conductive material]
Insulating coating conductive fine particles (1) 20 parts, epoxy resin (“YL980” manufactured by Japan Epoxy Resin Co., Ltd.) 65 parts, epoxy curing agent (“NovaCure (registered trademark) HX3941HP” manufactured by Asahi Kasei Co., Ltd.) 35 parts, and 1 mmφ 200 parts of zirconia beads were mixed and subjected to bead mill dispersion for 30 minutes to obtain an anisotropic conductive adhesive (1) as an anisotropic conductive material.

得られた異方性導電接着剤を用いて導電接続構造体を作製し、下記の評価を行った。結果を表1に示す。
導電接続構造体の作製は、まず、離型フィルム(シリコーン樹脂またはフッ素樹脂により片面に離型処理が施されたポリエチレンテレフタレートフィルム)の離型処理面に、乾燥厚みが25μmとなるように異方性導電接着剤を塗布することにより接着層を形成して、離型フィルムの片面に接着剤層を備えた異方性導電シートを作製した。
次に、得られた異方性導電シートから離型フィルムを剥がし、接着剤層のみを、150μm幅のパターンを有するITO透明電極膜が内面に形成された2枚のITO付きガラス基板の間に挟み、1MPa、185℃で15秒間加熱加圧して、導電接続構造体を得た。
A conductive connection structure was prepared using the obtained anisotropic conductive adhesive, and the following evaluation was performed. The results are shown in Table 1.
The production of the conductive connection structure is first anisotropic so that the release thickness of the release film (polyethylene terephthalate film that has been subjected to release treatment on one side with silicone resin or fluororesin) is 25 μm. The anisotropic conductive sheet which formed the contact bonding layer by apply | coating a conductive conductive adhesive, and was equipped with the adhesive bond layer on the single side | surface of the release film was produced.
Next, the release film is peeled from the obtained anisotropic conductive sheet, and only the adhesive layer is placed between two ITO-attached glass substrates on which an ITO transparent electrode film having a 150 μm wide pattern is formed on the inner surface. The conductive connection structure was obtained by heating and pressing at 1 MPa and 185 ° C. for 15 seconds.

<絶縁化導電性粒子の分散状態>
導電接続構造体を片面側から顕微鏡により観察し、隣接する電極間に挟まれた絶縁化導電性粒子の分散状態を顕微鏡により観察し、下記の基準に従い判定した。
◎:個々の絶縁化導電性粒子が均一に分散しており、2個以上の絶縁化導電性粒子が連結した凝集体が認められない。
○:2〜3個の絶縁化導電性粒子が連結した凝集体が認められる。
△:4〜9個の絶縁化導電性粒子が連結した凝集体が認められる。
×:10個以上の絶縁化導電性粒子が連結した凝集体が認められる。
<Dispersed state of insulated conductive particles>
The conductive connection structure was observed with a microscope from one side, and the dispersed state of the insulated conductive particles sandwiched between adjacent electrodes was observed with a microscope, and judged according to the following criteria.
A: Individual insulated conductive particles are uniformly dispersed, and an aggregate in which two or more insulated conductive particles are connected is not observed.
A: Aggregates in which 2 to 3 insulated conductive particles are connected are observed.
(Triangle | delta): The aggregate which the 4-9 insulated conductive particle connected was recognized.
X: Aggregates in which 10 or more insulated conductive particles are connected are observed.

<導通性>
導電接続構造体を測定試料として、対向する電極間の導通抵抗を四端子法により測定した。n=50で測定を行い、抵抗値が20Ω以下となった割合(%)を求めた。
<Conductivity>
Using the conductive connection structure as a measurement sample, the conduction resistance between the opposing electrodes was measured by the four-terminal method. Measurement was performed at n = 50, and the ratio (%) at which the resistance value was 20Ω or less was determined.

<絶縁性>
導電接続構造体を測定試料として、隣接する電極間の絶縁抵抗を四端子法により測定した。n=50で測定を行い、抵抗値が100MΩ以上となった割合(%)を求めた。
<Insulation>
Using the conductive connection structure as a measurement sample, the insulation resistance between adjacent electrodes was measured by the four-terminal method. Measurement was performed at n = 50, and the ratio (%) at which the resistance value was 100 MΩ or more was determined.

(実施例2)
実施例1の[樹脂粒子の作製]において、単量体組成物を調製するにあたり、MMA160部とDVB40部とを混合したこと以外は実施例1と同様にして、樹脂粒子(2)が分散した樹脂粒子分散液(2)を得た。この分散液中の樹脂粒子(2)の粒子径について、実施例1と同様に測定したところ、体積平均粒子径は140nm、変動係数は9%であった。
次いで、実施例1の[絶縁化導電性粒子の作製]において、樹脂粒子分散液(1)に代えて樹脂粒子分散液(2)を用いたこと以外は実施例1と同様にして絶縁化導電性粒子(2)を得、さらに実施例1の[異方性導電材料の作製]において、絶縁化導電性粒子(1)に代えて絶縁化導電性粒子(2)を用いたこと以外は実施例1と同様にして異方性導電接着剤(2)を得た。
得られた異方性導電接着剤について、実施例1と同様の評価を行った。結果を表1に示す。
(Example 2)
In [Production of Resin Particles] in Example 1, resin particles (2) were dispersed in the same manner as in Example 1 except that 160 parts of MMA and 40 parts of DVB were mixed in preparing the monomer composition. A resin particle dispersion (2) was obtained. The particle diameter of the resin particles (2) in this dispersion was measured in the same manner as in Example 1. As a result, the volume average particle diameter was 140 nm and the coefficient of variation was 9%.
Next, in Example 1 [Production of insulated conductive particles], the insulated conductive film was used in the same manner as in Example 1 except that the resin particle dispersion liquid (2) was used instead of the resin particle dispersion liquid (1). Conductive particles (2) were obtained, and in Example 1 [Production of anisotropic conductive material], the insulated conductive particles (2) were used instead of the insulated conductive particles (1). In the same manner as in Example 1, an anisotropic conductive adhesive (2) was obtained.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive adhesive. The results are shown in Table 1.

参考例3)
実施例1の[樹脂粒子の作製]において、単量体組成物を調製するにあたり、MMA180部とDVB20部とを混合したこと以外は実施例1と同様にして、樹脂粒子(3)が分散した樹脂粒子分散液(3)を得た。この分散液中の樹脂粒子(3)の粒子径について、実施例1と同様に測定したところ、体積平均粒子径は130nm、変動係数は3%であった。
次いで、実施例1の[絶縁化導電性粒子の作製]において、樹脂粒子分散液(1)に代えて樹脂粒子分散液(3)を用いたこと以外は実施例1と同様にして絶縁化導電性粒子(3)を得、さらに実施例1の[異方性導電材料の作製]において、絶縁化導電性粒子(1)に代えて絶縁化導電性粒子(3)を用いたこと以外は実施例1と同様にして異方性導電接着剤(3)を得た。
得られた異方性導電接着剤について、実施例1と同様の評価を行った。結果を表1に示す。
( Reference Example 3)
In the preparation of the resin composition in Example 1, the resin particles (3) were dispersed in the same manner as in Example 1 except that 180 parts of MMA and 20 parts of DVB were mixed. A resin particle dispersion (3) was obtained. The particle diameter of the resin particles (3) in this dispersion was measured in the same manner as in Example 1. As a result, the volume average particle diameter was 130 nm and the coefficient of variation was 3%.
Next, in Example 1 [Production of insulated conductive particles], the insulated conductive film was used in the same manner as in Example 1 except that the resin particle dispersion liquid (3) was used instead of the resin particle dispersion liquid (1). Conductive particles (3) were obtained, and in Example 1 [Production of anisotropic conductive material], the insulated conductive particles (3) were used instead of the insulated conductive particles (1). An anisotropic conductive adhesive (3) was obtained in the same manner as in Example 1.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive adhesive. The results are shown in Table 1.

参考例4)
実施例1の[樹脂粒子の作製]において、単量体組成物を調製するにあたり、MMA190部とDVB10部とを混合したこと以外は実施例1と同様にして、樹脂粒子(4)が分散した樹脂粒子分散液(4)を得た。この分散液中の樹脂粒子(4)の粒子径について、実施例1と同様に測定したところ、体積平均粒子径は123nm、変動係数は9%であった。
次いで、実施例1の[絶縁化導電性粒子の作製]において、樹脂粒子分散液(1)に代えて樹脂粒子分散液(4)を用いたこと以外は実施例1と同様にして絶縁化導電性粒子(4)を得、さらに実施例1の[異方性導電材料の作製]において、絶縁化導電性粒子(1)に代えて絶縁化導電性粒子(4)を用いたこと以外は実施例1と同様にして異方性導電接着剤(4)を得た。
得られた異方性導電接着剤について、実施例1と同様の評価を行った。結果を表1に示す。
( Reference Example 4)
In [Production of resin particles] in Example 1, resin particles (4) were dispersed in the same manner as in Example 1 except that 190 parts of MMA and 10 parts of DVB were mixed in preparing the monomer composition. A resin particle dispersion (4) was obtained. The particle diameter of the resin particles (4) in this dispersion was measured in the same manner as in Example 1. As a result, the volume average particle diameter was 123 nm and the coefficient of variation was 9%.
Next, in Example 1 [Production of insulated conductive particles], the insulated conductive film was used in the same manner as in Example 1 except that the resin particle dispersion (4) was used instead of the resin particle dispersion (1). Conductive particles (4) were obtained, and in Example 1 [Production of anisotropic conductive material], the insulated conductive particles (4) were used instead of the insulated conductive particles (1). In the same manner as in Example 1, an anisotropic conductive adhesive (4) was obtained.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive adhesive. The results are shown in Table 1.

(実施例5)
実施例1の[導電性粒子の作製]において、界面活性剤として用いたポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩の使用量を2部から5部に変更したこと以外は実施例1と同様にして、重合体粒子を得た。この重合体粒子の粒子径を粒度分布測定装置(ベックマンコールター社製「コールターマルチサイザーIII型」)により測定したところ、個数平均粒子径は1.8μm、変動係数は4.2%であった。この重合体粒子を基材粒子として用いたこと以外は実施例1と同様にして、金属層の膜厚が0.1μmであり、個数平均粒子径が2.0μmである導電性粒子(2)を得た。
次いで、実施例1の[絶縁化導電性粒子の作製]において、導電性粒子(1)に代えて導電性粒子(2)を用いたこと以外は実施例1と同様にして絶縁化導電性粒子(5)を得、さらに実施例1の[異方性導電材料の作製]において、絶縁化導電性粒子(1)に代えて絶縁化導電性粒子(5)を用いたこと以外は実施例1と同様にして異方性導電接着剤(5)を得た。
得られた異方性導電接着剤について、実施例1と同様の評価を行った。結果を表1に示す。
(Example 5)
The same as Example 1 except that the amount of polyoxyethylene styrenated phenyl ether sulfate ammonium salt used as the surfactant in [Production of conductive particles] in Example 1 was changed from 2 parts to 5 parts. Thus, polymer particles were obtained. When the particle size of the polymer particles was measured with a particle size distribution analyzer (“Coulter Multisizer III type” manufactured by Beckman Coulter, Inc.), the number average particle size was 1.8 μm and the coefficient of variation was 4.2%. Conductive particles (2) having a metal layer thickness of 0.1 μm and a number average particle diameter of 2.0 μm, as in Example 1, except that the polymer particles were used as base particles. Got.
Then, in [Production of insulated conductive particles] in Example 1, insulated conductive particles were obtained in the same manner as in Example 1 except that the conductive particles (2) were used instead of the conductive particles (1). Example 5 was obtained, except that the insulated conductive particles (5) were used in place of the insulated conductive particles (1) in Example 1 [Production of anisotropic conductive material]. In the same manner, an anisotropic conductive adhesive (5) was obtained.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive adhesive. The results are shown in Table 1.

(比較例1)
実施例1の[樹脂粒子の作製]において、単量体組成物を調製するにあたり、MMA180部とエチレングリコールジメタクリレート20部とを混合したこと以外は実施例1と同様にして、比較用の樹脂粒子(C1)が分散した樹脂粒子分散液(C1)を得た。この分散液中の樹脂粒子(C1)の粒子径について、実施例1と同様に測定したところ、体積平均粒子径は150nm、変動係数は8%であった。
次いで、実施例1の[絶縁化導電性粒子の作製]において、樹脂粒子分散液(1)に代えて樹脂粒子分散液(C1)を用いたこと以外は実施例1と同様にして絶縁化導電性粒子(C1)を得、さらに実施例1の[異方性導電材料の作製]において、絶縁化導電性粒子(1)に代えて絶縁化導電性粒子(C1)を用いたこと以外は実施例1と同様にして異方性導電接着剤(C1)を得た。
得られた異方性導電接着剤について、実施例1と同様の評価を行った。結果を表1に示す。
(Comparative Example 1)
A resin for comparison was prepared in the same manner as in Example 1 except that 180 parts of MMA and 20 parts of ethylene glycol dimethacrylate were mixed in preparing the monomer composition in [Production of Resin Particles] in Example 1. A resin particle dispersion (C1) in which the particles (C1) were dispersed was obtained. The particle diameter of the resin particles (C1) in this dispersion was measured in the same manner as in Example 1. As a result, the volume average particle diameter was 150 nm and the coefficient of variation was 8%.
Next, in Example 1 [Production of insulated conductive particles], the insulated conductive film was used in the same manner as in Example 1 except that the resin particle dispersion liquid (C1) was used instead of the resin particle dispersion liquid (1). Conductive particles (C1) were obtained, and in Example 1 [Production of anisotropic conductive material], the insulated conductive particles (C1) were used in place of the insulated conductive particles (1). An anisotropic conductive adhesive (C1) was obtained in the same manner as in Example 1.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive adhesive. The results are shown in Table 1.

(比較例2)
実施例1の[樹脂粒子の作製]において、単量体組成物を調製するにあたり、スチレン180部とDVB20部とを混合したこと以外は実施例1と同様にして、比較用の樹脂粒子(C2)が分散した樹脂粒子分散液(C2)を得た。この分散液中の樹脂粒子(C2)の粒子径について、実施例1と同様に測定したところ、体積平均粒子径は145nm、変動係数は10%であった。
次いで、実施例1の[絶縁化導電性粒子の作製]において、樹脂粒子分散液(1)に代えて樹脂粒子分散液(C2)を用いたこと以外は実施例1と同様にして絶縁化導電性粒子(C2)を得、さらに実施例1の[異方性導電材料の作製]において、絶縁化導電性粒子(1)に代えて絶縁化導電性粒子(C2)を用いたこと以外は実施例1と同様にして異方性導電接着剤(C2)を得た。
得られた異方性導電接着剤について、実施例1と同様の評価を行った。結果を表1に示す。
(Comparative Example 2)
Resin particles for comparison (C2) were prepared in the same manner as in Example 1 except that 180 parts of styrene and 20 parts of DVB were mixed in preparing the monomer composition in [Production of resin particles] in Example 1. A resin particle dispersion liquid (C2) in which is dispersed) was obtained. The particle diameter of the resin particles (C2) in this dispersion was measured in the same manner as in Example 1. As a result, the volume average particle diameter was 145 nm and the coefficient of variation was 10%.
Then, in [Production of insulated conductive particles] in Example 1, insulated conductive material was obtained in the same manner as in Example 1 except that the resin particle dispersion (C2) was used instead of the resin particle dispersion (1). Conductive particles (C2) were obtained, and in Example 1 [Production of anisotropic conductive material], the insulated conductive particles (C2) were used in place of the insulated conductive particles (1). In the same manner as in Example 1, an anisotropic conductive adhesive (C2) was obtained.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive adhesive. The results are shown in Table 1.

表1から、実施例1、2および5のようにMMA−DVB系共重合体からなる本発明の樹脂粒子であれば、導電性粒子の表面を被覆して絶縁化導電性粒子としたときに、該絶縁化導電性粒子は導電接続構造体中で凝集することなく均一に分散した状態となり、その結果、導電接続構造体において、対向する電極間の導通は良好に保ちつつ、横導通は抑制できることが分かる。 From Table 1, when the resin particles of the present invention comprising the MMA-DVB copolymer as in Examples 1 , 2 and 5, the surface of the conductive particles is coated to form insulated conductive particles. The insulated conductive particles are uniformly dispersed without agglomerating in the conductive connection structure. As a result, in the conductive connection structure, the conduction between the opposing electrodes is kept good, and the lateral conduction is suppressed. I understand that I can do it.

Claims (7)

導電性粒子の表面に存在して該導電性粒子を絶縁するための樹脂粒子であって、(メタ)アクリル酸メチルとジビニルベンゼンとを含む単量体組成物を重合させた(メタ)アクリル系架橋粒子重合体からなり、前記単量体組成物中に占めるジビニルベンゼンの含有割合が14質量%以上であり、平均粒子径が123nm以上、500nm以下であることを特徴とする樹脂粒子。 (Meth) acrylic resin particles that are present on the surface of the conductive particles and insulate the conductive particles, and are obtained by polymerizing a monomer composition containing methyl (meth) acrylate and divinylbenzene Resin particles comprising a crosslinked particle polymer, wherein the content ratio of divinylbenzene in the monomer composition is 14% by mass or more, and the average particle size is 123 nm or more and 500 nm or less . 前記重合には乳化重合法を採用する、請求項1に記載の樹脂粒子。 The resin particles according to claim 1, wherein an emulsion polymerization method is adopted for the polymerization. 前記乳化重合にはレドックス系重合開始剤を用いる、請求項に記載の樹脂粒子。 The resin particles according to claim 2 , wherein a redox polymerization initiator is used for the emulsion polymerization. 前記乳化重合にはアニオン系乳化剤を用いる、請求項2または3に記載の樹脂粒子。 The resin particle according to claim 2 , wherein an anionic emulsifier is used for the emulsion polymerization. 導電性粒子の表面の少なくとも一部に請求項1〜のいずれかに記載の樹脂粒子が存在してなることを特徴とする絶縁化導電性粒子。 Insulated conductive particles, wherein the resin particles according to any one of claims 1 to 4 are present on at least a part of the surface of the conductive particles. 前記導電性粒子の平均粒子径が11μm以下である、請求項に記載の絶縁化導電性粒子。 The insulated conductive particles according to claim 5 , wherein the conductive particles have an average particle diameter of 11 μm or less. 請求項5または6に記載の絶縁化導電性粒子がバインダー樹脂に分散してなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the insulated conductive particles according to claim 5 or 6 are dispersed in a binder resin.
JP2010209312A 2010-09-17 2010-09-17 Resin particles, insulated conductive particles and anisotropic conductive materials using the same Active JP5670133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209312A JP5670133B2 (en) 2010-09-17 2010-09-17 Resin particles, insulated conductive particles and anisotropic conductive materials using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209312A JP5670133B2 (en) 2010-09-17 2010-09-17 Resin particles, insulated conductive particles and anisotropic conductive materials using the same

Publications (2)

Publication Number Publication Date
JP2012062435A JP2012062435A (en) 2012-03-29
JP5670133B2 true JP5670133B2 (en) 2015-02-18

Family

ID=46058480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209312A Active JP5670133B2 (en) 2010-09-17 2010-09-17 Resin particles, insulated conductive particles and anisotropic conductive materials using the same

Country Status (1)

Country Link
JP (1) JP5670133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018230470A1 (en) * 2017-06-12 2020-03-19 積水化学工業株式会社 Resin particles, conductive particles, conductive material, adhesive, connection structure, and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678398B2 (en) * 1988-01-13 1994-10-05 株式会社日本触媒 Method for producing crosslinked fine particle polymer
JP2000100249A (en) * 1998-09-24 2000-04-07 Sekisui Chem Co Ltd Insulation-coated conductive fine-grain, anisotropic conductive adhesive, and conductive connection structure
JP3346376B2 (en) * 1999-11-05 2002-11-18 ソニーケミカル株式会社 Conductive particles for anisotropic conductive connection and anisotropic conductive connection material
JP4391836B2 (en) * 2004-01-19 2009-12-24 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
KR100597391B1 (en) * 2004-05-12 2006-07-06 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
WO2010032854A1 (en) * 2008-09-19 2010-03-25 株式会社日本触媒 Electroconductive particles and anisotropic electroconductive material using the same

Also Published As

Publication number Publication date
JP2012062435A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5957042B2 (en) Conductive fine particles and anisotropic conductive materials
JP5841319B2 (en) Polymer fine particles and conductive fine particles
JP5140209B2 (en) Conductive fine particles, resin particles and anisotropic conductive material using the same
JP5498907B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same
JP5599674B2 (en) Polymer fine particles and conductive fine particles
KR102311892B1 (en) Resin particles, conductive microparticles, and anisotropic conductive material using same
JP5653737B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP5998032B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6002026B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5956906B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5856379B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5750342B2 (en) Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5667557B2 (en) Conductive fine particles and anisotropic conductive materials
JP5670133B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same
JP2014207193A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583714B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6498505B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2015176823A (en) Conductive fine particle
JP5998018B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5951977B2 (en) Conductive fine particles
JP6397552B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2016094555A (en) Polymer fine particle, conductive fine particle and anisotropic conductive material
JP6446514B2 (en) Conductive fine particles and anisotropic conductive material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141217

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5670133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150